

Mn₄ single-molecule magnet

Mn₄O₃(OSiMe₃)(O₂CMe)₃(dbm)₃

S = 9/2

$Mn_4O_3(OSiMe_3)(O_2CMe)_3(dbm)_3$ (SB1)

Symmetry space group: P6(3)

Top view

Side view

Dipolar coupling

Intermolecular exchange coupling

dipolar & exchange coupling Mn4 (SB1) ≈ 36 mT

Chain-like dipolar & exchange coupling

S = 9/2

Collective quantum phenomena One-body tunnel transitions

Two-body tunnel transitions

 $JS^2 \approx 0.2 K$ S = 9/2

Two coupled SMM of S = 9/2

$$\mathbf{H}_{i} = -D S_{i,z}^{2} + \mathbf{H}_{i}^{trans} + g\mu_{B}\mu_{0} \vec{S}_{i} \vec{H}$$

 $(2S_i + 1)$ energy states $S_i = 9/2$: 10 energy states $M_i = -S_i, -S_i+1, ..., S_i$

$$\mathbf{H} = \mathbf{H}_1 + \mathbf{H}_2 + J \, \vec{S}_1 \vec{S}_2$$

$$(2S_1 + 1)(2S_2 + 1)$$
 energy states
 $S_i = 9/2$: **100** energy states
 $M_1 = -S_1, -S_1+1, ..., S_1$
 $M_2 = -S_2, -S_2+1, ..., S_2$

Zeeman diagram of two coupled SMM of S = 9/2

Energy (K)

Spin-spin cross-relaxation *"the happy collaboration of two spins"*

Examples:

Transition 7

Initial state: (-9/2,-9/2) After tunneling: (-7/2,+9/2) Final state: (-9/2,+9/2)

Transition 13

Initial state: (-9/2,+9/2) After tunneling: (+7/2,+7/2) Final state: (+9/2,+9/2)

Virtual phonon transitions

 $\mathbf{H} = \mathbf{H}_1 + \mathbf{H}_2 + J \,\vec{S}_1 \vec{S}_2$ $\mathbf{H}_i = -D \,S_{i,z}^2 + \mathbf{H}_i^{trans} + g \mu_B \mu_0 \,\vec{S}_i \,\vec{H}$

Photons Conduction electrons Phonons Magnetic quantum system - spin - spin - nanoparticle - nanoparticle - chain - spin bath - intermolecular interactions

Decoherence in magnetic mesoscopic systems

Interaction with photons (microwaves: 1 to 115 GHz)

Quantum computing in molecular magnets

Michael N. Leuenberger & Daniel Loss NATURE, 410, 791 (2001)

- implementation of Grover's algorithm
- storage unit of a dynamic random access memory device.
- fast electron spin resonance pulses can be used to decode and read out stored numbers of up to 10⁵ with access times as short as 0.1 nanoseconds.

Absorption of microwaves

 $V_{15} \ S = 1/2$

Reducing intermolecular couplings

 Fe_6 wheels: S = 0

Doping with Ga $Fe_5Ga : S = 5/2$

Reducing intermolecular couplings

 Fe_6 wheels: S = 0

Doping with Ga $Fe_5Ga: S = 5/2$

Photon assisted tunneling Absorption of circular polarized microwaves

Absorption of circular polarized microwaves (115 GHz)

Absorption of circular polarized microwaves (95 GHz)

Perspectives concerning microwave experiments

• Quantum dynamic: spin-echo like experiments

L. Thomas, B. Barbara, et al., Nature (1996)

R. Sessoli, D. Gatteschi, D. Hendrikson, G. Christou, *et al.* (1993) M. Novak, C. Paulsen, B. Barbara, *et al.* (1994) J. Friedman, M. Sarachik, *et al.*, PRL (1996) L. Thomas, B. Barbara *et al.*, Nature (1996)

Followed by: 130 systems

 $\begin{array}{c} Mn, Mn_2, Mn_3, Mn_4, [Mn_4]_2, Mn_5, Mn_6, Mn_7, Mn_8, Mn_9, Mn_{10}, \\ Mn_{11}, Mn_{12}, Mn_{13}, Mn_{16}, Mn_{18}, Mn_{21}, Mn_{24}, Mn_{26}, Mn_{30} \\ \hline Fe_2, Fe_1, Fe_4, Fe_5, Fe_6, Fe_1, Fe_8, Fe_{10}, Fe_{11}, Fe_{13}, Fe_{17/19}, Fe_{19} \\ Ni_4, Ni_5, Ni_6, Ni_8, Ni_{12}, Ni_{21}, Ni_{24} \\ \hline Co_4, Co_6, Co_{10} \\ Co_2Gd_2, Co_2Dy_2, Cr_{12}, CrNi_6, CrNi_2, CrCo_3, Fe_{10}Na_2, Fe_2Ni_3, \\ Mn_2Dy_2, Mn_2Nd_2, V_{15}, Io, \dots \end{array}$

Rare-earth ions: Ho^{3+} in $Y_{0.998}Ho_{0.002}LiF_4$

Effects of Strong Hyperfine Interactions

Tetragonal symmetry (Ho in S4)

$$J = L + S = 8;$$
 $g_1 = 5/4$

R. Giraud, W. Wernsdorfer, A.~M. Tkachuk, D. Mailly, and B. Barbara, *Phys. Rev. Lett.* **87**, 057203 (2001).

Slow dynamics in spin-chains

NC[Fe(III)(CN)Co(II)]NC

A. R. Lescouezec, M. Julve, F. Lloret, Valencia University, Spain P. Herson, Y. Dromzée, M. Verdaguer Chimie Inorganique et Matériaux Moléculaires, CNRS, Paris

Conclusion

J. Villain:

"... a school of physics"

& chemistry

Collaborations

L. Thomas	PhD 1996: Mn ₁₂ -ac
F. Lionti	PhD 1997: Mn ₁₂ -ac, Fe _{17/19}
I. Chiorescu	PhD 2000: Mn ₁₂ -ac, V ₁₅
R. Giraud	PhD 2002: Ho ³⁺
C. Thirion	PhD 2003: nanoparticles, GHz
R. Tiron	PhD 2004: [Mn ₄] ₂ ,

E. Bonet, W. Wernsdorfer, B. Barbara LLN, CNRS, Grenoble

C. Paulsen, V. Villar, A. Sulpice, A. Benoit CRTBT, CNRS, Grenoble

> A.-L. Barra, L. Sorace, LCMI - CNRS, Grenoble

> D. Mailly LPN, CNRS, Marcoussis

Collaborations

Concerning SMMs and spin chains

C. Paulsen, A. Sulpice, V. Villar, T. Ohm, CRTBT - CNRS A.-L. Barra, L. Sorace, LCMI - CNRS, Grenoble

Group of G. Christou, Dept. of Chemistry, Florida Group of D. Hendrickson, Dept. of Chemistry, San Diego

Group of D. Gatteschi et R. Sessoli, Univ. de Firenze, Italie Group of A. Cornia, Univ. de Modena, Italie

Group of A. Müller, Univ. de Bielefeld, Germany Group of A. Powell, Univ. de Kahlsruhe, Germany Group of M. Verdaguer, Univ. P. et M. Curie, Paris Group of M. Julve, Univ. de Valence, Spain Group of R.E.P. Winpenny, Univ. de Manchester, UK Group of E. Coronado, Univ. de Valence, Spain Group of P. Rey et D. Luneau, CEA, Grenoble Merci !

 $[Mn_{12}O_{12}(O_2CCH_2Bu')_{16}(H_2O)_4] \bullet CH_2CI_2 \bullet CH_3NO_2$

S = 9, D = 0.6 K S' = 10, D' = 0.5 K

MQT Strategy of single particle measurements

Quasi-static	Dynamic
measurements	measurements
- hysteresis loops	- relaxation (T,H)
- H _{SW} (,)	- P(T,H), H _{sw} (T,dH/dt)
- magnetic anisotropy (forme, crystalline, surface)	 activation volume damping factor

"all" parameters are defined in the classical regime

deviations for T -> 0

studying the crossover Tc and the escape rate Γ_{QT} as a function of external parameters: transverse fields, field directions, microwaves, etc.

Macroscopic Quantum Tunneling of magnetization

Miguel and Chudnovsky, PRB (1996) Gwang-Hee Kim and Dae Sung Hwang, PRB (1997)

Quantization of the magnetization

1

easy $\Delta H' \Delta H'$ axis Schematic view of the resonance P(H) fields of a giant spin S. The continuous red line is the ч dH/dt classical switching fields of Stoner-Wohlfarth. Η .▼ The inset presents schematically ΔH a switching field histogram with hard θ H' $\frac{H_a}{2S} \frac{1}{\cos\theta}$ axis 00 h_x

1

Comparison of Josephson and magnetic grain systems

System	Rf SQUID ring or current-biased junction	Single domain ferro- or antiferromagnetic particle
Macroscopic variable	Trapped flux or Cooper pair phase	Magnetization or Néel vector
Control parameters q	External flux or Bias curren I $\epsilon = 1 - I/I_C$ Critical current I_C dissipation	t Applied magnetic fieldH $\epsilon = 1 - H/H_{sw}^0$ Magnetic anisotropy field H_{sw}^0 Field directions or transverse fields dissipation
Form of potential near instability	α q² - β q³	$\alpha q^2 - \beta q^3$ or $\alpha q^2 - \gamma q^4$ (depending on field direction)
Number of particles involved in tunneling	10 ¹⁵ - 10 ²³ electrons (SQUID)	1 - 10 ⁸ magnetic moments