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Lectures on Fabricated Magnetic Structures

Introduction

Synthesis and fabrication techniques for magnetic
structures

— Spin Polarized Thin Film Material

— Thin Film Synthesis and Lithography

— Synthesis of Magnetic Particles

Magnetic behavior in small magnetic structures

Magnetic Junction Devices

BOULDER SUMMER SCHOOL



Novel Magnetic Materials

Novel magnetic materials have enabled the development of
- denser conventional media
- new class of magnetic readheads
* new class of nonvolatile RAM (Magnetic RAM)

Magnetic miﬁ at 106b/in? MRAM

Future patterned
media

Magnetic RAM based on

o magnetic tunnel junctions
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Lithographic Critical Feature Roadmap for
GMR Heads and Semiconductor IC
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Spin Polarization

* Materials whose population of spin up and down
electrons at the fermi level are uneven have a net

spin polarization

* Examples: Fe

Spin polarization

M - N,
NT +N¢
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Figure 5.4 Density of states compared for Fe and Ni. The Ni d band is narrower in

O’Handley

energy and the Fermi level 1s closer to the top of the Ni d band.
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Spin Polarized Thin Film Materials

ﬂﬁggl Point Base N p_ (%) P (%)

NiFe Nb Ni, sFe, o film 14 25+ 2 37 +5

Co Nb Co foil 7 35+ 3 42 *+2

Fe Ta Fe film 12 40 + 2 45 +2
Fe Ta foil 14 46 + 2
Nb Fe film 4 42 +2
Fe V crystal 10 45 =*2

Ni Nb Ni foil 4 23+ 3 46,5 + 1
Nb Ni film 5 43 +2
Ta Ni film 8 44 *+ 4

NiMnSb Nb NiMnSb film 9 - 58 +23

LSMO Nb La, ,5r, sMnO; film 14 - 78 +40

Cro, Nb CrO, film 9 - 90 + 36

Soulen et al., Science 282, 85 (1998).
. . . . Pb
Spin polarization as measured by Andreev reflection e
ample
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Half Metallic Materials

Materials where the electrons available for conduction at the
Fermi level are completely spin polarized......

CcrO,

* theoretically predicted to have 100% spin polarization

- T.=390K (bulk)

Fe;O,

* theoretically predicted to have -100% spin polarization

- T.=858K (bulk)

L00.7$P0.3Mn03 ¢

double exchange ferromagnet
+100% spin polarization

- T.=360K (bulk)

Sr,FeMoO,

* theoretically predicted to have 100% spin polarization

* T,~420K (Tomioka et al. PRB 61 422 (00))
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Cro,

* Half metallicity
* High conductivity
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Rutile structure
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X. Li et al., 1999. A. Anguelouch et al., PRB64, 180408 (2001)
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Fe;0,

e Half-metallic v
e
* High resistivity v
* Verwey transition |
octahedral | rl’iii?;i’g i
tetrahedral Mlﬂ&ﬂ&fﬂ o6 |
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| @ ; .
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56 420 e s
H(T)
Ogale et al., PRB 57 7823 (1998)
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La, ,Sr, ;MnO0;

 Half metallic

* Colossal magnetoresistance

p (€2ecm)

La-Ca-Mn-O Film
12 +

10 - 77 K (po/pgr=1270)

110 K (py/pgr=144) @

60 K (py/pgr=541)

H (Tesla)
S. Jin et al., Science 264, 413 (1994)
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SINGLE CRYSTAL

POLYCRYSTAL

The role of the grain
boundaries in
— Transport

* Increased scattering due to

introduction of grain boundaries
* Negative linear MR due to

100

0w

B
o

S
oo

il g

Suppression of magnetic fluctuations "

* Low field MR in poly due to
intergrain effects

— Magnetism

* similar field dependence of
magnetization in single crystal
and poly
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Fabricated Magnetic Structures

* Thin Film Synthesis * Self assembly

plus Lithography — Spherical, cylindrical,

— ID or 2D structures lamellae structures

— Feature sizes down to — Features sizes below
10nm |Onm

— Packing structure
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Thin Film Synthesis

NON-EQUILIBRIUM PROCESSES
* Chemical Vapor Deposition
MOCVD, OMVPE
* Physical Vapor Deposition
Sputtering
Molecular Beam Epitaxy
Pulsed Laser Deposition
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Chemical Vapor Deposition

400C Quartz tube, onto T10,(100)

b CrOs .
substrate : e Precursors to react with
i \ Furnace | - carrier gas at one
] temperature
C
Il L2 T °* Condense the product
CrO,Cly precursor 55 substrate at lower

CrO,—% - Cro, + ;02

temperature
e Diffusion dominated

X. Lietal., 1999
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Magnetron Sputtering

* Plasma of ions generated by

high voltage across low pressure
gas T—COATING
* lons strike target and eject
atomic species (tenths of eV)
e Atomic species travel to SURFACE ATOM /ELECTRIC FIELD

EJECTED FROM- N
substrate and are bonded TARGET N4 PRIMARY

/ MAGNETIC FIELD
ARGON (Ar®) IONS
. ACCELERATED TO
Metals, ceramics....... TARGET

[ ) oo
Magnets confine glow discharge : | lasner
plasma and increase deposition | -

rates IRONSPUIRERINGICATHODE
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Magnetron Sputtering

Co-sputtering versus single target sputtering of
materials

Sputtering of magnetic materials- stronger magnetron
field

Process is easily scaled up in dimension
Ease of making multilayers

Sputtering of atomic species makes stoichiometric
control of material challenging- complex stoichiometries
difficult

Negative ion bombardment of substrate- off-axis
configuration necessary
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Pulsed Laser Deposition

 Efficient ablation of materials with significant UV absorption

* Complex laser-solid interaction results in a wide variety of
plume constituents that then deposit on the substrate.

— Vaporization of target material
— Transport of the vapor plume
— Film growth on substrate

Excimer Laser

KrF (hv=5eV) g 1 Y

};

pulsed laser deposition
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Pulsed Laser Deposition

* Thermal sputtering
* Electronic sputtering
* Exfoliational sputtering

* Hydrodynamic sputtering

........ of ions, neutrals and

Cone formation due to shielding by

molecular species at few eVs impurities and redeposited ablation
debris
Liquid
Sold ~ T- sid

Droplets due to hydrodynamic sputtering

Kelly et al., Nucl. Instrum. Meth. (1995)
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Pulsed Laser Deposition

X-ray

1400 —
1200
1000 —
800 —
600 —

Countsisec

400 —
200 —H

Lan_?srn_3Mn03 on 001 SI’TlOS

Iem”, 05

Hz, 700C, 7x10° Torr
Start deposition after 2 minutes
~54 Kiessig fringes=108 ML

I
0

20

40 E0 ao
Time {rmin.)

Layer-by-layer growth control is crucial to the
design of functional oxide thin films

with in-situ X-ray scattering

At G-line of the Cornell High Energy
Synchrotron Source (CHESS), in
collaboration with Aaron Fleet

and Joel Brock (Applied Physics, Cornell).
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Pulsed Laser Deposition

Stoichiometric control of the target material onto
the substrate

Layer-by-layer growth possible
Ease of making multilayers
Small area deposition due to focused laser spot

Not an ideal process for metals due to UV
processing
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Molecular Beam Epitaxy

Thermally generated molecular or
atomic beams are crystallized on
the substrate surface

Atomic species arrive at substrate
with long mean free path- limited
diffusion

High oxygen fluxes necessary for
oxide growth- ozone or atomic
oxygen sources
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Molecular Beam Epitaxy

* Developing a layer-by-layer process
* Careful monitoring of deposition rates

* Role of defects in the properties of thin
film materials

high Tc’s

manganites
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Lithography

* Additive patterning doesnot e Subtractive patterning

require removal of magnetic material requires removal of magnetic

material
template

Deposit template
Ar+

magnetic material \'\\

mask, e.g. W

4 Gisordered e Magnetic
Deposit material on 1SOTEETe film
region
top of template <
substrate
Remove template
“lift-off”
Caroline Ross (MIT)
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Additive Patterning

— No removal of material

— Limited to deposition processes with bad step coverage
* Evaporation
e Electrodeposition
e Low pressure ion beam sputtering

— Shadow masking for coarse features (~100zm)

b
iy

" -

]éléctrodebosited Ni pillatrs

Caroline Ross (MIT)
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Subtractive Patterning

* Pattern magnetic material by a resist mask
* Flexibility in types of films to etch

* Etching of magnetic materials challenging

— Chemical etching (isotropic and thus not suitable for small
structures)

— Reactive ion etching (most magnetic materials resistant)

— lon milling (physical removal of material by ion
bombardment causes damage)

BOULDER SUMMER SCHOOL



Lithography

Optical lithography
* Electron beam lithography

* Focused ion beam

Interference lithography
* X-ray lithography

911374 & oK !

27 ine
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Optical Lithography

Contact printing Reduction lithography
Pattern is same size as mask. Mask features are reduced by e.g. 10x.
Mask-substrate gap determines resolution / :
Lamp, @ < >
e.g. Hg

mask
W || | ] |

(reticle)

ga% L‘-" === :_mag"‘g( i

mask: Glass with Cr or

photographic pattern, or a
laser-printed transparency

Caroline Ross (MIT)
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Optical Lithography

Feature sizes down to 0.5um

Reflective substrates can give rise to poorly
defined resist edges

Adhesion of resist to material is often poor

Multi-level resists for a good undercut for
improved lift-off
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Electron Beam Lithography

SEBL system

* serial direct writing process
* feature sizes as small as 50nm

electron gun

anode (sets beam energy)

beam blanker (turns beam on and off)

—~——

condenser lenses (adjust beam current)

correction coils (fine shift scan raster)

stigmator coils (adjust beam roundness)
|___deflection coils (deflect beam,i.e., write)
| objective lens (focuses beam on sample)

| backscattered electron detector (images
alignment marks)

X-Y stage
—_—] m : : .
n 1 laser interferometer (monitors
stage position)

——— current feedthrough

Il

F.J. Castano

Caroline Ross (MIT)
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Electron Beam Lithography

Serial writing process

Features as small as 10nm with 5nm FWHM Gaussian
beam spot size (Leica VB-6)

Choose tone of resist to

— Minimize writing area: positive (PMMA, KRS), negative (HSQ,
NEB31)

— Obtain requisite resolution: HSQ and PMMA for high resolution
— Obtain requisite contrast: HSQ poor, PMMA excellent
— Obtain requisite etch/mill resistance: PMMA etches rapidly

Stitching areas (655um field with 2.5nm step)
Removability of resist

Smoothly curved features are difficult
Writing large and small features

Proximity effect (due to backscattered e-) change the
required exposure for closely spaced features
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Other Lithographic Techniques

» Interference lithography = X-ray lithography 1=0.4-4.5nm

Optical standing wave to create incident x rays

; ; ; b kinematic
gratings with period A/2 frame“"em fane mounting
Angle 6
. <«

Mirror A resist
Laser 3 2
beam’ G, gap wafer absorber

2 wave-
N\ length A
Substrate &
VoW &V &V OV <V VY
Caroline Ross (MIT) i
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Other Lithographic Techniques

» Imprint lithography

pressure
stamp
resist
substrate

§ " ' i l ' ' 25 nm wide bars
. . made by imprint

' " ' ' ' ' l lithography.

| &% Wuetal, JVSTB 16
. ‘ : ‘ ' l “ 3825 (1998)

» Focused Ion Beam Lithography

Serial direct writing process by
ion milling with Ga* beam

250 nm islands defined in a film by a FIB.
Lohau et al, Appl Phys Lett 78 990 (2001)
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Self Assembly

* Diblock copolymers
* Colloidal suspensions

* Precipitation
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Synthesis of Magnetic Particles

Monodispersed FePt
colloids from “polyo
process

I”

Sun et al. Science
287 1989 (2001)
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Synthesis of Magnetic Particles
Diblock Copolymers

Iron doped silica

Pl-b-PEO
[ —
.,;_'.'...._3.?""_'
el
é ‘@
. rw- ﬂ-‘-'-i'l.' “5 s
Magnetic cylinders
Simon et al.,, Chem. Mater. 13 3464 (2001) in an organic matrix

via self assembly
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Synthesis of Magnetic Particles

Magnetic Nanocylinders
STEM AFM

Energy Filtered for Iron (EELS) Wiesner et al. (unpublished)
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Lectures on Fabricated Magnetic Structures

* Synthesis and fabrication techniques for magnetic
structures

* Magnetic behavior in small magnetic structures
— Review of fundamentals: energies, interactions
— Magnetization process

— Examples from the literature

* Magnetic Junction Devices
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