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Field Theory Approach to Diffusion-Limited Reactions

1. Models and Mappings

How to turn stochastic particle models into a field theory,
with no phenomenology.

2. Single-Species Annihilation

Field theoretic renormalization group calculation for
A + A → 0 reaction in gory detail.

3. Applications

Higher order reactions, disorder, Lévy flights, two-species
reactions, coupled reactions.

4. Active to Absorbing State Transitions

Directed percolation, branching and annihilating random
walks, and all that.
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Diffusion-Limited Reactions

One or more species of particles undergoing random walks on a
lattice, with a reactions occurring for particles on the same lattice
site

?
Α+Α→Α Α+Β→∅

Example: for A + A → 0 the density of particles decays as

ρ(t) =

⎧⎪⎨
⎪⎩

Ct−1 for d > 2
Ã ln t/Dt for d = 2
Ad(Dt)−d/2 for d < 2

where Ad and Ã are universal numbers!
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Field Theory Approach to Diffusion-Limited Reactions:
1. Models and Mappings

Master Equation for Lattice Models

Doi Representation

Mapping to Field Theory
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Stochastic Classical Particles on a Lattice

Consider a set of lattice sites labeled i = 1, 2, 3, . . . , and each site
is occupied by n1, n2, n3, . . . particles.

i

ni

Define

� α = a particular state, i.e., α = {n1, n2, n3, . . . }
� P (α, t) = the probability of obtaining state α at time t.
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Probability Master Equation

Dynamical processes processes (hops, reactions, decays) will cause
a change of state from α to β.

wα→β = rate of transition from α to β, defines dynamics

Master Equation

d

dt
P (α, t) =

∑
β

[
wβ→αP (β, t)︸ ︷︷ ︸

flow into α

−wα→βP (α, t)︸ ︷︷ ︸
flow out of α

]

�
∑

α P (α, t) = 1 preserved by the master equation

� Initial conditions P (α, 0) need to be specified

6 / 34

Master Equation for A → 0 Decay

Consider a single lattice site that contains some number of
identical particles. These particles decay at rate λ.

The rate for a transition from n to m particles is

wn→m =

{
0 for m �= n − 1
nλ for m = n − 1

and the master equation is

d

dt
P (n, t) = λ

[
(n + 1)P (n + 1, t) − n P (n, t)

]

Wait! That doesn’t look like exponential decay . . .
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Master Equation to Differential Equation

Let ρ(t) = 〈n〉 =
∑

n n P (n, t) be the average number of particles
at time t. Then

ρ̇ =
∑

n

nṖ (n, t) =
∑

n

n

[
λ(n + 1)P (n + 1, t) − λnP (n, t)

]

= λ
∑

n

n(n + 1)P (n + 1, t) − λ
∑

n

n2P (n, t)

= λ
∑
m

(m − 1)mP (m, t) − λ
∑

n

n2P (n, t)

= −λ
∑
m

mP (m, t)

= −λρ
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A + A → 0 Reaction

Again, consider a single lattice site, with the rule that a pair of
particles may annihilate each other. The rates are

wn→m =

{
0 for m �= n − 2
n(n − 1)λ for m = n − 2

and the master equation is

d

dt
P (n, t) = λ

[
(n + 2)(n + 1)P (n + 2, t) − n(n − 1)P (n, t)

]
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Hop

Now consider two sites, i = 1
and 2, with a rate Γ of
hopping from site 1 to site 2.

1 1 22

4Γ

w(n1,n2)→(m1,m2) =

{
0 for m1 �= n1 − 1 or m2 �= n2 + 1
n1Γ for m1 = n1 − 1 and m2 = n2 + 1

and the master equation is

d

dt
P (n1, n2, t) = Γ

[
(n1 + 1)P (n1 + 1, n2 − 1, t) − n1P (n1, n2, t)

]
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Diffusion

Consider a one-dimensional chain of
lattice sites i = 1, 2, . . . and let all
particles hop left or right with rate
Γ. The master equation is

i

ni

Γ
3Γ

d

dt
P (α, t) = Γ

∑
〈ij〉

[
(ni + 1)P (ni + 1, nj − 1, . . . , t) − niP (α, t)

(nj + 1)P (ni − 1, nj + 1, . . . , t) − njP (α, t)
]

Define ρ(x, t) =
∑

α niP (α, t) where x = iΔx.

For small Δx this becomes the diffusion equation:

∂ρ

∂t
= D

∂2ρ

∂x2
D = ΓΔx2 = diffusion constant.
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Master Equation for A+A → 0 Diffusion-Limited Reaction

d

dt
P ({n}, t) =

D

Δx2

∑
〈ij〉

[
(ni + 1)P (. . . , ni+1, nj−1, . . . , t) − niP ({n}, t)

+ (nj + 1)P (. . . , ni−1, nj+1, . . . , t) − njP ({n}, t)
]

+ λ
∑

i

[
(ni + 2)(ni + 1)P (. . . , ni + 2, . . . , t)

− ni(ni − 1)P ({n}, t)
]

with P ({n}, 0) =
∏

i

nni
0 e−n0

ni!
for random initial conditions.

Yuck!
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Field Theory Approach to Diffusion-Limited Reactions:
1. Models and Mappings

Master Equation for Lattice Models

Doi Representation

Mapping to Field Theory
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Doi Occupation Number Representation (Fock Space)

For a single lattice site:

� Introduce a creation operator â† and annihilation operator â,
with commutator [â, â†] = 1.

� Represent the state of zero particles by |0〉, defined via
â|0〉 = 0.

� Represent a state of n particles by |n〉 = â†n|0〉.
(Note: normalization differs from usual QM.)

� For this state

â† |n〉 = |n + 1〉 â |n〉 = n |n − 1〉 â†â |n〉 = n |n〉

For multiple lattice sites: introduce a pair âi, â†i at each site

{n} = (n1, n2, . . . ) ⇔ |{n}〉 =
∏

i

â†ni
i |0〉
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Doi Representation, part II

We can pack the probability P into a Fock space state:

|φ(t)〉 =
∑
{n}

P ({n}, t) |{n}〉

and re-write the master equation in Schrödinger-like form:

d

dt
|φ(t)〉 = −Ĥ|φ(t)〉

Why do this? Because it is a simpler description of the dynamics.
For A + A → 0 diffusion-limited reaction we get

Ĥ = Γ
∑
〈ij〉

(a†i − a†j)(ai − aj) − λ
∑

i

(1 − a†2i )a2
i

and formal solution |φ(t)〉 = exp(−Ĥt)|φ(0)〉.
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A + A → 0 on a Single Site

Master equation:

d

dt
P (n, t) = λ

[
(n + 2)(n + 1)P (n + 2, t) − n(n − 1)P (n, t)

]
Multiply by |n〉 and sum over n:

d

dt
|φ(t)〉 = λ

∑
n

P (n+2, t) (n + 2)(n + 1)|n〉−λ
∑

n

P (n, t) n(n − 1)|n〉

= λ
∑

n

P (n + 2, t) â2|n + 2〉 − λ
∑

n

P (n, t) â†2â2|n〉

= λ(â2 − â†2a2)
∑

n

P (n, t) |n〉

= λ(1 − â†2)â2|φ(t)〉 = −Ĥ|φ(t)〉
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Hop from Site 1 to Site 2

Master Equation

d

dt
P (n1, n2, t) = Γ

[
(n1+1)P (n1+1, n2−1, t) − n1P (n1, n2, t)

]
Multiply by |n1, n2〉 and sum over n1 and n2:

d

dt
|φ(t)〉 = Γ

∑
n1,n2

P (n1+1, n2−1, t) (n1+1)|n1, n2〉

− Γ
∑
n1,n2

P (n1, n2, t) n1|n1, n2〉

= Γ
∑
n1,n2

P (n1+1, n2−1, t) â†2â1 |n1+1, n2−1〉

− Γ
∑
n1,n2

P (n1, n2, t) â†1â1 |n1, n2〉

= Γ(â†2 − â†1)â1 |φ(t)〉
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Diffusion

� Hop from site 1 to site 2:

Ĥ1→2 = Γ(â†1 − â†2)a1

� Allow for the reverse hop with the same rate:

Ĥ1↔2 = Γ(â†1 − â†2)(â1 − â2)

� For hops between all neighboring lattice sites:

ĤD =
D

(Δx)2
∑
〈ij〉

(â†i − â†j)(âi − âj)
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Multiple Species

With two species reactions, such as A + B → 0 reaction, the
master equation is defined in terms of A-particle and B-particle
occupation numbers

P ({m}, {n}, t)

For the Doi representation, we introduce distinct creation and
annihilation operators for each species: âi, â†i , b̂i, and b̂†i , and
define state

|φ(t)〉 =
∑

{m},{n}
P ({m}, {n}, t)

∏
i

â†mi
i b̂†ni

i |0〉

19 / 34

Doi Hamiltonians

Each process contributes two terms to Ĥ, of the form

(rate)
[
(reactants) − (reaction)

]
(reactants) = creation and annihilation operator for each reactant,

normal ordered

(reaction) = annihilation operator for each reactant, creation
operator for each product, normal ordered

Examples:

A + A → 0 λ[â†2â2 − â2] A + A → A λ[â†2â2 − â†â2]

A → A + A λ[â†â − â†2â] A + B → C λ[â†b̂†âb̂ − ĉ†âb̂]

Hop 1 → 2 Γ[â†1a1 − â†2a1]
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Observables

For our classical particle system, averages are given by

〈A(t)〉 =
∑
{n}

A({n}) P ({n}, t)

To map this to the Doi representation, we need a projection state
〈P| = 〈0|e

P
i âi , which has properties

〈P|0〉 = 1 〈P|â†i = 〈P| ⇒ 〈P|n〉 = 1

Then, for the operator Â = A({ni → â†i âi}) we get

〈A(t)〉 = 〈P|Â|φ(t)〉 = 〈P|Â e−Ĥt|φ(0)〉

Note: for Poisson initial conditions, |φ(0)〉 =
∏

i e
−n0+n0â†

i |0〉
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Probability Conservation

Check Normalization

For some initial state P ({n}, 0) we average the identity operator:

〈P|1̂|φ(0)〉 = 〈P|
∑
{n}

P ({n}, 0)|{n}〉 =
∑
{n}

P ({n}, 0) = 1 �

Check Probability Conservation

What is the condition on Ĥ? We need

1 = 〈P|1̂e−Ĥt|φ(0)〉 = 〈P|(1 − Ĥt + 1
2 t2Ĥ2 − . . . )|φ(0)〉

for all t, so we require 〈P|Ĥ = 0. Equivalently, Ĥ → 0 as â†i → 1.

Note: Ĥ need not be hermitian!
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Field Theory Approach to Diffusion-Limited Reactions:
1. Models and Mappings

Master Equation for Lattice Models

Doi Representation

Mapping to Field Theory
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Coherent States

The coherent state |φ〉 = exp(−1
2 |φ|2 + φa†)|0〉 with complex φ

has properties

â|φ〉 = φ|φ〉, 〈φ|â† = 〈φ|φ∗

and the overlap relation

〈φ1|φ2〉 = exp(−1
2 |φ1|2 − 1

2 |φ2|2 + φ∗
1φ2)

Can construct a resolution of the identity operator

1̂ =
∑

n

1
n!
|n〉〈n| =

∑
m,n

1
n!
|n〉〈m|δmn =

∫
d2φ

π
|φ〉〈φ|

by use of

δmn =
1

m!π

∫
φ∗mφne−|φ|2 d2φ
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Coherent State Representation

Given Ĥ(â†i , âi), take formal solution |φ(t)〉 = e−Ĥt|φ(0)〉 and
divide time t into a number of small increments Δt via

e−Ĥt = exp(−ĤΔt)t/Δt

Insert 1̂ =
∫ d2φ

π |φ〉〈φ| between each successive time step:∫
. . . |φt+Δt〉〈φt+Δt|e−ĤΔt|φt〉〈φt|e−ĤΔt|φt−Δt〉〈φt−Δt| . . .

Now focus on a single matrix element:

〈φt|e−ĤΔt|φt−Δt〉 = e−H(φ∗
t ,φt−Δt)Δt〈φt|φt−Δt〉

� e−H(φ∗
t ,φt)Δt eφ∗

t φt−Δt− 1
2
|φt|2− 1

2
|φt−Δt|2

� e−H(φ∗
t ,φt)Δt e−φ∗

t ∂tφtΔt
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Path Integral

String together many time slices in the limit Δt → 0 and we get

e−Ĥt →
∫

Dφ∗Dφ exp
(
−

∫ t

0
dt′[φ∗∂t′φ + H(φ∗, φ)]

)

where
∏

j

(
d2φj

π

)
→ Dφ∗Dφ

Generalize to multiple lattice sites:

e−Ĥt →
∫ ∏

j

(Dφ∗
j Dφj) e−S[{φ∗

j},{φj}]

with

S =
∫ t

0

∑
j

dt′
[
φ∗

j∂t′φj + H({φ∗
j}, {φj})

]
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Path Integral Observables

〈A(t)〉 = 〈P|Âe−Ĥt|φ(0)〉 = N−1

∫ ∏
j

(Dφ∗
jDφj)A

(
φ(t)

)
e−S[φ∗,φ]

with action S given by

S =
∑

i

{
−φi(t) +

∫ t

0
dt′

[
φ∗

i ∂t′φi + H({φ∗
i }, {φi})

]
− n0φ

∗
i (0)

}

Can eliminate projection state term by field shift φ∗ → 1 + φ̃:∫ t

0
(1 + φ̃) ∂t′φ dt′ = φ(t) − φ(0) +

∫ t

0
φ̃ ∂tφ dt′

which takes H → H({1 + φ̃j}, {φj})
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Diffusion

SD =
∫

dt

[∑
i

φ̃i∂tφi +
D

Δx2

∑
〈ij〉

(φ̃i − φ̃j)(φi − φj)
]
−

∑
i

n0φ̃i(0)

=
∫

dt ddx
[
φ̃ ∂tφ + D∇φ̃ · ∇φ − n0φ̃ δ(t)

]

=
∫

dt ddx
[
φ̃(∂t − D∇2)φ − n0φ̃ δ(t)

]

Action is linear in φ̃. Extremum:

δSD

δφ̃
= ∂tφ − D∇2φ − n0 δ(t) = 0

is the plain old diffusion equation: ∂tφ = D∇2φ + n0 δ(t)
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Diffusion-Limited A + A → 0 Reaction

The reaction part of the hamiltonian is

Hreac = −λ
∑

i

(1 − φ∗2
i )φ2

i →
∫

ddx(2λ0φ̃φ2 + λ0φ̃
2φ2)

with the field shift φ∗ → 1 + φ̃ and λ0 = λ/Δxd.

Thus the complete A + A → 0 action is

S =
∫

ddx dt
[
φ̃(∂t − D∇2)φ + 2λ0φ̃φ2 + λ0φ̃

2φ2 − n0φ̃ δ(t)
]

Now we’re ready to do some calculations!
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The A + A → 0 Stochastic PDE

Can make the action linear in φ̃ via an auxiliary field η:

e−λ0φ̃2φ2 ∝
∫

dη exp
{
−1

2η2 + iη
√

2λ0 φ̃ φ
}

resulting in averages∫
Dη e−η2/2

∫
Dφ

∫
Dφ̃ e−

R
φ̃(∂t−D∇2)φ+2λ0φ̃φ2+iη

√
2λ0 φ̃φ

The φ̃ integration creates a δ-function that enforces

∂tφ = D∇2φ − 2λ0φ
2 + i

√
2λ0 φ η

A stochastic reaction-diffusion equation with multiplicative noise
that is complex!?

30 / 34

Summary and Observations

� Mapping to Doi representation simplifies the master equation
by getting rid of pesky factors involving n.

� This Fock space description natural for identical particles
acting independently, not restricted to quantum mechanics

� Fock space dynamics can be converted to a field theory
without resorting to Langevin-type phenomenology

� Technique can easily include multiple species, long-range
hops, birth/death processes, convected fields

� Mechanical forces not so easily included. Ĥ is not an energy
but rather rates.

� SPDE’s are fraught with peril!

31 / 34

Bibliography

Fock space representation:

� M. Doi, J. Phys. A: Math. Gen. 9, 1465 (1976)

� P. Grassberger and M. Scheunert, Fortschr. Phys. 28, 547 (1980)

Reaction diffusion field theory (Bargmann representation):

� L. Peliti, J. Physique 46, 1469 (1985)

General path integral techniques:

� L. S. Schulman, Techniques and Applications of Path Integration,

(New York, Wiley, 1981)

� J. W. Negele and J. Orland, Quantum Many-Particle Systems,

(Redwood City, CA, Addison-Wesley, 1988).

Reaction diffusion field theory (Coherent state representation):
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Exercises

1. Diffusion equation:
(a) Show that the diffusion master equation is equivalent to

d

dt
〈ni〉 =

D

Δx2

∑
j

(〈nj〉 − 〈ni〉)

where the sum on j runs over nearest neighbors of site i.

(b) Show that ρ(x, t) = 〈ni〉 with x = iΔx satisfies ∂tρ = D∂2
xρ

as Δx → 0.

(c) Generalize the result to a d-dimensional hypercubic lattice.

2. Consider the decay A → 0 on a single lattice site. Map the
problem from the master equation to the Doi hamiltonian to
the shifted field theory. Show that the Dφ̃ integration yields
the expected result

∂tφ = −λφ + n0 δ(t)
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Exercises

3. Write down the Doi hamiltonian for the reversible reaction
�A + mB � nC, with rates λ for the forward reaction and μ
for the reverse reaction. Here �A, for example, means � A
particles are required for the reaction.

4. Coherent states:

(a) Determine the coefficients Cn in the expansion of the coherent
state |φ〉 =

∑
n Cn|n〉

(b) Confirm the identity

δmn =
1

m!π

∫
φ∗mφne−|φ|2 d2φ

(c) Use the results from (a) and (b) confirm 1̂ =
∫

d2φ
π |φ〉〈φ|.

Note that d2φ = d(Reφ) d(Imφ).
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