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I think the causes of the general trade-winds have not been fully explained
by any of those who have wrote on that subject. . . That the action of the
Sun is the original cause of these Winds, I think all are agreed.
George Hadley, Concerning the Cause of the General Trade Winds, 1735.

CHAPTER

ELEVEN

The Overturning Circulation: Hadley and Ferrel

Cells

IN THIS CHAPTER AND THE TWO FOLLOWING we discuss the large-scale circulation, and in par-
ticular the general circulation, of the atmosphere, this being the mean flow on scales
from the synoptic eddy scale — about 1000 km — to the global scale. In this chapter we

focus on the dynamics of the Hadley Cell and then, rather descriptively, on the mid-latitude
overturning cell or the Ferrel Cell. The latter provides a starting point for chapter 12 which
discusses the dynamics of the extratropical zonally averaged circulation. Finally, in chapter
13, we consider the deviations from zonal symmetry, or more specifically the stationary
wave pattern, and the stratosphere. In these three chapters we will use many of the tools
developed in the previous chapters, but those readers who already have some acquaintance
with geophysical fluid dynamics may simply wish to jump in here.

The atmosphere is a terribly complex system, and we cannot hope to fully explain its
motion as the analytic solution to a small set of equations. Rather, a full understanding of the
atmosphere requires describing it in a consistent way on many levels simultaneously. One of
these levels involves simulating the flow by numerically solving the governing equations of
motion as completely as possible, for example by using a comprehensive General Circulation
Model (GCM). However, such a simulation brings problems of its own, including the problem
of understanding the simulation, and discerning whether it is a good representation of reality.
Thus, in this chapter and the two following we concentrate on simpler, more conceptual
models. We begin this chapter with a brief observational overview of some of the pre-eminent
large-scale features of the atmosphere, concentrating on the zonally averaged fields.1
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452 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells
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Fig. 11.1 (a) The (approximate) observed net average incoming solar radiation and
outgoing infrared radiation at the top of the atmosphere, as a function of latitude
(plotted on a sine scale). (b) The temperatures associated with these fluxes, calculated
using T = (R/σ)1/4, where R is the solar flux for the radiative equilibrium temperature
and R is the infrared flux for the effective emitting temperature. Thus, the solid line
is an approximate radiative equilibrium temperature

11.1 BASIC FEATURES OF THE ATMOSPHERE

11.1.1 The radiative equilibrium distribution

A gross but informative measure characterizing the atmosphere, and the effects that dynam-
ics have on it, is the pole-to-equator temperature distribution. The radiative equilibrium
temperature is the hypothetical, three-dimensional, temperature field that would obtain if
there were no atmospheric or oceanic motion, given the composition and radiative properties
of the atmosphere and surface. The field is a function only of the incoming solar radiation
at the top of the atmosphere, although to evaluate it entails a complicated calculation,
especially as the radiative properties of the atmosphere depend on the amount of water
vapour and cloudiness in the atmosphere. (The distribution of absorbers is usually taken to
be that which obtains in the observed, moving, atmosphere, in order that the differences
between the calculated radiative equilibrium temperature and the observed temperature are
due to fluid motion.)

A much simpler calculation that illustrates the essence of the situation is to first note that
at the top of the atmosphere the globally averaged incoming solar radiation is balanced by
the outgoing infrared radiation. If there is no lateral transport of energy in the atmosphere
or ocean then at each latitude the incoming solar radiation will be balanced by the outgoing
infrared radiation, and if we parameterize the latter using a single latitudinally-dependent
temperature we will obtain a crude radiative-equilibrium temperature for the atmospheric
column at each latitude. Specifically, a black body subject to a net incoming radiation of S
(watts per square metre) has a radiative-equilibrium temperature Trad given by σT 4

rad = S,
this being Stefan’s law with Stefan-Boltzmann constant σ = 5.67× 10−8 W m−2 K−4. Thus,
for the Earth, we have, at each latitude,

σT 4
rad = S(ϑ)(1−α), (11.1)

where α is the albedo of the Earth and S(ϑ) is the incoming solar radiation at the top of the
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11.1 Basic Features of the Atmosphere 453

atmosphere, and its solution is shown in Fig. 11.1. The solid lines in the two panels show
the net solar radiation and the solution to (11.1), Trad; the dashed lines show the observed
outgoing infrared radiative flux, I, and the effective emitting temperature associated with it,
(I/σ)1/4. The emitting temperature does not quantitatively characterize that temperature
at the Earth’s surface, nor at any single level in the atmosphere, because the atmosphere is
not a black body and the outgoing radiation originates from multiple levels. Nevertheless,
the qualitative point is evident: the radiative equilibrium temperature has a much stronger
pole-to-equator gradient than does the effective emitting temperature, indicating that there
is a poleward transport of heat in the atmosphere–ocean system. More detailed calculations
indicate that the atmosphere is further from its radiative equilibrium in winter than summer,
indicating a larger heat transport. The transport occurs because polewards moving air tends
to have a higher static energy (cpT+gz for dry air; in addition there is some energy transport
associated with water vapour evaporation and condensation) than the equatorwards moving
air, most of this movement being associated with the large-scale circulation. The radiative
forcing thus seeks to maintain a pole-to-equator temperature gradient, and the ensuing
circulation seeks to reduce this gradient.

11.1.2 Observed wind and temperature fields

The observed zonally averaged temperature and zonal wind fields are illustrated in Fig. 11.2.
The vertical coordinate is log pressure, multiplied by a constant factor H = RT0/g =
7.5 km, so that the ordinate is similar to height in kilometres. [In an isothermal hydrostatic
atmosphere (RT0/g)d lnp = −dz, and the value of H chosen corresponds to T0 = 256 K.]
To a good approximation temperature and zonal wind are related by thermal wind balance,
which in pressure coordinates is

f
∂u
∂p

= R
p
∂T
∂y

. (11.2)

In the lowest several kilometres of the atmosphere temperature falls almost monotonically
with latitude and height, and this region is called the troposphere. The temperature in the
lower troposphere in fact varies more rapidly with latitude than does the effective emitting
temperature, TE , the latter being more characteristic of the temperature in the mid-to-upper
troposphere. The meridional temperature gradient is much larger in winter than summer,
because in winter high latitudes receive virtually no direct heating from the Sun. It is also
strongest at the edge of the subtropics, and here it is associated with a zonal jet, particularly
strong in winter. There is no need to ‘drive’ this wind with any kind of convergent momentum
fluxes: given the temperature, the flow is a consequence of thermal wind balance, and to
the extent that the upper troposphere is relatively frictionless there is no need to maintain
it against dissipation. Of course just as the radiative-equilibrium temperature gradient is
much larger than that observed, so the zonal wind shear associated with it is much larger
than that observed. Thus, the overall effect of the atmospheric and oceanic circulation, and
in particular of the turbulent circulation of the mid-latitude atmosphere, is to reduce the
amplitude of the vertical shear of the eastward flow by way of a poleward heat transport.
Observations indicate that about two-thirds of this transport is effected by the atmosphere,
and about a third by the ocean, more in low latitudes.2

Above the troposphere is the stratosphere, and here temperature typically increases with
height. The boundary between the two regions is called the tropopause, and this varies in
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Fig. 11.2 (a) Annual mean, zonally averaged zonal wind (heavy contours and shading)
and the zonally averaged temperature (lighter contours). (b) Annual mean, zonally
averaged zonal winds at the surface. (c) and (d) Same as (a) and (b), except for
northern hemisphere winter (DJF). The wind contours are at intervals of 5 m s−1 with
shading for eastward winds above 20 m s−1 and for all westward winds, and the
temperature contours are labelled. The ordinate of (a) and (c) is Z = −H log(p/pR),
where pR is a constant, with scale height H = 7.5 km.Downloaded from Cambridge Books Online by IP 160.39.49.19 on Thu Dec 05 13:09:37 WET 2013.
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11.1 Basic Features of the Atmosphere 455

Summer                                                                              Winter

Fig. 11.3 The observed, zonally averaged, meridional overturning circulation of the
atmosphere, in units of kg s−1, averaged over December–January–February (DJF). In
each hemisphere note the presence of a direct Hadley Cell (HW and HS in winter and
summer) with rising motion near the equator, descending motion in the subtropics,
and an indirect Ferrel Cell (FW and FS) at mid-latitudes. There are also hints of a weak
direct cell at high latitudes. The winter Hadley Cell is far stronger than the summer
one.

height from about 16 km in the tropics to about 8 km in polar regions. We consider the
maintenance of this stratification in section 12.5.

The surface winds typically have, going from the equator to the pole, an E–W–E (easterly–
westerly–easterly) pattern, although the polar easterlies are weak and barely present in the
Northern Hemisphere. (Meteorologists use ‘westerly’ to denote winds from the west, that
is eastward winds; similarly ‘easterlies’ are westward winds. We will use both ‘westerly’
and ‘eastward’, and both ‘easterly’ and ‘westward’, and the reader should be comfortable
with all these terms.) In a given hemisphere, the surface winds are stronger in winter
than summer, and they are also consistently stronger in the Southern Hemisphere than in
the Northern Hemisphere, because in the former the surface drag is weaker because of the
relative lack of continental land masses and topography. The surface winds are not explained
by thermal wind balance. Indeed, unlike the upper level winds, they must be maintained
against the dissipating effects of friction, and this implies a momentum convergence into
regions of surface westerlies and a divergence into regions of surface easterlies. Typically,
the maxima in the eastward surface winds are in mid-latitudes and somewhat polewards of
the subtropical maxima in the upper-level westerlies and at latitudes where the zonal flow
is a little more constant with height. The mechanisms of the momentum transport in the
mid-latitudes and the maintenance of the surface westerly winds are the topics of section
12.1.
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456 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

Some Features of the Large-scale Atmospheric Circulation

From Figures 11.1–11.3 we see or infer the following.

� A pole–equator temperature gradient that is much smaller than the radiative
equilibrium gradient.

� A troposphere, in which temperature generally falls with height, above which
lies the stratosphere, in which temperature increases with height. The two
regions are separated by a tropopause, which varies in height from about 16 km
at the equator to about 6 km at the pole.

� A monotonically decreasing temperature from equator to pole in the tropo-
sphere, but a weakening and sometimes reversal of this above the tropopause.

� A westerly (i.e., eastward) tropospheric jet. The time and zonally averaged
jet is a maximum at the edge or just polewards of the subtropics, where it is
associated with a strong meridional temperature gradient. In mid-latitudes the
jet has a stronger barotropic component.

� An E–W–E (easterlies–westerlies–easterlies) surface wind distribution. The
latitude of the maximum in the surface westerlies is in mid-latitudes, where
the zonally averaged flow is more barotropic.

11.1.3 Meridional overturning circulation

The observed (Eulerian) zonally averaged meridional overturning circulation is illustrated in
Fig. 11.3. The figure shows a streamfunction, Ψ for the vertical and meridional velocities
such that, in the pressure coordinates used in the figure,

∂Ψ
∂y

=ω, ∂Ψ
∂p

= −v. (11.3)

where the overbar indicates a zonal average. In each hemisphere there is rising motion
near the equator and sinking in the subtropics, and this circulation is known as the Hadley
Cell.3 The Hadley Cell is a thermally direct cell (i.e., the warmer fluid rises, the colder fluid
sinks), is much stronger in the winter hemisphere, and extends to about 30°. In mid-latitudes
the sense of the overturning circulation is apparently reversed, with rising motion in the
high-mid-latitudes, at around 60° and sinking in the subtropics, and this is known as the
Ferrel Cell. However, as with most pictures of averaged streamlines in unsteady flow, this
gives a misleading impression as to the actual material flow of parcels of air because of
the presence of eddying motion, and we discuss this in the next chapter. At low latitudes
the circulation is more nearly zonally symmetric and the picture does give a qualitatively
correct representation of the actual flow. At high latitudes there is again a thermally direct
cell (although it is weak and not always present), and thus the atmosphere is often referred
to as having a three-celled structure.
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11.2 A Steady Model of the Hadley Cell 457

11.1.4 Summary

Some of the main features of the zonally averaged circulation are summarized in the shaded
box on the preceding page. We emphasize that the zonally averaged circulation is not
synonymous with a zonally symmetric circulation, and the mid-latitude circulation is highly
asymmetric. Any model of the mid-latitudes that did not take into account the zonal
asymmetries in the circulation — of which the weather is the main manifestation — would
be seriously in error. This was first explicitly realized in the 1920s, and taking into account
such asymmetries is the main task of the dynamical meteorology of the mid-latitudes, and is
the subject of the next chapter. On the other hand, the large-scale tropical circulation of the
atmosphere is to a large degree zonally symmetric or nearly so, and although monsoonal
circulations and the Walker circulation (a cell with rising air in the Eastern Pacific and
descending motion in the Western Pacific) are zonally asymmetric, they are also relatively
weaker than typical mid-latitude weather systems. Indeed the boundary between the tropics
and mid-latitude may be usefully defined by the latitude at which such zonal asymmetries
become dynamically important on the large scale and this boundary, at about 30° on average,
roughly coincides with the latitude at which the mean meridional overturning circulation
vanishes. We begin our dynamical description with a study of the low-latitude zonally
symmetric atmospheric circulation.

11.2 A STEADY MODEL OF THE HADLEY CELL

Ceci n’est pas une pipe.

René Magritte (1898–1967), title of painting.

11.2.1 Assumptions

Let us try to construct a zonally symmetric model of the Hadley Cell,4 recognizing that
such a model is likely applicable mainly to the tropical atmosphere, this being more zonally
symmetric than the mid-latitudes. We will suppose that heating is maximum at the equator,
and our intuitive picture, drawing on the observed flow of Fig. 11.3, is of air rising at the
equator and moving polewards at some height H, descending at some latitude ϑH , and
returning equatorwards near the surface. We will make three major assumptions:

(i) that the circulation is steady;

(ii) that the polewards moving air conserves its axial angular momentum, whereas the
zonal flow associated with the near-surface, equatorwards moving flow is frictionally
retarded and is weak;

(iii) that the circulation is in thermal wind balance.

We also assume the model is symmetric about the equator (an assumption we relax in
section 11.4). These are all reasonable assumptions, but they cannot be rigorously justified;
in other words, we are constructing a model of the Hadley Cell, schematically illustrated in
Fig. 11.4. The model defines a limiting case — steady, inviscid, zonally-symmetric flow —
that cannot be expected to describe the atmosphere quantitatively, but that can be analysed
fairly completely. Another limiting case, in which eddies play a significant role, is described
in section 11.5. The real atmosphere may defy such simple characterizations, but the two
limits provide invaluable benchmarks of understanding.
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Fig. 11.4 A simple model of the Hadley Cell. Rising air near the equator moves
polewards near the tropopause, descending in the subtropics and returning near the
surface. The polewards moving air conserves its axial angular momentum, leading to
a zonal flow that increases away from the equator. By the thermal wind relation the
temperature of the air falls as it moves polewards, and to satisfy the thermodynamic
budget it sinks in the subtropics. The return flow at the surface is frictionally retarded
and small.

11.2.2 Dynamics

We now try to determine the strength and poleward extent of the Hadley circulation in our
steady model. For simplicity we will work with a Boussinesq atmosphere, but this is not an
essential aspect. We will first derive the conditions under which conservation on angular
momentum will hold, and then determine the consequences of that.

The zonally averaged zonal momentum equation may be easily derived from (2.50a)
and/or (2.62) and in the absence of friction it is

∂u
∂t

− (f + ζ)v +w∂u
∂z

= − 1

a cos2 ϑ
∂
∂ϑ

(cos2 ϑu′v′)− ∂u′w′

∂z
, (11.4)

where ζ = −(a cosϑ)−1∂ϑ(u cosϑ) and the overbars represent zonal averages. If we neglect
the vertical advection and the eddy terms on the right-hand side, then a steady solution, if it
exists, obeys

(f + ζ)v = 0. (11.5)

Presuming that the meridional flow v is non-zero (an issue we address in section 11.2.8)
then f + ζ = 0, or equivalently

2Ω sinϑ = 1

a
∂u
∂ϑ

− u tanϑ
a

. (11.6)

At the equator we shall assume that u = 0, because here parcels have risen from the surface
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11.2 A Steady Model of the Hadley Cell 459

Axis of rotation

Fig. 11.5 If a ring of air at the equator moves
polewards it moves closer to the axis of rotation.
If the parcels in the ring conserve their angular
momentum their zonal velocity must increase;
thus, if m = (u+Ωa cosϑ)a cosϑ is preserved
and u = 0 at ϑ = 0 we recover (11.7).

where, by assumption, the flow is weak. Equation (11.6) then has a solution of

u = Ωasin2 ϑ
cosϑ

≡ UM . (11.7)

This gives the zonal velocity of the polewards moving air in the upper branch of the (model)
Hadley Cell, above the frictional boundary layer. We can derive (11.7) directly from the
conservation of axial angular momentum, m, of a parcel of air at a latitude ϑ. In the shallow
atmosphere approximation we have [cf. (2.64) and equations following]

m = (u+Ωa cosϑ)a cosϑ, (11.8)

and if u = 0 at ϑ = 0 and if m is conserved on a polewards moving parcel, then (11.8) leads
to (11.7). It also may be directly checked that

f + ζ = − 1

a2 cosϑ
∂m
∂ϑ

. (11.9)

We have thus shown that, if eddy fluxes and frictional effects are negligible, the poleward
flow will conserve its angular momentum, the result of which, by (11.7), is that magnitude of
the zonal flow in the Earth’s rotating frame will increase with latitude (see Fig. 11.5). (Also,
given the absence of eddies our model is zonally symmetric and we shall drop the overbars
over the variables.)

If (11.7) gives the zonal velocity in the upper branch of the Hadley Cell, and that in
the lower branch is close to zero, then the thermal wind equation can be used to infer the
vertically averaged temperature. Although the geostrophic wind relation is not valid at the
equator (a more accurate balance is the so-called cyclostrophic balance, fu+u2 tanϑ/a =
−a−1∂φ/∂ϑ) the zonal wind is in fact geostrophically balanced until very close to the
equator, and at the equator itself the horizontal temperature gradient in our model vanishes,
because of the assumed interhemispheric symmetry. Thus, conventional thermal wind
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460 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

balance suffices for our purposes, and this is

2Ω sinϑ
∂u
∂z

= − 1

a
∂b
∂ϑ

, (11.10)

where b = g δθ/θ0 is the buoyancy and δθ is the deviation of potential temperature from
a constant reference value θ0. (Be reminded that θ is potential temperature, whereas ϑ is
latitude.) Vertically integrating from the ground to the height H where the outflow occurs
and substituting (11.7) for u yields

1

aθ0

∂θ
∂ϑ

= −2Ω2a
gH

sin3 ϑ
cosϑ

, (11.11)

where θ = H−1
∫H
0 δθ dz is the vertically averaged potential temperature. If the latitudinal

extent of the Hadley Cell is not too great we can make the small-angle approximation, and
replace sinϑ by ϑ and cosϑ by one, then integrating (11.11) gives

θ = θ(0)− θ0Ω2y4

2gHa2
, (11.12)

where y = aϑ and θ(0) is the potential temperature at the equator, as yet unknown. Away
from the equator, the zonal velocity given by (11.7) increases rapidly polewards and the
temperature correspondingly drops. How far polewards is this solution valid? And what
determines the value of the integration constant θ(0)? To answer these questions we turn
to thermodynamics.

11.2.3 Thermodynamics

In the above discussion, the temperature field is slaved to the momentum field in that it
seems to follow passively from the dynamics of the momentum equation. Nevertheless, the
thermodynamic equation must still be satisfied. Let us assume that the thermodynamic
forcing can be represented by a Newtonian cooling to some specified radiative equilibrium
temperature, θE ; this is a severe simplification, especially in equatorial regions where the
release of heat by condensation is important. The thermodynamic equation is then

Dθ
Dt

= θE − θ
τ

, (11.13)

where τ is a relaxation time scale, perhaps a few weeks. Let us suppose that θE falls
monotonically from the equator to the pole, and that it increases linearly with height, and a
simple representation of this is

θE(ϑ, z)
θ0

= 1− 2

3
∆HP2(sinϑ)+∆V

(
z
H
− 1

2

)
, (11.14)

where ∆H and ∆V are non-dimensional constants that determine the fractional temperature
difference between the equator and the pole, and the ground and the top of the fluid,
respectively. P2 is the second Legendre polynomial, and it is usually the leading term in the
Taylor expansion of symmetric functions (symmetric around the equator) that decrease from
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11.2 A Steady Model of the Hadley Cell 461

pole to equator; it also integrates to zero over the sphere. P2(y) = (3y2 − 1)/2, so that in
the small-angle approximation and at z = H/2, or for the vertically averaged field, we have

θE
θ0
= 1+ 1

3
∆H −∆H

(
y
a

)2
(11.15)

or

θE = θE0 −∆θ
(
y
a

)2
, (11.16)

where θE0 is the equilibrium temperature at the equator, ∆θ determines the equator–pole
radiative-equilibrium temperature difference, and

θE0 = θ0(1+∆H/3), ∆θ = θ0∆H. (11.17)

Now, let us suppose that the solution (11.12) is valid between the equator and a latitude
ϑH where v = 0, so that within this region the system is essentially closed. Conservation of
potential temperature then requires that the solution (11.12) must satisfy∫ YH

0
θ dy =

∫ YH
0
θE dy, (11.18)

where YH = aϑH is as yet undetermined. Polewards of this, the solution is just θ = θE . Now,
we may demand that the solution be continuous at y = YH (without temperature continuity
the thermal wind would be infinite) and so

θ(YH) = θE(YH). (11.19)

The constraints (11.18) and (11.19) determine the values of the unknowns θ(0) and YH . A
little algebra (problem 11.1) gives

YH =
(

5∆θgH
3Ω2θ0

)1/2
, (11.20)

and

θ(0) = θE0 −
(

5∆θ2gH
18a2Ω2θ0

)
. (11.21)

A useful non-dimensional number that parameterizes these solutions is

R ≡ gH∆θ
θ0Ω2a2

= gH∆H
Ω2a2

, (11.22)

which is the square of the ratio of the speed of shallow water waves to the rotational
velocity of the Earth, multiplied by the fractional temperature difference from equator to
pole. Typical values for the Earth’s atmosphere are a little less than 0.1. In terms of R we
have

YH = a
(

5

3
R
)1/2

, (11.23)

and

θ(0) = θE0 −
(

5

18
R
)
∆θ . (11.24)
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462 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

Fig. 11.6 The radiative equilibrium temperature (θE, dashed line) and the angular-
momentum-conserving solution (θM , solid line) as a function of latitude. The two
dotted regions have equal areas. The parameters are: θEO = 303 K, ∆θ = 50 K, θ0 =
300 K, Ω = 7.272× 10−5 s−1, g = 9.81 m s−2, H = 10 km. These give R = 0.076 and
YH/a = 0.356, corresponding to ϑH = 20.4°.

The solution, (11.12) with θ(0) given by (11.24) is plotted in Fig. 11.6. Perhaps the single most
important aspect of the model is that it predicts that the Hadley Cell has a finite meridional
extent, even for an atmosphere that is completely zonally symmetric. The baroclinic instability
that does occur in mid-latitudes is not necessary for the Hadley Cell to terminate in the
subtropics, although it may be an important factor, or even the determining factor, in the
real world.

11.2.4 Zonal wind

The angular-momentum-conserving zonal wind is given by (11.7), which in the small-angle
approximation becomes

UM = Ωy2

a
. (11.25)

This relation holds for y < YH . The zonal wind corresponding to the radiative-equilibrium
solution is given using thermal wind balance and (11.16), which leads to

UE = ΩaR. (11.26)

That the radiative-equilibrium zonal wind is a constant follows from our choice of the second
Legendre function for the radiative equilibrium temperature and is not a fundamental result;
nonetheless, for most reasonable choices of θE the corresponding zonal wind will vary
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11.2 A Steady Model of the Hadley Cell 463

Fig. 11.7 The zonal wind corresponding to the radiative equilibrium temperature (UE ,)
and the angular-momentum-conserving solution (UM ) as a function of latitude, given
(11.25) and (11.26) respectively. The parameters are the same as those of Fig. 11.6,
and the radiative equilibrium wind, UE is a constant, ΩaR. The actual zonal wind (in
the model) follows the thick solid line: u = Um for ϑ < ϑH (y < YH), and u = UE for
ϑ > ϑH (y > YH).

much less than the angular-momentum-conserving wind (11.25). The winds are illustrated in
Fig. 11.7. There is a discontinuity in the zonal wind at the edge of the Hadley Cell, and of
the meridional temperature gradient, but not of the temperature itself.

11.2.5 Properties of solution

From (11.23) we can see that the model predicts that the latitudinal extent of the Hadley Cell
is:

� proportional to the square root of the meridional radiative equilibrium temperature
gradient: the stronger the gradient, the farther the circulation must extend to achieve
thermodynamic balance via the equal-area construction in Fig. 11.6;

� proportional to the square root of the height of the outward flowing branch: the
higher the outward flowing branch, the weaker the ensuing temperature gradient of the
solution (via thermal wind balance), and so the further polewards the circulation must
go;

� inversely proportional to the rotation rate Ω: the stronger the rotation rate, the stronger
the angular-momentum-conserving wind, the stronger the ensuing temperature gradient
and so the more compact the circulation.
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464 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

These precise dependencies on particular powers of parameters are not especially significant
in themselves, nor are they robust to changes in parameters. For example, were we to chose
a meridional distribution of radiative equilibrium temperature different from (11.14) we
might find different exponents in some of the solutions, although we would expect the same
qualitative dependencies. However, the dependencies do provide predictions that may be
tested with a numerical model. Also, as we have already noted, a key property of the model
is that it predicts that the Hadley Cell has a finite meridional extent, even in the absence of
mid-latitude baroclinic instability.

Another interesting property of the solutions is a discontinuity in the zonal wind. For
tropical latitudes (i.e., y < YH ), then u = UM (the constant angular momentum solution),
whereas for y > YH , u = UE (the thermal wind associated with radiative equilibrium
temperature θE). There is therefore a discontinuity of u at y = YH , because u is related
to the meridional gradient of θ which changes discontinuously, even though θ itself is
continuous. No such discontinuity is observed in the real world, although one may observe a
baroclinic jet at the edge of the Hadley Cell.

11.2.6 Strength of the circulation

We can make an estimate of the strength of the Hadley Cell by consideration of the thermo-
dynamic equation at the equator, namely

w
∂θ
∂z

≈ θE0 − θ
τ

, (11.27)

this being a balance between adiabatic cooling and radiative heating. If the static stability is
determined largely by the forcing, and not by the meridional circulation itself, then

1

θ0

∂θ
∂z

≈ ∆V
H
, (11.28)

and (11.27) gives

w ≈ H
θ0∆V

θE0 − θ
τ

. (11.29)

Thus, the strength of the circulation is proportional to the distance of the solution from the
radiative equilibrium temperature. The right-hand side of (11.27) can be evaluated from the
solution itself, and from (11.24) we have

θE0 − θ
τ

= 5R∆θ
18τ

. (11.30)

The vertical velocity is then given by

w ≈ 5R∆θH
18τ∆Vθ0

= 5R∆HH
18τ∆V

. (11.31)

Using mass continuity we can transform this into an estimate for the meridional velocity.
Thus, if we let (v/YH) ∼ (w/H) and use (11.23), we obtain

v ∼ R3/2a∆H
τ∆V

∝ ∆5/2
H

∆V
, (11.32)
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11.2 A Steady Model of the Hadley Cell 465

and the mass flux, or the meridional overturning stream function Ψ , of the circulation scales
as

Ψ ∼ vH ∼ R3/2aH∆H
τ∆V

∝ (∆θ)5/2. (11.33)

This evidently increases fairly rapidly as the gradient of the radiative equilibrium temperature
increases. The characteristic overturning time of the circulation, τd is then

τd = H
w
∼ τ∆V
R∆H

. (11.34)

We require τd/τ � 1 for the effects of the circulation on the static stability to be small and
therefore ∆V/(R∆H)� 1, or equivalently, using (11.17),

θ0∆V � R(θE0 − θ0). (11.35)

If the converse were true, and τ � τd, then the potential temperature would be nearly
conserved as a parcel ascended in the rising branch of the Hadley Cell, and the static stability
would be nearly neutral.

11.2.7 † Effects of moisture

Suppose now that moisture is present, but that the Hadley Cell remains a self-contained
system; that is, it neither imports nor exports moisture. We envision that water vapour
joins the circulation by way of evaporation from a saturated surface into the equatorward,
lower branch of the Hadley Cell, and that this water vapour then condenses in and near the
upward branch of the cell. The latent heat released by condensation is exactly equal to the
heat required to evaporate moisture from the surface, and no heat is lost or gained to the
system. However, the heating distribution is changed from the dry case, becoming a strong
function of the solution itself and likely to have a sharp maximum near the equator. Even if
we were to try to parameterize the latent heat release by simply choosing a flow dependent
radiative equilibrium temperature, the resulting problem would still be quite nonlinear and
a general analytic solution seems out of our reach.5

Nevertheless, we may see quite easily the qualitative features of moisture, at least within
the context of this model. The meridional distribution of temperature is still given by way
of thermal wind balance with an angular-momentum-conserving zonal wind, and so is still
given by (11.12). We may also assume that that the meridional extent of the Hadley Cell is
unaltered; that is, a solution exists with circulation confined to ϑ < ϑH (although it may not
be the unique solution). Then, if θ∗E is the effective radiative equilibrium temperature of the
moist solution, we have that θ∗E (YH) = θE(YH) and, in the small-angle approximation,∫ YH

0
θ dy =

∫ YH
0
θ∗E dy =

∫ YH
0
θE dy, (11.36)

where the first equality holds because it defines the solution, and the second equality holds
because moisture provides no net energy source. Because condensation will occur mainly in
the upward branch of the Hadley Cell, θ∗E will be peaked near the equator, as schematically
sketched in Fig. 11.8. This construction makes it clear that the main difference between
the dry and moist solutions is that the latter has a more intense overturning circulation,
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Fig. 11.8 Schema of the effects of moisture on a model of the Hadley Cell. The
temperature of the solution (solid line) is the same as that of a dry model, because this
is determined from the angular-momentum-conserving wind. The heating distribution
(as parameterized by a forcing temperature) is peaked near the equator in the moist
case, leading to a more vigorous overturning circulation.

because, from (11.27), the circulation increases with the temperature difference between the
solution and the forcing temperature. Concomitantly, our intuition suggests that the upward
branch of the moist Hadley circulation will become much narrower and more intense than
the downward branch because of the enhanced efficiency of moist convection, and these
expectations are generally confirmed by numerical integrations of the moist equations of
motion.

11.2.8 The radiative equilibrium solution

Instead of a solution given by (11.12), could the temperature not simply be in radiative
equilibrium everywhere? Such a state would have no meridional overturning circulation and
the zonal velocity would be determined by thermal wind balance; that is,

v = 0, θ = θE, f
u
H
= −g ∂

∂y

(
θE
θ0

)
. (11.37)

To answer this question we consider the steady zonally symmetric zonal angular momentum
equation with viscosity; that is, the zonally averaged, viscous, steady, shallow atmosphere
version of (2.68), namely

1

a cosϑ
∂
∂ϑ

(vm cosϑ)+ ∂(mw)
∂z

= ν
a cosϑ

∂
∂ϑ

(
cos2 ϑ

∂
∂ϑ

u
cosϑ

)
+νa cosϑ

∂2u
∂z2

, (11.38)
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11.2 A Steady Model of the Hadley Cell 467

where the variables vary only in the ϑ–z, or y–z, plane. The viscous term on the right-hand
side arises from the expansion in spherical coordinates of the Laplacian. Note that it is
angular velocity, not the angular momentum, that is diffused, because there is no diffusion of
the angular momentum due to the Earth’s rotation. However, to a very good approximation,
the viscous term will be dominated by vertical derivatives and we may then write (11.38) as

∇x · (vm) = ν ∂
2m
∂z2

. (11.39)

where ∇x· is the divergence in the meridional plane. The right-hand side now has a diffusive
form, and in section 10.5.1 we showed that variables obeying equations like this can have
no extrema within the fluid. Thus, there can be no maximum or minimum of angular
momentum in the interior of the fluid, a result sometimes called Hide’s theorem.6 In
effect, diffusion always acts to smooth away an isolated extremum, and this cannot be
counterbalanced by advection. The result also implies that there cannot be any interior
extrema in a statistically steady state if there is any zonally asymmetric eddy motion that
transports angular momentum downgradient.

If the viscosity were so large that the viscous term were dominant in (11.38), then the
fluid would evolve toward a state of solid body rotation, this being the fluid state with no
internal stresses. In that case, there would be a maximum of angular momentum at the
equator — a state of ‘super-rotation’. (Related mechanisms have been proposed for the
maintenance of super-rotation on Venus.7)

A maxima of m can, however, occur at the surface, even with a viscous term like that of
(11.39). Suppose we add a surface stress to the right-hand side of (11.39), and that this stress
acts in the opposite direction to that of the zonal wind. Then, in a region of surface easterlies
the surface stress contribution would be positive, acting as a source of positive angular
momentum; there then exists the possibility that this will exactly balance the diffusion term
allowing a maximum of m to occur. However, such a surface stress does not allow this
maximum to be a region of surface westerlies at the equator, because the stress would then
act in the same way as the diffusion and reduce the angular momentum.

Returning now to the question posed at the head of this section, suppose that the radia-
tive equilibrium solution does hold. Then a radiative equilibrium temperature decreasing
away from the equator more rapidly than the angular-momentum-conserving solution θM im-
plies, using thermal wind balance, a maximum of m at the equator and above the surface, in
violation of the no-extremum principle. Of course, we have derived the angular-momentum-
conserving solution in the inviscid limit, in which the no-extrema principle does not apply.
But any small viscosity will make the radiative equilibrium solution completely invalid, but
potentially have only a small effect on the angular-momentum-conserving solution; that is, in
the limit of small viscosity the angular-momentum-conserving solution can conceivably hold
approximately, at least in the absence of boundary layers, whereas the radiative equilibrium
solution cannot.

However, if the radiative equilibrium temperature varies more slowly with latitude
than the temperature corresponding to the angular momentum conserving solution then a
radiative equilibrium solution can pertain, without violating Hide’s theorem. In particular,
this is the case if θE ∝ P4(sinϑ), where P4 is the fourth Legendre polynomial, and so
the possibility exists of two equilibrium solutions for the same forcing; however, P4 is an
unrealistically flat radiative equilibrium temperature for the Earth’s atmosphere.
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468 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

11.3 A SHALLOW WATER MODEL OF THE HADLEY CELL

Although expressed in the notation of the primitive equations, the model described above
takes no account of any vertical structure in its stratification and is, de facto, a shallow water
model. Furthermore, the geometric aspects of sphericity play no essential role. Thus, we
may transparently express the essence of the model by:

(i) explicitly using the shallow water equations instead of the stratified equations;

(ii) using the equatorial β-plane, with f = f0 + βy and f0 = 0.

Let us therefore, as an exercise, construct a reduced-gravity model with an active upper layer
overlying a stationary lower layer.

11.3.1 Momentum balance

The inviscid zonal momentum equation of the upper layer is

Du
Dt

− βyv = 0 (11.40)

or
D

Dt

(
u− βy2

2

)
= 0, (11.41)

which is the β-plane analogue of the conservation of axial angular momentum. (In this
section, all variables are zonally averaged, but we omit any explicit notation denoting this.)
From (11.41) we obtain the zonal wind as a function of latitude,

u = 1

2
βy2 +A, (11.42)

where A is a constant, which is zero if u = 0 at the ‘equator’, y = 0. The flow given by
(11.42) is then analogous to the angular momentum conserving flow in the spherical model,
(11.7). Because the lower layer is stationary, the analogue of thermal wind balance in the
stratified model is just geostrophic balance, namely

fu = −g′ ∂h
∂y

, (11.43)

where h is the thickness of the active upper layer. Using (11.43) and f = βy we obtain

g′
∂h
∂y

= −1

2
β2y3 (11.44)

giving

h = − 1

8g′
β2y4 + h(0) (11.45)

where h(0) is the value of h at y = 0.

11.3.2 Thermodynamic balance

The thermodynamic equation in the shallow water equations is just the mass conservation
equation, which we write as

Dh
Dt

= − 1

τ
(h− h∗), (11.46)

Downloaded from Cambridge Books Online by IP 160.39.49.19 on Thu Dec 05 13:09:37 WET 2013.
http://dx.doi.org/10.1017/CBO9780511790447.012

Cambridge Books Online © Cambridge University Press, 2013



11.4 † Asymmetry Around the Equator 469

where the right-hand side represents heating — h∗ is the field to which the height relaxes
on a time scale τ . For illustrative purposes we will choose

h∗ = h0(1−α|y|). (11.47)

(If we chose the more realistic quadratic dependence on y , the model would be more similar
to that of the previous section.) To be in thermodynamic equilibrium we require that the
right-hand side integrates to zero over the Hadley Cell; that is∫ Y

0
(h− h∗)dy = 0 (11.48)

where Y is the latitude of the poleward extent of the Hadley Cell, thus far unknown.
Polewards of this, the height field is simply in equilibrium with the forcing — there is no
meridional motion and h = h∗. Since the height field must be continuous, we require that

h(Y) = h∗(Y). (11.49)

The two constraints (11.48) and (11.49) provide values of the unknowns h(0) and Y , and
give

Y =
(

5h0αg′

β2

)1/3

, (11.50)

which is analogous to (11.20), as well as an expression for h(0) that we leave as a problem
for the reader. The qualitative dependence on the parameters is similar to that of the full
model, although the latitudinal extent of the Hadley Cell is proportional to the cube root of
the meridional thickness gradient α.

11.4 † ASYMMETRY AROUND THE EQUATOR

The Sun is overhead at the equator but two days out of the year, and in this section we
investigate the effects that asymmetric heating has on the Hadley circulation. Observations
indicate except for the brief periods around the equinoxes, the circulation is dominated
by a single cell with rising motion centred in the summer hemisphere, but extending well
into the winter hemisphere. That is, as seen in Fig. 11.3, the ‘winter cell’ is broader and
stronger than the ‘summer cell’, and it behooves us to try to explain this. We will stay in
the framework of the inviscid angular-momentum model of section 11.2, changing only the
forcing field to represent the asymmetry and being a little more attentive to the details of
spherical geometry.8

To represent an asymmetric heating we may choose a radiative equilibrium temperature
of the form

θE(ϑ, z)
θ0

= 1− 2

3
∆HP2(sinϑ − sinϑ0)+∆V

(
z
H
− 1

2

)
= 1+ ∆H

3

[
1− 3(sinϑ − sinϑ0)2

]
+∆V

(
z
H
− 1

2

)
.

(11.51)

This is similar to (11.14), but now the forcing temperature falls monotonically from a
specified latitude ϑ0. If ϑ0 = 0 the model is identical to the earlier one, but if not we envision
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Fig. 11.9 Schematic of a Hadley circulation model when the heating is centred off the
equator, at a latitude ϑ0. The lower level convergence occurs at a latitude ϑ1 that
is not in general equal to ϑ0. The resulting winter Hadley Cell is stronger and wider
than the summer cell.

a circulation as qualitatively sketched in Fig. 11.9, with rising motion off the equator at some
latitude ϑ1, extending into the winter hemisphere to a latitude ϑw , and into the summer
hemisphere to ϑs . We will discover that, in general, ϑ1 ≠ ϑ0 except when ϑ0 = 0. Following
our procedure we used in the symmetric case as closely as possible, we then make the
following assumptions.

(i) The flow is quasi-steady. That is, for any given time of year the flow adjusts to a
steady circulation on a time scale more rapid than that on which the solar zenith angle
appreciably changes. Then, even though the forcing is time-dependent, we neglect local
time derivatives in the momentum and thermodynamic equations.

(ii) The flows in the upper branches conserve angular momentum, m. Further assuming
that u = 0 at ϑ = ϑ1 so that m = Ωa2 cos2 ϑ1 we obtain

u(ϑ) = Ωa(cos2 ϑ1 − cos2 ϑ)
cosϑ

. (11.52)

Thus, we expect to see westward (negative) winds aloft at the equator. In the lower
branches the zonal flow is assumed to be approximately zero, i.e., u(0) ≈ 0.

(iii) The flow satisfies cyclostrophic and hydrostatic balance. Cyclostrophic balance in the
meridional momentum equation is

fu+ u2 tanϑ
a

= − 1

a
∂φ
∂ϑ

, (11.53)
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11.4 † Asymmetry Around the Equator 471

and because the flow crosses the equator we cannot neglect the second term on the
left-hand side. Combining this with hydrostatic balance (∂φ/∂z = gδθ/θ0) leads to a
generalized thermal wind balance, which may be written as

m
∂m
∂z

= −ga
2 cos2 ϑ

2θ0 tanϑ
∂θ
∂ϑ

, (11.54)

where here and henceforth we write θ in place of δtheta. If the undifferentiated m
is approximated by Ωa2 cos2 ϑ, this reduces to conventional thermal wind balance,
(11.10). The form of (11.54) is useful because we are assuming that m is conserved,
and so from it we can immediately infer the temperature distribution.

(iv) Potential temperature in each cell is conserved when integrated over the extent of the
cell. Thus, ∫ ϑs

ϑ1

(θ − θE) cosϑ dϑ = 0,
∫ ϑw
ϑ1

(θ − θE) cosϑ dϑ = 0, (11.55)

for the summer and winter cells, respectively, where θ is the vertically averaged potential
temperature.

(v) Potential temperature is continuous at the edge of each cell, so that

θ(ϑs) = θE(ϑs), θ(ϑw) = θE(ϑw), (11.56)

and is also continuous at ϑ1. This last condition must be explicitly imposed in the
asymmetric model, whereas in the symmetric model it holds by symmetry. Now,
recall from the symmetric model that the value of the temperature at the equator was
determined by the integral constraint (11.18) and the continuity constraint (11.19). We
have analogues of these in each hemisphere [(11.55) and (11.56)] and thus, if ϑ1 is set
equal to ϑ0 we cannot expect that they each would give the same temperature at ϑ0.
Thus. ϑ1 must be a free parameter to be determined.

Given these assumptions, the solution may be calculated. Using thermal wind balance,
(11.54), with m(H) = Ωa2 cos2 ϑ1 and m(0) = Ωa2 cos2 ϑ we find

− 1

θ0

∂θ
∂ϑ

= Ω2a2

gH

(
sinϑ

cos3 ϑ
cos4 ϑ1 − sinϑ cosϑ

)
, (11.57)

which integrates to

θ(ϑ)− θ(ϑ1) = −θ0Ω2a2

2gH
(sin2 ϑ − sin2 ϑ1)2

cos2 ϑ
. (11.58)

The value of ϑ1, and the value of θ(ϑ1), are determined by the constraints (11.55) and
(11.56). It is not in general possible to obtain a solution analytically, but one may be found
numerically by an iterative procedure and one such is illustrated in Fig. 11.10. The zonal
wind of the solution is always symmetric around the equator, because it is determined solely
by angular momentum conservation. The temperature is therefore also symmetric, as (11.58)
explicitly shows. However, the width of the solution in each hemisphere will, in general, be
different. Furthermore, because the strength of the circulation increases with difference
between the temperature of the solution and the radiative equilibrium temperature, the
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Fig. 11.10 Solutions of the Hadley Cell model with heating centred at the equator
(ϑ0 = 0°, top) and off the equator (ϑ0 = +6° N, bottom), with ∆H = 1/6. The
dashed line is the radiative equilibrium temperature and the solid line is the angular-
momentum-conserving solution. In the lower panel, ϑ1 ≈ +18°, and the circulation is
dominated by the cell extending from +18° to −36°.9

circulation in the winter hemisphere will also be much stronger than that in the summer,
a prediction that is qualitatively consistent with the observations (see Fig. 11.3). More
detailed calculations show that, because the strength of the model Hadley Cell increases
nonlinearly with ϑ0, the time-average strength of the Hadley Cell with seasonal forcing is
stronger that that produced by annually averaged forcing. However, this does not appear to
be a feature of either the observations or more complete numerical simulations, suggesting
that an angular-momentum-conserving model has, at the least, quantitative deficiencies, as
follows.10

(i) The lack of consideration of zonal asymmetries, such as monsoonal circulations.

(ii) The quasi-steady assumption, given the presence of a temporally progressing seasonal
cycle (even in presence of zonally symmetric boundary conditions). Because the latitude
of the upward branch of the Hadley Cell varies with season, the value of the angular
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11.5 Eddies, Viscosity and the Hadley Cell 473

momentum entering the system also varies, and so a homogenized value of angular
momentum is hard to achieve. For quasi-steadiness to hold we require

τs � τe, (11.59)

where τe is some dynamical equilibration time scale, similar to the dynamical timescale
τd = H/w (section 11.2.6), and τs is the seasonal time scale

(iii) The lack of angular momentum conservation in reality (a criticism that would also apply
to a steady model with zonally symmetric boundary conditions). Such non-conservation
will arise if either diffusion of momentum caused by small-scale turbulence, or the
angular momentum transport by baroclinic eddies, are significant.

Nonetheless, the overall picture that the model paints, and its qualitative explanation of the
strengthened and extended winter Hadley Cell, are invaluable aids to our understanding of
the circulation.

11.5 EDDIES, VISCOSITY AND THE HADLEY CELL

So far, we have ignored the effects of baroclinic eddies on the Hadley circulation — ‘ignored’
rather than ‘neglected’, because we have no a priori or observational reason to believe
that their effects will be negligible. If their effects are strong, then none of the models
we discussed above will be quantitatively valid. With this in mind, in this section we look
at the Hadley circulation from a quite different perspective, by supposing that the zonal
momentum equation is linear, except for the effects of eddy fluxes on the right-hand side.
Our approach is illustrative, not quantitative, and we again stay within the Boussinesq
approximation.

We might expect eddy fluxes to be important because the angular momentum conserving
solution will develop a large vertical shear and if this extends sufficiently far polewards it
will become baroclinically unstable (compare Fig. 11.7 with the minimum shear needed for
baroclinic instability sketched in Fig. 6.16). It is a quantitative issue as to whether the Hadley
flow becomes strongly unstable before it reaches its poleward extent, and if it does not
the angular-momentum-conserving solution might be expected to be a good one. But here
let us assume that the flow is strongly unstable and that the ensuing instability transfers
both heat and angular momentum polewards (the mechanisms of this are discussed in the
next chapter). This transfer will lead to the nonconservation of angular momentum and,
potentially, render invalid the models of the previous sections.

11.5.1 Qualitative considerations

The zonally averaged zonal momentum equation, (11.4), may be written as an equation
for angular momentum, m. Referring back to section 2.2 if needs be, the equation may be
written as

∂m
∂t

+ 1

cosϑ
∂
∂y

(vm cosϑ)+ ∂
∂z

(wm)

= − 1

cosϑ
∂
∂y

(m′v′ cosϑ)− ∂
∂z

(m′w′)

= − 1

cosϑ
∂
∂y

(u′v′a cos2 ϑ)− ∂
∂z

(u′w′a cosϑ),

(11.60)
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474 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

where m = (u+Ωa cosϑ)a cosϑ, m′ = u′a cosϑ, y = aϑ, and the vertical and meridional
velocities are related by the mass continuity relation

1

cosϑ
∂
∂y

(v cosϑ)+ ∂w
∂z

= 0. (11.61)

In the angular-momentum-conserving model the eddy fluxes were neglected and (11.60)
was approximated by the simple expression ∂m/∂y = 0, and by construction the Rossby
number is O(1), because ζ = −f .

The observed eddy heat and momentum fluxes are shown in Fig. 11.11. The eddy
momentum flux is generally polewards, converging in the region of the surface westerlies.
Its magnitude, and more particularly its meridional gradient, is as large or larger than the
momentum flux associated with the mean flow. Neglecting vertical advection and vertical
eddy fluxes, and using (11.61), (11.60) may be written as

∂m
∂t

+ v ∂m
∂y

= − 1

cosϑ
∂
∂y

(u′v′a cos2 ϑ). (11.62)

Thus, if v > 0 (as in the upper branch of the Northern Hemisphere Hadley Cell) and the flow
is steady, the observed eddy fluxes are such as to cause the angular momentum of the zonal
flow to decrease as it moves polewards, and the zonal velocity is lower than it would be in
the absence of eddies. (In the Southern Hemisphere the signs of v and the eddy momentum
flux are reversed, but the dynamics are equivalent.) Note that we cannot a priori determine
whether eddies are likely to be important by comparing the magnitudes of the eddy terms
with the terms on the left-hand side of (11.62) in the angular-momentum-conserving solution,
because in that solution these terms are individually zero. Rather, we should compare the
eddy fluxes to v∂me/∂y , where me = Ωa2 cos2 ϑ is the angular momentum of the solid
Earth.

The eddy flux of heat will also affect the Hadley Cell, although in a different fashion.
We see from Fig. 11.11 that the eddy flux of temperature is predominantly polewards, and
therefore that eddies export heat from the subtropics to higher latitudes. Now, the zonally
averaged thermodynamic equation may be written

∂b
∂t
+ 1

cosϑ
∂
∂y

(vb cosϑ)+ ∂
∂z

(wb)

= − 1

cosϑ
∂
∂y

(v′b′ cosϑ)− ∂
∂z

(w′b′)+Q[b].
(11.63)

where Q[b] represents the heating. After vertical averaging, the vertical advection terms
vanish and the resulting equation is the thermodynamic equation implicitly used in the
angular-momentum-conserving model, with the addition of the meridional eddy flux on the
right-hand side. A diverging eddy heat flux in the subtropics (as in Fig. 11.11) is plainly
equivalent to increasing the meridional gradient of the radiative equilibrium temperature,
and therefore will increase the intensity of the overturning circulation.

11.5.2 An idealized eddy-driven model

Consider now the extreme case of an ‘eddy-driven’ Hadley Cell. (The driving for the Hadley
Cell, and the atmospheric circulation in general, ultimately comes from the differential
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11.5 Eddies, Viscosity and the Hadley Cell 475

(a)

(b)

Fig. 11.11 (a) The average meridional eddy heat flux and (b) the eddy momentum flux
in the northern hemisphere winter (DJF). The ordinate is log-pressure, with scale height
H = 7.5 km. Positive (northward) fluxes are shaded in both cases, and the dashed
line marks the thermal tropopause. The eddy heat flux (contour interval 2K m s−1) is
largely polewards, and down the temperature gradient, in both hemispheres. The
eddy momentum flux (contour interval 10 m2 s−2) converges in mid-latitudes in the
region of the mean jet, and must be upgradient there.11
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476 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

heating between equator and pole. Recognizing this, ‘eddy driving’ is a convenient way to
refer to the mediating role of eddies in producing a zonally averaged circulation.) The model
is over-simple, but revealing. The zonally averaged zonal momentum equation (11.4) may be
written as

∂u
∂t

− (f + ζ)v = − 1

cos2 ϑ
∂
∂ϑ

(cos2 ϑu′v′). (11.64)

If the Rossby number is sufficiently low this becomes simply

∂u
∂t

− fv = M, (11.65)

where M represents the eddy terms. This approximation is not quantitatively accurate
but it will highlight the role of the eddies. (Note the contrast between this model and the
angular-momentum-conserving model. In the latter we assumed f + ζ ≈ 0, and Ro = O(1);
now we are neglecting ζ and assuming the Rossby number is small.) At a similar level of
approximation let us write the thermodynamic equation, (11.63), as

∂b
∂t
+N2w = J, (11.66)

where J = Q[b]− (cosϑ)−1∂y(v′b′ cosϑ) represents the diabatic terms and eddy forcing.
We are assuming, as in quasi-geostrophic theory, that the mean stratification, N2 is fixed,
and now b represents only the (zonally averaged) deviations from this. If we simplify further
by using Cartesian geometry then the mass conservation is

∂v
∂y

+ ∂w
∂z

= 0, (11.67)

and we may define a meridional streamfunction Ψ such that

w = ∂Ψ
∂y

, v = −∂Ψ
∂z

. (11.68)

We may then use the thermal wind relation,

f
∂u
∂z

= − ∂b
∂y

, (11.69)

to eliminate time derivatives in (11.65) and (11.66), giving

f 2 ∂2Ψ
∂z2

+N2 ∂2Ψ
∂y2

= f ∂M
∂z

+ ∂J
∂y

. (11.70)

This is a linear equation for the overturning streamfunction, one that holds even if the
flow is not in a steady state, and we see that the overturning circulation is forced by eddy
fluxes of heat and momentum, as well as heating and other terms that might appear on the
right-hand sides of (11.65) and (11.66). If we rescale the vertical coordinate by the Prandtl
ratio (i.e., let z = z′f/N) then (11.70) is a Poisson equation for the streamfunction. A few
other germane points are as follows.

(i) The horizontal gradient of the thermodynamic forcing partially drives the circulation.
At low latitudes, both the heating term and the horizontal eddy flux divergence act in
the same sense. An overturning circulation that is forced by diabatic terms, and so with
warm fluid rising and cold fluid sinking, is called a ‘direct cell’.
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11.6 The Hadley Cell: Summary and Numerical Solutions 477

(ii) The vertical gradient of the horizontal eddy momentum divergence also partially
drives the circulation, and from Fig. 11.11 it is clear these fluxes will intensify the
circulation. That is, the same terms that cause angular momentum non-conservation act
to strengthen the overturning circulation. This balance is reflected in the momentum
equation — the Coriolis term fv is balanced by the eddy momentum flux convergence.

(iii) If M contains frictional terms, such as ν∂2u/∂z2, then these may also act to strengthen
the meridional circulation, and weaken angular momentum conservation.

(iv) If N is small, then the circulation will become stronger if the other terms remain the
same. That is, a dry atmosphere with a lapse rate close to that of a dry adiabat (i.e.,
N = 0) may have a stronger overturning circulation than otherwise, because the air can
circulate without transporting any heat.

(v) In winter, the increased strength of eddy momentum and buoyancy fluxes will drive a
stronger Hadley Cell. This constitutes a different mechanism from that given in section
11.4 for the increased strength of the winter cell.

* A slight generalization

We can generalize (11.70) somewhat by replacing (11.65) by (11.62), namely

∂m
∂t

+ v ∂m
∂y

= M. (11.71)

Then, using thermal wind equation in the form

f
a cosϑ

∂m
∂z

= − ∂b
∂y

, (11.72)

an equation very similar to (11.70) may be derived. However, the coefficients on the left-
hand side are functions of the solution, and f 2∂zzΨ in (11.70) is replaced by a term like
(f∂ym)(∂zzΨ). Then, to the extent that ∂m/∂y < f and the other terms are the same, the
overturning will be stronger than that given using (11.70).12

11.6 THE HADLEY CELL: SUMMARY AND NUMERICAL SOLUTIONS

We have presented two models for the Hadley Cell: (i) an angular momentum conserving
model and (ii) a largely eddy-driven model. The two models are opposite extremes, both
being severe approximations to a more complete representation of the Hadley Cell that might
comprise the zonal momentum equation with eddies (11.60), the thermodynamic equation
(11.63) (with the effects of moisture included) and the meridional momentum equation,
perhaps approximated as cyclostrophic wind balance. In reality, both the conservative
effects of angular momentum advection and the effects of eddy fluxes likely play a role,
and delineating the importance of their respective effects is a task that must be guided by
observations and numerical simulations.

Illustrative results from two idealized GCM experiments are shown in Figs. 11.12 and
11.13. The GCM has no explicit representation of moisture, except that the lapse rate is
adjusted to a value close to the moist adiabatic lapse rate if it exceeds that value. In one
experiment the model is constrained to produce an axisymmetric solution (top panels of
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Fig. 11.12 The zonal wind in two numerical simulations. The lower panel is from
an idealized dry, three-dimensional atmospheric GCM, and the upper panel is an
axisymmetric version of the same model. Plotted are the zonal wind at the level of the
Hadley Cell outflow, uo; the surface wind, us; and the angular-momentum-conserving
value, um.13

the figures), and the zonal wind produced by the model in the Hadley Cell outflow is fairly
close to being angular-momentum-conserving. (The lack of perfect angular momentum
conservation is due to the presence of a small but finite vertical viscosity that is necessary in
order to reach a steady state; without it, the steady state becomes symmetrically unstable.)
In a three-dimensional version of the model, in which baroclinic eddies are allowed to form,
the zonal wind is significantly reduced from its angular-momentum-conserving value, and
correspondingly the overturning circulation is much stronger. Indeed, the strength of the
Hadley Cell increases roughly linearly with the strength of the eddies in a sequence of
numerical integrations similar to those shown, as suggested by (11.70). Qualitatively similar
results are found in a model with no convective parameterization. In this case, the lapse
rate is closer to neutral, N2 is small, and the overturning circulation is generally stronger, as
also expected from (11.70).

Is the real Hadley circulation ‘eddy-driven’, as in section 11.5.2, or is it a largely zonally
symmetric structure constrained by angular momentum conservation, as in section 11.2 and
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Fig. 11.13 As for Fig. 11.12, but now showing the streamfunction of the overturning
circulation. ‘Altitude’ is σ = p/ps , where ps is surface pressure, and contour interval
is 5 Sv (i.e., 5× 109 kg s−1).

its hemispherically asymmetric extensions? Observations of the overturning flow in summer
and winter provide a guide. Figure 11.14 shows the thickness weighted transport overturning
circulation in isentropic coordinates, and (as discussed more in chapter 7) this circulation
includes both the Eulerian mean transport and the transport due to eddies. In winter there
is considerable recirculation within the Hadley Cell, most of it coming from the zonally
symmetric flow, and it is a quite distinct structure from the mid-latitude circulation. This
suggests that the poleward extent of the winter Hadley Cell is influenced by axisymmetric
dynamics, for if it were solely a response to eddy heat fluxes one might expect it to join
more smoothly with the mid-latitude Ferrel Cell. It may be that the effects of condensation
and the concentration of the thermodynamic source act to give the axisymmetric circulation
a significant role. However, a winter Hadley Cell strongly influenced by eddy momentum
fluxes might still strongly recirculate, and eddy effects do almost certainly play an important
role. In summer, there is virtually no recirculation within the Hadley Cell and it does not
appear as a self-contained structure, and this is suggestive of eddy effects and/or a strong
mid-latitude influence. However, the above remarks are very speculative.
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480 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

Fig. 11.14 The observed mass
transport streamfunction in
isentropic coordinates in north-
ern hemisphere winter (DJF).
The dotted line is the median
surface temperature. The re-
turn flow is nearly all in a layer
near the surface, much of it at a
lower temperature than the me-
dian surface temperature. Note
the more vigorous circulation in
the winter hemisphere.14

11.7 THE FERREL CELL

In this section we give a brief introduction to the Ferrel Cell, taking the eddy fluxes of heat
and momentum to be given and viewing the circulation from a zonally averaged and Eulerian
perspective. We investigate the associated dynamics in the next chapter.

The Ferrel Cell is an indirect meridional overturning circulation in mid-latitudes (see
Fig. 11.3) that is apparent in the zonally averaged v and w fields, or the meridional over-
turning circulation defined by (11.3) or (11.68). It is ‘indirect’ because cool air apparently
rises in high latitudes, moves equatorwards and sinks in the subtropics. Why should such a
circulation exist? The answer, in short, is that it is there to balance the eddy momentum
convergence of the mid-latitude eddies and it is effectively driven by those eddies. To
see this, consider the zonally averaged zonal momentum equation in mid-latitudes; at low
Rossby number, and for steady flow this is just

−fv = − 1

cos2 ϑ
∂
∂ϑ

(cos2 ϑu′v′)+ 1

ρ
∂τ
∂z

. (11.73)

This is a steady version of (11.65) with the addition of a frictional term ∂τ/∂z on the
right-hand side. At the surface we might approximate the stress by a drag, τ = rus , where
r is a constant, with the stress falling away with height so that it is important only in the
lowest kilometre or so of the atmosphere, in the atmospheric Ekman layer. Above this layer,
the eddy momentum flux convergence is balanced by the Coriolis force on the meridional
flow. In mid-latitudes (from about 30° to 70°) the eddy momentum flux divergence is negative
in both hemispheres (Fig. 11.11) and therefore, from (11.73), the averaged meridional flow
must be equatorwards, as illustrated schematically in Fig. 11.15.

The flow cannot be equatorwards everywhere, simply by mass continuity, and the return
flow occurs largely in the Ekman layer, of depth d say. Here the eddy balance is between the
Coriolis term and the frictional term, and integrating over this layer gives

−fV ≈ −rus, (11.74)

where V = ∫ d0 ρv dz is the meridional transport in the boundary layer, above which the stress
vanishes. The return flow is polewards (i.e., V > 0 in the Northern Hemisphere) producing

Downloaded from Cambridge Books Online by IP 160.39.49.19 on Thu Dec 05 13:09:37 WET 2013.
http://dx.doi.org/10.1017/CBO9780511790447.012

Cambridge Books Online © Cambridge University Press, 2013



11.7 The Ferrel Cell 481

fv ∼
∂u′v′

∂y
< 0

fv ∼ rusurf > 0

w ∼ −
∂v′θ′

∂y
< 0 w ∼ −

∂v′θ′

∂y
> 0

Fig. 11.15 The eddy-driven Ferrel Cell, from an Eulerian point of view. Above the
planetary boundary layer the mean flow is largely in balance with the eddy heat and
momentum fluxes, as shown. The lower branch of the Ferrel Cell is largely confined
to the boundary layer, where it is in a frictional–geostrophic balance.

an eastward Coriolis force. This can be balanced by a westward frictional force provided that
the surface flow has an eastward component. In this picture, then, the mid-latitude eastward
zonal flow at the surface is a consequence of the polewards flowing surface branch of the
Ferrel Cell, this poleward flow being required by mass continuity given the equatorward flow
in the upper branch of the cell. In this way, the Ferrel Cell is responsible for bringing the
mid-latitude eddy momentum flux convergence to the surface where it may be balanced by
friction (refer again to Fig. 11.15).

A more direct way to see that the surface flow must be eastwards, given the eddy
momentum flux convergence, is to vertically integrate (11.73) from the surface to the top of
the atmosphere. By mass conservation, the Coriolis term vanishes (i.e.,

∫∞
0 fρv dz = 0) and

we obtain ∫∞
0

1

cos2 ϑ
∂
∂ϑ

(cos2 ϑu′v′)ρ dz = [τ]∞0 = −rus. (11.75)

That is, the surface wind is proportional to the vertically integrated eddy momentum flux
convergence. Because there is a momentum flux convergence, the left-hand side is negative
and the surface winds are eastwards.

The eddy heat flux also plays a role in the Ferrel Cell, for in a steady state we have, from
(11.66)

w = 1

N2

[
Q[b]− 1

cosϑ
∂(v′b′ cosϑ)

∂y

]
(11.76)

and inspection of Fig. 11.11 shows that the observed eddy heat flux produces an overturning
circulation in the same sense as the observed Ferrel Cell (again see Fig. 11.15).
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482 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

Is the circulation produced by the heat fluxes necessarily the same as that produced
by the momentum fluxes? In a non-steady state the effects of both heat and momentum
fluxes on the Ferrel Cell are determined by (11.70) (an equation which in fact applies more
accurately at mid-latitudes than at low ones because of the low-Rossby number assumption),
and there is no particular need for the heat and momentum fluxes to act in the same way.
But in a steady state they must act to produce a consistent circulation. To show this, for
simplicity let us take f and N2 to be constant, let us suppose the fluid is incompressible
and work in Cartesian coordinates. Take the y-derivative of (11.73) and the z-derivative of
(11.76) and use the mass continuity equation. Noting that v′ζ′ = −∂u′v′/∂y we obtain

∂
∂y

(
v′ζ′ + f0

N2

∂v′b′

∂z

)
= ∂
∂z

(
f0

N2
Q[b]

)
+ ∂
∂y

(
1

ρ0

∂τ
∂z

)
. (11.77)

The expression on the left-hand side is the divergence of the eddy flux of quasi-geostrophic
potential vorticity! That the heat and momentum fluxes act to produce a consistent over-
turning circulation is thus equivalent to requiring that the terms in the quasi-geostrophic
potential vorticity equation are in a steady-state balance.

Notes

1 Many of the observations presented here are so-called ‘reanalyses’, prepared by the National
Centers for Environmental Prediction (NCEP) and the European Centre for Medium-Range
Weather Forecasts (ECMWF) (e.g., Kalnay 1996). Unless stated, we use the NCEP reanalysis
with data from 1958–2003. Reanalysis products are syntheses of observations and model
results and so are not wholly accurate representations of the atmosphere. However, especially
in data-sparse regions of the globe and for poorly measured fields, they are likely to be more
accurate representations of the atmosphere than could be achieved using only the raw data.
Of course, this in turn means they contain biases introduced by the models.

2 For example, Trenberth & Caron (2001).

3 George Hadley (1685–1768) was a British meteorologist who formulated the first dynamical
theory for the trade winds, presented in a paper (Hadley 1735) entitled ‘Concerning the cause
of the general trade winds.’ (At that time, trade winds referred to any large-scale prevailing
wind, and not just tropical winds. Some etymologists have associated the name with the
commercial (i.e., trade) exploitation of the wind by mariners on long ocean journeys, but
such an origin has been disputed: trade also means customary, and the winds customarily
blow in one direction. Relatedly, in Middle English the word trade means path or track —
hence the phrase ‘the wind blows trade’, meaning the wind is on track.) Hadley realized that
in order to account for the zonal winds, the Earth’s rotation makes it necessary for there also
to be a meridional circulation. His vision was of air heated at low latitudes, cooled at high
latitudes, giving rise to a single meridional cell between the equator and each pole. Although
he thought of the cell as essentially filling the hemisphere, and he did not account for the
instability of such a flow, it was nevertheless a foundational contribution to meteorology.
The thermally direct cell in low latitudes is now named after him.

A three-celled circulation was proposed by William Ferrel (1817–1891), an American school
teacher and meteorologist, and the middle of these cells is now named for him. His explana-
tion of the cell (Ferrel 1856a) was not correct, but this is hardly surprising because the eddy
motion producing the angular momentum convergence that drives the Ferrel Cell was not
understood for another 100 years or so. Ferrel in fact abandoned his three-celled picture in

Downloaded from Cambridge Books Online by IP 160.39.49.19 on Thu Dec 05 13:09:37 WET 2013.
http://dx.doi.org/10.1017/CBO9780511790447.012

Cambridge Books Online © Cambridge University Press, 2013



Notes and Problems 483

favour of a something more akin to a two-celled picture (Ferrel 1859), similar to that proposed
by J. Thompson in 1857. The history of these ideas, and those of Hadley, is discussed by
Thomson (1892). Ferrel did however give the first essentially correct description of the role
of the Coriolis force and the geostrophic wind in the general circulation (Ferrel 1858, a paper
with a quite modern style), a key development in the history of geophysical fluid dynamics.
Ferrel also contributed to tidal theory [in Ferrel (1856b) he noted, for example, that the
tidal force due to the moon would slow the Earth’s rotation] and to ocean dynamics. (See
http://www.history.noaa.gov/giants/ferrel2.html).

Although Hadley’s single-celled viewpoint was in part superseded by the three-celled and
two-celled structures, the modern view of the overturning circulation is, ironically, that of a
single cell of ‘residual circulation’, which, although having distinct tropical and extratropical
components, in some ways qualitatively resembles Hadley’s original picture. See chapter 12.

4 Following Held & Hou (1980). Schneider (1977) and Schneider & Lindzen (1977) were
particularly influential precursors.

5 Nevertheless, Fang & Tung (1996) do find some analytic solutions in the presence of moisture
and convection.

6 After Hide (1969).

7 Gierasch (1975).

8 Largely following Lindzen & Hou (1988).

9 Solutions from Lindzen & Hou (1988).

10 See Dima & Wallace (2003) for some relevant observations. They noted that the asymmetry
of the Hadley Cell is affected by monsoonal circulations (which are, of course, not accounted
for in the model presented here). Fang & Tung (1999) investigated the effects of time
dependence, and essentially noted that (11.59) is not well satisfied, although this alone was
unable to limit the nonlinear amplification effect. Walker & Schneider (2005) showed that the
effects of vertical momentum diffusion and of momentum transport by baroclinic eddies are
both significant in a GCM, and these limit the nonlinear amplification.

11 Figure courtesy of M. Juckes, using an ECMWF reanalysis.

12 A still more general, usually elliptic equation for the overturning circulation may be derived
from the zonally averaged primitive equations, assuming only that the zonally averaged zonal
wind is in cyclostrophic balance with the pressure field (Vallis 1982).

13 Simulations kindly performed by C. Walker. See also Walker and Schneider (2005).

14 Figure courtesy of T. Schneider, using an ECMWF reanalysis.

Further reading

Lorenz, E. N., 1967. The Nature and Theory of the General Circulation of the Atmosphere.
A classic monograph on the atmospheric general circulation.

Peixoto, J. P. & Oort, A. H., 1992. Physics of Climate.
A descriptive but physically based discussion of the climate and the general circulation, with
an emphasis on observations.

Problems

11.1 Explicitly derive equations (11.20) and (11.21).

11.2 Suppose that, in the vertically integrated Hadley Cell model considered in section 11.2 the
radiative equilibrium temperature falls linearly from the equator to the pole. For example,
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484 Chapter 11. The Overturning Circulation: Hadley and Ferrel Cells

suppose that θE = θE0−∆Θ(|y|/a), rather the quadratic fall-off in (11.16). Obtain and discuss
the solutions to the Held–Hou problem. Include an expression for the latitudinal extent of the
Hadley Cell, and comment on any discontinuities at the edge of the Hadley Cell and at the
equator.

11.3 By considering the form of the viscous term in spherical coordinates, show explicitly that an
atmosphere in solid body rotation experiences no viscous stresses.

11.4 (a) Suppose the zonal wind is in thermal wind balance with the radiative equilibrium tem-
perature, θE . Obtain a condition for the meridional variation of the radiative equilibrium
temperature so that the wind does not violate Hide’s theorem (that is, it does not produce
an interior maximum of angular momentum). For example, show the radiative equilibrium
temperature must not vary more rapidly with latitude faster than the latitude raised to
some power. You may make the small-angle approximation. Alternatively, you could use
thermal wind balance in the form (2.206) or (2.208). You may assume the surface wind is
zero if needs be.

(b) Suppose the radiative equilibrium temperature falls off with latitude as P4(sinϑ), where
P4 is the fourth Legendre polynomial. Show that the zonal velocity that is in thermal wind
balance with this does not violate Hide’s theorem. Comment on the relevance of this to
the issue of whether the radiative equilibrium solution is physically realizable.

11.5 In the angular-momentum-conserving model of the Hadley Cell, air that starts at rest at
the equator develops a large zonal velocity, and hence a large kinetic energy, as it moves
polewards. Explain carefully where this energy comes from. (Note that the Coriolis force itself
does no work on a fluid parcel.)

11.6 A spinning ice skater with arms outstretched lowers his arms. Show that if the skater’s angular
momentum is conserved his kinetic energy increases. Where has this energy come from? Is it
different if the skater raises his arms?

11.7 (a) Derive and plot the layer thickness as a function of latitude in the shallow water Hadley
Cell model, and the corresponding zonal wind.

(b) Suppose that the equilibrium thickness, h∗, falls quadratically with latitude, rather than
linearly as we assume in (11.47). Obtain and plot expressions for the extent of the Hadley
Cell, the thickness and the zonal wind.

11.8 � The oceanic thermohaline circulation seems similar to Hadley’s vision of the atmospheric
circulation, with a large thermally driven cell between pole and equator. Discuss. Is conserva-
tion of angular momentum an important factor in the thermohaline circulation? If so, what are
its manifestations? If not, why not?
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