Boulder School 2022: Reading Materials

Please look here for any reading materials in order to prepare for the lectures. All lecture materials will be posted to the Lecture Notes page. All files are in PDF format (or direct linked).

  1. Alqatari, Samar et al. Confinement-induced stabilization of the Rayleigh-Taylor instability and transition to the unconfined limit. Science Advannces 6(47), 2020.
  2. Aluie, H., & Eyink, G. L. Localness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filter. Physics of Fluids, 21(11), 2003, 115108.
  3. Aluie, H. Coarse-grained incompressible magnetohydrodynamics: analyzing the turbulent cascades. New Journal of Physics, 19(2), 2017, 025008. 
  4. Archer, David. The Warming Papers: The Scientific Foundation for the Climate Change Forecast (Wiley, 2010). A summary of the classical papers underlying global warming.
  5. Barkley, Dwight. Simplifying the complexity of pipe flow. Phys. Rev. E84, 016309, 2011.
  6. Barkley, Dwight. Theoretical perspective on the route to turbulence in a pipe. J. Fluid Mech. 893, P1, 2016.
  7. Barkley, Dwight. Pipe Flow as an Excitable Medium. Rev. Cub. Fis. 29, 1E27, 2012.
  8. Bouchet, Freddy and Venaille, A. Statistical mechanics of two-dimensional and geophysical flows. Physics Reports 515(5), 227-295, 2012.
  9. Bouchet, Freddy. Is the Boltzmann Equation Reversible? A Large Deviation Perspective on the Irreversibility Paradox. Jour. Statistical Phys. 181, 515-550, 2020.
  10. Bouchet, Freddy. Large deviation theory applied to study rare and extreme events in turbulence, atmosphere, and climate dynamics. Boulder School 2022 Outline and Notes.
  11. Burton, Justin C.; Lu, Peter Y.; and Nagel, Sidney R. Collision dynamics of particle clusters in a two-dimensional granular gas. Phys. Rev. E88, 062204, 2013.
  12. Cerbus, Rory T. et al. Laws of Resistance in Transitional Pipe Flows. Phys. Rev. Lett. 120, 054502, 2018.
  13. Chantry, Matthew; Tuckerman, Laurette S.; and Barkley, Dwight. Universal continuous transition to turbulence in a planar shear flow. J. Fluid Mech. 824, R1, 2017.
  14. Cheng, Xiang et al. Collective Behavior in a Granular Jet: Emergence of a Liquid with Zero Surface Tension. Phys. Rev. Lett. 99, 188001, 2007.
  15. Datseris, George and Parlitz, Ulrich. Nonlinear Dynamics (Springer, 2022). Contains sample codes in Julia ver. 1.6.
  16. Dresdner, Gideon et al. Learning to correct spectral methods for simulating turbulent flows (ArXiv [2207.00556]).
  17. Driscoll, Michelle M. et al. The role of rigidity in controlling material failure. PNAS 113(39), 10813-10817, 2016.
  18. Eckert, Michael. A Kind of Boundary-Layer ‘Flutter’: The Turbulent History of a Fluid Mechanical InstabilityUnpublished.
  19. Eckhardt, Bruno. A Critical Point for Turbulence. Science 333(6039), 165-166, 2011.
  20. Eckhardt, Bruno. Transition to turbulence in shear flows. Physica A504, 121-129, 2018.
  21. Emanuel, Kerry. What We Know about Climate Change, Updated Edition (MIT Press, 2018). 
  22. Emanuel, Kerry. The Relevance of Theory for Contemporary Research in Atmospheres, Oceans, and Climate. AGU Advances (2020). 
  23. Falkovich, Gregory. Fluid Mechanics, 2nd Edition (Cambridge University Press, 2018). 
  24. Fox-Kemper, Baylor et al. Challenges and Prospects in Ocean Circulation Models. Front. Mar. Sci. 6, 2019.
  25. Fox-Kemper, Baylor. Notions for the Motions of the Oceans in New Frontiers in Operational Oceanography (GODAE OceanView, 2018), Chapter 2.
  26. Fox-Kemper, Baylor; Johnson, Leah; and Qiao, Fangli. Chapter 4 - Ocear near-surface layers in Ocean Mixing (Elsevier, 2022), pp. 65-94.
  27. Fox-Kemper, Baylor. Grad Student Advice (unpublished, 2022).
  28. Fox-Kemper, Baylor. Postdoc Advice (unpublished, 2022).
  29. Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, 1995). 
  30. Goldenfeld, Nigel. Lectures on Transistion to Turbulence. Boulder School 2022.
  31. Goldenfeld, Nigel. A statistical mechanical phase transition to turbulence in a model shear flow. J. Fluid Mechan. 830, 2017.
  32. Goldenfeld, Nigel and Shih, Hong-Yan. Turbulence as a Problem in Non-equilibrium Statistical Mechanics. J. Stat. Phys. 167, 575-594, 2017.
  33. Goldenfeld, Nigel; Guttenberg, Nicholas; and Gioia, Gustavo. Extreme fluctuations and the finite lifetime of the turbulent state. Phys. Rev. E81, 035304(R), 2010.
  34. Hall, Philip; and Ozcakir, Ozge. Poiseuille flow in rough pipes: linear instability induced by vortex-wave interactions. J. Fluid Mech. 913, A43, 2021.
  35. Held, Isaac M. The Gap between Simulation and Understanding in Climate Modeling. Bull. Amer. Meterological Soc. 86(11), 1609-1614, 2005. 
  36. Hewitt, Helene et al. The small scales of the ocean may hold the key to surprises. Nature Climate Change 12, 494-503, 2022.
  37. Hof, Bjorn et al. Repeller or Attractor? Selecting the Dynamical Model for Onset of Turbulence in Pipe Flow. Phys. Rev. Lett. 101, 214501, 2008.
  38. Hof, Bjorn; Juel, A.; and Mullin, T. Scaling of the Turbulence Transition Threshold in a Pipe. Phys. Rev. Lett. 91(24), 244502, 2003.
  39. Hoskins, Brian and Woollings, Tim. Persistent Extratropical Regimes and Climate Extremes (Springer, 2015). For an understanding of the impact of Arctic amplification on Rossby waves.
  40. Kooloth, Parvati; Smith, Leslie M.; and Stechmann, Samuel N. Hamilton’s Principle with Phase Changes and Conservation Principles for Moist Potential Vorticity (ArXiv []). 
  41. Lathop, Daniel Perry. Turbulence lost in transience. Nature 443, 36-37, 2006.
  42. Lauga, Eric and Powers, Thomas R. The hydrodynaics of swimming microorganisms. Rep. Prog. Phys. 72 (2009) 096601 (36pp). 
  43. LeClair, André et al. Russian Doll Renormalization Group and Kosterlitz-Thouless Flows (ArXiv[hep-th]). Limit cycles in a RG flow (rather than fixed points).
  44. Lecoanet, D. et al. A Validated Nonlinear Kelvin-Helmholtz Benchmark for Numerical Hydrodynamics (ArXiv [1509.03630]).
  45. Lemoult, Gregoire et al. Turbulent spots in channel flow: An experimental study. Eur. Phys. J. E. 37(25), 2014.
  46. Lozano-Duran, Adrian and Arranz, Gonzalo. Information-theoretic formulation of dynamical systems. Causality, modeling, and control. Phys. Rev. Research 4, 023195, 2022. 
  47. Lubensky, T.C. and Radzihovsky, Leo. Theory of Banana Liquid Crystal Phases and Phase Transitions (ArXiv[cond-mat.soft]). 
  48. Lucarini, Valerio (ed.). Special Issue on the Statistical Mechanics of Climate. Jour. Stat. Phys. 179(5-6), 2020.
  49. Marston, J.B. and Tobias, S.M. Recent Developments in Theories of Inhomogeneous and Anisotropic Turbulence (ArXiv[physics]).
  50. Marston, J.B.; Wanming, Qi; and Tobias, S.M. Direct Statistical Simulation of a Jet (ArXiv[physics]).
  51. Meneveau, C., & Katz, J. Scale-invariance and turbulence models for large-eddy simulation. Annual Review of Fluid Mechanics, 32(1), 2000, 1-32.
  52. Mobilia, Mauro; Georgiev, Ivan T.; and Tauber, Uwe C. Phase Transitions and Spatio-Temporal Fluctuations in Stochastic Lattice Lotka-Volterra Models. Jour. Stat. Phys. 128(1/2), 2007.
  53. Morrison, P.J. Hamiltonian Fluid Mechanics. Encyclopedia of Mathematical Physics 2 (Elsevier, Amsterdam, 2006) p. 593. 
  54. Morrisonn, P.J.. On Hamiltonian and Action Principle Formulations of Plasma Dynamics. New Developments in Nonlinear Plasma Physics (Proceedings of the 2009 ICTP Summer College on Plasma Physics and International Symposium on Cutting Edge Plasma Physics in Honor of Professor Lennart Stenflo’s 70th Birthday (Trieste, Italy, 10-28 August 2009).
  55. Moxey, David; and Barkley, Dwight. Distinct large-scale turbulent-laminar states in transitional pipe flow. PNAS 107(18), 8091-8096, 2010.
  56. Mukund, Vasudevan and Hof, Bjorn. The critical point of the transition to turbulence in pipe flow. J. Fluid. Mech. 839, 76-94, 2018.
  57. Nikuradse, J. Laws of Flow in Rough PipesNational Advisory Committee for Aeronautics: Technical Memorandum 1292, 1950.
  58. Paulsen, Joseph D. et al. The inexorable resistance of inertia determines the initial regime of drop coalescence. PNAS 109(18), 6857-6861, 2012.
  59. Pomeau, Yves. The long and winding road. Nature Physics 12, 198-199, 2016.
  60. Pomeau, Yves. Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D23(1-3), 3-11, 1986.
  61. Pope, S. Turbulent Flows. (Cambridge University Press, 2000). 
  62. Radzihovsky, Leo and Lubensky, T.C. Fluctuation-Driven 1st-Order Isotropic-to-Tetrahedratic Phase Transition (ArXiv [cond-mat.soft]).
  63. Salmon, Rick. Lectures on Geophysical Fluid Dynamics (Oxford University Press, 1998). Chapter 7 has a nice description of Hamiltonian fluid dynamics. 
  64. Schade, Nicholas B.; Schuster, David I.; and Nagel, Sidney R. A nonlinear, geometric Hall effect without magnetic field. PNAS 116(49), 24475-24479, 2019.
  65. Shepherd, Theodore G. Symmetries, Conservation Laws, and Hamiltonian Structure in Geophysical Fluid Dynamics. Advances in Geophysics 32, 1990, pp. 287-338.
  66. Shi, X. D.; Brenner, Michael P.; and Nagel, Sidney R. A Cascade of Structure in a Drop Falling from a Faucet. Science, New Series 265(5169), 219-222, 1994.
  67. Shih, Hong-Yan; Hsieh, Tsung-Lin; and Goldenfeld, Nigel. Ecological collapse and the emergence of travelling waves at the onset of shear turbulence. Nature Physics 12, 245-248, 2016.
  68. Shimizu, Masaki; Kanazawa, Takahiro; and Kawahara, Genta. Exponential growth of lifetime of localized turbulence with its extent in channel flow. Fluid. Dyn. Res. 51, 011404, 2019.
  69. Showman, Adam P.; Cho, James Y-K; and Kristen Menou. Atmospheric Circulation of Exoplanets ArXiv[astro-ph]).Rossby numbers across the universe.
  70. Singh, Martin S. and O’Neill, Morgan E. The climate system and the second law of thermodynamics. Rev. Mod. Phys. 94, 015001 (2022).
  71. Sipos, Maksim and Goldenfeld, Nigel. Directed percolation describes lifetime and growth of turbulent puffs and slugs. Phys. Rev. E84, 035304(R), 2011.
  72. Smith, Michael R. A study of homogeneous turbulence using superfluid helium. Physica B197(1-4), 297-305, 1994.
  73. Spagnolie, Saverio E. and Lauga, Eric. Comparative Hydrodynamics of Bacterial Polymorphism. Phys. Rev. Lett. 106, 058103, 2011.
  74. Tauber, Uwe C. Population oscillations in spatial stochastic Lotka-Volterra models: a field-theoretic perturbational analysis. J. Phys. A: Math. Theor. 45, 405002, 2012.
  75. To, Kha-I and Nagel, Sidney. Rifts in Rafts (ArXiv[cond-mat]).
  76. Tobias, S.M. The turbulent dynamo.  Journal of Fluid Mechanics, 912, P1, 2021.
  77. Toner, John; Tu, Yuhai; and Ramaswamy, Sriram. Hydrodynamics and phases of flocks. Annals of Physics 318(1), 2005, pp. 170-204.
  78. Tuckerman, Laurette S.; Chantry, Matthew; and Barkley, Dwight. Patterns in Wall-Bounded Shear Flows. Ann. Rev. Fluid Mech. 52, 343-367, 2020.
  79. Vallis, Geoffrey K. Geophysical fluid dynamics: whence, whither and why? Proc. Royal Soc. A 472(2192), 2016. 
  80. Vallis, Geoffrey K. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation (Cambridge University Press). Chapter 2, Chapter 11, Chapter 12.
  81. Wang, Xueying; Shih, Hong-Yan; and Goldenfeld, Nigel. Stochastic Model for Quasi-One-Dimensional Transitional Turbulence with Streamwise Shear Interactions. Phys. Rev. Lett. 129, 034501, 2022.
  82. Xu, Lei; Zhang, Wendy W.; and Nagel, Sidney R. Drop Splashing on a Dry Smooth Surface. Phys. Rev. Lett. 94, 194505, 2005.
  83. Zhang, Chenyu; Lawrence, Albion; Marston, Brad; and Kushner, Paul. Infinite U(1) Symmetry of the Quasi-Linear Approximation.
  84. Zweibel, Ellen G. The basis for cosmic ray feedback: Written on the wind. Physics of Plasmas 24, 055402, 2017.
  85. Zweibel, Ellen G. Hydrodynamics at the Largest Scales. Unpublished notes.
  86. Zweibel, Ellen G. Cosmic Rays in Galaxies: From Microscales to Macroscales. Slides from the Crafoord Symposium 2022.

Nigel Goldenfeld Links to Boulder School 2011 lectures on YouTube

  1. Drag on Moving Bodies & the Renormalization Group - July 8, 2011
  2. Introduction to Turbulence (statistical theory) - July 11, 2011
  3. Theoretical Advances in the Statistical Theory of Turbulence - July 12, 2011

Other Related Videos