Field Theory Approach to Diffusion-Limited Reactions

Field Theory Approach to 1. Models and Mappings
Diffusion-Limited Reactions: How to turn stochastic particle models into a field theory,

with no phenomenology.

1. Models and Mappings

2. Single-Species Annihilation

Field theoretic renormalization group calculation for

Ben Vollmayr-Lee A+ A — 0 reaction in gory detail.
Bucknell University

3. Applications

Higher order reactions, disorder, Lévy flights, two-species
Boulder School for Condensed Matter and Materials Physics reactions, coupled reactions.

July 13, 2009
4. Active to Absorbing State Transitions

Directed percolation, branching and annihilating random
walks, and all that.

Diffusion-Limited Reactions Field Theory Approach to Diffusion-Limited Reactions:

1. Models and Mappings

One or more species of particles undergoing random walks on a
lattice, with a reactions occurring for particles on the same lattice
site

| | Master Equation for Lattice Models

A+A—A i* A+B—Q 7& T
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Example: for A+ A — 0 the density of particles decays as

ct! for d > 2
p(t) =< Alnt/Dt for d =2
Ag(Dt)=42 for d < 2

where A, and A are universal numbers!




Stochastic Classical Particles on a Lattice Probability Master Equation

Consider a set of lattice sites labeled 4 =1, 2, 3, ..., and each site

is occupied by ni, ng, n3, ... particles.

n;

i

i

Define
» « = a particular state, i.e., « = {nj,ng,n3,...}

» P(a,t) = the probability of obtaining state « at time ¢.

Dynamical processes processes (hops, reactions, decays) will cause
a change of state from « to .

‘wa_ﬁ = rate of transition from « to (3, defines dynamics‘

Master Equation

—P (o, 1) Z[wgﬂa

B

—wa—pP (e, t)}

-~
flow out of a

flow into «

> >, Pla,t) =1 preserved by the master equation

» Initial conditions P(«,0) need to be specified

Master Equation for A — 0 Decay Master Equation to Differential Equation

Consider a single lattice site that contains some number of
identical particles. These particles decay at rate \.

The rate for a transition from n to m particles is

0 form#n-—1
Wy, =
e nA form=n-1

and the master equation is

%P(n t) =\ [(n +1)P(n+1,t) —nP(n, t)]

Wait! That doesn't look like exponential decay ...

Let p(t) = (n) = >, nP(n,t) be the average number of particles
at time ¢. Then

p=> nP(nt)=>Y n [)\(n +1)P(n+1,t) — AnP(n, t)]

=AY nn+1)Pn+1,6) =AY n’P(n,t)
—)\Z — 1)ymP(m,t) )\Zn2Pnt
= —)\ZmP m,t




A+ A — 0 Reaction

Again, consider a single lattice site, with the rule that a pair of
particles may annihilate each other. The rates are

0 form #n—2
Wp—m =
nn—1)\ form=n-—2

and the master equation is

%P(n, 1) = [+ 2)(n + DP(n+2,1) —n(n — 1)P(n,1)]

Hop
4T
Now consider two sites, i = 1 7 T
and 2, with a rate I of 3
hopping from site 1 to site 2. @
0o oA
1 2 )

0 formi #n1—1 or mag#ng+1

w N —
(n1,n2)—(m1,m2) {mF form; =ny —1and mg =no + 1

and the master equation is

d
ap(nl,ng,t) = F[(Tq + 1)P(TL1 +1,n9 — 1,t) — an(nl, 7”L2,t)i|
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Master Equation for A+ A — 0 Diffusion-Limited Reaction

Consider a one-dimensional chain of n; 3r
lattice sites 2 = 1, 2, ...and let all _/l r
particles hop left or right with rate mil _»'\
I'. The master equation is | | H
i
d
—P (o, 1) FZ[ n; +1)P(n; +1,n; — 1,...,t) — n;P(a,t)
(n; + 1)P(ni — 1,mj +1,...,) — an(oz,t)}
Define p(z,t) = >, niP(a,t) where x = iAx.
For small Ax this becomes the diffusion equation:
2
@ = D@ D = I'Az? = diffusion constant.
ot Ox?
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@ p({n}.1) =

D

Ar2 Z [(nl +1)P(...,n+1,n—-1, ..
(i)

+ (n; + 1)P(...,

1) =niP({n}, )

ni—l,nj—l—l, - ,t) — an({n},t)

+AZ[(ni+2)(ni+1)P(...,m+2,...,t)

—ni(ni — 1)P({n},?)

ni ,—ng

Ik
]

; 7
1

for random initial conditions.

with P({n},0)

Yuck!
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Field Theory Approach to Diffusion-Limited Reactions:

Doi Occupation Number Representation (Fock Space)

1. Models and Mappings

For a single lattice site:

» Introduce a creation operator & and annihilation operator @,
with commutator [, a'] = 1.

> Represent the state of zero particles by |0), defined via
al0) = 0.

> Represent a state of n particles by |n) = af™|0).

Doi Representation . .
(Note: normalization differs from usual QM.)

» For this state

aln) = |n+1) aln) =n|n—1) ata|n) = n|n)

For multiple lattice sites: introduce a pair a;, dg at each site

{n} = (n,na,...) & |[{n})=]]a™0)

i

Doi Representation, part |l A+ A — 0 on a Single Site
We can pack the probability P into a Fock space state: Master equation:
=" P({n},t) [{n}) %P(n 1) = A1+ 2+ VP +2,0) —n(n — 1)P(n,1)]

{n}

. . Multiply b and sum over n:
and re-write the master equation in Schrodinger-like form: ultiply by [n) Hm overn

%W(t)) = —H|p(t)) |¢> = AZP (n42,t) (n 4+ 2)(n+ 1)|n) AZP n,t)n(n —1)|n)

=AY Pn+2t)a*n+2) -\ P(n,t)a'%a?|n
Why do this? Because it is a simpler description of the dynamics. ; ( )&l ) Zn: () In)

For A+ A — 0 diffusion-limited reaction we get

I:I:FZ(a;r—a; a; — a;) )\Zl—a l-
(i5)

a2 —&T22ZPnt |n)

= \(1 = aP)a?|p() = —H|e(1))
and formal solution |$(t)) = exp(—Ht)|$(0)).
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Master Equation

dt
Multiply by |n1,n92) and sum over ny and ns:
d

d
—P(nl, n2,t) = F|:(n1+1)P(n1+1,n2—1,t) — nlp(nl, n2,t)]

=T Z P(n1+1,n2—1,t) (nl—i—l)]nl, n2>

ni,n2
-T Z
ni,n2
=Ty P
ni,n2
T Z

ni,n2

=T(ab — al)ar |o(t)

TLl,TLQ, n1|771,772>
(n1—|-1, ’rlg—l, t) d;dl \n1+1, n2—1>

(n1,n2,t) alay |n1, ng)
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» Hop from site 1 to site 2:
Hy_y =T(al —ab)ay
» Allow for the reverse hop with the same rate:
Hycp =T(a] — ab) (a1 — a2)

» For hops between all neighboring lattice sites:
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With two species reactions, such as A + B — 0 reaction, the
master equation is defined in terms of A-particle and B-particle
occupation numbers

P({m},{n},t)

For the Doi representation, we introduce distinct creation and
annihilation operators for each species: a;, &;-r, b;, and bj, and
define state

o) = > P({m}, {n}.t) [Jal™b"|0)
{m},{n} i
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Each process contributes two terms to H, of the form

(rate) {(reacta nts) — (reaction)}

(reactants) = creation and annihilation operator for each reactant,

normal ordered

(reaction) = annihilation operator for each reactant, creation
operator for each product, normal ordered

Examples:
A+A—0 Ma'%a? —a? A+A— A MNa%a® —ala?
A—A+A MNa'a—at%a) A+B—C Ma'btab— étab)

Hop 1 — 2 F[dial - dgal]
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Observables Probability Conservation

For our classical particle system, averages are given by
=Y A({n}) P({n},t)
{n}

To map this to the Doi representation, we need a projection state
(P| = (0]eXi %, which has properties

(Plo)=1  (Plaf=(P| = (Pln)=1

Then, for the operator A = A({n; — d:-rdi}) we get
(PlAe™"|6(0))

(A(t) = (PIAlo(t)) =

Note: for Poisson initial conditions, |¢(0)) = []; e_”0+”0&1|0)
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Check Normalization

For some initial state P({n},0) we average the identity operator:

= (P> _P({n},0){n}) => P({n},0)=1v
{n} {n}

(PI1]6(0)

Check Probability Conservation
What is the condition on H? We need

1= (Plie=|6(0)) = (P|(1 — Ht + 3211* — ..)|6(0))

for all ¢, so we require (P|H = 0. Equivalently, ' — 0 as dZT — 1.

Note: H need not be hermitian!
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Field Theory Approach to Diffusion-Limited Reactions:

1. Models and Mappings

Mapping to Field Theory
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Coherent States

The coherent state |¢) = exp(—3|¢|? + ¢a')|0) with complex ¢

has properties

alg) = ¢le),  (gla’

and the overlap relation

(¢1]¢2) = exp(—

Can construct a resolution of the identity operator

2
=3 il =3 S mioan = [ 2lo)el

n m,n

= (9l¢*

slo1? = 3loal® + ¢ 2)

by use of

(5m /¢*m¢n 7|¢|2 d2¢

mir
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Coherent State Representation Path Integral

Given ﬁ(dl,di), take formal solution |¢(t)) = e*Ht\gb(O)) and
divide time ¢ into a number of small increments At via

e Bt = exp(—HAL)!/A

Insert 1 = [ d27¢|¢><¢| between each successive time step:

/~ beran) (Breade™ 2 g (dele T B ae) (dr—adl - -
Now focus on a single matrix element:

(pele TR py_ng) = e HGTb—a A (14, 14

o~ H (07000 (6700 =316~ 510 al

~ o H(ST00AL —07Orpu A
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String together many time slices in the limit At — 0 and we get
X t
et [0 Do esp (- [ atlorans + .0
0

where [T, (%) — Ds™Dg

Generalize to multiple lattice sites:
. / [[(De: Do) ¢St Hos)
J

with

5= /0 t Z dt [65000; + H({67}, 16,})]
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() = (PlAe o(0)) = A1 [ TIDe;D0pA(0(0)e 5"
J
with action S given by
t

s=3{-a0+ [ a 5o+ 1 0p] -moo]
Can eliminate projection state term by field shift ¢* — 1 4 b

t ~ t

[ asdane it =ow) - o0+ [ G0 dr
0 0

which takes H — H ({1 + ¢;},{6;})
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Sp = /dt [Z $iOidi + AAxQ > (b — ¢i)(¢i — ¢j)] — > n0¢i(0)
i (i) ‘

- /dt %z [as 8+ DV -V — nod 5(t)}

_ / dtd'z |§(d, — DV)6 —nod (1)

Action is linear in ¢. Extremum:

5;(; = 01 — DV2¢ —ng6(t) = 0

is the plain old diffusion equation: 9;¢ = DV?2¢ + ng §(t)
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Diffusion-Limited A + A — 0 Reaction The A+ A — 0 Stochastic PDE

The reaction part of the hamiltonian is
Hse = -AY (1= 672167 — [ dla(200de” + d?6?)
i

with the field shift ¢* — 1+ ¢ and \g = \/Az?.

Thus the complete A + A — 0 action is

S = / ddx dt [qB(at — DV + 2X000% + \d*d* — ngd 4(t)

Now we're ready to do some calculations!
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Can make the action linear in ¢ via an auxiliary field 7:
e~ M0%0? o /dn exp {—%172 + iV 2\ qzqﬁ}
resulting in averages

/ Dy e/ / Do / D e ] HO=DV)5+22050% +iny/Zha 60

The ¢ integration creates a d-function that enforces
0rp = DV — 2X0¢” +1iv/200 61)

A stochastic reaction-diffusion equation with multiplicative noise
that is complex!?
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Summary and Observations Bibliography

» Mapping to Doi representation simplifies the master equation
by getting rid of pesky factors involving n.

» This Fock space description natural for identical particles
acting independently, not restricted to quantum mechanics

» Fock space dynamics can be converted to a field theory
without resorting to Langevin-type phenomenology

» Technique can easily include multiple species, long-range
hops, birth/death processes, convected fields

» Mechanical forces not so easily included. H is not an energy
but rather rates.

» SPDE's are fraught with peril!
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Exercises Exercises

1. Diffusion equation: 3. Write down the Doi hamiltonian for the reversible reaction
(a) Show that the diffusion master equation is equivalent to A+ mB = nC, with rates \ for the forward reaction and
d D for the reverse reaction. Here A, for example, means £ A
@<ni> T A2 Z((m) - (n3)) particles are required for the reaction.
J
where the sum on j runs over nearest neighbors of site 7. 4. Coherent states:
(b) Show that p(x,t) = (n;) with = i Az satisfies 9;p = DI?p (a) Determine the coefficients C,, in the expansion of the coherent
as Az — 0. state [¢) =), Cpln)
(c) Generalize the result to a d-dimensional hypercubic lattice. (b) Confirm the identity
1 sm n_—|¢|?
2. Consider the decay A — 0 on a single lattice site. Map the Smn, = prom /¢ ¢me” 1oV d?¢
problem from the master equation to the Doi hamiltonian to .
the shifted field theory. Show that the D¢ integration yields (c) Use the results from (a) and (b) confirm 1 = [ djri|¢><¢|,
the expected result Note that d?¢ = d(Re¢) d(Im¢).

O = —Ad + ng 8(t)
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