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Any theory of the atmospheric circulation must be based on a theory of
(large-scale) atmospheric turbulence.
Eric Eady, The cause of the general circulation of the atmosphere, 1950.

CHAPTER

TWELVE

Zonally Averaged Mid-latitude Atmospheric

Circulation

OUR GOAL IN THIS CHAPTER is to gain an understanding of the zonally averaged circu-
lation of the mid-latitude atmosphere. Because of the presence of strong zonal
asymmetries — that is, eddies — this circulation differs considerably from the

zonally symmetric circulation that would exist if eddies did not develop at all. (The idealized
angular-momentum-conserving model of the Hadley Cell discussed in the previous chapter
is an example of a zonally symmetric circulation.) Let us explain more.

When studying many aspects of the large-scale ocean circulation, or the low-latitude
atmospheric circulation, we can make a great deal of progress by treating the large-scale flow
as if it were absolutely steady. However, this approach fails miserably for the mid-latitude
atmosphere: the large-scale mid-latitude circulation is intrinsically unsteady on the large-
scale to the extent that the associated eddies essentially are the circulation. The eddies are
also unpredictable and chaotic; that is to say, the large-scale mid-latitude circulation of the
atmosphere is a turbulent flow. This turbulence involves the large-scale, geostrophically and
hydrostatically balanced flow — that is, it is geostrophic turbulence — and so has different
properties than the smaller-scale, more nearly three-dimensional turbulence that may occur
in boundary layers and the like. In addition, the turbulence is neither fully-developed nor
isotropic — it interacts with the Rossby waves that propagate on the large-scale background
meridional vorticity gradient that is imparted by the planetary rotation, and it is this
interaction that, we will find, produces the momentum convergence that gives rise to
large-scale zonal flows and the surface winds.

Why is the large-scale flow turbulent? Why is it zonally asymmetric at all? There are two
potential sources for zonal asymmetries.
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486 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

(i) The zonal asymmetries that exist in the underlying boundary conditions and forcing:
mountains, land–sea contrasts, the diurnal cycle, and so on.

(ii) Hydrodynamic instability: even if the surface and the forcing were exactly zonally
symmetric, the corresponding zonally symmetric solutions of the equations of motion
would have a large shear in the zonal wind and this might be baroclinically unstable to
zonally asymmetric perturbations.

If the flow were not unstable, then we might expect that the zonal asymmetries of item (i)
would give rise to corresponding, steady, zonal asymmetries in the resulting circulation, and
this process is discussed in the next chapter. However, the flow is unstable, primarily via
baroclinic instability (as discussed in chapter 6), and this leads to eddy growth and ultimately
to geostrophic turbulence; this is, essentially, what gives rise to weather. The large-scale
circulation is not, however, so turbulent that such things as Rossby waves cease to have
meaning, and we find that we can make progress in understanding the circulation by drawing
from the wave–mean flow theory discussed in chapter 7, as well as the theory of turbulence
discussed in chapters 9 and 10. Of course, because the atmosphere is so complex — among
other things it is inhomogeneous and anisotropic — applying ideas from such theories is by
no means straightforward. We find that we must simplify and consider idealized situations,
and of course in so doing we risk becoming divorced from reality; thus, we try to construct
models that are robust in their predictions and that do not depend delicately on how we
might parameterize some particular turbulent process.

In this chapter, then, we focus on the effects of item (ii), and try to understand the
mid-latitude circulation of an atmosphere with zonally symmetric forcing and boundary
conditions. We assume that the zonal asymmetries due to the boundary conditions do
not qualitatively affect our arguments, and that the circulation of the atmosphere with a
perfectly smooth surface would resemble that of the real circulation. One of the most basic
features of the mid-latitude atmosphere is the westerly winds at the surface, and we begin
with a discussion of the mechanisms that maintain these westerlies. We will present our
arguments semi-independently of earlier chapters, and in particular we will develop some
of the results of wave–mean flow interaction ab initio, so that a reader with just a little
experience can start here and refer back to these chapters as needed.1

12.1 SURFACE WESTERLIES AND THE MAINTENANCE OF A BAROTROPIC JET

12.1.1 Observations and motivation

The atmosphere above the surface has a generally eastward flow, with a broad maximum
about 10 km above the surface at around 40° in either hemisphere. But if we look a little more
at the zonally average wind in Fig. 11.2(a) we see hints of there being two jets — one (the
subtropical jet) at around 30°, and another somewhat polewards of this, especially apparent
in the Southern Hemisphere. Such a jet is particularly noticeable in certain regions of the
globe, when a zonal average is not taken, as in Fig. 12.1. The subtropical jet is associated
with a strong meridional temperature gradient at the edge of the Hadley Cell, and is quite
baroclinic. On the other hand, the mid-latitude jet (sometimes called the subpolar jet) is
more barotropic (it has little vertical structure, with less shear than the subtropical jet) and
lies above an eastward surface flow. This flow feels the effect of friction and so there must
be a momentum convergence into this region, as indeed is seen in Fig. 11.11. We will find
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Fig. 12.1 The time averaged zonal wind at 150° W (in the mid-Pacific) in December–
January–February (DJF, left), March–April–May (MAM, right). The contour interval is
5 m s−1. Note the double jet in each hemisphere, one in the subtropics and one in mid-
latitudes. The subtropical jets are associated with a strong meridional temperature
gradient, whereas the mid-latitude jets have a stronger barotropic component and are
associated with westerly winds at the surface.

that this momentum convergence occurs largely in transient eddies, and the jet is known as
the eddy-driven jet. Although the eddies themselves are a product of baroclinic instability,
the essential mechanism of jet production is present in barotropic dynamics, so we first
consider how an eastward jet can be maintained in a turbulent two-dimensional flow on the
surface of a rotating sphere.

In barotropic turbulence, alternating east–west jets can be maintained if β is non-zero,
as described in section 9.1. However, that case was homogeneous, with no preferred latitude
for a particular direction of jet, whereas in the atmosphere there appears to be but one
mid-latitude jet, and although it meanders it certainly has a preferred average location. In
the subsections that follow we give four explanations as to how the jet is maintained; the
first has a different flavour from the others, but they are all really just different perspectives
on the same mechanism.2

12.1.2 The mechanism of jet production

I. The vorticity budget

Suppose that the absolute vorticity normal to the surface (i.e., ζ + 2Ω sinϑ) increases
monotonically polewards. (A sufficient condition for this is that the fluid is at rest.) By
Stokes’ theorem, the circulation around a line of latitude circumscribing the polar cap, I, is
equal to the integral of the absolute vorticity over the cap. That is,

Ii =
∫

cap
ωia · dA =

∮
C
uia dl =

∮
C
(ui + 2Ωa cosϑ)dl, (12.1)

where ωia and uia are the initial absolute vorticity and velocity, respectively, ui is the initial
zonal velocity in the Earth’s frame of reference, and the line integrals are around the line of
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488 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

C

Fig. 12.2 The effects of a mid-latitude disturbance on the circulation around the
latitude line C. If initially the absolute vorticity increases monotonically polewards,
then the disturbance will bring fluid with lower absolute vorticity into the cap region.
Then, using Stokes theorem, the velocity around the latitude line C will become more
westwards.

latitude. For simplicity let us take ui = 0 and suppose there is a disturbance equatorwards
of the polar cap, and that this results in a distortion of the material line around the latitude
circle C (Fig. 12.2). Since we are supposing the source of the disturbance to be distant from
the latitude of interest, then if we neglect viscosity the circulation along the material line
is conserved, by Kelvin’s circulation theorem. Thus, vorticity with a lower value is brought
into the region of the polar cap — that is, the region polewards of the latitude line C . Using
Stokes’ theorem again the circulation around the latitude circle C must therefore fall; that is,
denoting values after the disturbance with a subscript f ,

If =
∫

cap
ω fa · dA < Ii (12.2)

so that ∮
C
(uf + 2Ωa cosϑ)dl <

∮
C
(ui + 2Ωa cosϑ)dl (12.3)

and

uf < ui (12.4)

with the overbar indicating a zonal average. Thus, there is a tendency to produce westward
flow polewards of the disturbance. By a similar argument westward flow is also produced
equatorwards of the disturbance — to see this one might apply Kelvin’s theorem over all of
the globe south of the source of the disturbance (taking care to take the dot-product correctly
between the direction of the vorticity vector and the direction normal to the surface). Finally,
note that the overall situation is the same in the Southern Hemisphere. Thus, on the surface
of a rotating sphere, external stirring will produce westward flow away from the region of
the stirring.

Now suppose, furthermore, that the disturbance imparts no net angular momentum to
the fluid. Then the integral of ua cosϑ over the entire hemisphere must be constant. But the
fluid is accelerating westwards away from the disturbance. Therefore, the fluid in the region
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12.1 Surface Westerlies and the Maintenance of a Barotropic Jet 489

of the disturbance must accelerate eastwards; that is, angular momentum must converge
into the stirred region, producing an eastward flow. This simple mechanism is the essence of
the production of eastward eddy-driven jets in the atmosphere, and of the eastward surface
winds in mid-latitudes. The stirring that here we have externally imposed comes, in reality,
from baroclinic instability.

If the stirring subsides then the flow may reversibly go back to its initial condition, with
a concomitant reversal of the momentum convergence that caused the zonal flow. Thus,
we must have some form of dissipation and irreversibility in order to produce permanent
changes, and in particular we need to irreversibly mix vorticity. (This result is closely related
to the non-acceleration results of chapter 7.) If the fluid is continuously mixed, then of
course we also need a source that restores the absolute vorticity gradient, otherwise we will
completely homogenize the vorticity over the hemisphere, so let us now set up a simple
model that shows how a permanent jet structure can be maintained.

II. Rossby waves and momentum flux

We saw above that a mean gradient of vorticity is an essential ingredient in the mechanism
whereby a mean flow is generated by stirring. Given such, we expect Rossby waves to be
excited, and we now show how Rossby waves are intimately related to the momentum flux
maintaining the mean flow.

If a stirring is present in mid-latitudes then we expect that Rossby waves will be generated
there, propagate away and break and dissipate. To the extent that the waves are quasi-linear
and do not interact, then just away from the source region each wave has the form

ψ = ReC ei(kx+ly−ωt) = ReC ei(kx+ly−kct), (12.5)

where C is a constant, with dispersion relation

ω = ck = uk− βk
k2 + l2 ≡ωR, (12.6)

provided that there is no meridional shear in the zonal flow. The meridional component of
the group velocity is given by

cyg = ∂ω
∂l

= 2βkl
(k2 + l2)2

. (12.7)

Now, the direction of the group velocity must be away from the source region; this is a
radiation condition (discussed more in the next subsection), demanded by the requirement
that Rossby waves transport energy away from the disturbance. Thus, northwards of the
source kl is positive and southwards of the source kl is negative. That the product kl can be
positive or negative arises because for each k there are two possible values of l that satisfy
the dispersion relation (12.6), namely

l = ±
(

β
u− c − k

2
)1/2

, (12.8)

assuming that the quantity in parentheses is positive.
The velocity variations associated with the Rossby waves are

u′ = −ReC il ei(kx+ly−ωt), v′ = ReC ik ei(kx+ly−ωt), (12.9a,b)
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490 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

Fig. 12.3 Generation of zonal flow on a β-plane or on a rotating sphere. Stirring in
mid-latitudes (by baroclinic eddies) generates Rossby waves that propagate away from
the disturbance. Momentum converges in the region of stirring, producing eastward
flow there and weaker westward flow on its flanks.

and the associated momentum flux is

u′v′ = −1

2
C2kl. (12.10)

Thus, given that the sign of kl is determined by the group velocity, northwards of the
source the momentum flux associated with the Rossby waves is southward (i.e., u′v′ is
negative), and southwards of the source the momentum flux is northward (i.e., u′v′ is
positive). That is, the momentum flux associated with the Rossby waves is toward the source
region. Momentum converges in the region of the stirring, producing net eastward flow there
and westward flow to either side (Fig. 12.3).

Another way of describing the same effect is to note that if kl is positive then lines of
constant phase (kx + ly = constant) are tilted north-west/south-east, and the momentum
flux associated with such a disturbance is negative (u′v′ < 0). Similarly, if kl is negative then
the constant-phase lines are tilted north-east/south-west and the associated momentum flux
is positive (u′v′ > 0). The net result is a convergence of momentum flux into the source
region. In physical space this is reflected by having eddies that are ‘bow-shaped’, as in
Fig. 12.4.

* The radiation condition and Rayleigh friction

Why is the group velocity directed away from the source region? It is because the energy
flux travels at the group velocity, and the energy flux must be directed away from the source
region; the reader comfortable with that statement may stop here. (See section 7.2.2 for more
on group velocity.) Another way to determine the direction of the group velocity is to employ
a common trick in problems of wave propagation, that of adding a small amount of friction
to the inviscid problem.3 The solution of the ensuing problem in the limit of small friction
will often make clear which solution is physically meaningful in the inviscid problem, and
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Fig. 12.4 The momentum transport in phys-
ical space, caused by the propagation of
Rossby waves away from a source in mid-
latitudes. The ensuing bow-shaped eddies
are responsible for a convergence of mo-
mentum, as indicated in the idealization
pictured.

therefore which solution nature chooses. Consider the linear barotropic vorticity equation
with linear friction,

∂ζ
∂t

+ β∂ψ
∂x

= −rζ (12.11)

where r is a small friction coefficient. The dispersion relation is

ω = −βk
K2

− ir =ωR(k, l)− ir , (12.12)

where ωR is defined by (12.6), with u = 0, and so the wave decays with time. Now suppose
a wave is generated in some region, and that it propagates meridionally away, decaying
as it moves away. Then, instead of an imaginary frequency, we may suppose that the
frequency is real and the y-wavenumber is imaginary. Specifically, we take l = l0 + l′, where
l0 = ±[β/(u−c)−k2]1/2 for some zonal wavenumber k, as in (12.8), andω =ωR(k, l0). For
small friction, we obtain l′ by Taylor-expanding the dispersion relation around its inviscid
value, ωR(k, l0), giving

ω+ ir =ωR(k, l) ≈ ωR(k, l0)+ ∂ωR(k, l)
∂l

∣∣∣∣
l=l0

l′, (12.13)

and therefore

l′ = ir
cyg
, (12.14)

where cyg = ∂lωR(k, l)|l=l0 is the y-component of the group velocity. The wavenumber is
imaginary, so that the wave either grows or decays in the y-direction, and the wave solution
obeys

ψ ≈ ReC exp[i(kx −ωRt)] exp(il0y − ry/cyg ). (12.15)

We now demand that the solution decay away from the source, because any other choice is
manifestly unphysical, even as we let r be as small as we please. Thus, with the source at
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492 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

y = 0, cyg must be positive for positive y and negative for negative y . In other words, the
group velocity must be directed away from the source region, and therefore momentum flux
converges on the source region.

III. The pseudomomentum budget

The kinematic relation between vorticity flux and momentum flux for non-divergent two-
dimensional flow is

vζ = 1

2

∂
∂x

(
v2 −u2

)
− ∂
∂y

(uv). (12.16)

After zonal averaging this gives

v′ζ′ = −∂u
′v′

∂y
, (12.17)

noting that v = 0 for two-dimensional incompressible (or geostrophic) flow. For reference,
in spherical coordinates this expression becomes

v′ζ′ cosϑ = − 1

a cosϑ
∂
∂ϑ

(cos2ϑu′v′). (12.18)

If (12.17) [or (12.18)] is integrated with respect to y between two quiescent latitudes then
the right-hand side vanishes. That is the zonally averaged meridional vorticity flux vanishes
when integrated over latitude.

Now, the barotropic zonal momentum equation is (for horizontally non-divergent flow)

∂u
∂t

+ ∂u2

∂x
+ ∂uv

∂y
− fv = −∂φ

∂x
+ Fu −Du, (12.19)

where Fu and Du represent the effects of any forcing and dissipation. Zonal averaging, with
v = 0, gives

∂u
∂t

= −∂uv
∂y

+ Fu −Du, (12.20)

or, using (12.17),
∂u
∂t

= v′ζ′ + Fu −Du. (12.21)

Thus, the zonally averaged wind is maintained by the zonally averaged vorticity flux. On
average there is little if any direct forcing of horizontal momentum and we may set Fu = 0,
and if the dissipation is parameterized by a linear drag (12.21) becomes

∂u
∂t

= v′ζ′ − ru, (12.22)

where the constant r is an inverse frictional time scale.
Now consider the maintenance of this vorticity flux. The barotropic vorticity equation is

∂ζ
∂t

+ u · ∇ζ + vβ = Fζ −Dζ, (12.23)

where Fζ and Dζ are forcing and dissipation of vorticity. Linearize about a mean zonal flow
to give

∂ζ′

∂t
+u∂ζ

′

∂x
+ γv′ = F ′ζ −D′ζ, (12.24)
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12.1 Surface Westerlies and the Maintenance of a Barotropic Jet 493

where

γ = β− ∂2u
∂y2

(12.25)

is the meridional gradient of absolute vorticity. Multiply (12.24) by ζ′/γ and zonally average
to form the pseudomomentum equation,

∂A
∂t

+ v′ζ′ = 1

γ
(ζ′F ′ζ − ζ′D′ζ ), (12.26)

where

A= 1

2γ
ζ′2 (12.27)

is a wave activity density, equal to the (negative of) the pseudomomentum for this problem
[see also (7.23b) on page 299, and section 7.2 more generally]. The parameter γ is positive if
the average absolute vorticity increases monotonically northwards, and this is usually the
case in both Northern and Southern Hemispheres.

In the absence of forcing and dissipation, (12.22) and (12.26) imply an important rela-
tionship between the change of the mean flow and the pseudomomentum, namely

∂u
∂t

+ ∂A
∂t

= 0. (12.28)

Now if for some reason A increases, perhaps because a wave enters an initially quiescent
region because of stirring elsewhere, then mean flow must decrease. However, because
the vorticity flux integrates to zero, the zonal flow cannot decrease everywhere. Thus, if
the zonal flow decreases in regions away from the stirring, it must increase in the region
of the stirring. In the presence of forcing and dissipation this mechanism can lead to the
production of a statistically steady jet in the region of the forcing, since (12.22) and (12.26)
combine to give

∂u
∂t

+ ∂A
∂t

= −ru+ 1

γ
(ζ′F ′ζ − ζ′D′ζ ), (12.29)

and in a statistically steady state

ru = 1

γ
(ζ′F ′ζ − ζ′D′ζ ) . (12.30)

The terms on the right-hand side represent the stirring and dissipation of vorticity, and
integrated over latitude their sum will vanish, or otherwise the pseudomomentum budget
cannot be in a steady state. However, let us suppose that forcing is confined to mid-latitudes.
In the forcing region, the first term on the right-hand side of (12.30) will be larger than the
second, and an eastward mean flow will be generated. Away from the direct influence of the
forcing, the dissipation term will dominate and westward mean flows will be generated, as
sketched in Fig. 12.5. Thus, on a β-plane or on the surface of a rotating sphere an eastward
mean zonal flow can be maintained by a vorticity stirring that imparts no net momentum to
the fluid. In general, stirring in the presence of a vorticity gradient will give rise to a mean
flow, and on a spherical planet the vorticity gradient is provided by differential rotation.

It is crucial to the generation of a mean flow that the dissipation has a broader latitudinal
distribution than the forcing: if all the dissipation occurred in the region of the forcing then
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494 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

Fig. 12.5 Mean flow generation by a
meridionally confined stirring. Be-
cause of Rossby wave propagation away
from the source region, the distribu-
tion of pseudomomentum dissipation is
broader than that of pseudomomentum
forcing, and the sum of the two leads to
the zonal wind distribution shown, with
positive (eastward) values in the region
of the stirring. See also Fig. 12.8.

poleequator

from (12.30) no mean flow would be generated. However, Rossby waves are generated in
the forcing region, and these propagate meridionally before dissipating thus broadening the
dissipation distribution and allowing the generation of a mean flow.

IV. The Eliassen–Palm flux

The Eliassen–Palm (EP) flux (section 7.2) provides a convenient framework for determining
how waves affect the mean flow, and the barotropic case is a particularly simple and
instructive example. In the unforced case, the zonally averaged momentum equation may be
written as

∂u
∂t

− f0v∗ = ∇x ·F, (12.31)

where v∗ is the residual meridional velocity and F is the Eliassen–Palm flux, and ∇x· is the
divergence in the meridional plane. In the barotropic case v∗ = 0 and

F = −ju′v′ . (12.32)

If the momentum flux is primarily the result of interacting nearly monochromatic waves,
then the EP flux obeys the group velocity property (section 7.2.2), namely that the flux of
wave activity density is equal to the group velocity times the wave activity density. Thus,

Fy ≡ j ·F ≈ cygA, (12.33)

where A is the wave activity density, or pseudomomentum,

A= ζ′2

qy
= ζ′2

γ
, (12.34)

and, if γ > 0, A is a positive-definite quantity. The zonal momentum equation and the
Eliassen–Palm relation, (7.23a), become respectively

∂u
∂t

= ∂
∂y

(cygA), ∂A
∂t

+ ∂
∂y

(cygA) = 0, (12.35a,b)

and so
∂u
∂t

= −∂A
∂t

, (12.36)
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Wave activity flux

Wave activity flux

Vorticity
gradient

Fluid acceleration

Fig. 12.6 If a region of fluid on the β-plane or on a rotating sphere is stirred, then
Rossby waves propagate away from the disturbance, and this is the direction of the
wave activity density flux vector. Thus, there is divergence of wave activity in the
stirred region, and using (12.35) this produces an eastward acceleration.

as in (12.28).
Now suppose that we initiate a disturbance at some latitude, and then let the fluid evolve

freely. The disturbance generates Rossby waves whose group velocity will be directed away
from the region of disturbance, and the wave activity density A will diminish in the region
of the disturbance (and increase elsewhere). However, from (12.35a) the zonal velocity will
increase in the region of the disturbance, and an eastward flow will be generated. That is,
momentum converges in the region of the disturbance and an eastward jet is generated
(Fig. 12.6).

This EP flux argument, the pseudomomentum argument and the Rossby wave argument
are, in essence, just different expressions of the same physical process. Indeed, the result
of (12.10) can be regarded as illustrating the group velocity property of the EP flux for
barotropic Rossby waves. The vorticity budget argument is arguably more general than any
of these, because it does not depend on linearization or small amplitude disturbances. At
the same time, none of these arguments is really turbulent in nature, and although they are
all fundamentally nonlinear, it is the presence of β-effect — a linear term in the vorticity
equation — that is crucial in the development of a mean flow.

12.1.3 A numerical example

We conclude from the above arguments that momentum will converge into a rapidly rotating
flow that is stirred in a meridionally localized region. To illustrate this, we numerically
integrate the barotropic vorticity equation on the sphere, with a meridionally localized
stirring term; explicitly, the equation that is integrated is

∂ζ
∂t

+ J(ψ,ζ)+ β∂ψ
∂x

= −rζ + κ∇4ζ + Fζ. (12.37)
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Fig. 12.7 The time and zonally averaged wind (solid line) obtained by an integration
of the barotropic vorticity equation (12.37) on the sphere. The fluid is stirred in mid-
latitudes by a random wavemaker that is statistically zonally uniform, acting around
zonal wavenumber 8, and that supplies no net momentum. Momentum converges
in the stirring region leading to an eastward jet with a westward flow to either side,
and zero area-weighted spatially integrated velocity. The dashed line shows the r.m.s.
(eddy) velocity created by the stirring.

The first term on the right-hand side is a linear drag, parameterizing momentum loss in
an Ekman layer. The second term removes enstrophy that has cascaded to small scales; it
has a negligible impact at large scales. The forcing term Fζ is a wavemaker confined to a
zonal strip of about 15° meridional extent, centred at about 45° N, that is statistically zonally
uniform and that spatially integrates to zero. Within that region it is a random stirring with
a temporal decorrelation scale of a few days and a spatial decorrelation scale corresponding
to about wavenumber 8, thus mimicking weather scales. Thus, it provides no net source of
vorticity or momentum, but it is a source of pseudomomentum because Fζζ > 0.

The results of a numerical integration of (12.37) are illustrated in Figs. 12.7 and 12.8.
An eastward jet forms in the vicinity of the forcing, with westward flow on either side. The
pseudomomentum stirring and dissipation that produce this flow are shown in Fig. 12.8. As
expected, the dissipation has a broader distribution than the forcing, and the sum of the
two (the dot–dashed line in the figure) has the same meridional distribution as the zonal
flow itself.

12.2 LAYERED MODELS OF THE MID-LATITUDE CIRCULATION

Let us now extend our barotropic model in the direction of increasing realism. So far we
have shown that localized stirring can give rise to an eastward acceleration as Rossby waves
propagate away from the disturbance. The source of the disturbance is of course baroclinic
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Fig. 12.8 The pseudomomentum stirring (solid line, F ′ζζ′), dissipation (dashed line,

D′
ζζ′) and their sum (dot–dashed), for the same integration as Fig. 12.7. Because

Rossby waves propagate away from the stirred region before breaking, the distribution
of dissipation is broader than the forcing, resulting in an eastward jet where the
stirring is centred, with westward flow on either side.

instability, and to incorporate these effects we will need to introduce some vertical structure
into the problem; we do this by way of layered models of the circulation.4 That is, we
will consider an atmosphere to consist of one or more isentropic layers, as described in
section 3.9. The equations describing such layers are virtually isomorphic to the shallow
water equations and, for the sake of familiarity and simplicity, and with no loss of essential
dynamics, we will use the Boussinesq shallow water equations. We begin with a model of a
single layer.

12.2.1 A single-layer model

We first consider a single layer obeying the shallow water equations. We further restrict
the flow by supposing that it is constrained by two rigid surfaces: an upper flat lid and a
lower, wavy (but stationary) surface (Fig. 12.9). We may imagine the fluid layer to crudely
represent the upper troposphere, with the (given) lower wavy surface corresponding to the
undulating mid-atmosphere interface of a two-layer model. (This section is in some ways
an exercise, and too much realism should not be ascribed to the model.) Thus frictional
effects are small in the momentum equation, and in particular there is no Ekman layer and
no drag on the velocity field. However, there may be some dissipative effects in the vorticity
equation, arising from the cascade of enstrophy to small scales. We also suppose that the
Rossby number is small, that the variations in layer thickness are small compared to the
mean layer thickness, and that variations in Coriolis parameter are small. Let the initial flow
be a uniform zonal current, passing over the wavy lower boundary. The boundary is waviest
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Fig. 12.9 A model atmosphere with an
active layer of mean thickness H, lo-
cal thickness h, and a variable lower
surface of height displacement η, lying
above a stationary layer with a slightly
larger potential density.

H
h

η

in mid-latitudes, creating a disturbance from which Rossby waves emanate. Our questions
are: (i) How does the wavy interface affect the mean zonal flow? (ii) What if any meridional
circulation is induced?

Equations of motion

The zonal momentum equation for the layer may be written as

∂u
∂t

− (f + ζ)v = − ∂B
∂x

, (12.38)

where B = φ+u2/2 is the Bernoulli function and φ is the pressure in the layer. The zonal
average of this is

∂u
∂t

− fv = ζv + ζ′v′ . (12.39)

Note that v is wholly ageostrophic (vg = ∂xψ = 0). Now, using ∂u/∂x + ∂v/∂y = 0, the
vorticity flux is related to the momentum flux by

vζ = − ∂
∂y

(uv)+ 1

2

∂
∂x

(v2 −u2), (12.40)

so that, under quasi-geostrophic scaling, (12.39) simplifies to

∂u
∂t

− f0v = ζ′v′ = − ∂
∂y

u′v′ . (12.41)

Note that although v is small and ageostrophic, mass conservation does not demand that it
be zero, because the thickness of the layer is not constant [look ahead to (12.44)]. Thus, as
v is multiplied by the large term f0, the term f0v term should be retained (whereas ζv is
dropped). If the flow is statistically steady and there are no sources or sinks of momentum
(12.41) becomes

f0v = ∂
∂y

u′v′ . (12.42)
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To complete the model we use the zonally averaged mass conservation equation, namely

∂h
∂t

+ ∂
∂y

vh = 0. (12.43)

In the situation here ∂h/∂t = 0, because the flow is confined between two rigid surfaces,
and so ∂vh/∂y = 0. If the mass flux vanishes somewhere, for example at a meridional
boundary, it therefore vanishes everywhere and we have

vh+ v′h′ = 0. (12.44)

Using (12.42) and (12.44) gives

1

f0

∂
∂y

u′v′ + 1

h
v′h′ = 0, (12.45)

or

v′ζ′ − f0
1

h
v′h′ = 0. (12.46)

Because thickness variations are assumed to be small we may write this as

v′ζ′ − f0
1

H
v′h′ = 0, (12.47)

where H is the reference thickness of the layer, which may be taken as its mean thickness.
[The left-hand side of (12.47) is just the potential vorticity flux for this problem — look
ahead to (12.53).]

The potential vorticity equation for the layer is

DQ
Dt

= D

Dt

[
ζ + f
h

]
= 0, (12.48)

where h is the fluid layer thickness. For small variations in layer thickness and Coriolis
parameter this becomes

Dq
Dt

= ∂q
∂t
+u∂q

∂x
+ v ∂q

∂y
= 0, q = ζ + βy + f0

η
H
, (12.49a,b)

where η = H − h is the height of the lower interface (Fig. 12.9) and this is a function of x
and y but not, in this model, time. Using the horizontal non-divergence of the flow, the
zonally averaged potential vorticity equation is

∂q
∂t

= −∂v q
∂y

− ∂v′q′

∂y
. (12.50)

The term involving v is very small, and omitting it and using (12.49a) we obtain the pertur-
bation potential vorticity equation

∂q′

∂t
+u∂q

′

∂x
+ v′ ∂q

∂y
= −D′ (12.51)

where we include a term, D′, to represent dissipative processes. Multiplying by q′/(∂q/∂y)
and zonally averaging we obtain the pseudomomentum equation for this system, namely

∂P
∂t

= ∂
∂t

(
q′2

2γ

)
= −v′q′ − D′q′

γ
, (12.52)
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where γ = ∂q/∂y . This equation is the equivalent of (12.26), but now for the layered system.
In a turbulent fluid we cannot, in general, demand that D′ = 0, even as the viscosity goes
to zero, because of the presence of an enstrophy flux to smaller scales and a concomitant
dissipation. But in regions where D′ is zero (where there is no wave breaking) then the
potential vorticity flux must also be zero in a steady state. For our argument let us assume
that, in fact, D′ = 0.

Using (12.49b), the eddy potential vorticity flux is

v′q′ = v′ζ′ + f0

H
v′η′ = v′ζ′ − f0

H
v′h′ , (12.53)

where η′ is the topography and h′ is the layer thickness perturbation. Using this in the zonal
momentum equation (12.41) gives

∂u
∂t

= v′q′ + f0

H
v′h′ + f0v. (12.54)

But the last two terms on the right-hand side constitute the total mass flux so we finally
write

∂u
∂t

= v′q′ + f0v∗

v∗ = v + v′h′

H

. (12.55a,b)

The quantity v∗ is the residual circulation for this problem; it is proportional to the sum of
mass flux from the mean flow and the eddies (see section 7.3 for more discussion). Now, v∗

is proportional to the total meridional mass flux and therefore, because the flow is confined
between rigid lids and if there are no sources or sinks of mass, v∗ = 0 everywhere [see
(12.44) with h = H].

Dynamics

When the flow passes over the wavy boundary, Rossby waves will, as in the barotropic
case, cause momentum flux to converge in the generation region. If the flow is steady and
dissipation-free then from the momentum equation

f0v = ∂u′v′

∂y
, (12.56)

and, in regions of momentum flux convergence (i.e., where ∂u′v′/∂y < 0) the mean
meridional velocity is equatorwards. Thus, whereas frictional forces balance the vorticity flux
in a constant-thickness barotropic model (because in that case v = 0) in the free atmosphere
a meridional circulation may be generated, and this is basis of the equatorial flow in the
upward branch of the Ferrel cell. However, this does not imply that the total mass flux is
equatorwards; in fact, for this single-layer model it must be zero and therefore

v′h′ = −hv > 0. (12.57)

That is, the eddy mass flux is polewards, balancing the equatorward mean flow. These
balances are sketched in Fig. 12.10.
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12.2 Layered Models of the Mid-latitude Circulation 501

Informal Summary of the Single-Layer Arguments

The zonally averaged momentum equation is

∂u
∂t

− f0v = v′ζ′ = −∂u
′v′

∂y
. (SL.1)

A region that is the source of Rossby waves will generally be a region where there is
momentum flux convergence, where ∂u′v′/∂y < 0. In this region v will be directed
equatorwards if u is steady, and this flow is the upper branch of the Ferrel Cell. To think
about this in terms of potential vorticity, first define the residual meridional velocity by

v∗ = v′h′

h
+ v. (SL.2)

This is proportional to the total meridional mass flux and is zero in this one-layer model.
The momentum equation is then

∂u
∂t

= f0v∗ − f0

h
v′h′ + v′ζ′ (SL.3a)

= f0v∗ + v′q′ . (SL.3b)

using v′q′ = v′ζ′ − (f0/h)v′h′ , where q the is potential vorticity. The second term on the
right-hand side of (SL.3a) is the form drag exerted by the topography on the flow, and in a
steady state this balances the momentum flux convergence of the Rossby waves. Because
of the presence of Rossby waves we expect v′ζ′ > 0. If there is no dissipation then in
steady flow v′q′ = −f0v∗ = 0 and the eddy mass flux is polewards (positive if f0 > 0) and
a meridional flow is generated as in Fig. 12.10.

We can infer the potential vorticity flux more directly using the pseudomomentum
equation:

∂P
∂t

= ∂
∂t

(
q′2

2γ

)
= −v′q′ − D′q′

γ
. (SL.4)

where γ = ∂q/∂y . If dissipation is identically zero, then the potential vorticity flux is zero
if the waves are steady. Then, using (SL.3b), there is no acceleration of the zonal flow — an
example of the non-acceleration theorem. More generally (and in the real atmosphere) there
will be some dissipation away from the source region: Rossby waves will break in critical
layers (where u = c), or more generally Rossby waves will interact producing an enstrophy
cascade, giving D′q′ > 0 and (for γ > 0) a negative potential vorticity flux, v′q′ < 0. In these
regions, a balance in the momentum equation (SL.3b) can be achieved either by balancing
the PV flux with a friction term, as in the barotropic model of section 12.1, or by a Coriolis
force on a poleward residual meridional velocity. That is, f0v∗ ≈ −v′q′ > 0, so generating
a poleward residual flow.
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         Equator                                               Pole

η

v∗ = v′h′

H
+ v = 0

v v′h′
h

v′ζ′ = −∂u
′v′

∂y
> 0

Fig. 12.10 Dynamics of a single layer, with no dissipation. The force on the active
layer arises from the form drag exerted by the interface. Vorticity dynamics demands
that this produce a converging eddy momentum flux (∂yu′v ′ < 0), which in turn
produces a poleward eddy mass flux (v ′h′ > 0), and so an equatorward Eulerian flow.

Another way to arrive at this result is to utilize potential vorticity fluxes directly. For
steady, dissipation-free flow the pseudomomentum equation (12.52) reveals that the poten-
tial vorticity flux vanishes. Then using (12.55) and noting that v∗ = 0 we have ∂u/∂t = 0 —
an example of the non-acceleration theorem that steady non-dissipative waves do not induce
a change in the zonal momentum. Then, using (12.53) we find

v′ζ′ = f0

H
v′h′ (12.58)

and using (12.44) we recover (12.56).
From the point of view of the momentum equation, the momentum flux convergence is

balanced by the form drag caused by the flow over the wavy boundary. To see this we use
(12.55b) to write the zonal momentum equation as

∂u
∂t

= f0v + v′ζ′ = f0v∗ − f0

H
v′h′ + v′ζ′ , (12.59)

where here v∗ (but not v) is zero. The term −(f0/H)v′h′ is the force on the fluid layer
coming from the wavy boundary — the form drag, as described in section 3.5. Specifically,
the average force per unit area exerted on the layer by the sloping surface is given by

F = −f0ρ0v′η′ = f0ρov′h′ , (12.60)

and dividing by ρ0H provides the acceleration on the active fluid layer. The atmosphere also
exerts an equal and opposite force on the wavy surface, an effect we consider in the next
section. A steady state is achieved, without dissipation, when the form drag is balanced by
the eddy momentum flux convergence. From (12.53) or (12.55), this is the same condition
that the potential vorticity flux vanishes.

Final remarks on the one-layer model

A summary of the single-layer arguments is given in the shaded box on the previous page.
In the single-layer model, as in the barotropic model, the zonal flow is proximately driven by
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Fig. 12.11 An atmosphere with
two homogeneous (or isentropic)
layers of mean thickness H1 and
H2, local thickness h1 and h2,
and interface η, contained be-
tween two flat, rigid surfaces.

eddy fluxes of potential vorticity, and in the model the eddy fluxes must be zero if a steady
state is to be achieved. Vis-à-vis the real atmosphere this is a little unrealistic, because from
the pseudomomentum equation (12.52) we expect these fluxes to be negative, and there is
then nothing to balance them in the momentum equation, (12.55), if v∗ = 0. In the real
atmosphere, there are effectively sources and sinks in the mass conservation equation that
arise from the thermodynamics that allow v∗ to be non-zero; we then expect v∗ > 0, but to
explore this requires a two-layer model, in which the single layer of the one-layer model will
correspond to the upper layer of the two-layer model.

12.2.2 A two-layer model

We now consider a model with two active layers, constructing what is probably the simplest
model that can capture the dynamics of the mid-latitude tropospheric general circulation
without undue approximation. Indeed virtually all of the phenomenology that we associate
with the circulation — a thermal wind, mid-latitude surface westerly winds, the Ferrel
cell, breaking Rossby waves — is present. A three-layer model introduces no new physics,
although a continuously stratified model does lead to some differences of interpretation.
The physical model we have in mind is one of two isentropic layers of a compressible ideal
gas, virtually equivalent to a two-layer shallow water model illustrated in Fig. 12.11, and our
presentation will be in terms of the latter. The upper layer may be thought of as being forced
by an undulating interface between the lower and upper layers, a crude representation of
stratification, We will continue to assume that quasi-geostrophic scaling holds; that is, the
flow is in near geostrophic balance, variations in layer thickness are small compared to their
mean thickness and variations in the Coriolis parameter are small. We also assume that
the two fluid layers are held between two flat rigid lids — topography is an unnecessary
complication at this stage.

Equations of motion

The equations of motion are those of a two-layer Boussinesq shallow water model confined
between two rigid flat surfaces, and readers comfortable with these dynamics (see sections
3.3 and 3.4) may quickly skip through this section, glancing at the boxed equations. The
momentum equations of each layer are

Du1

Dt
+ f × u1 = −∇φ1 (12.61a)
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504 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

Du2

Dt
+ f × u2 = −∇φ2 − ru2, (12.61b)

where φ1 = pT/ρ0 and φ2 = pT/ρ0 + g′η, with pT being the pressure at the lid at the top,
η the interface displacement (see Fig. 12.11) and g′ = g(ρ2 − ρ1)/ρ0 the reduced gravity,
and we may take ρ0 = ρ1. We have also included a simple representation of surface drag,
−ru2, in the lowest layer, and r is a constant. We will use a constant value of the Coriolis
parameter except where it is differentiated, and on zonal averaging the zonal components of
(12.61) become

∂u1

∂t
− f0v1 = v′1ζ′1 (12.62a)

∂u2

∂t
− f0v2 = v′2ζ′2 − ru2. (12.62b)

Geostrophic balance in each layer implies

f0ug1 = k×∇φ1, f0ug2 = k×∇φ1 + g′k×∇η, (12.63a,b)

where the subscript g denotes geostrophic. Subtracting one equation from the other gives

f0(u1 − u2) = −g′k×∇η , (12.64)

dropping the subscripts g on u. This is thermal wind balance (or the Margules relation) for
this system. A temperature gradient thus corresponds to a slope of the interface height, with
the interface sloping upwards toward lower temperatures, analogous to isentropes sloping
up toward the pole in the real atmosphere.

The quasi-geostrophic potential vorticity for each layer is

qi = ζi + f − f0
hi
Hi
, (12.65)

where Hi is the reference thickness of each layer, which we take to be its mean thickness.
The potential vorticity flux in each layer is then

v′iq
′
i = v′iζ′i −

f0

Hi
v′ih

′
i . (12.66)

Using this in (12.62) gives

∂u1

∂t
= v′1q′1 + f0v∗1

∂u2

∂t
= v′2q′2 + f0v∗2 − ru2

, (12.67a,b)

where

v∗i = vi +
v′ih

′
i

Hi
(12.68)

is the meridional component of the residual velocity in each layer, proportional to the total
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meridional mass flux in each layer. These are the transformed Eulerian mean (TEM) forms of
the equations, first encountered in section 7.3.

In the barotropic model of section 12.1 the mean meridional velocity vanished at every
latitude, a consequence of mass conservation in a single layer between two rigid flat surfaces.
In the single-layer model of section 12.2.1 the mean meridional velocity was in general
non-zero, but the total meridional mass flux (i.e., the meridional component of the residual
velocity) was zero if the domain is bounded laterally by solid walls. In the two-layer model
we will allow a transformation of mass from one layer to another, which is the equivalent
of heating: a conversion of mass from the lower layer to the upper layer is heating, and
conversely for cooling. Thus, heating at low latitudes and cooling at high latitudes leads to
the interface sloping upwards toward the pole. In the two-layer model the constraint that
mass conservation supplies is that, assuming a statistically steady state, the total poleward
mass flux summed over both layers must vanish.

The mass conservation equation for each layer is

∂hi
∂t

+∇ · (hiui) = Si, (12.69)

where Si is the mass source term and we may suppose that S1 + S2 = 0 everywhere. A zonal
average gives

∂hi
∂t

+ ∂hivi
∂y

= Si (12.70)

or, setting hi = Hi and using (12.68),

∂hi
∂t

+Hi
∂v∗i
∂y

= Si . (12.71)

The mass source term in these equations is equivalent to heating, and let us suppose that
this is such as to provide heating at low latitudes and cooling at high ones. This is equivalent
to conversion of an upper-layer mass to a lower-layer mass at high latitudes, and the reverse
at low latitudes; such a conversion can only be balanced by a poleward mass flux in the
upper layer and an equatorward mass flux in the lower layer (Fig. 12.12). That is to say, an
Earth-like radiative forcing between equator and pole implies that the total mass flux in the
upper layer will be polewards. This is the opposite of the mean meridional circulation of the
Ferrel cell shown in Fig. 11.3! What’s going on? Before we can answer that, let us manipulate
the equations of motion and obtain a couple of useful preliminary results.

Manipulating the equations

Because the total depth of the fluid is fixed, the mass conservation equations in each layer,
(12.69), may each be written as an equation for the interface displacement, namely

∂η
∂t
+∇ · (ηu1) = −S1, or

∂η
∂t
+∇ · (ηu2) = S2, (12.72a,b)

where η = H1−h1 = h2−H2 and h1+h2 = H1+H2. Because of the thermal wind equation,
(12.64), (12.72a) and (12.72b) are identical: u1 · ∇η = u2 · ∇η and S1 = −S2. (If S1 ≠ −S2
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Residual circulation

cooling

Radiative
heating

Residual circulation

Equator                                                   Pole

Isentrope

Radiative

Fig. 12.12 Sketch of the zonally averaged thermodynamics of a two-layer model.
Cooling at high latitudes and heating at low ones steepens the interface upward
toward the pole (thicker arrows). Associated with this is a net mass flux — the
residual flow, or the meridional overturning circulation (lighter arrows). In the tropics
this circulation is accounted for by the Hadley Cell, and is nearly all in the mean flow.
In mid-latitudes the circulation — the residual flow — is largely due to baroclinic
eddies, and the smaller Eulerian mean flow is actually in the opposite sense.

the flow would not remain balanced and the thermal wind equation could not be satisfied.)
The zonally averaged interface equation may be written as

∂η
∂t

−H1
∂v∗1
∂y

= S, or
∂η
∂t

+H2
∂v∗2
∂y

= S, (12.73)

where S = −S1 = +S2, consistent with the mass conservation statement

H1v∗1 +H2v∗2 = 0, (12.74)

which states that the vertically integrated total mass flux vanishes at each latitude.
Now, whereas (12.74) is a kinematic statement about the total mass flux, the dynamics

provides a constraint on the eddy mass flux in each layer. Using the thermal wind relationship
we have

f0(v′1 − v′2)η′ = g′
∂η′

∂x
η′ = 0. (12.75)

Hence, if the upper and lower surfaces are both flat, we have that

v′1h
′
1 = −v′2h′2 , (12.76)

and the eddy meridional mass fluxes in each layer are equal and opposite. If the bounding
surfaces are not flat, we have

v′1η
′
T − v′1h′1 = v′2η′B + v′2h′2 (12.77)

instead, where ηT and ηB are the topographies at the top and the bottom. Equations (12.76)
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and (12.77) are dynamical results, and not just kinematic ones; they are equivalent to noting
that the form drag on one layer due to the interface displacement is equal and opposite to
that on the other, namely

v′1η′ = −[−v′2η′], (12.78)

where the minus sign inside the square brackets arises because the interface displacement
is into layer one but out of layer two.

Using (12.66) and (12.77) the eddy potential vorticity fluxes in the two layers are related
by

H1v′1q
′
1 +H2v′2q

′
2 = H1v′1ζ

′
1 +H2v′2ζ

′
2 − f0v′1η

′
T + f0v′2η

′
B , (12.79)

which is the layered version of the continuous result [eq. (7.20) on page 298]∫ T
B
v′q′ dz =

∫ T
B
v′ζ′ dz + f0

N2
[v′b′]TB . (12.80)

For flat upper and lower surfaces, and using viζi = −∂uivi/∂y , (12.79) becomes

H1v′1q
′
1 +H2v′2q

′
2 = −H1

∂
∂y

u′1v
′
1 −H2

∂
∂y

u′2v
′
2 , (12.81)

and integrating with respect to y between quiescent latitudes gives

∫ [
H1v′1q

′
1 +H2v′2q

′
2

]
dy = 0 . (12.82)

That is, the total meridional flux of potential vorticity must vanish. This is a consequence of
the fact that the potential vorticity flux is the divergence of a vector field; in the continuous
case

v′q′ = −∂u
′v′

∂y
+ f0

∂
∂z

v′b′

N2
, (12.83)

which similarly vanishes when integrated over a volume if there are no boundary contribu-
tions.

12.2.3 Dynamics of the two-layer model

We now consider the climate, or the time averaged statistics, of our two-layer model. The
equations of motion are (12.62) or (12.67), and (12.70) or (12.71). These equations are
not closed because of the presence of eddy fluxes, and in this section we make some
phenomenological and rather general arguments about how these behave in order to get a
sense of the general circulation. In the next section we use a specific closure to address the
same problem.

Let us summarize the physical situation. The two layers of our model are confined in
the vertical direction between two flat, rigid surfaces, and they are meridionally confined
between slippery walls at high and low latitudes (the ‘pole’ and ‘equator’). The circulation
is driven thermodynamically by heating at low latitudes and cooling at high ones, which
translates to a conversion of layer 1 fluid to layer 2 fluid at high latitudes, and the converse
at low latitudes (see Fig. 12.12). This sets up an interface that slopes upwards toward the
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508 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

pole and, by thermal wind, a shear. This situation is baroclinically unstable, and this sets
up a field of eddies, most vigorous in mid-latitudes where the temperature gradient (or
interface slope) is largest. Three fields encapsulate the dynamics — the lower-layer wind
field, the meridional circulation, and the meridional temperature gradient, and our goal
is to understand their qualitative structure. We note from the outset that the residual
circulation is polewards in the upper layer, equatorwards in the lower layer, and that this
is a thermodynamic result, a consequence of heating at low latitudes and cooling at high
latitudes.

From (12.67), the steady-state lower-layer wind is given by

rH2u2 = H1v′1q
′
1 +H2v′2q

′
2 = H1v′1ζ

′
1 +H2v′2ζ

′
2 , (12.84)

where the second equality uses (12.81). That is, the lower-layer wind is determined by the
vertical integral of either the vorticity flux or the potential vorticity flux.

Neglecting contributions due to the mean horizontal shear (which are small if the beta-
Rossby number, U/βL2, is small) the potential vorticity gradient in each layer is given
by

∂q1

∂y
= β− f0

H1

∂h1

∂y
� 0 and

∂q2

∂y
= β− f0

H2

∂h2

∂y
� 0. (12.85a,b)

In the upper layer ∂h1/∂y is negative so that the total potential vorticity gradient is positive
and larger than β itself. In the lower layer ∂h2/∂y is positive and indeed if there is to be
baroclinic instability it must be as large as β in order for ∂q/∂y to change sign somewhere.
Thus, although negative the potential vorticity gradient is much weaker in the lower layer.
Thus, Rossby waves (meaning waves that exist because of a background gradient in potential
vorticity) will propagate further in the upper layer, and this asymmetry is the key to the
production of surface winds.

Now, the potential vorticity flux must be negative (and downgradient) in the upper layer,
and there are various ways to see this. One is from the upper-layer momentum equation
(12.67a) which in a steady state gives

v′1q
′
1 = −f0v∗1 . (12.86)

Because v∗1 is polewards, f0v∗1 is positive and the potential vorticity flux is negative in both
Northern and Southern Hemispheres. Equivalently, in the upper layer the radiative forcing is
increasing the potential vorticity gradient between the equator and the pole, so there must
be an equatorward potential vorticity flux to compensate. Finally, the perturbation enstrophy
or pseudomomentum equations tell us that in a steady state the potential vorticity flux is
downgradient (also see section 12.3.2). This is not an independent argument, since it merely
says that the enstrophy budget may be balanced through a balance between production
proportional to the potential vorticity gradient and the dissipation. For similar reasons we
expect the potential vorticity flux to be positive (polewards) in the lower layer.

Now, (12.82) tells us that the latitudinally integrated potential vorticity flux is equal and
opposite in the two layers. If the potential vorticity flux in the lower layer were everywhere
equal and opposite to that in the upper layer, then using (12.84) there would be no surface
wind, in contrast to the observations. In fact, the potential vorticity flux is more uniformly
distributed in the upper layer, and this gives rise to the surface wind observed. Let us give a
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12.2 Layered Models of the Mid-latitude Circulation 509

couple of perspectives (on the same argument) as to why this should be so. The argument
centres around the fact that the potential vorticity gradient is stronger in the upper layer, as
we can see from (12.85).

I. Rossby waves and the vorticity flux
The stronger potential vorticity gradient of the upper layer is better able to support
linear Rossby waves than the lower layer. Thus, the vorticity flux in the region of
Rossby-wave genesis in mid-latitudes will be large and positive in the upper layer, and
small and negative in the lower layer. Thus, there will be more momentum convergence
into the source region in the upper layer than in the lower layer, and the vertical integral
of the vorticity flux will largely be dominated by that of the upper layer. This is positive
in mid-latitudes and, to ensure that its latitudinal integral is zero, it is negative on either
side. Using (12.84), a surface wind has the same pattern as the net vorticity flux, and so
is eastwards in the mid-latitude source region and westwards on either side.

II. Potential vorticity flux
Rossby waves are generated in the region of baroclinic instability, at approximately the
same latitude in both upper and lower layers. However, because the potential vorticity
gradient is larger in the upper layer than in the lower layer, Rossby waves are able
to propagate more efficiently and breaking and associated dissipation will tend to be
further from the source region in the upper layer than in the lower layer. Now, the
pseudomomentum equation for each layer is, similar to (12.52) for the one-layer case,

∂Pi
∂t

= ∂
∂t

⎛⎝q′2i
2γi

⎞⎠ = −v′iq′i − D′iq
′
i

γi
, i = 1,2, (12.87)

where γi, the potential vorticity gradient, has opposite signs in each layer. In a statisti-
cally steady state, the region of strongest dissipation is the region where the potential
vorticity flux is largest. In the upper layer, Rossby-wave propagation allows the dissipa-
tion region to spread out from the source, whereas in the lower layer the dissipation
region will be concentrated near the source. The distribution of the potential vorticity
flux then becomes as illustrated in Fig. 12.13. The surface winds, being the vertical
integral of the potential vorticity fluxes, are westerly in the baroclinic region and easterly
to either side.

Momentum balance and the overturning circulation

From thermodynamic arguments we deduced that the residual circulation is ‘direct’, meaning
that warm fluid rises at low latitudes, moves polewards aloft, and returns near the surface.
At low latitudes where eddy effects are small the zonally averaged Eulerian circulation
circulates in the same way, giving us the Hadley Cell. In mid-latitudes, we may determine the
Eulerian circulation from the momentum equation, (12.62). In the upper layer the balance is
between the vorticity flux and the Coriolis term, namely

f0v1 = −v′1ζ′1 < 0. (12.88)

That is, the mean Eulerian flow is equatorwards, and this is the upper branch of the Ferrel
cell. Note that the Eulerian circulation is in the opposite sense to the residual circulation.

Downloaded from Cambridge Books Online by IP 160.39.49.19 on Thu Dec 05 13:09:48 WET 2013.
http://dx.doi.org/10.1017/CBO9780511790447.013

Cambridge Books Online © Cambridge University Press, 2013



510 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

Phenomenology of a Two-layer Mid-latitude Atmosphere

A radiative forcing that heats low latitudes and cools high latitudes will lead to a interface
that slopes upward with increasing latitude, and a poleward total mass flux in the upper
layer and an equatorward flux in the lower layer. The interface implies a thermal wind shear
between the two layers. Neglecting relative vorticity, the potential vorticity gradients in each
layer are given by

∂q1

∂y
= β− f0

H1

∂h1

∂y
> 0 and

∂q2

∂y
= β− f0

H2

∂h2

∂y
� 0. (TL.1)

The gradient is large and positive in the upper layer and small and negative in the lower layer
— the gradient must change sign if there is to be baroclinic instability which we assume to be
the case. This baroclinic instability generates eddy fluxes that largely determine the surface
winds and the meridional overturning circulation. The zonal momentum equation in each
layer is

∂u1

∂t
= f0v1 + v′1ζ′1 = f0v∗1 + v′1q′1 (TL.2a)

∂u2

∂t
= f0v2 + v′2ζ′2 − ru2 = f0v∗2 + v′2q′2 − ru2. (TL.2b)

In steady state the potential vorticity flux will be equatorwards in the upper layer and
polewards in the lower layer. Because the mass flux in each layer is equal and opposite, the
surface (i.e., lower-layer) wind is given by the vertical integral of the vorticity or potential
vorticity fluxes, namely

rH2u2 = H1v′1q
′
1 +H2v′2q

′
2 = H1v′1ζ

′
1 +H2v′2ζ

′
2 . (TL.3)

The vorticity flux is positive in the upper layer and negative in the lower layer. However,
because the potential vorticity gradient in the upper layer is large, this layer is more
linear than the lower layer and Rossby waves are better able to transport momentum. The
magnitude of the vorticity flux is thus larger in the upper layer than in the lower layer and,
using (TL.3), the surface winds are positive (eastwards) in the mid-latitude baroclinic zone
(see Fig. 12.14). To balance the upper-layer mid-latitude momentum flux convergence a
meridional overturning circulation (a Ferrel cell) is generated. In a steady state f0v1 = −v′1ζ′1
so that the zonally averaged upper level flow is equatorwards. However, the total mass
flux in the upper level is polewards; thus, the equatorward meridional velocity in the upper
branch of the Ferrel cell is the consequence of an Eulerian zonal average and does not
correspond to a net equatorward mass transport.

The real atmosphere resembles the two-layer model in part. In the real atmosphere, the
equatorward residual flow occurs close to the surface. Thus, for more realism, we might
think of the lower layer as representing a near-surface layer, and H1 � H2.
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12.2 Layered Models of the Mid-latitude Circulation 511

Fig. 12.13 Sketch of the potential vorticity fluxes in a two-layer model. The surface
wind is proportional to their vertical integral. The PV fluxes are negative (positive) in
the upper (lower) layer, but are more uniformly distributed at upper levels. The lower
panel shows the net (vertically integrated) PV fluxes and the associated surface winds.

In the lower layer the vorticity fluxes are weak and the balance is largely between the
Coriolis force on the meridional wind and the frictional force on the zonal wind (as in
Fig. 11.15). If the upper-layer flow is equatorwards, the lower-layer flow must be polewards
by mass conservation, and so the zonal wind is positive (eastwards); that is

ru2 ≈ f0v2 = −H1

H2
f0v1 > 0, (12.89a,b)

where the second equality follows by mass conservation of the Eulerian flow.

In terms of the TEM form of the equations, (12.67), the corresponding balances in the
centre of the domain are

f0v∗1 = −v′1q′1 > 0 (12.90a)

and

ru2 = f0v∗2 + v′2q′2 = −f0
H1

H2
v∗1 + v′2q′2 =

H1

H2
v′1q

′
1 + v′2q′2 > 0, (12.90b)

using mass conservation and the fact that the lower-layer potential vorticity fluxes are larger
than those of the upper layer. Illustrations of the dynamical balances of the two-layer model
are given in Figs. 12.13 and 12.14.

Downloaded from Cambridge Books Online by IP 160.39.49.19 on Thu Dec 05 13:09:48 WET 2013.
http://dx.doi.org/10.1017/CBO9780511790447.013

Cambridge Books Online © Cambridge University Press, 2013



512 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

-1

0

1
Vorticity Flux

0 30 60 90

0

0.5 Surface Wind

Latitude

--2

0

2 Mass Flux

--2

0

2
PV Flux

Fig. 12.14 Schema of the eddy fluxes in a two-layer model of an atmosphere with a
single mid-latitude baroclinic zone. The upper-layer fluxes are solid lines and the
lower-layer fluxes are dashed. The lowest panel shows the sum of the lower- and
upper-layer vorticity fluxes (or, equivalently, the sum of the potential vorticity fluxes),
which is proportional (when the surface friction is a linear drag) to the surface wind.
The fluxes satisfy the various relationships and integral constraints of section 12.2.2
but are otherwise idealized.
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12.3 † EDDY FLUXES AND AN EXAMPLE OF A CLOSED MODEL

The arguments above are heuristic and phenomenological and, although quite plausible they
are not wholly systematic. In this section we give a more axiomatic calculation, and make
certain closure assumptions that relate the eddy fluxes to the mean fields; specifically, we
invoke the diffusion of potential vorticity, and then calculate the zonal winds and meridional
circulation. The main purpose of this section is explicitly show that if we do invoke a
potential vorticity closure then a complete solution of the flow follows. However, too
much credence should not be given to the particular closure we do invoke, for it cannot be
rigorously justified.

12.3.1 Equations for a closed model

With quasi-geostrophic scaling, the equations of motion are the momentum equations

∂u1

∂t
= f0v∗1 + v′1q′1 (12.91a)

∂u2

∂t
= f0v∗2 + v′2q′2 − ru2 (12.91b)

and the mass conservation equation for each layer which may be written as an equation for
the interface height,

∂η
∂t

−H1
∂v∗1
∂y

= S, (12.92)

where η = H1−h1 = h2−H2, with the notation of the previous sections. This can be written
in terms of v∗2 because

H1v∗1 +H2v∗2 = 0. (12.93)

The velocities and thickness of the layers are related by the thermal wind relation

f0(u1 −u2) = g′ ∂η∂y = −g′ ∂h1

∂y
. (12.94)

Using this to eliminate time derivatives between (12.91) and (12.92) reveals that the residual
circulation satisfies

f 2
0
H
H2

v∗1 −H1g′
∂2v∗1
∂y2

= +g′ ∂S
∂y

− f0

(
v′1q

′
1 − v′2q′2

)
− f0ru2, (12.95)

where H = H1 +H2. Thus, the residual circulation is driven by the potential vorticity fluxes,
plus the diabatic terms. We may derive a similar expression for the Eulerian mean meridional
flow, namely

f 2
0
H
H2

v1 −H1g′
∂2v1

∂y2
= g′ ∂S

∂y
+ g′ ∂

2

∂y2
v′1h

′
1

− f0

(
v′1ζ

′
1 − v′2ζ′2

)
− f0ru2.

(12.96)

However, the right-hand side now involves both the eddy vorticity fluxes and the eddy mass
fluxes. The above equations illustrate the natural way in which the potential vorticity fluxes
proximately ‘drive’ the extratropical atmosphere (see also the box on page 525).
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514 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

Potential vorticity equation

A single prognostic equation for each layer is obtained by eliminating the residual circulation
from (12.91) and (12.92), giving

∂q1

∂t
= −∂v

′
1q

′
1

∂y
+ f0

H1
S (12.97a)

∂q2

∂t
= −∂v

′
2q

′
2

∂y
− f0

H2
S + r ∂u2

∂y
, (12.97b)

where qi are the quasi-geostrophic potential vorticities of each layer given by

q1 = −
∂u1

∂y
+ f0

η
H1

, q2 = −
∂u2

∂y
− f0

η
H2

. (12.98a,b)

Closure

If the potential vorticity fluxes can be expressed in terms of the mean fields then (12.97) is
a closed set of equations. We can then solve for the potential vorticity in each layer and,
using (12.95), for the residual circulation. One simple and rational closure is to assume that
potential vorticity flux is transferred downgradient so that

v′iq
′
i = −Ki

∂qi
∂y

, (12.99)

where Ki is an eddy diffusivity, or transfer coefficient, which here is just a scalar quantity.5

Note that the model demands a closure of the potential vorticity flux — not momentum,
vorticity or the mass flux — and potential vorticity, being a materially conserved variable, is
also that field for which a diffusive closure is most applicable.

Such a closure has all of the features and problems associated with diffusive closures
discussed in chapter 10, plus some of its own. One such is that a diffusive closure will
not automatically respect the kinematic constraint that the volume integral of the potential
vorticity flux must vanish, which for the two-layer model is expressed by (12.82). We may
choose the vertical structure of the diffusivity in such a way that this constraint is satisfied,
and in that case the model produces the results illustrated in Fig. 12.15. The diffusive
closure does indeed then produce potential vorticity fluxes similar to the observed westward–
eastward–westward surface wind pattern, and a residual circulation of the same sense as
in Fig. 12.12, and constitutes perhaps the simplest closed model of the zonally averaged
atmospheric circulation. Note that the surface wind is produced by the integral of the
potential vorticity flux and, because the fluxes are quite different in the two layers, two
layers are needed to produce a realistic pattern of surface wind without oversimplification,
as well as to represent the meridional overturning and residual circulations. However, the
model should not be regarded as being quantitatively valid, and the results depend on the
structure of the transfer coefficients and the boundary conditions chosen (problem 12.1).

12.3.2 * Eddy fluxes and necessary conditions for instability

In linear baroclinic instability problems, a necessary condition for instability (the Charney–
Stern–Pedlosky, or CSP, condition) is that the potential vorticity change sign in the interior
of the fluid, or that the potential vorticity gradient in the interior has a particular sign with

Downloaded from Cambridge Books Online by IP 160.39.49.19 on Thu Dec 05 13:09:48 WET 2013.
http://dx.doi.org/10.1017/CBO9780511790447.013

Cambridge Books Online © Cambridge University Press, 2013



12.3 † Eddy Fluxes and an Example of a Closed Model 515

0                      Latitude                    90

Fig. 12.15 Results from a diffusive clo-
sure in a two-layer zonally averaged
model. Upper-layer quantities are solid
lines and lower-layer quantities are
dashed. The initial zonally averaged
zonal velocity (top panel) is large in
the upper layer and zero in the lower
layer. This produces the potential vor-
ticity structure illustrated in the middle
panel, in units in which β = 1. A dif-
fusive closure of the form (12.99) then
produces the potential vorticity fluxes il-
lustrated at the bottom, where the sum
of the fluxes in the two layers is the dot-
dashed line, and this is proportional to
the tendency of the zonal wind. The
residual circulation is proportional to
the negative of the PV flux, and so is
polewards in the upper layer and equa-
torwards in the lower layer. The verti-
cal structure of the diffusivity is chosen
such that (12.82) is satisfied.

respect to the buoyancy gradient at horizontal bounding surfaces, as discussed in chapters 6
and 7. These conditions do not apply in the statistical steady state of the forced-dissipative
problem, but we may derive related conditions that do, although they are not completely
general. We will focus on the interior condition and not the boundary conditions, as is
appropriate in a layered model, but the argument could be extended to cover boundary
issues explicitly.

The linear perturbation potential vorticity equation is

∂q′

∂t
= −u∂q

′

∂x
− v′ ∂q

∂y
−D′, (12.100)

where D′ represents dissipative processes. From this we form the enstrophy equation

1

2

∂q′2

∂t
+D′q′ = −v′q′ ∂q

∂y
. (12.101)

In the standard linear problem we take D = 0 and then for growing waves the right-hand side
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is positive. But the integral of v′q′ over latitude and height is zero, and thus v′q′ takes both
positive and negative signs. Hence, ∂q/∂y must also take both positive and negative signs,
and we recover the CSP condition that ∂q/∂y must change sign for an instability. (Note that
we need not assume that the instabilities have normal form. A very similar argument was
given in section 7.6.)

In a statistically steady state the production of variance by the terms on the right-hand
side is balanced by a cascade of variance and dissipation at small scales. Just as in the linear
instability problem the left-hand side is positive, now because D′q′ > 0, and therefore, once
more, we see that ∂q/∂y must change sign somewhere. Furthermore, the eddy flux must
be downgradient everywhere, i.e., v′q′∂q/∂y < 0, because the left-hand side is positive
everywhere.

If we now include nonlinear terms the zonally averaged perturbation enstrophy equation
becomes

1

2

∂q′2

∂t
= −v′q′ ∂q

∂y
− 1

2

∂
∂y

v′q′2 −D′q′ . (12.102)

On integrating in y the third-order term vanishes and we obtain∫ (
1

2

∂
∂t
q′2 +D′q′

)
dy = −

∫
v′q′

∂q
∂y

dy, (12.103)

and so, if the left-hand side is positive, the flux must still be downgradient in the integrated
sense that ∫

v′q′
∂q
∂y

dy < 0. (12.104)

If the flux is locally downgradient, and in the nonlinear case this is an additional physical
assumption, then because v′q′ has both positive and negative values (because its integral
is zero), then so must the potential vorticity gradient, ∂q/∂y . That is, when dissipation
is present and if the potential vorticity fluxes are downgradient, a statistically steady state
can only be maintained if the potential vorticity gradient changes sign somewhere. In the
continuously stratified case, this condition is replaced by ones involving a combination of
the interior potential vorticity gradient and the buoyancy gradient at the boundary, the
conditions being the same as necessary conditions for instability.

12.4 A STRATIFIED MODEL AND THE REAL ATMOSPHERE

In the previous section we introduced the effects of stratification by way of a two-layer model.
Let us now discuss, albeit rather qualitatively, the dynamics of a continuously stratified
model more relevant to the real atmosphere. These dynamics are generally similar to that
of the two-layer model, although a number of differences in interpretation do arise. In
particular, rather than the potential vorticity flux in the two layers, it is the potential vorticity
flux in the interior and the buoyancy flux near the boundary that are the key aspects in
producing the mean circulation.

12.4.1 Potential vorticity and its fluxes

The observed zonally averaged potential vorticity field is shown in Fig. 12.16. Of interest to
us here is the fact that over most of the atmosphere, over most of the year, the potential
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Latitude

(a)

(b)

Fig. 12.16 The observed zonally averaged Ertel potential vorticity distribution (thicker,
solid and dashed lines, peaking up at the equator) and the potential temperature
(lighter lines) for (a) annual mean, (b) December–January–February. Also shown
is the position of the WMO thermal tropopause (dot-dashed line). The potential
vorticity is in ‘PV units’: 1 PVU ≡ 1.0× 10−6 m2 K s−1 kg−1. Note the uneven contour
interval for potential vorticity. The vertical coordinate is log pressure, with Z =
−7.5 log(p/pR)km, where pR = 105 Pa.
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518 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

vorticity gradient is monotonic, with the potential vorticity increasing northwards. (The
potential vorticity in the troposphere also increases moving northwards along isentropes.)
How, then, can the atmosphere be baroclinically unstable? It is because the surface buoyancy
(or temperature) decreases polewards, and thus the atmosphere becomes unstable via the
interaction of a surface edge wave with an interior Rossby wave (see the conditions on
page 265 or page 326). This baroclinic instability may then excite Rossby waves which
propagate meridionally, producing a momentum convergence and westward surface flow,
and an associated meridional circulation or Ferrel Cell, much as described in section 12.1.
Let us explore these phenomena in a little more detail.

Surface winds

Consider the zonally averaged, continuously stratified momentum equations with quasi-
geostrophic scaling,

∂u
∂t

= v′ζ′ + f0v + F = v′q′ + f0v∗ + F, (12.105)

where F represents frictional effects and the residual velocity v∗ is given by

v∗ = −∂ψ
∗

∂z
= v − ∂

∂z

(
1

N2
v′b′

)
. (12.106)

The friction is given by the vertical gradient of a stress, F = ∂τ/∂z , and at the surface we
may parameterize the stress, following (2.309) on page 112, by τ = ru where r is a constant.
Then, vertically integrating (12.105) from the surface to the top of the atmosphere (where
frictional stresses and the buoyancy flux both vanish) we find, in steady state,

ru(0) =
〈
v′ζ′

〉
= 〈v′q′〉+ f0

N2
v′b′(0), (12.107)

where the angle brackets denote a vertical integral and (0) denotes surface values. Thus, the
surface winds are determined, analogously to (12.84), by the vertically integrated relative
vorticity fluxes, or equivalently by the integral of the interior potential vorticity fluxes and
the buoyancy fluxes at the surface. The advantage of the latter representation is that both
potential vorticity and buoyancy are materially conserved variables and it may be easier to
deduce some properties of their fluxes than of the fluxes of relative vorticity. Compared
to the two-layer formulation, the interior fluxes are analogous to those of the upper layer
whereas the surface fluxes are analogous to those of the lower layer, especially as the lower
layer becomes thin.

Potential vorticity and Eliassen–Palm fluxes

As in section 7.2, the quasi-geostrophic potential vorticity flux may be written as the
divergence of the Eliassen–Palm (EP) vector,

v′q′ = ∇x ·F (12.108)

where ∇x· ≡ j ∂/∂y + k ∂/∂z and

F ≡ −u′v′ j+ f0

N2
v′b′ k. (12.109)
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12.4 A Stratified Model and the Real Atmosphere 519

Latitude Latitude

(a) (b)

Fig. 12.17 The Eliassen–Palm flux in an idealized primitive equation of the atmosphere.
(a) The EP flux (arrows) and its divergence (contours, with intervals of 2 m s−1/day).
The solid contours denote flux divergence, a positive PV flux, and eastward flow
acceleration; the dashed contours denote flux convergence and deceleration. (b) The
EP flux (arrows) and the time and zonally averaged zonal wind (contours). See the
appendix for details of plotting EP fluxes.
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Fig. 12.18 The observed Eliassen–Palm flux (arrows) and its divergence (contours,
with intervals of 2 m s−1/day, zero contour omitted) in the Northern Hemisphere.
Solid contours denote divergence, a positive (eastward) torque on the flow, and
dashed contours denote convergence, a westward torque. (a) Annual mean, (b) DJF
(December-January-February).

(See the appendix to this chapter for primitive equation and spherical coordinate versions;
in practice the quasi-geostrophic expression qualitatively captures the dominant terms in
the primitive equation expressions.) The EP vector as obtained from an idealized primitive
equation general circulation model integration is shown in Fig. 12.17, and the EP vector
from observations is shown in Fig. 12.18, and both show qualitatively similar properties — a
generally upwards-pointing vector in mid-latitude, veering equatorwards aloft.
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520 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

The upward component represents the meridional transfer of heat, and this occurs
during the growth phase of the baroclinic lifecycle and is qualitatively captured by linear
models — for example, in the Eady problem the EP flux is directed purely vertically (Fig. 7.2),
and this resembles the vertical components of Figs. 12.17 and 12.18. But why should the
average over a complete baroclinic lifecycle (which Figs. 12.17 and 12.18 represent) even
approximately resemble that of the growing phase of the baroclinic lifecycle? After all, the
eddies must subsequently decay, and one might imagine that the fluxes would then reverse
themselves. In fact, this is not the case: eddies do not decay baroclinically, and their lifecycle
is not reversible. Rather, there is an irreversible transfer to barotropic modes (as described
in chapter 9) followed by a barotropic decay. Thus, there is no downward heat transfer
in the cycle, and on average the heat transfer balances the net atmospheric heating. The
lateral component of the EP flux is a consequence of Rossby wave propagation, much as
was described in section 12.1. Baroclinic instability now plays the role of the mid-latitude
wavemaker, and the EP flux emanates laterally from the baroclinic zone. The propagation is
an irreversible process, with the Rossby waves breaking some distance from their source, and
it is this that breaks the non-acceleration conditions and provides the mean flow acceleration
and, consequentially, the observed zonal wind.

The divergence of the EP flux — that is, the potential vorticity flux — accelerates (or
decelerates) the mean flow, as can be seen from (12.105) and Fig. 12.19. Broadly speaking,
the EP flux decelerates the flow aloft (where it is balanced by the Coriolis force on the
poleward residual flow) but provides an eastward acceleration at the surface (where it is
largely balanced by friction). However, the two components of the flux (Fig. 12.20) have rather
different effects on the mean flow. The horizontal component acts to extract momentum
from the subtropics and deposit it in mid-latitudes, and so accelerate the flow producing
a fairly barotropic eastward jet. (It is this component that gives rise to so-called negative
viscosity, in which the eddies transfer momentum upgradient.) The vertical component of
the EP flux arises from the meridional buoyancy flux and acts to reduce the intensity of
the mid-latitude westerlies aloft, transferring momentum to the surface where it may be
balanced by friction, and producing the surface westerlies.

Two questions spring to mind.

(i) Why is the meridional wave-activity propagation predominantly in the upper atmo-
sphere? That is to say, why do the EP vectors only veer laterally above about 400 hPa,
and not in the lower atmosphere?

(ii) Why is the wave-activity propagation (the direction of the EP flux vectors) predominantly
equatorward?

As regards item (i), the propagation is mainly in the upper atmosphere because it is here
that the potential vorticity gradient is strongest, as can be seen from Fig. 12.16. This can
be understood on the basis of the two-layer model (for example, Fig. 12.15). Thus, wave
propagation is more efficient in the upper troposphere, whereas the lower troposphere is
more nonlinear and so here the enstrophy cascade, and wavebreaking, occur locally and
closer to the region of baroclinic instability itself. Regarding item (ii), the proximate reason
is that waves predominantly break on the equatorial side of the instability, and this in turn
is for two possible reasons. One is that β increases towards the equator, so that linear
propagation is more efficient. The other is that there is often a critical layer in the subtropics,
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Latitude Latitude

(a) (b)

Fig. 12.19 The observed zonally averaged zonal wind (thicker contours, interval
5 m s−1), and the Eliassen–Palm flux divergence (contour interval 2 m s−1/day, zero
contour omitted). Regions of positive EP flux divergence (eastward acceleration) are
lightly shaded; regions less than −2 m s−1/day are more darkly shaded. (a) Annual
mean, (b) DJF (December–January–February).

Latitude Latitude

(a) (b)

Fig. 12.20 The divergence of the two components of the EP flux (shaded), and the
zonally averaged zonal wind (thicker contours) for DJF. (a) The momentum fluxes,
−∂yu′v ′ , contour interval is 1 m s−1/day−1, light shaded for positive values > 1, dark
shaded for negative values < −1. (b) The buoyancy flux, f∂z(v ′b′/N2), with contour
interval and shading convention as in Fig. 12.19.
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522 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

where the speed of the waves equals that of the flow itself (u = c), and here breaking can
efficiently occur.

12.4.2 Overturning circulation

The Eulerian overturning circulation (meaning the circulation from a conventional zonal
average at constant height) in mid-latitudes is a single indirect cell, the Ferrel Cell, with
rising motion at high latitudes and sinking in the subtropics (top panel of Fig. 12.21). The
residual circulation is direct and, consistent with the theory of section 7.3.3, resembles
closely the thickness-weighted circulation (middle and lower panels Fig. 12.21). Qualitatively
these features are captured by the two-layer dynamics of section 12.2.2, but the continuously
stratified case differs in one or two respects.

The main difference between the continuous and two-layer cases is that in the former
the return flows — both the lower branch of the Ferrel Cell and the equatorial branch of
the residual circulation — are not distributed over the lower troposphere, but are confined
to a relatively thin layer. In the lower branch of the Ferrel Cell the dynamical balance is
between friction and the Coriolis force on the meridional flow, so that its thickness is that
of a turbulent Ekman layer and about a kilometre. To understand this better, let us take a
quasi-geostrophic perspective. The mean potential vorticity gradient in the free atmosphere
is nearly everywhere polewards and the potential vorticity flux is largely downgradient and
equatorwards. This means that here the residual circulation is largely polewards, satisfying
the balance

fv∗ ≈ −v′q′ . (12.110)

In a multi-layer quasi-geostrophic model, with friction acting only in the lowest layer, the
circulation is closed by return flow in the lowest layer; thus, as the number of layers increases
the return flow is carried in an ever-thinner layer, this becoming a delta-function in the
continuous limit, just as in the example of residual flow in the Eady problem (section 7.5).
In the real atmosphere, the return flow cannot be confined to a delta-function, but this
argument suggests that it will occur close to the surface and this expectation is borne out in
the lower panels of Fig. 12.21 and in Fig. 11.14. In fact, much of the equatorial return flow
occurs in isentropic layers that have a potential temperature below the mean value at the
surface — that is, in cold air outbreaks.

12.5 † THE TROPOPAUSE AND THE STRATIFICATION OF THE ATMOSPHERE

As You Like It.

William Shakespeare, c. 1599.

In the previous sections we have, by and large, taken the stratification of the atmosphere as
given. Let us now explore the physical processes that determine this stratification, beginning
with a brief observational overview.

The atmosphere may be divided by stratification into certain distinct regions, illustrated
in Fig. 12.22. The figure shows the so-called ‘U.S. standard atmosphere’, a rough average
temperature profile and a sometimes-useful standard, as well as actual observed values in
the lower atmosphere. In the lower 10 km or so of the atmosphere we have the troposphere,
a dynamically active region wherein most of the weather and the vast predominance of heat
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12.5 † The Tropopause and the Stratification of the Atmosphere 523

Fig. 12.21 Top: The observed zonally averaged, Eulerian-mean, streamfunction in northern hemi-
sphere winter (DJF, 1994–1997). Negative contours are dashed, and values greater or less than
1010 kg s−1 (10 Sv) are shaded, darker for negative values. The circulation is clockwise around
the lighter shading. The three thick solid lines indicate various measures of the tropopause (sec-
tion 12.5): the two that peak at the equator are isolines of potential vorticity, Q = ±1.5,±4 PV
units, and the flatter one is the WMO thermal tropopause. Middle: The thickness-weighted, or
isentropic-mean, meridional mass streamfunction. After calculation in isentropic coordinates, the
streamfunction is projected back on to log-pressure coordinates, Z (km), for display. Bottom: the
residual streamfunction calculated from the Eulerian circulation and the eddy fluxes.6

Downloaded from Cambridge Books Online by IP 160.39.49.19 on Thu Dec 05 13:09:48 WET 2013.
http://dx.doi.org/10.1017/CBO9780511790447.013

Cambridge Books Online © Cambridge University Press, 2013



524 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

Fig. 12.22 (a) The temperature
profile of the ‘U.S. standard at-
mosphere’, marking the standard
regions of the atmosphere below
80 km. In addition to the regions
shown, the top of the mesosphere
is marked by the mesopause, at
about 80 km, above which lies the
‘thermosphere’, in which temper-
atures rise again into the ‘exo-
sphere’, extending a few thou-
sand kilometres and where the
atmospheric temperature ceases
to have a useful meaning. (b)
Observed, annually averaged pro-
files of temperature in the atmo-
sphere, where the ordinate is log-
pressure. ‘Tropics’ is the average
from 30° S to 30° N, and the extrat-
ropics is the average over the rest
of the globe. The observations are
from a reanalysis over 1958–2003
that extends upwards to about
35 km. See text for the meaning
of ‘tropopause-based average’.
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transport occurs. The troposphere is capped by the tropopause, above which lies the strato-
sphere, a region of stable stratification extending upwards to about 50 km. (Troposphere
means ‘turning sphere’, appropriately so as within it dynamical overturning is prevalent.
Stratosphere means ‘layered sphere’, and here there is much less vertical motion.) The
stratosphere is capped by the stratopause, above which are the mesosphere, thermosphere
and exosphere, regions of the upper atmosphere that do not concern us here. Our focus will
be on the processes that determine the stratification of the lower atmosphere and the height
of the tropopause.7

In the troposphere temperature generally falls with height, whereas in the stratosphere
it increases with height, and this gives rise to a thermal definition of the tropopause:8 The
tropopause is the lowest level at which the lapse rate decreases to 2 K km−1 or less, provided
also that the average lapse rate between this level and all higher levels within 2 km does not
exceed 2 K km−1. At any particular time there might also be a second tropopause: if above
the first tropopause the average lapse rate between any level and all higher levels within
1 km exceed 3 K km−1, then a second (higher) tropopause is defined by that same criterion.
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12.5 † The Tropopause and the Stratification of the Atmosphere 525

Potential Vorticity Fluxes and the Extratropical Atmosphere

The extratropical circulation of the atmosphere is driven by the differential heating between
equator and pole, mediated by fluxes of potential vorticity. Thus, in a layered model we have
the following.

(i) Zonal winds. At each level the acceleration of the zonal winds is governed by the
potential vorticity fluxes:

∂ui
∂t

= v′iq′i + f0v∗i + Fi. (PV.1)

where v∗i is the residual meridional flow and Fi represents friction.

(ii) Surface winds. In steady state, the surface winds are produced by the vertically
integrated potential vorticity fluxes:

rHsus =
∑
i

Hiv′iq
′
i , (PV.2)

where us is the surface wind, Hs the thickness of the lowest layer, and r is a frictional
coefficient.

(iii) Meridional transport. The total (or residual) meridional transport is, proximately, forced
by the potential vorticity fluxes. For example, in a two-layer model

f 2
0
H
H2

v∗1 −H1g′
∂2v∗1
∂y2

= +g′ ∂S
∂y

− f0

(
v′1q

′
1 − v′2q′2

)
− f0(F1 − F2), (PV.3)

where S is proportional to the diabatic forcing, and this equation holds at all times. In
a steady state the momentum equation gives simply

f0v∗i = −v′iq′i − Fi. (PV.4)

Above the surface layer friction is negligible and the meridional transport responds
almost solely to the potential vorticity fluxes.

Finally, such definitions are presumed not to apply if they are satisfied below 500 mb. As so
defined, the thermal tropopause typically varies in height from about 16 km at low latitudes
to about 8 km near the poles.

One may wonder whether such statements reflect a robust property of the atmosphere, or
are merely a practical definition of the tropopause, and certainly we should not expect these
quantitative definitions to hold in a changed climate, but regardless of that the tropopause
is a distinct boundary separating two differently stratified regions, the troposphere and
the stratosphere. The thermal tropopause is marked in Fig. 12.21 and, as we see there and
in Fig. 12.16, in the extratropics it is almost parallel to isolines of potential vorticity, and
sometimes an isoline of potential vorticity (say Q = 3 or 4 PV units) is used as a somewhat
ad hoc definition of the extratropical tropopause.
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526 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

Fig. 12.23 Schema of the radiative
equilibrium profile (solid), and two
profiles of a radiative-dynamical
equilibrium in which the lower atmo-
sphere is adjusted to some specified
lapse rate N1 or N2. Here, N2 > N1

and H(N2) > H(N1).
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Finally, and interestingly, we note that the tropopause appears as a very sharp feature
when viewed instantaneously, although this sharpness is often blurred when time or spatial
averages are taken. The solid line in Fig. 12.22, denoted ‘tropopause-based average’, shows
the profile obtained when the tropopause height itself is taken as a common reference level,
using data from individual radiosonde ascents over the United States.9

12.5.1 A radiative–convective model

The radiative-equilibrium temperature is that temperature which arises from a pure radiative
balance. As we noted in section 11.1.1, a black body subject to a net incoming radiation
of S has a radiative-equilibrium temperature Trad given by σT 4

rad = S where σ is the
Stefan-Boltzmann constant. For partially absorbing media like the Earth’s atmosphere the
radiative equations are correspondingly more complicated, but nevertheless the vertical
structure of the radiative equilibrium temperature may be calculated and its qualitative
features are easy to understand. The atmosphere is largely transparent to solar radiation
and thus it is largely heated from below by the ground, both through the latter’s emission of
infrared radiation and by latent and sensible heat transfer. The atmosphere absorbs and
re-emits infrared radiation, and the upshot is that the radiative-equilibrium temperature
falls rapidly with height in the lowest several kilometres of the atmosphere before rising
again in the stratosphere, this being in part due to a layer of ozone, concentrated between
25 and 30 kilometres altitude, that absorbs solar radiation. A radiative-equilibrium profile
is sketched in Fig. 12.23 and, although schematic, it illustrates an important point — the
radiative equilibrium temperature falls so rapidly in the lower atmosphere that it would
be convectively unstable. Detailed calculations show that −∂Trad/∂z is often greater than
10 K km−1, thus exceeding even the dry adiabatic lapse rate and far exceeding the moist
adiabatic lapse rate of about 6 K km−1 (depending on temperature; see section 2.9.3 for
a description of convective instabilities). Thus, if a radiative-equilibrium profile could be
initially set up somehow, convection would quickly ensue, transferring heat vertically in an
attempt to stabilize the profile.
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The above observations suggest a simple radiative–convective model of the structure of
the stratification, as follows. Starting with a radiative-equilibrium profile, the temperature in
the lower atmosphere is modified until it becomes statically neutral; that is, the lapse rate
is adjusted until it becomes equal to the dry or, if the air is saturated, the moist adiabatic
lapse rate. We allow such an adjustment to occur up to such a height as is needed, above
which the radiative-equilibrium temperature is maintained, and consequently there will
typically be a sharp transition between the two regimes which may be identified with the
tropopause. As we see in Fig. 12.23 the height of the tropopause will depend on the lapse rate
in the troposphere, with a larger lapse rate (i.e., a more negative ∂T/∂z) leading to a lower
tropopause. This result does not depend on the adjustment mechanism being convective
per se, that is on being due to small-scale essentially vertical motion. Any dynamical process
that adjusts the lapse rate in the troposphere may produce a similar effect. The resulting
lapse rate, determined by dynamical effects below some height (which we might associate
with the tropopause) and radiative effects above, is called a radiative-dynamical profile, and
a radiative–convective profile if the dynamical process is convection.

The height of the tropopause can be calculated if we know how to calculate the radiative
equilibrium temperature and if we are given the tropospheric lapse rate. The simplest calcu-
lation assumes that the radiative equilibrium temperature of the stratosphere is unaltered
by the adjustment process. Then, suppose that the initial temperature profile, Ti(z) is given
as a function of height by

Ti(z) =
⎧⎨⎩Tsi −Az z ≤ z1

(Tsi −Az1)+ B(z − z1) z ≥ z1
(12.111)

where the constants A, B and Tsi are given, z1 is the height at which the radiative equilibrium
temperature starts to increase, and below z1 the profile is convectively unstable. If convection
adjusts this profile to become

Tf(z) = Tsf − Cz z < H (12.112)

until it intersects the stable profile at some height H > z1, then we require

Tsf − CH = (Tsi −Az1)+ B(H − z1), (12.113)

whence

H = Tsf − Tsi + (A+ B)z1

B + C . (12.114)

The final surface temperature is given by an energetic argument, that assuming there is no
significant conversion to kinetic energy then the internal energy plus the potential energy
is conserved, or

∫H
0 ρ(cvT + gz)dz is fixed. (If condensation occurs there is an increase in

energy equal to the latent heat released.)
The argument above is oversimplified in assuming that the radiative equilibrium temper-

ature above the adjusted region is not altered by the adjustment process, but nevertheless
there are a couple of robust conclusions.

(i) The mechanism produces a relatively sharp tropopause, the existence of which does
not depend on the stratospheric temperature actually increasing with height. The
tropopause is the boundary between radiative equilibrium temperatures aloft, and
dynamically influenced temperatures below.
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(ii) The smaller the lapse rate (i.e., the lower the value of −∂T/∂z , or equivalently the larger
the stratification N2) to which the lower atmosphere is adjusted, the higher and the
warmer the tropopause. In a dry atmosphere, the lapse rate is adjusted to that of a dry
adiabat, with N2 = 0 and ∂T/∂z = −g/cp . In a saturated atmosphere adjustment is
towards the moist adiabat (see section 2.9.3).

12.5.2 Radiative and dynamical constraints

We assumed in our simple calculation that the radiative equilibrium temperature profile of
the stratosphere was given, independently of the troposphere. This is not quite right, but
nevertheless if we can calculate the radiative equilibrium profile as a function of temperature
then we can calculate the height of the tropopause if we are given the lapse rate in the
troposphere and the surface (or average) temperature. The tropopause height is then the
height at which the tropospheric temperature profile matches the radiative equilibrium
temperature. The calculation can, at least in principle, be inverted: if the tropopause height
is given (perhaps via purely dynamical reasoning), and the surface or average tropospheric
temperature is also given, and one assumes a stratosphere in radiative equilibrium, then the
tropospheric lapse rate follows. To illustrate this without the complication of a full radiative
model, consider the heat balance at a particular latitude. The outgoing infrared radiation,
I, is in balance with the incoming solar radiation, S, the convergence of horizontal energy
flux C , and the energy flux from the surface, F . The temperature profile must adjust itself
so that I = S + F + C , so that we may think of I as being effectively given — a radiative
constraint. Suppose that the temperature profile has a constant lapse rate below some height
HT (the tropopause) and that above this radiative equilibrium holds. Given this, we may
parameterize the outgoing infrared radiation by a specification of the tropopause height
HT , the surface temperature Ts , and the temperature at the tropopause, Tt . If dynamical
processes serve to specify the lapse rate and the surface temperature, then the tropospheric
height is determined from the radiative constraint. Alternatively, if the tropospheric height
and surface temperature are specified, the lapse rate follows.

It is clear from the above arguments that we do not necessarily need convection to
produce a tropopause — a boundary will in general occur separating a dynamically influenced
troposphere and a stratosphere in near-radiative equilibrium. We may more generally think
of the troposphere as that region of the atmosphere in which a redistribution of heat occurs,
much of which may be lateral. This picture suggests itself naturally from the lower two
panels of Fig. 12.21 where we see the height of the tropopause roughly coinciding with
the height attained by the overturning circulation, and the troposphere is then a kind
of boundary layer to the atmosphere above (Fig. 12.24). The top of the boundary layer
is the tropopause but (unlike idealizations of the oceanic thermocline) it is not marked
by a discontinuity in potential temperature; this is not because potential temperature is
not necessarily being mixed in the troposphere, but because radiation keeps the profile
continuous. However, the vertical temperature gradient is (approximately) discontinuous.

If the large-scale overturning circulation and associated lateral transport of heat is also
able to transfer sufficient heat vertically so that a statically stable lapse rate can be main-
tained, then small-scale convective events and convective adjustment need play no role in
determining the lapse rate of the troposphere and the height of the tropopause. Nevertheless,
it is generally believed that within the tropics predominantly vertical, moist convection is the
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 Lower stratosphere
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Equator          Pole

Fig. 12.24 A sketch of the stratification and overturning circulation in the lower
atmosphere. The thick line marks the tropopause, the closed contour marks the
residual overturning circulation and the dashed lines are isentropes. The overturning
circulation has two distinct parts, a tropical Hadley Cell where most of the mass is
carried by mean motions, and a shallower extratropical cell in which most of the mass
transfer occurs via eddy motion. The equatorward return flow is mostly confined to
a shallow surface layer. The ‘lower stratosphere’ is ventilated by the troposphere
along isentropic surfaces, whereas in the ‘upper stratosphere’ isentropes do not
intersect the tropopause. The tropopause is the boundary between the partially mixed
troposphere and the near-radiative equilibrium stratosphere.

main process determining the stratification and the height of the tropopause.10 In contrast,
the processes determining the extratropical stratification are still a matter of some debate,
and in the next two sections we outline some of the dynamics relevant to this problem. The
theories fall into two general camps, one related to the redistribution of potential vorticity
by baroclinic eddies, and the second related to convection, and we deal with them in turn in
the next two sections.

12.6 † BAROCLINIC EDDIES AND POTENTIAL VORTICITY TRANSPORT

The fundamental idea behind the arguments in this section is that the troposphere is that
region in which a dynamical distribution of energy takes place, that redistribution is effected
by baroclinic eddies and that potential vorticity dynamics then provides a natural height for
these eddies and hence of the tropopause.

In mid-latitudes baroclinic eddies transfer heat upwards, and if they do this efficiently
enough there is no need for convection (meaning predominantly vertical convection occurring
on small scales) to maintain a statically stable lapse rate (see Fig. 12.24). Nonetheless, the
baroclinic eddies do not extend infinitely upwards, and so we expect a boundary — a
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530 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

tropopause — between a dynamical troposphere and a radiative stratosphere. How high is
this tropopause, and what is its nature?

12.6.1 A linear argument

On the β-plane, linear baroclinic instability can produce a height scale that is different from
the height of any pre-existing ‘lid’ or from the density scale height. This height scale is
(section 6.9.1)

h = Λf 2

βN2
, (12.115)

where Λ = ∂u/∂z . That is to say, if h < H, where H is the density scale height (or the
height of some lid in a Boussinesq model), then the baroclinic eddies will extend upwards to
a height h, and this will be the vertical extent of significant heat fluxes. Thus (one might
argue), below h the thermal structure is determined by the dynamical effects of baroclinic
instability, whereas above h the atmosphere is more nearly in radiative equilibrium. Using
Λ = (15 m s−1)/(10 km), β = 1.6× 10−11 s−1 m−1, f = 1× 10−4 s−1 and N = 10−2 s−1 gives
h ≈ 10 km, which approximates the height of the tropopause in mid-latitudes, but this can
only be a rough estimate, especially as our value of Λ is a little low.

Allowing the parameters f and β to vary with latitude, and using the thermal wind
relation, (12.115) may be written in the form

h = s f
β
= sa tanϑ, (12.116)

where s is the isentropic slope, −(∂yθ)/(∂zθ), ϑ is latitude and a is the Earth’s radius. This
equation, when written as s ∼ h/a, suggests that the isentropic slope is roughly such that
isentropes extend from the surface at low latitudes to the tropopause at the poles, and this is
more-or-less true in the present atmosphere (Fig. 12.16). This is still insufficient information
to determine the lapse rate itself, for (12.115) or (12.116) provide only a single relationship
between h and N2, and a radiative or diabatic constraint is also needed, just as with the
simple convective adjustment argument. However, even given such a constraint, a linear
argument is open to criticism on two grounds.

(i) The amplitude of meridional heat transfer, which determines the meridional tempera-
ture gradient, is really determined by nonlinear effects.

(ii) Two dimensional (latitude-height) radiative equilibrium calculations typically indicate a
radiative tropopause (i.e., a level at which the temperature begins to increase) whose
height is typically less than that calculated using (12.115). Such a tropopause would
provide a lid on linear baroclinic waves, and above this their amplitude would fall
rapidly (e.g., Fig. 6.21), and in that case h would play no significant role.

Let us turn, then, to nonlinear arguments.

12.6.2 Mixing potential vorticity and baroclinic adjustment

Let us suppose that baroclinic eddies mix potential vorticity (see section 10.5 for a general
discussion of potential vorticity mixing). Such mixing will try to homogenize potential
vorticity, or equivalently to expel potential vorticity gradients to a boundary, and the
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(extratropical) tropopause would then occur at an isoline of potential vorticity and be marked
by a near-discontinuity in the potential vorticity distribution. Because Q ≈ (f/ρ)∂θ/∂z , the
tropopause would also correspond to a discontinuity in stratification. Supporting this notion
is the fact that the potential vorticity distribution in the troposphere is indeed significantly
more homogeneous than in the stratosphere (see Fig. 12.16, noting the unequal contour
intervals of PV). The correspondence is perhaps not so marked as to convince the sceptic,
and the lower stratosphere is often locally characterized by a more homogeneous potential
vorticity than such Eulerian averages imply. Putting such objections aside, let us consider to
what height such potential vorticity mixing might occur.

Potential vorticity mixing will occur only so far as needed in order to stabilize the mean
flow. (We know that the meridional surface temperature gradient remains negative, so that if
the flow is stabilized it must involve changes in the interior potential vorticity distribution.)
Neglecting the contribution of relative vorticity, the quasi-geostrophic potential vorticity is
given by

q = βy + ∂
∂z

(
f 2

0

N2

∂ψ
∂z

)
, (12.117)

so that
∂q
∂y

= β− ∂
∂z

(
f 2

0

N2
Λ
)
. (12.118)

We might hypothesize that the vertical extent to which mixing occurs is just sufficient to
make the two terms on the right-hand side a similar size in order that the potential vorticity
can become homogeneous, or that it can change sign and be just unstable. This gives
β ∼ f 2

0Λ/(N2HT) , where HT is the vertical extent of the instability and, we assume, the
height of the tropopause; that is

HT ∼ f 2
0Λ
N2β

. (12.119)

Put another way, in this theory the troposphere extends vertically as far as baroclinic waves
can alter the potential vorticity from its planetary value. (A similar depth scale occurs
when evaluating the depth of the wind’s influence in an ocean circulation model, section
14.8.1.) This height determines the tropopause, and the radiative constraint then determines
the lapse rate within the troposphere. The shear itself is proportional to the horizontal
temperature gradient, and the height of the tropopause and the meridional temperature
gradient may adjust together to ensure the satisfaction of (12.119). Note the similarity of
(12.119) to (12.115) — a similarity that is unsurprising given that we are constructing a
height scale from a shear, f , β and N2 using potential vorticity dynamics in both cases.

Equilibration by potential vorticity mixing is closely related to a process known as
baroclinic adjustment, by analogy with convective adjustment.11 The essential idea is that
baroclinic eddies are sufficiently efficient that they can stabilize the mean flow by transferring
heat polewards and upwards until the necessary condition for instability (the Charney–Stern–
Pedlosky condition, in so far as the flow is quasi-geostrophic and inviscid) is barely satisfied,
and the atmosphere is marginally supercritical to baroclinic instability. The adjustment
might proceed predominantly by changes in the static stability, N2, or predominantly by
changes in the horizontal temperature gradient, but the arguments surrounding (12.116)
suggest that, if adjustment-like arguments do hold, the isentropic slope will remain roughly
constant over a broad range of parameters. The numerical and observational evidence
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for such an adjustment is mixed, although it is plausible that a weaker version may hold
in which potential vorticity is imperfectly homogenized and (12.119) provides a plausible
scaling, but not a precise prediction, for the height of the tropopause.12

12.6.3 Diffusive transport of potential vorticity

A related approach to the problem is to assume that potential vorticity and potential
temperature at the surface are transported diffusively but not completely homogenized.
(The observational support for potential vorticity homogenization is in any case somewhat
weak, and certainly there is no useful sense in which the surface temperature is homogenized.
Relatedly, the observed mean atmosphere is baroclinically unstable. A complete solution
of the problem would involve determining the diffusivities, and this is itself a problem of
turbulence, as discussed in chapter 10. If the diffusivities increase rapidly with the shear of
the zonal wind, as in the model of section 9.3, then it may be difficult for the supercriticality
to become very large because the meridional heat fluxes will also increase rapidly and reduce
the meridional temperature gradient, much as in adjustment ideas. In the absence of a
wholly satisfactory theory for the diffusivities, let us see what might be understood without
solving the problem in its entirety. We will take the circulation of the atmosphere to be that
illustrated in Fig. 12.24 (see also Fig. 11.14), in which the polewards residual circulation in
the free atmosphere is balanced by a shallow return flow near the surface, and make the
following assumptions.

(i) In the free atmosphere potential vorticity is diffusively transported downgradient,
whereas near the surface potential temperature is diffused downgradient.

(ii) The eddy diffusivities are vertically uniform, and in particular the diffusivities of interior
potential vorticity and surface potential temperature are equal to each other.

(iii) The height to which the eddy fluxes reach adjusts so that mass balance and the above
conditions can be satisfied, and this height is to be associated with the tropopause.

The second assumption is perhaps the simplest one can make about eddy diffusivities, and
the third assumption essentially defines our troposphere; nevertheless, as with all theories
based on turbulent diffusion, the assumptions are to some degree ad hoc. Let us now make
an idealized model based upon them; the model is informal and illustrative rather than
quantitative, and the assumptions above are more important than the details of the model
below.13

An idealized model

For illustrative purposes consider a multi-layer model in which the lowest model layer
(the surface layer) is quite thin, and let us suppose that it is in this layer that all the
equatorward return flow of the residual circulation occurs. The vertically integrated mass
balance condition is that the poleward interior flow is equal to the equatorward surface flow,
and if the interior flow is approximately vertically uniform we write this as Hiv∗i +Hsv∗s ≈ 0,
where the subscripts i and s denote the interior and the surface, respectively, with Hi being
the total depth of the interior flow and Hs being the depth of the surface layer. In the interior
the zonal momentum equation with quasi-geostrophic scaling (see, for example, the shaded
box on page 510) implies that, in a steady state, the residual meridional velocity satisfies
−f0v∗i = v′iq

′
i . If we assume that the potential vorticity is diffused downgradient with an
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eddy diffusivity κi, and that the potential vorticity gradient is approximately equal to β, the
residual flow is given by

v∗i ≈
κiβ
f0

. (12.120)

If the surface layer is thin, its potential vorticity is, as in the delta-function construction
of section 5.4.3, dominated by the contribution from the surface temperature, and from
(5.88b), qs ≈ (f 2

0 /Hsg′)(ψs−1 −ψs), where the subscript ‘s − 1’ denotes the layer above the
surface layer, and (f0/g′)(ψs−1 −ψi) is the perturbation layer thickness h′s , and is, in our
model, proportional to the surface temperature. The residual flow in the surface layer is
given by

v∗s =
1

Hs
v′sh′s ≈ − κsHs

∂hs
∂y

, (12.121)

using assumption (i) above, where hs is the zonally averaged surface thickness gradient and
κs is the surface diffusivity. Written in terms of surface temperature (using, for example, the
‘level’ rather than the ‘layer’ versions of the quasi-geostrophic equations) the corresponding
result is

v∗s =
κs

Hs∂θ/∂z
∂θs
∂y

. (12.122)

If we now invoke assumption (ii), that κi = κs , and use the mass balance condition
Hiv∗i = −Hsv∗s , then (12.120) and (12.122) combine to give

Hi
∂θ
∂z

≈ −f0

β
∂θs
∂y

. (12.123)

The left-hand side is approximately the potential temperature difference between surface
and tropopause, and θs is the zonally-averaged surface potential temperature. Equation
(12.123) thus provides a relation between the stratification of the troposphere and the surface
temperature gradient. With the thermal wind relation, the result is in turn very similar to
(12.119), except that it is the shear at the surface that now appears. The differences between
this argument and that of the previous subsection lie not so much in their respective results,
which are rather similar in some respects. Rather, the differences lie in the assumptions
needed to derive the results and in the interpretation of the results. Transport of potential
vorticity is a common aspect, but in the arguments leading to (12.123) we do not make the
a priori assumption that potential vorticity will be completely mixed, or that the flow will
be marginally unstable. Rather, we make an observation about the nature of the circulation
(that the return flow is close to the surface) and certain assumptions about the nature of
the diffusion, and a related result emerges. (Note also that in a quasi-geostrophic model
with fixed layer depths the depth of the eddying region cannot adjust in the way we have
assumed; rather, the eddy diffusivities must adjust to satisfy the constraints.)

Details aside, the heart of all of the above arguments is that the troposphere is that
part of the atmosphere within which the energy and entropy are redistributed by dynamical
mechanisms, and that the depth of the tropopause is determined by the constraints arising
from the potential vorticity dynamics that effect this redistribution.
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12.7 † EXTRATROPICAL CONVECTION AND THE VENTILATED TROPOSPHERE

A point of view that differs qualitatively from the potential vorticity one is to suppose
that the mid-latitude tropospheric lapse rate is maintained by convection, the convection
occurring predominantly in the warm sector of mature baroclinic waves.14

In reality such convection will involve moisture, but for simplicity let us first consider a
dry atmosphere. In a given baroclinic zone the minimum potential temperature difference
between the tropopause and the surface, ∆zθ = θT − θS is approximately zero: if the
tropopause were colder than this the column would be convectively unstable, and the
difference would become zero. The essential assumption that we make is that within a
baroclinic zone there generally does exist a region that is convectively unstable, and that
convection then ensues with sufficient efficiency to partially fill the troposphere with air
with that surface value of potential temperature. The process differs from convection in
the tropics because it is organized by baroclinic waves and, if we imagine a succession of
baroclinic waves around a latitude band the mean value of ∆zθ will be approximately, we
assume, its minimum (zero) plus a fraction of its standard deviation. The standard deviation
in turn is a consequence of the pre-existing meridional temperature gradient and meridional
advection across that gradient, and therefore

standard deviation(∆zθ)∝ ∆yθ, (12.124)

where the term on the right-hand side is the meridional temperature difference at the surface
across the baroclinic zone. The mean potential temperature difference between the surface
and tropopause is then simply proportional to the meridional temperature gradient at that
latitude, with an undetermined constant of proportionality and so

∆zθ ∝ ∆yθ. (12.125)

Finally, if moisture is present (as it is!) the vertical potential temperature difference should
be replaced by the equivalent potential temperature difference — the equivalent potential
temperature being essentially the potential temperature achieved when all the water vapour
in a parcel of air condenses and the latent heat of condensation is used to heat the parcel
(section 2.9.3).

The physical hypothesis is essentially that within a baroclinic wave the advection of
warm air into a cold region necessarily leads to convection, and that this convection then
efficiently fills the available volume, to the extent possible, with the warmest possible fluid.
Oceanographers will find this a comfortable concept, for they are used to the notion of
convection filling the domain with the densest available fluid (densest in the oceanic case
because oceanic convection usually occurs from the top, with cold, dense water sinking).
However, unlike the ocean in which the bottom of the container limits the volume of dense
water that can be made, here it is the tropopause that provides the upper lid; the height of this
is determined by the dynamics itself, in conjunction with the radiative constraint discussed
previously. Thus, the baroclinic zone becomes, in oceanographic parlance, ventilated by the
warmest air at the surface. However, the entire baroclinic zone does not completely fill with
this warm air because the convection is maintained by a meridional temperature gradient
and it is necessarily intermittent: baroclinic instability would shut off if the entire baroclinic
zone were filled with homogeneous warm fluid, and the zone would then meridionally
restratify. It is this continual maintenance of variance that leads to (12.125).
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The Stratification of the Troposphere and Stratosphere

We may summarize our ideas about stratification as follows.

� The troposphere is that region of the atmosphere where dynamics plays an important
role in stratification, whereas the stratosphere is more nearly in radiative equilibrium
(although in winter in the lower stratosphere, radiative equilibrium is not a very good
approximation). The tropopause is the change in stratification between the two regions.

� The tropospheric lapse rate and the height of the tropopause are determined by a
combination of dynamics and radiation. If a dynamical process predicts the height of
the tropopause then, if the surface temperature is also given, the stratification follows
via radiative considerations. Similarly, if the lapse rate is given, the tropopause height
follows.

� There are two general classes of theory for tropospheric stratification.

(i) Potential vorticity transport and its variants. The common theme of this class
of theory is that the lateral and upward heat transport by baroclinic instability
determines the mid-latitude meridional temperature gradient and stratification, and
potential vorticity dynamics plays a dominant role. In one incarnation (‘baroclinic
adjustment’) baroclinic activity is so efficient that the atmosphere becomes only
marginally supercritical to baroclinic instability, a process related to homogenization
of potential vorticity. In a distinct variation on this theme, potential vorticity and
surface potential temperature are diffused downgradient, but potential vorticity is
not necessarily homogenized. A complete theory would require estimates of the
structure and magnitude of the eddy diffusivities. In all these ideas, the depth to
which the transport and mixing occurs determines the position of the tropopause.

(ii) Moist convection. It is generally thought that moist convection does play the domi-
nant role in determining tropical stratification, leading to a lapse rate that is moist-
neutral. In the extratropics such convection acts in concert with baroclinic eddies
to produce a stratification that is related to the meridional temperature difference
across a baroclinic zone.

In both of the above, the troposphere is the region in which a dynamical redistribution of
heat occurs. In the real atmosphere, both mechanisms may operate, and/or be limiting
cases, each applicable in different parameter regimes.

� In (i), the constraints arising from potential vorticity dynamics suggest the importance
of the height scale HT ∼ (f 2Λ)/(N2β), or equivalently that s ∼ βHT/f , where s is the
isentropic slope, at least to the extent that relative vorticity gradients are much smaller
than planetary vorticity gradients.

� In (ii), the lapse rate is bounded from below by the moist adiabatic lapse rate and, on
average, the (equivalent) potential temperature difference between the surface and the
troposphere is proportional to the meridional temperature difference across the baroclinic
zone.
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The above picture does make a couple of assumptions that are by no means self-evident,
or necessarily generally applicable. First, only certain distributions have the property that
the mean is the minimum plus a fraction of the variance, although qualitatively similar
properties may hold more generally and the qualitative thrust of argument does not depend
on it holding exactly. Second, and more importantly, the argument depends on the heat flux
due to convection being comparable to or controlled by the baroclinic eddies themselves. If
convective heat fluxes dominate, as in the tropics, then the lapse rate will be approximately
moist neutral. If the baroclinic heat fluxes dominate, we would (without a third alternative)
return to the potential vorticity arguments of the previous section.

The ultimate consequence of these convection arguments is that the moist isentropic
slope is proportional to that slope which would take an isentrope at the surface to the
tropopause across a baroclinic zone. This contrasts with the potential vorticity mixing
ideas, which suggest (at least in so far as relative vorticity fluxes are neglected) that the dry
isentropic slope is proportional to the slope that goes from the ground to the tropopause
over a horizontal scale f/β, the equator-to-pole scale. However, differentiating between
these two predictions may be difficult: in today’s climate the two predictions are similar, and
using a numerical model to go to a parameter regime in which they differ may lead to results
that are not relevant for today’s climate. We stated on page 529 that the arguments for the
maintenance of extratropical convection fell into two general camps; it may be that these
camps represent limiting cases, each of which may hold in different parameter regimes. The
real atmosphere may lie in between, or it may have different dynamics in different seasons,
or it may be disdainful of all our ideas.

APPENDIX: TEM AND ELIASSEN–PALM FLUX FOR THE PRIMITIVE EQUATIONS IN
SPHERICAL COORDINATES

In spherical and log-pressure coordinates let us define the residual streamfunction for the
ideal-gas primitive equations by15

ψ∗ ≡ ψ+ v′θ′

∂Zθ
. (12.126)

Here, an overbar denotes a conventional (Eulerian) zonal average, ψ is the streamfunction of
the zonally averaged flow, Z = −H ln(p/pR) where pR is a reference pressure and H is a
scale height, and ρR = ρ0 exp(−Z/H) where ρ0 is a constant. The associated transformed,
or residual, velocities are:

v∗ = − 1

ρR
∂
∂Z

(ψ∗ρR), w∗ = 1

a cosϑ
∂
∂ϑ

(ψ∗ cosϑ), (12.127)

with an equivalent expression for v and w in terms of ψ. (The notation for log-pressure
coordinates follows section 2.6.3 on page 80, except here we use a lowercase w for the
vertical velocity.) If we write the equations of motion in terms of the residual velocities in-
stead of the Eulerian velocities we obtain the ‘transformed Eulerian mean’, or TEM, equations
(section 7.3). The TEM forms of the zonally averaged thermodynamic and zonal momentum
equations are:

∂θ
∂t

+ v∗

a
∂θ
∂ϑ

+w∗ ∂θ
∂Z

= 1

ρR
∂G
∂z

, (12.128a)
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∂u
∂t

+ v∗
(

1

a cosϑ
∂
∂ϑ

(u cosϑ)− f
)
+w∗ ∂u

∂Z
= 1

ρR cosϑ
∇ ·F. (12.128b)

The transformed equations of motion are completed by the meridional momentum, mass
continuity and hydrostatic equations:

u
(
f + u

a
tanϑ

)
= − 1

a
∂Φ
∂ϑ

+ Ŝ, (12.129a)

1

a cosϑ
∂
∂ϑ

(v∗ cosϑ)+ 1

ρR
∂
∂Z

(ρRw∗) = 0, (12.129b)

∂Φ
∂Z

= RT
H
T = R

Hθ
e−κZ/H. (12.129c)

In (12.128a), F = (Fϑ,FZ) is the Eliassen–Palm flux, given by

Fϑ = ρR cosϑ
[
uZ

v′θ′

∂Zθ
−u′v′

]
, (12.130a)

FZ = ρR cosϑ
[(

f − ∂ϑ(u cosϑ)
a cosϑ

)
v′θ′

∂Zθ
−u′w′

]
, (12.130b)

with

∇ ·F = 1

a cosϑ
∂
∂ϑ

(Fϑ cosϑ)+ ∂
∂Z
FZ. (12.130c)

In (12.128a)

G = ρR
∂Zθ

(
v′θ′

1

a
∂θ
∂ϑ

+w′θ′
∂θ
∂Z

)
, (12.130d)

and Ŝ in (12.129a) contains various, generally small, terms that lead to departures from
gradient-wind balance between u and the geopotential Φ. Expressions very similar to the
ones above also arise in pressure coordinates.

In many circumstances, the EP flux is well approximated by

F =
(
−ρR cosϑu′v′, fρR cosϑ

v′θ′

∂Zθ

)
, (12.131)

in which case the zonal flow is accelerated by the EP flux according to

∂u
∂t

+ · · · = 1

a cos2 ϑ
∂
∂ϑ

(
−u′v′ cos2 ϑ

)
+ 1

ρR
∂
∂Z

(
ρRf

v′θ′

∂Zθ

)
. (12.132)

With f = f0 (12.131) becomes the quasi-geostrophic EP flux, and in this limit G is also
neglected.

In the figures that show the EP vectors, the horizontal and vertical components of the
EP flux are scaled by a (the Earth’s radius) and by H = 1000 hPa (the pressure depth of the
atmosphere), respectively. The scaling determines the direction of the arrows and makes it
possible to see the divergence by eye, and which component dominates in producing that
divergence. In the figures that show the EP flux divergence, we plot the right-hand side of
(12.128b), namely the EP flux divergence divided by ρR cosϑ, this being the quantity that
directly contributes to the acceleration of the zonal flow.16

Downloaded from Cambridge Books Online by IP 160.39.49.19 on Thu Dec 05 13:09:48 WET 2013.
http://dx.doi.org/10.1017/CBO9780511790447.013

Cambridge Books Online © Cambridge University Press, 2013



538 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

Notes

1 The modern view of the mid-latitude general circulation — the largely zonally asymmetric
motion that provides the bulk of the meridional transport of heat and momentum in the
extratropics — began to take form in the 1920s in papers by Defant (1921) and Jeffreys
(1926). Defant regarded the mid-latitude circulation as turbulence on a large scale (albeit
without realizing the important organizing effects of waves), and calculated the horizontal
eddy-diffusivities using Prandtl-like mixing length arguments. Soon after, Jeffreys presciently
wrote of ‘the dynamical necessity for a continual exchange of air between high and low
latitude’ and that ‘no general circulation of the atmosphere without cyclones is dynamically
possible when friction is taken into account.’ This point of view slowly gained ground,
with, for example, Starr (1948) advocating the point of view that large-scale eddies were
responsible for the bulk of the meridional transport of momentum in mid-latitudes, and
Rossby (1949) eventually noting in a review article that ‘One is forced to conclude that
there no longer exists a compelling reason to build the theory of the maintenance of the
general circulation exclusively on meridional solenoidal circulations’. Soon after this came
a pair of discussion papers by Eady (1950, 1954), that, setting the stage for the modern
viewpoint, struggle with the turbulent transport of mid-latitude eddies and the maintenance
of the surface currents — the importance of the enstrophy budget is discussed, for example,
and Eady comes close to deriving wave activity conservation. Around that time Kuo (1951)
discussed the maintenance of zonal flows by the mechanism of vorticity transfer in a state
with a meridional background gradient, similar to mechanism I of section 12.1.2. Another
landmark is the influential monograph by Lorenz (1967) that summarized, clarified and
added to progress to that date, noting (in his last paragraph) that the cause of the poleward
eddy momentum transport across mid-latitudes (and hence the cause of the surface eastward
winds) had not at that time been rigorously explained. If perhaps not rigorous, we do now
have a qualitative explanation of these dynamics by way of potential vorticity dynamics and
the momentum transport in Rossby waves, as described in this chapter and chapter 7.

2 The mechanism producing a westerly jet in the atmosphere, and the associated surface
westerlies, used to be referred to as ‘negative viscosity’ (Starr 1968), because it is associated
with an upgradient transfer of momentum. The generation of a zonal flow by rearrangements
of vorticity on a background state with a meridional gradient was noted by Kuo (1951).
Thompson (1971) (see also Thompson 1980) calculated the momentum transport by Rossby
waves; in particular he noted that the zonal momentum flux was in the opposite direction to
the group velocity, and noted the potential for upgradient transfer and mean flow generation,
as experimentally verified by Whitehead (1975). These ideas were developed further by Green
(1970), Rhines (1979), Rhines & Holland (1979), among others, and we also draw from the
review of Held (2000).

3 This technique is noted by Lighthill (1965), who remarks that the idea goes back to Rayleigh.

4 Following Held (2000).

5 Models of the general circulation of this ilk were introduced by Green (1970). Dickinson
(1969) also considered the potential vorticity transport in planetary waves.

6 Adapted from Juckes (2001).

7 Early evidence that the temperature increases above about 11 km came from the balloon
measurements of Tesserenc De Bort (1902), who also suggested the names tropopause and
stratosphere, and Assmann (1902). See Hoinka (1997) for a historical account. More recently,
radiative and dynamical issues relevant to this topic are discussed by, among others, Stone
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(1972), Held (1982), Juckes (2000), Shepherd (2002) and some of the articles in Schneider &
Sobel (2007).

8 Paraphrasing World Meteorological Organization (1957); see also Lewis (1991).

9 Thomas Birner calculated the tropopause-based averages. See also Birner et al. (2002) and
Birner (2006).

10 However, it is sometimes said that the height of the tropical tropopause is rather higher than
the depth to which deep convection penetrates, and if true this is in need of explanation.

11 Stone (1978). See Zurita-Gotor & Lindzen (2007) for a review.

12 Evidence is mixed that the atmosphere, or models thereof, seek to become marginally
supercritical in any sense. For example, and in ascending order of complexity: (i) In quasi-
geostrophic flows (in which static stability is fixed) Salmon (1980) and Vallis (1988) found
that the flow could be strongly supercritical. (ii) Using an idealized dry GCM, Schneider &
Walker (2006) found that their model atmosphere was only marginally supercritical over a
very broad parameter regime (although their criterion for supercriticality differed somewhat
from the quasi-geostrophic one, and the paper specifically does not imply that atmosphere is
baroclinically neutral or that potential vorticity is homogenized; see section 12.6.3). (iii) Using
a comprehensive, moist, GCM Thuburn & Craig (1997) found results that they interpreted as
not being supportive of baroclinic adjustment, using quasi-geostrophic criteria to determine
the predicted supercriticality and tropopause height. Thuburn and Craig’s results do support
the notion of radiative and dynamical constraints discussed earlier. (iv) Stone & Nemet (1996)
found that the isentropic slope of the real atmosphere does not vary strongly with season,
even though the heat flux does, a result supportive of baroclinic adjustment ideas. However,
linear calculations show that the mean atmospheric state, certainly in winter, is baroclinically
unstable, with growth rates of about 0.2 day−1 or more (e.g., Valdes & Hoskins 1989). None
of the above-mentioned studies is inconsistent with the notion that downgradient fluxes of
potential vorticity are important in determining the thermal stratification of the atmosphere.

13 See Schneider & Walker (2006) and references therein for a continuously stratified and,
notably, non-quasi-geostrophic derivation, and associated numerical simulations.

14 Following Juckes (2000).

15 For more detail see Edmon et al. (1980) or Andrews (1987).

16 E. Gerber kindly constructed these figures.

Further reading

Green, J. S. A., 1999. Atmospheric Dynamics.
A somewhat personal view of dynamics, with a number of interesting perspectives and insights
on how the atmosphere works.

James, I., 1994. An Introduction to Circulating Atmospheres.
An introductory book on the global circulation of the atmosphere, with discussions of theory,
observations and models.

Schneider, T. & Sobel, A., 2007. The Global Circulation of the Atmosphere: Phenomena, Theory,
Challenges.
This book contains several interesting review articles on the large-scale atmospheric circulation
that will bring the reader to the frontiers of knowledge.
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540 Chapter 12. Zonally Averaged Mid-Latitude Atmospheric Circulation

Problems

12.1 � Construct a numerical model (e.g., in Fortran, C, or Matlab) that steps (12.97) forward in
time, using a diffusive closure for the potential vorticity fluxes, a frictional term equivalent
to a linear drag on velocity in the lower layer, and thermodynamic source term equivalent
to a relaxation back to a temperature that monotonically decreases with latitude. Explore
the effects of different lateral boundary conditions on the potential vorticity flux, the effects
of satisfying or not the kinematic constraint (12.82), and the effects of various horizontal
structures and amplitudes of the transfer coefficients. Discuss whether this is a useful model
of the zonally averaged circulation.

12.2 Suppose the Earth’s atmosphere was heated at the pole and cooled at the equator, but
that is was otherwise similar to the present atmosphere. Suppose also that this pattern
of heating leads to the formation of a single baroclinic zone in mid-latitudes. Discuss the
general circulation that might result, including the pattern of surface winds, the shear, and
the meridional overturning circulation.
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