Fabricated Magnetic Structures

YURI SUZUKI

LECTURE 3 Magnetic Junction Devices

Lectures on Fabricated Magnetic Structures

- Introduction
- Synthesis and fabrication techniques for magnetic structures
- Magnetic behavior in small magnetic structures
- Magnetic Junction Devices
 - Patterning of Junction Devices
 - Spin Polarization
 - Interfaces

Areal Density of Magnetic HDD and DRAM

industry capacities and constant chip area

BOULDER SUMMER SCHOOL

Areal Density, Mbits/inch²

Lithographic Critical Feature Roadmap for GMR Heads and Semiconductor IC

Fabricating Magnetic Heterostructures with length scales below 100nm

 lithographic processes to create small structures from continuous

magnetic multilayers

- optical lithography, incl. DUV
- e-beam lithography
- Au particles as milling masks

Deep UV lithography

- manufacturable, but slow and expensive
- not good for materials testing

Marie-Claire Cyrille HGST

e-beam Lithography

• fast, expensive, very effective Jordan Katine BOULDER SUMMER SCHOOL HGST

TEM Cross-section of Spin-transfer Device

BOULDER SUMMER SCHOOL

Jordan Katine HGST

Au spheres as milling masks for creating small pillars

- rapid process for pillar formation:
 - attach gold particles (50 150 nm) to Au-coated full-film CPP sample
 - Lewis et al., JVST B 16 (1998) 2938
 - ion mill into MR stack to define pillars
 - lift off Au particles

Scanning Imaging/Conductance Probe

AlO_x MTJ pillar

- good contact (R = 50 W) on exposed PtMn surface
- pillar resistance $R_J = 650 W$ RA = $R_J * 0.05 = 32 W mm^2$
- TMR loop recorded during
 30 second field sweep
- c.f. properties measured by conventional means: TMR = 20% and RA = 25 W mm²

Liesl Folks HGST

BOULDER SUMMER SCHOOL

Au Bead Patterning Technique

- Attach Au spheres by decorating CPP magnetic films with colloidal gold particles by immersion into aqueous suspension
- Use bifunctional molecular linkers to attach particles to surface
- Ar ion milling

• AlOx overcoat and subsequent Au lift-off

Fabrication of Magnetic Junctions

BOULDER SUMMER SCHOOL

Spin Polarized Thin Film Materials

Material studied	Point	Base	Ν	P _T (%)	P _C (%)
NiFe	Nb	Ni _{0.8} Fe _{0.2} film	14	25 ± 2	37 ± 5
Co	Nb	Co foil	7	35 ± 3	42 ± 2
Fe	Та	Fe film	12	40 ± 2	45 ± 2
	Fe	Ta foil	14		46 ± 2
	Nb	Fe film	4		42 ± 2
	Fe	V crystal	10		45 ± 2
Ni	Nb	Ni foil	4	23 ± 3	46.5 ± 1
	Nb	Ni film	5		43 ± 2
	Та	Ni film	8		44 ± 4
NiMnSb	Nb	NiMnSb film	9	-	58 ± 2.3
lsmo	Nb	La _{o z} Sr _{o 3} MnO ₃ film	14	-	78 ± 4.0
CrO ₂	Nb	CrO ₂ film	9	-	90 ± 3.6

Soulen et al., Science 282, 85 (1998).

Spin polarization as measured by Andreev reflection

Spin Polarization

Andreev Reflection

superconductor

spin polarized material

S-I-F junction

F-I-F' junction

superconductor spin polarized material spin polarized material

Magnetism at Surfaces and Interfaces

- intrinsic nature of ferromagnetism at surfaces and interfaces
- surface/interface roughness
- magnetic domain walls
- electrode quality
- barrier quality
- interface quality

Bulk, intermediate length scale (50Å) and surface (5Å)magnetization are probed by SQUID, magnetic circular dichroism and spin polarized photo-emission. Park et al. PRL 81 1953 (1998)

Spin Polarization of SrRu0₃

Negatively spin-polarized SrRuO₃:

D. C. Worledge and T. H. Geballe, PRL 85, 5182 (2000)

Magnetic Tunnel Junctions (MTJ)

Manganite Junctions

BOULDER SUMMER SCHOOL

Manganite Junctions

H(kOe)

Interface Stability

- LSMO/STO/Fe junction
- Before/after 220C/15min:
 - 5' increase of $R_{\rm J}$.
 - Becomes asymmetric
 - MR changes sign!
- Junction interface unstable against moderate heat treatment.
- Interface FeO_x formation!

```
J. Z. Sun, et al., PRB 61 11244 (2000)
```


Manganite Junctions

BOULDER SUMMER SCHOOL

CrO₂ | Natural barrier | Co trilayers

Fe₃O₄/SrTiO₃/(La,Sr)MnO₃ Junctions

Fe_3O_4 based Epitaxial Oxide MTJs

Magnetic Tunnel Junctions (MTJ)

Magnetoresistance and Magnetics in Oxide Junctions

3

 \rightarrow

Hopping Transport in Oxide Junctions

Spin Polarization of Fe_3O_4

Spin Polarization of Fe_3O_4

Low temperature peak due to

- Verwey transition of Fe_3O_4
- Magnetic transition of the CoCr₂O₄ barrier

Field-effect-transistor with manganite channel

- three terminal device based on manganites
- carrier modulation through PZT gate
 - T. Wu et al., PRL86, 5998 (2001).

Oxide Devices: Sensors

- Sub-100nm scaling of MR heads challenge existing technology:
 - GMR: too low in resistance to give enough signal.
 - MTJ: too resistive. Shot noise hurts S/N.
- Can oxide MR elements fill the gap???
 - + Large MR.
 - + Intermediate resistance.
 - 300 K performance?
 - Switching field control?
 - Noise characteristics in deep submicron region?
 - Processing compatibility?

Stuart Parkin and Jonathan Sun, IBM

Acknowledgements

- Liesl Folks, Hitachi Global Storage Tech.
- Jordan Katine, Hitachi Global Storage Tech.
- Caroline Ross, MIT
- Jonathan Sun, IBM Yorktown Heights
- Guohan Hu, Hitachi Global Storage Tech.