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1. Introduction
In introductory physics classes, we are taught that solids are described by band
theory. As a starting point, one takes the kinetic energy of the electrons and their
Coulomb interactions with the regular array of nuclei into account, but neglects the
mutual Coulomb repulsion between the electrons. Does this make any sense? It is
clear that the reasons for the validity of this approximation have to be subtle,
because the latter energy scale is of course of the same order of magnitude as the
former two. It can, however, be justified on the basis of the so-called Fermi liquid
theory: Under certain quite general conditions, the electron eigenstates of an
interacting electron system can be adiabatically transformed into those of a
noninteracting system. There is no doubt that Fermi liquid theory provides an
excellent description of simple three-dimensional metals and semiconductors; this is
why it is taught in school. 
  But there are also some well-known cases in which Fermi liquid theory breaks
down: A one-dimensional metal, for instance, is theoretically described by the so-
called Tomonoga-Luttinger theory that bears little resemblance to a noninteracting
electron gas, no matter how weak the interactions. In particular, there is no sharp
"Fermi edge" that separates occupied and unoccupied states (even at zero
temperature). Unfortunately, one-dimensional metals are extremely difficult to realize
in nature, because quasi-one dimensional electron systems in real materials are
subject to so-called Peierls instabilities in which the lattice spontaneously distorts and
transforms the system into a band insulator. Although it costs energy to distort the
lattice, it can be shown that this is outweighed by the lowering of the electronic
ground state energy due to the introduction of the band gap. Even a one-dimensional
metal on a rigid lattice is unstable against the formation of a so-called spin density
wave, a magnetically ordered state that induces band gaps through a spin-dependent
potential. 
  If the effective electron-electron interaction is sufficiently strong, insulating states
can also replace the Fermi liquid in higher dimensional systems that ought to be
metallic according to band theory. This happens in materials involving d- and f-
electrons that are tightly bound to the atomic core, so that they are forced to spend a
lot of time together. Especially in cases in which there is an integer number of such
electrons per atom, these often prefer to localize at a particular atom and thereby
give up some quantum-mechanical kinetic energy, rather than forming a Fermi liquid
and being subject to perpetual collisions with other electrons.



The result is the well-known "Mott insulator", realized in simple members of many
material systems that will be of interest later (Figure 1). Charge excitations in a Mott
insulator require a high energy, because in the transfer of a localized electron from
one atom to the next one has to overcome the large Coulomb repulsion of the
electron localized on the neighboring atom. They are "frozen out", that is, the energy
gap for charge excitations is much larger than typical temperatures. The spin
degrees of freedom, on the other hand, give rise to low energy excitation modes
termed "spin waves". They are described by the "spin Hamiltonian", often of the
Heisenberg form

jiijij SSJH Σ=

The magnitude and the sign of the exchange parameters ijJ  is determined the
relative orientation of the orbitals of neighboring magnetic atoms (d-orbitals in the
case of La2CuO4 shown in Figure 1). This is described in Section 4 below. Here we
regard them simply as fixed parameters. Since ijJ falls off rapidly with increasing
separation of the atoms i and j, it is usually a good approximation to consider
nearest-neighbor interactions only. It is then straightforward to derive the excitation
spectrum of H. For the two-dimensional square lattice (appropriate for La2CuO4
because of its layered structure, see Fig. 1), one obtains 
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where )]aqcos()aq[cos()q( yx2
1 +=γ  and a is the nearest-neighbor distance. This is the

dispersion relation of a spin wave. Cartoons in both real space and reciprocal space
are shown in Figure 2. 

 
 Since the typical energy scale for J is 1-100 meV, spin waves can be readily
detected by inelastic scattering of thermal neutrons. Through the fluctuation-
dissipation theorem

Fig. 1: Magnetic structure of
insulating La2CuO4.

Fig. 2: Schematic representation of a spin
wave for a two-dimensional square
lattice with nearest-neighbor exchange
interaction J and spin S.
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the neutron cross section is proportional to the imaginary part, ),q(" ωχ , of the wave
vector and energy dependent dynamical susceptibility ),q( ωχ , which describes the
response of the magnetization M to a generalized magnetic field:

( , ) ( ) exp( )M q t H q i tχ ω= −
Here, as in the following, we do not worry too much about constants of proportionality
that can be looked up in textbooks, and focus on the essential physics. In the case of
scattering from spin waves, the dynamical susceptibility is given by a delta-function
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that is nonzero only for points along this dispersion relation. The constant of
proportionality is chosen such that in the limit 0q =ω=  the definition is compatible
with that of the uniform susceptibility whose real part, )0,0('χ , is measured in a
standard magnetization experiment. It will henceforth be omitted for clarity.
  Spin waves in Mott insulators, where the effective Coulomb interactions are so
strong that all electrons are localized, have been studied for many years, and the
physics is well understood. In the opposite limit, that of a noninteracting gas of
electrons, the spin excitations are also, in principle, well understood. Low energy
excitations (with excitation energy much smaller than the Fermi energy) are created
by flipping the spin of an electron near the Fermi surface and propagating it to a
different location in reciprocal space, as depicted in Figure 3.

 

The excitation spectrum forms a broad continuum, because spin-flip excitations with
the same energy can have many different wave vectors. For instance, zero energy
excitations can be created with wave vectors 0<q<2kF. From Fermi's Golden Rule,
we know that the cross section (and hence the dynamical susceptibility) can be
written as
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where f is the Fermi function and the arrows indicate spin-up and spin-down states,
respectively. Using the identity
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where it is understood that .0→ε This should give a good description of the magnetic
spectrum of a simple metal such as, say, Na. Unfortunately, the spectral weight of
the continuum spin excitations is so weak that they have actually never been
observed by inelastic neutron scattering. 

Fig. 3: Schematic representation of magnetic
excitations in a noninteracting electron gas.



  In both of these limiting cases (very strong and very weak interactions, respectively)
the magnetic dynamics of electrons is therefore well understood, at least in principle.
Current interest has shifted to the intermediate case, where the effective electron-
electron interactions are neither negligible nor strong enough to induce localization.
This is the situation realized in "strongly correlated" metals such as high temperature
superconductors that are being studied by many experimental groups around the
world. Of interest are not only the physical origin of superconductivity, but also the
more general question of whether the Fermi liquid theory is at all a valid starting point
for a theoretical description. Do we have to completely reinvent the theory of metals,
or can we get away with some minor patchwork? There are many indications that the
former is the case, which makes this field so interesting, but this can ultimately only
be established experimentally. Since the dynamical susceptibility ),q( ωχ measured by
neutron scattering yields incisive information about the electron-electron interactions
on precisely the relevant energy and length scales, it is widely considered as one of
the most important probes of these materials.
  Before giving an overview of our present (incomplete) understanding of spin
excitations in high temperature superconductors, we begin by briefly reviewing the
magnetic dynamics of some weakly correlated metals where the theory is already
rather advanced.

2. Weakly Correlated Metals
It is well known that ferromagnetism in solids is ultimately due to electron-electron
interactions. Due to the Pauli principle, two electrons in a spin-triplet state (with
nonzero total spin) have to be in a spatially antisymmetric state, so that their
Coulomb repulsion is minimized. A qualitative model of ferromagnetic solids such as
Fe or Ni can therefore be constructed by considering a repulsive potential for
electrons with antiparallel spin. For simplicity, we assume that this potential is
completely local, that is, )r(U)r(V δ∝↑↓ . This is not as unrealistic as it may seem,
because for d-and f-electrons the short-range, intra-atomic Coulomb interactions
between electrons tend to be much stronger than the long-range part of the
interaction. In a ferromagnetically ordered state with nonzero magnetization M (which
has to be derived self-consistently), this potential leads to a k -independent energy
difference UM∝∆ between spin-up and spin-down electrons. The external wave
vector dependent magnetic field in the above formula is enhanced by an internal term
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Again, we have omitted some constants to keep the formula simple. A full derivation
can be found in textbooks.  Several important results are apparent: The continuum is
now gapped due to the splitting in spin-up and spin-down bands, and the
susceptibility is enhanced.  Further, the renormalized susceptibility now has poles, in
addition to the continuum, that are determined by the condition that the denominator



of the imaginary part of ),q( ωχ vanish. These poles correspond to true collective
modes. The complete excitation spectrum is sketched in Figure 4 below.

The collective mode is readily interpreted as a spin wave, in analogy to the spin
waves in Mott insulators discussed above. Their existence is a general consequence
of the broken rotational symmetry in the magnetically ordered state, which always
goes along with a so-called "Goldstone mode" whose energy approaches zero at the
ordering wave vector ( )a/,a/(q ππ= for the two-dimensional antiferromagnet above,

0q = for a ferromagnet). These spin waves can and have been observed in Fe, Ni,
and other ferromagnets by inelastic neutron scattering.
  Other elemental metals (Cr and Mn) undergo transitions into so-called “spin density
wave states”. This can be understood in analogy to the Peierls instability of one-
dimensional metals mentioned above. In fact, the Fermi surfaces of these metals 

satisfy the so-called "nesting condition", that is, large sections of their Fermi surfaces
are parallel as sketched in Figure 5. As a consequence, the susceptibility resembles 
that of one-dimensional metals, and a magnetically ordered state with wave vector

0
q is stabilized if )q(

o0χ  exceeds a threshold value. Although the spin excitations in
Cr and Mn are still the subject of active research, one does find well defined low
energy spin waves around 

0
qq = as expected on general grounds.

Fig. 4: Sketch of the spin-up and spin-down
band dispersions and the spin excitation
spectrum of a metallic ferromagnet.

Fig. 5: Calculated  Fermi surface of Cr and two-dimensional section showing typical nesting vectors [1].



3. High Temperature Superconductors
High temperature superconductivity was discovered in copper oxides in 1986. The
many compounds that are now known to exhibit high temperature superconductivity
share a single structural motif, the CuO2 layer, and electronic conduction is believed
to be confined mostly to these layers. In the stoichiometric form (e.g., La2CuO4, Fig.
1), simple valence counting shows that the electron configuration of Cu is 3d9, while
that of O is 2p6. Oxygen is thus nonmagnetic, and there is a single hole (with spin
1/2) on each copper atom. 

As indicated by the above crystal field level scheme, the hole resides in the x2-y2 d-
orbital of Cu. The layered structure of the copper oxides results in a large crystal field
splitting, so that the completely filled d-orbitals are irrelevant for the electronic
structure. For undoped copper oxides, the Cu holes form a Mott insulating state with
antiferromagnetic spin structure. Interesting physics begins to appear when
additional holes are introduced into the CuO2 layers by chemical substitution (e.g., by
replacing trivalent La by divalent Sr in La2-x SrxCuO4). At a threshold concentration of
additional holes (~5%), the antiferromagnetic state is replaced by a metallic phase
with unconventional physical properties (e.g., T-linear resistivity over  a very wide
range of temperatures), and by a superconducting state at low temperatures, as
shown in Fig. 7.

Fig. 7: Generic phase diagram of the copper oxide
superconductors, as a function of the temperature (T)
and the hole concentration in the copper oxide layers
that can be varied by changing the chemical
composition (e.g., x in La2-x SrxCuO4 or YBa2Cu3O6+x).
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Cu2+ (3d9)

O2-(2p6)
Fig. 6: Crystal field splitting
of the Cu d-orbitals in the
layered copper oxides. All
orbitals except x2-y2 are
filled by two electrons.



   A look at Fig. 7 convinces one that the copper oxides should be regarded as
strongly correlated metals: The strong Coulomb interactions that give rise to the Mott
insulating state will not simply disappear upon doping (that is, changing the
parameter x). This also immediately suggests a mechanism for high temperature
superconductivity: If electronic interactions (whose energy scale extends up to
several eV) are responsible for pairing the electrons, rather than phonons (whose
energy scale is over the order of several meV, and which are known to be
responsible for pairing and superconductivity in low temperature superconductors),
then a high transition temperature comes naturally. Briefly said, "electrons pair
themselves". As always, however, the devil is in the details: It has proven remarkably
difficult to translate this simple physical intuition into a full theory. The reason is that
our conventional understanding of metals (encapsulated in the Fermi liquid theory) is
based on perturbations around the noninteracting limit and is therefore only of limited
usefulness for this problem. Mapping out the spin excitations by neutron scattering
gives essential guidance for new theories incorporating strong interactions from the
beginning. Fortuitously, the superconducting energy gap in these systems is also of
the same order as the energy of typical thermal neutrons.
   While the efforts to explain the anomalous metallic and superconducting phases
are still in their infancy, remarkably general predictions exist for the spin dynamics
near the point where these meet with the antiferromagnetic phase in the phase
diagram of Fig. 7. This is because theories originating in the 1970's have shown that
near a phase transition, the properties of a system (including its dynamics) should
only depend on certain very general features such as the number of components of
the order parameter and the spatial dimensionality, and should thus be common to
many superficially dissimilar systems. These predictions take a particularly simple
form near T=0 phase transitions whose character is dominated by quantum
fluctuations (so-called quantum phase transition). For two-dimensional
antiferromagnets, it has been shown that [2]
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where QAF ( / , / )a aπ π=  is the antiferromagnetic ordering wave vector, z is the so-
called "dynamical critical exponent", and F is a scaling function to be determined by a
detailed calculation. This means that a single characteristic length scale and a single
characteristic energy scale determine the entire dynamics of the system, both of
which are set by the temperature. In order to focus on one of these aspects, we can
integrate over q and consider the so-called local susceptibility ),q(qd2 ωχ∫ . This is
plotted in Fig. 8 for La1.96Sr0.04CuO4, a composition very close to the quantum critical
point. The result shows that the spin susceptibility is indeed homogeneous in ω/T, as
predicted by the theory of quantum phase transitions. Very similar behavior has
recently been observed near the quantum critical point of a "heavy fermion" system
(with very different chemical composition and lattice structure) near a quantum critical
point, confirming the "universality" of the temperature scaling observed in the copper
oxides.



At larger hole concentrations, La2-xSrxCuO4 becomes superconducting. In the
superconducting state, pronounced spin excitations can still be observed, with wave
vector at or close to the antiferromagnetic ordering wave vector. The spin excitation
spectrum is strongly changed upon entering the superconducting state, which gives
credence to our assumption above that some electronic excitation stabilizes
superconductivity. A particularly striking example is the so-called "resonance peak"
whose properties are summarized in Fig. 9.
  The spectral weight of this sharp excitation is concentrated around the wave vector
(π/a,π/a) and is nonzero only in the superconducting state. Below Tc, it follows an
order-parameter-like behavior. How do we understand this unusual excitation? We
can begin by writing down the dynamical susceptibility of an electron system
described by a BCS wave function, but otherwise noninteracting [5]:
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Fig. 8:  Local susceptibility of
La1.96Sr0.04CuO4, near the quantum
phase transition that separates
antiferromagnetic and superconducting
phases, as a function of the reduced
parameter ω/T. (Here: h =kB=1.) [3]

Fig. 9: Dynamical spin susceptibility of the
high temperature superconductor YBa2Cu3O7
at the wave vector QAF =(π/a, π/a). Tc is the
superconducting transition temperature [4].



where δ→0, εk are the band dispersions measured from the Fermi surface, ∆k is the
superconducting energy gap function (whose magnitude and even sign is in general
also k-dependent, depending on the internal structure of a Cooper pair), and

2
k
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kkE ∆+ε= . The first term describes scattering of thermally excited electrons,

completely analogous to the continuum excitations of a free electron gas discussed
above, but now in the presence of the superconducting gap. The second and third
terms describe annihilation and creation, respectively, of a spin-triplet pair of free
electrons from a spin-singlet Cooper pair. 
   At low temperatures, where thermal energies are small but the resonance peak is
most pronounced, the first two processes are negligible and only the third process,
pair creation, is relevant. Looking at the susceptibility for this process, we notice two
factors: The second factor is again a density-of-states factor of the form already
encountered. The first factor is called "coherence factor", and it is a consequence of
the functional form of the BCS wave function. Setting εk =0 (for excitation energies
small compared to the Fermi energy), and plugging in the expression for Ek we notice
that the coherence factor is zero if the gap function, ∆k, is isotropic (∆k= ∆k+q for all k
and q), and the cross section for pair creation therefore vanishes. This is the reason
why pair creation by magnetic neutron scattering has not been observed in ordinary
superconductors. In the copper oxides, however, the gap function ∆k is highly
anisotropic and even carries an unconventional d-wave symmetry. This is ultimately
due to the strong Coulomb repulsion between the electrons: In order to minimize their
relative separation, the electrons are bound up in a spin-singlet state with relative
orbital angular momentum 2. (This guarantees the antisymmetry of the state as
required by the Pauli principle. Recently, spin-triplet superconductivity with p-wave
symmetry was discovered in another transition metal oxide, Sr2RuO4, but only below
T=1.5K.) 
  Looking again at the cross section for pair creation, we notice that it is generally
nonzero if ∆k has d-wave symmetry, as observed in the cuprates. In particular, ∆k= -
∆k+q for k ≈ (π/a,0), q ≈ (π/a, π/a). This alone is, however, not sufficient to explain
the neutron data, because the resonance peak is very sharp in both energy and
momentum while the continuum excitations described by χ0 are always broad. In
order to fully describe the data, it is necessary to introduce a q-dependent
generalization J(q) of the simple interaction potential used above for ferromagnetic
metals:
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In analogy to the susceptibility of ferromagnetic metals discussed above, this
expression can also have poles corresponding to collective modes. By fitting the
neutron data, which are now available for a variety of different copper oxide
compounds and doping concentrations, one can extract much useful information
about the function J(q), and thus about the electronic interactions that ultimately drive
high temperature superconductivity. As already indicated by the proximity to the
antiferromagnetic instability, J(q) is peaked at QAF. A detailed calculation yields a
magnetic spectrum of the following form:



The downward dispersion sketched here has actually been observed recently [6].
The resonance peak therefore corresponds to a true collective mode below the
continuum, in analogy to the spin waves in Fe or Ni. However, in contrast to the
situation in these magnetically ordered systems, the collective mode is not a
Goldstone mode that restores a spontaneously broken symmetry. The broken
symmetry in a superconductor (electromagnetic gauge symmetry) has nothing to do
with the magnetization whose dynamics we are measuring. In this sense, the
magnetic mode observed in high temperature superconductors is much more subtle
than spin waves in ferromagnetic metals.
  A microscopic theory of the spin excitations in copper oxides that starts from a
Hamiltonian instead of phenomenological assumptions does not yet exist. There are,
however, many indications of a direct relation between the mechanism of high
temperature superconductivity and the spin excitations measured by neutron
scattering. One approach is the so-called  “tunneling spectroscopy” which looks at
the spectrum of electrons emitted through the insulating layer of a tunnel junction
upon application of a bias voltage. If tunnel spectra contain strong features at the
same energies as known collective modes in the superconductor, this is indicative of
a strong interaction between the superconducting electrons and these collective
modes. In the 1970’s, a match between such features in tunnel spectra and features
in the phonon density of states measured by neutron spectroscopy yielded the most
unambiguous experimental evidence to-date for a strong electron-phonon interaction
and phonon-mediated superconductivity in ordinary metals such as Pb or Al (Fig. 11). 

  Some researchers have claimed a similar match between features observed in the
tunnel spectra of copper oxide superconductors and the magnetic resonant mode
observed in the neutron experiments described above. If confirmed, this would be a
persuasive indication of a magnetic pairing mechanism. However, this claim is still
hotly debated in the copper oxides. For a different strongly correlated metal, UPd2Al3,
the situation is already more clear-cut. This material has f-electrons in its valence
band, orders antiferromagnetically around 14 K and becomes superconducting at 1.8
K. Neutron scattering has revealed an antiferromagnetic excitation mode around 1
meV with a similar temperature dependence as the “resonant mode” in the high-Tc
materials. A strong feature in the tunnel spectrum of this material at the same energy
provides powerful evidence of a spin-fluctuation mediated pairing mechanism (Fig.
11). Detailed work of this type is also the best hope for eventually elucidating the
pairing mechanism responsible for the high superconducting transition temperatures
in the copper oxides.

Fig. 10: Theoretical description of the
experimentally observed resonant
spin excitation mode.



4. Orbital Degeneracy
  
As already mentioned, the layered structure of the superconducting copper oxides
results in an electronic structure in which only one d-orbital, x2-y2, is relevant. In
transition metal compounds with more isotropic, three-dimensional bonding networks,
the valence electrons can often choose between different orbitals. The orbital
degeneracy is then broken through a spontaneous lattice distortion, the so-called
Jahn-Teller effect, which was described in quantitative detail in M. Sigrist’s lecture.
As the lattice distortions around neighboring transition metal ions in a chemical
comp re coupled, the Jahn-Teller effect is cooperative and results in long
rang

Fig. 11: Tunnel spectrum of a
Pb-Al2O3-UPd2Al3 junction. Al2O3 is an
insulator, Pb is a conventional (phonon-
mediated) superconductor [7]. The feature at
low energy can be matched to a spin
fluctuation mode of the unconventional
superconductor UPd2Al3 identified
independently by neutron scattering.

Pb phonons

UPd2Al3
spin excitation
ound a

e orbital order. This is nicely illustrated in KCuF3:

Fig. 12: Orbital order in KCuF3 [8].



Here, Cu is again in the valence state 2+, but the orbital occupied by the Cu hole
alternates from site to site due to the cooperative Jahn-Teller effect. Note that there
are four short and two long bonds for every copper atom, so that the local symmetry
is similar to Fig. 6. The orbital occupations determine the magnetic exchange
interactions between the spins of Cu holes on neighboring sites whose signs and
magnitudes were summarized in the so-called “Goodenough-Kanamori rules”. As a
quantitative treatment was given in M. Sigrist’s lecture, we only summarize a few
qualitative aspects in the following sketch:

As a consequence of these rules, KCuF3 is an excellent physical realization of a
quasi-one-dimensional antiferromagnet, with strong antiferromagnetic exchange
interactions along one crystal axis and weak ferromagnetic interactions along the two
perpendicular axes. KCuF3 is the first real compound in which a “two-spinon
continuum” theoretically expected for one-dimensional antiferromagnets was
experimentally observed.
  A similar example is LaMnO3, another Mott-Hubbard insulator with a nearly cubic
lattice structure which contains Mn in its 3+ valence state with electron configuration
3d4. Like Cu2+, Mn3+ is a Jahn-Teller ion:

The cooperative Jahn-Teller effect leads to orbital order at around 800 K, which can
be observed in x-ray or neutron diffraction by virtue of  the concomitant lattice
distortion:

strong,
antiferromagnetic

weak,
ferromagnetic

Fig. 13: Illustration of one of the
“Goodenough-Kanamori rules”: If
identical (orthogonal) orbitals are
occupied on neighboring lattice sites,
the exchange coupling is strong and
antiferromagnetic (weak and
ferromagnetic).
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Fig. 14: Crystal field
splitting of the Mn3+ ion in
an ideally cubic structure.
The upper two orbitals are
termed “eg-orbitals”, the
lower two “t2g-orbitals”. The
individual electron spins are
aligned due to Hund’s rule;
the total spin of the Mn3+ ion
is therefore S=2. The orbital
degeneracy is lifted by the
cooperative Jahn-Teller
effect.



According to the Goodenough-Kanamori rules, this orbital ordering pattern results in
ferromagnetic exchange interactions in a plane perpendicular to the c-axis, and
antiferromagnetic interactions along c. A magnetic ordering pattern in line with these
rules is actually observed by magnetic neutron diffraction at much lower temperature: 

The spin dynamics in the magnetically ordered state of LaMnO3 is therefore highly
anisotropic, with ferromagnetic spin wave dispersions along the ab-plane and an
antiferromagnetic dispersion along c:

Fig. 15: Superstructure reflection
characteristic of orbital order in
LaMnO3 [9]. The inset shows a section
of the nearly cubic structure
perpendicular to the c-axis with the
orbital ordering pattern. Along the c-
axis (out of the page), identical orbitals
are occupied on nearest-neighbor
sites.

Mn3

J⊥ (anti-
ferromag.)

J (ferromag.)

Fig. 16: Magnetic structure of
insulating LaMnO3.

Q (A-1)

Fig. 17: Magnon dispersions in
LaMnO3 [10].



Like the copper oxides, the manganese oxides can also be doped by chemical
substitution. Due to the additional, orbital degree of freedom the resulting phase
diagram is considerably more complicated than that of the copper oxides (Fig.  7).
The phases realized depend strongly on details of the crystal structure. The phase
diagrams of compounds with small Mn-Mn hopping parameters (small conduction
band width) tend to contain only Mott insulating states with static ordering patterns in
which the Jahn-Teller ion Mn3+ alternates with the non-Jahn-Teller ion Mn4+. These
“charged ordered” states are therefore associated with orbital order of a different
periodicity than that of insulating LaMnO3. They also exhibit magnetic order and can
be thought of as strongly correlated analogs of the charge and spin density waves
phases discussed in Section 2 for weakly correlated metals. An example of such a
phase diagram is given in Fig. 18.

Not surprisingly, the spin dynamics in these charge ordered phases is rather complex
and it is still a matter of active investigation. Other manganese oxide families with a
larger single-electron band width (such as La1-xSrxMnO3) exhibit metallic phases as
well. The orbital order in these metallic phases is believed to be obliterated by the
conduction electrons, which drag the orbitals along with them. Nonetheless, these
states tend to be ferromagnetically ordered at low temperatures. The mechanism
responsible for ferromagnetic order in metallic manganese oxides, the so-called
“double exchange”, is entirely different from the superexchange mechanism
discussed above: Ferromagnetic alignment of the t2g “core spins” (S=3/2) on every
Mn ion facilitates hopping of the eg conduction electrons by virtue of the intra-atomic
Hund’s rule, thereby lowering their kinetic energy. Due to the absence of orbital
order, the spin dynamics in the metallic phase is exceptionally simple. The
anisotropies observed in the orbitally ordered state (Fig. 17) are “washed out” by the
orbital fluctuations, and the magnon spectrum becomes perfectly isotropic, that is, it
is described by a Heisenberg model with the same ferromagnetic nearest-neighbor
exchange coupling in all crystallographic directions: 

Fig. 18: Phase diagram of Pr1-xCaxMnO3.
The eg-orbital of Mn3+ is shown in red, the
Mn4+ ions (with only t2g electrons) are
shown in blue.
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Curiously, such perfectly isotropic spin dynamics was also recently observed in
insulating titanium oxides such as LaTiO3 and YTiO3 (Fig. 20). These materials have
the same nearly cubic crystal structure as LaMnO3 and therefore the same crystal
field level scheme as in Fig. 14. However, Ti3+ has only one d-electron occupying the
t2g manifold, and the orbital degeneracy is hence larger than in the manganates.
Moreover, the t2g orbitals point away from the surrounding oxygen ions so that the
coupling to the lattice through the Jahn-Teller effect is substantially weaker. Current
theories therefore attribute the isotropic spin dynamics to orbital quantum
fluctuations, analogous to those in the metallic manganese oxides. However, in
contrast to the manganates, the orbital fluctuations in the titanates are not induced by
charge fluctuations. Rather, they must be regarded as spontaneous zero-point
fluctuations, roughly analogous to the atomic zero-point motion in liquid He. A
quantitative description of these orbital quantum fluctuations is currently a matter of
active research (see M. Sigrist’s lecture).

Fig. 19: Magnon spectrum of
La0.7Pb0.3MnO3 in its ferromagnetic metallic
state. The lines are the result of a fit to an
isotropic nearest-neighbor Heisenberg
model [11].

Fig. 20: Magnon spectrum of insulating
YTiO3 in its ferromagnetically ordered state.
The lines are the result of a fit to an
isotropic nearest-neighbor Heisenberg
model [12].
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