Localized surface nucleation of magnetization reversal
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Standard treatments of the magnetization reversal of fine particles yield a reversal mechanism that
begins with nucleation of a nonuniform or uniform energy barrier state that involves virtually the
entire sample volume. Accordingly, the barrier height is essentially proportional to the sample
volume. Such strong volume dependence is not observed, especially in measurements of thermally
activated reversal. Numerical micromagnetic analysis also shows a variety of surface reversal modes
depending on the ratio of the particle size to the exchange length. An analytic model for surface
nucleation is presented here for an idealized system to illustrate this phenomenon. The
corresponding barrier height does not depend on sample volume, though it may depend on surface
area. Any additional size dependence will arise from the finite front velocity with which the reversal
propagates. An example of thermally activated reversal is given that shows “effective” reversal
volumes that correspond to these surface reversal modes, and thus, can be much smaller than the
sample volume. ©1997 American Institute of Physid$50021-897607)03824-3

I. INTRODUCTION smaller than the magnetic voluridhe boundary condition
associated with continuum micromagnetics is that the mag-
The problem of magnetization reversal for reasons ohetization surface normal derivative or the out-of-plane mag-
both academic interest, as well as device applications, hasetization component vanishes. This boundary condition
been studied throughout the history of magnetic materialsarises from a continuum expansion of the exchange energy.
The magnetization curvé’ M—H loop”) is a classical mea- However, due to surface inhomogeneities in real materials,
surement utilized to characterize magnetic materials. Thear even by a direct consideration of atomic exchange, this
retical models of magnetization reversal have been limitethoundary condition may not be applicable. A relaxation of
because of complexity due primarily to the long-range magthis boundary condition leads to more positive nucleation
netostatic fields. In addition, for small particles where thefields and indicates smaller effective nucleation volumes.
effects of thermal fluctuations can be significant, analysis of A calculation of the switching rate usually begins with
magnetization decay rates are extremely difficult. In generakhe assumption of exponential relaxation, with the time con-
a determination, for example, of the coercivity depends nostant derived from the Arrhenius formula for activation over
only on the applied field magnitude and direction, but also ora barrier® For large barriers, the solution of the Fokker—
the ambient temperature and the temporal duration of thejank equation for a single spin also gives an exponential
field. relaxation? The barrier height is determined from a micro-
Theoretical investigations are generally formulated asmagnetic calculation: Minimization of the energy functional
follows: The total energy of the system is expressed as @th respect to the vector magnetization yields the starting
functional of the(vecton magnetization field. In general, this configuration. The vicinity of that configuration is explored
energy functional has several local minima besides at Ieasgy determining the second variation of the energy due to
one global minimum. These minima are separated by barrigrpitrary increments in the vector magnetization. That sec-
ers. Switching of the magnetization can occur either by therpng variation is bilinear in the increments, and, if it is posi-
mal activation over the barrier between adjacent minima, ofjye definite(i.e., if all its eigenvalues are positiyehe start-
by annihilation of a minimum by an adjacent barrier as thejng configuration is stable. The eigenvalues are functions of
result of the applied magnetic field reaching its coer¢ive  he applied fieldamong other parametersand a nucleation
nucleation value. field is reached when the smallest eigenvalue falls to zero.
The purpose of this study is to explore the consequencegne corresponding eigenmode often gives an approximate
pf relaxi_ng the us_ual bounda_ry conditions applie_d when solVqjinearized indication of the shape of the spatial magnetiza-
ing continuum micromagnetic or Brown’s equatiofisr the  tion pattern during reversal. When the smallest eigenvalue is
nucleation of reversal field. As expanded upon below, the positive, the mode has essentially the same shape, but
observed “effective volume™ or region associated with the noy it represents the variation of the magnetization in the
initiation of magnetization reversal is, typically, much saqgie point configuration associated with the lowest positive
barrier. In this second-order procedure, the height of the bar-
dElectronic mail: nbertram@ucsd.edu rier is essentially given by the mode amplitude, which is still
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=JA/IMq. The particle was discretized into cubes of side
21,,; finer discretization was shown not to alter the results.
Forr/l4<1, the Stoner—Wohlfarth uniform rotation field is
= MICROMAGNETIC SIMULATION reached. However, as the radius is increased, there is a
= = CURLING/STONER-WOHLFARTH monotonic decrease of reversal field. At 1., the Stoner—
Wohlfarth approximately intersects that for curling and the
numerical result is about one-half of this value. At approxi-
matelyr =3l.,, the numerical result comes close to that for
curling, although curling is an exact eigenmode only for el-
lipsoids of revolution.

In numerical studies, it is difficult to precisely determine
the small-angle nucleation eigenmodes, however, general
patterns may be deduced. For approximatelyl.9.,, the
reversal mode involves a large magnetization rotation at the
. . , \ : particle ends with subsequent “domain-wall” motion along
0 1 2 3 4 5 6 7 8 the particle length to complete reversal. The reversal volume

Reduced Radius, Rflex in these cases is less than the total volume, and it has been
FIG. 1. Reduced nucleation field, /Mg vs reduced radius/l ¢, from mi- shown that application of a reversal field to only an “effec-
cromagnetic simulation for an elongated particle. For comparison, thdive” volume at the particle end results in approximately the
Stoner—Wohlfarth/curling result is shown. same nucleation field and motigFor the case of =l,,
typical of magnetic tape particles, the effective volume is
approximately the cube of the diamejeimn particular rel-
arbitrary; to determine it, the fourth variation of the energyevance to the focus of this paper, numerical studies of ther-
function must be calculated. In general, this procedure makesally induced particle reversdlshow a similar thermally
sense Only for fields not too much less than the nucleatiolihduced reversal mode. In fact, app"cation of thermal fluc-
field, but in sufficiently simple cases no such differentialyyations solely to the ends of the particle yields the same
geometry is needed. The classic example is the Stonermagnetization decay time as application to the entire volume.
Wohlfarth theory’ which relates to the switching of a com- For larger radii, approximately;>1.5,, the reversal
plete!y uniform magnetizgtion. The energy fupction is .thenprocesses becomes progressively nonuniform. Taege-
so simple that the barrier height is immediately written 541 reversal process is dominated by vortex formation at
down, for all applied field valuesA case almost as simple is e grfaces along the particle length with reversal by vortex
discussed in the Appendix to this paper. propagation across the particle width. Thus, in this regime,

_ The_ Stone_r—_\/yohlfarth theory is rea‘I‘|zed in particles O,f,the “effective” volume appears to be a localized surface
dimensions significantly less than an “exchange length

’ i hly i f th icle size.
which (in a Heisenberg model of magnetisis essentially dominated mode, roughly independent of the particle size

. . ) Numerical studies of thermal reversal of these larger par-
equal to the lattice spacing times the square root of the e ger p

o . - icles have not yet been performed. The results shown in Fig.
change energy divided by a typical demagnetizing energy. Ir1 are hardly changed if the cubic discretization is used to

this case, théexchanggbarrier to nonuniform rotation is too . . o
large. For larger samples, nonuniform reversal modes musrf)ughly appro>.<|mate_ a cy_Ilnder of revolu_t|_on. a XQQ
be considered. Reversal modgsrictly nucleation from the x50 ar_ray(a o1 p"’?r_“c'e with =l e wtas u_t|I|_zed for this
saturated stajenitiated by curling or buckling of the mag- comparison. In addition, the reversal field is mdependent of
netization field have been studied extensively. A simple rig-the particle '9”9”‘* except f_m<|e><' Fpr shorter particles,
orous treatment of the curling mode was given by Frei, shWWhere the particle length is approximately the exchange
trikman, and Trevés for infinite circular cylinders. A length, the particle will switch by the somewhat ellipticity
rigorous treatment for the nucleation field for ellipsoids of 4€Pendent uniform rotation nucleation fiefd. _
revolution, in general, has also been given by Ahafoni. Numer_|cal micromagnetic anaIyS|s_of the reversgl f_|eId
Numerical micromagnetic analysis of the equilibrium of a well-discretized ellipsoid of revolution of 4.615 elliptic-
magnetization states and reversal modes has been studied i has been solved by a finite element technitfu&he de-
elongated particles, both for rectang@idf and ellipsoiddlt ~ Pendence of the nucleatigreversal field with r/le, follows
shapes. In the case of nonellipsoidal elongated particles, su¢hat of Stoner—Wohlfarth/curling reasonably well. This result
as rectangular or cylindrical shapes, the nucleation field ocis expected since nucleation by curling has been shown to be
curs, typically, at large positivéf not infinite fieldg.8'#*®  a lower bound for elliposid® and the numerical analysis
Nonetheless, the magnetization is approximately uniform beultilized the boundary conditions given by Browrlthough
fore reversal. For ellipsoidal particles, theegative nucle-  effective reversal volumes have not been determined for el-
ation and reversal fields coincide. In Fig. 1, the numericalipsoids, reversal patterns indicitéor r ~|, that at magne-
result for a 10:1 approximately rectangular particle is showrtization deviations somewhat beyond the initial nucleation,
(crystalline anisotropy has been neglegtadbng with the reversal is predominately at the particle center where the
combined Stoner—Wohlfarth/curling result. The essentialargest cross-section diameter occurs. Fail,, the (large-
scaled parameter is radius to exchange lengthl,,  angle reversal mode is by surface-induced vortex formation
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and propagation across the width of the partilsimilar to  then causes the magnetization to switch. That particular form
rectangular particle$The conclusion from numerical studies of SM(x) also gives a rougllinearized indication of the

is that the “effective” volumes of particle reversal can be shape of the switching mode.

less than the particle volume in agreement with experimental The total energy of the system is

results®!’

In this paper, we present a model calculation in which
the barrier is shown to be confined to a thin layer at the
surface; consequently, activation energies for switching are ,
at best only weakly dependent on sample volume. A plane +f dsxl( M(x)-M(X')
surface bounding a semi-infinite half-space filled with mag- [x—x']*
netic material is considered. Uniaxial anisotropy with easy
axis normal to the surface is assumed, and the material in its -3
lowest state is uniformly magnetized by a sufficiently strong
magnetic field normal to the face. A neighboring stationaryWherel

state of slightly higher energy is derived by solving the M measure of the exchange enerdyis the crystalline anisot-

cromagnetic equations in the form of a linear mtegrodn‘fer-ropy energy, andH is a uniform applied field. Stationary

ential equation. The boundary conditions are not restricted 85 tes are found by extremizing this eneray with respect to
in Brown’s analysis- thus, the magnetization normal to the y g gy P

L N M (x), subject to the constraint thgM (x))? must be inde-
surface or the normal derivative of the magnetization are not o .
. . ) L endent of position and equal to the square of the saturation
required to vanish at the surface. This equation is solved b o . .
agnetizatiorM. Introducing the Lagrange parameter field

. . . . 9 _
V\.lllener—l-_lopf—Hllbert _methods n FOUI’IEI’ Spéé.éi I.n ad A(x) and extremizingE + 1/2[ d®x\ (x) (M (x))?, the station-
dition, a rigorous solution, not confined to the vicinity of the L
ary condition is

ground state, is derived for a restricted case in the Appendix,
and it confirms the conclusions of the linearized analysis.

Although this analysis is strictly applicable only to the ide- 5E(M)—f d3XA(X)M(X) - SM(x) =0, (2)
alized geometry, it is expected to be useful as a guide to

nucleation configurations in particles of dimensions well inyhere

excess of an exchange length. One may ask why these “sur-

212(VM)2—H-M(x) +K(M(x))

E(M)zfd?’x

M . —x" M AW v/
(X) - (X=X")M(X") - (X X)]’ o

[x—x'|°

o= VA/Mg, the exchange length, is a dimensionless

face states” have been missed in previous analytic treat- 3 2 <>

ments. The reason is that these treatments have invariabfF(M)= i |d XdM(x)-| —2I5VM(X)

imposed homogeneous boundary conditions on the magneti- sampie

zation fields(such as vanishing of the normal derivative at 3, (M(x")

the boundary. It is argued herdby an examplethat these + Lamplg X m

conditions are unduly restrictive. Any type of inhomogeneity

in the boundary conditions allows for modes confined to the [M(X)-(x=x")](x=x") IK(M(x))

surface. |x—x'[° IM(X)
The outline of this paper is as follows: In Sec. I, a

general discussion of stationary states for a magnetic system 2

is presented. In Sec. lll, application is made to a semi-infinite * Zlexfsu,fach(X) (A0S V)M (). 3

space with field normal to the surface. In Sec. IV, discussion

is given of these results in terms of the typical spin-waveThe surface integral, which may also be written as

spectrum as well as an application to a field parallel to af syfac®M (X)-dM(x)/dn/dS, where dn is an element of

surface. In the Appendix, a direct calculation is presentedhormal, arises from the familiar partial integration of the

that checks the validity of the perturbative approach taken incremented exchange term. If H@) is to hold for arbitrary

Secs. Il and Ill. M (x), the coefficients ofSM(x) in both the surface and
volume integrals must vanish at each point. Thus, the normal

derivative ofM must vanish on the surface, so that
Il. THEORY OF STATIONARY STATES

NX)M(X)=(SE) o/ SM(X), 4
Of all possible magnetization vector fieldd(x), the (IM)=(9E)varl M) @

most important ones are those that make the total magnetighere
energyE insensitive to a small variatiodM (x) of M(x), to
first order in the small deviation, so thakE is zero to that f P
X
sample

order. The vector field (x) is then said to be in a stationary (9E)vai/ M (x)=—215,9*M(x)+
state. If the changé’E calculated to second order &M (x)

is positive definite(i.e., positive for all possible variations [M(X") - (x=x")](x=x")
M (x), then the correspondiniyl (x) that madesE vanish -3 Ix—x'[5 ]_H
represents a stable magnetic configuration. If there is a

M (x) that makess?E vanish, the configuration is margin- IK(M(x))

ally stable, and a small change in the appropriate parameter IM(X)

[(M(X’)

Ix—x'|®

©)
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{(Hit/Mg) —212¥2hm(x) = _f daxf{LX)

sample |X_XI|3
egs“)‘\'s
e O xXp(m(x)- (x=x)
|x—x'[° '

(93
Hior=H+2K/Ms—47Mq, (9b)

z
‘V\[/x
is the total field seen inside the sample in the continuum
FIG. 2. lllustration of the semi-infinite space of analysis. The plane is de-|jmjt. Equation (9a) is meaningful onIy if the pOimX lies
fined by they, z axis. The surface of this space isxat0 and positivex s P
) ) . ) : within the sample. If the sample were infinite rather than
denotes the distance into the magnetic material. The easy axis for the crys-"" " " . L .
talline anisotropy is along the direction and the applied field, and the sem|-|nf|n|te, the equation WOUld_be trivially SO_lVEtd In terms
initial saturated magnetizatidv is directed out of the surfadalong nega- ~ Of Fourier transforms. It would yield the permissible spatial
tive x). periodicities of extended states, as well as conditions under
which no real periods exist. For the infinite case, B).in

wave-number space yields

(Actually, as explained below, the notion of the vanishing  (H, /M + 212 k2)my= — 4k (k- my)/k?, (10)
normal derivative is not quite correct, and comes from an
incorrect ||m|t|ng process for the Surface ene)gy_ WherekT denotes the transverse partk)fElimination Of the
Remembering that the square of the magnetization vedWo components ofny gives two possibilities,
tor is constant everywhere, it follows that Hiot/ Mo+ 212 k24 47k2/K2=0 (113
[NOTPM2=[(5E) o/ M (x)T2 6 2
(Higt/Mg+212K2)=0. (11b)
and, therefore, Equations (11a and (11b) correspond to zero-frequency
modes of the spin-wave spectrum as discussed in Sec. IV. If
M (x) (OE)yo/ SM(X) Hiot IS positive, not all the wave numbers in Eq$18 and
M == [(0E) o/ M (X)] (7 (11b can be real, thus, there must be localized states; for
ikx

imaginaryk, the Fourier transforne'™* becomes the local-

o _ ized forme™ KX, Fully extended states exist only for nega-
We now specialize the problem to the simplest geometry;, o H,, that is, for

that illustrates the point of this paper. The magnetic medium
occupies the half-space to the right of an infinite boundary ~H<Hgemag- 2K/Mg,(=47Mg
planex=0 (Fig. 2). The applied magnetic field is normal to
that plane, as is the anisotropy axis of a uniaxial anisotropy
energyK(M)=—KMZ/MZ; both these energies favor align- where H gemag- 2K/Ms is the nucleation field for uniform
ment of the magnetization normal to the plane. For a suffitotation. Thus, if the surface is regarded as an “imperfec-
ciently large applied field, a stationary state that satisfies Edion,” for fields before nucleationH,;>0), a localized sta-
(7), as well as the boundary condition, is thevl {0,0). To tionary state of limited range, decaying exponentially away
find its stability properties conveniently, we expand aroundirom the surface, can occur. In the following section, the
the stationary stat€’) to first order in the deviatiofequiva-  existence of localized states is established rigorously.
lent to finding 6°E). We write M(x) = (Ms—o(m?),m(x)),
where m(x) is a small two-component vector in the plane
normal to thex axis. Then, to lowest order in this deviation, A spatially localized state, with exponential decay from
all quantities in the numerator of E(7) are transverse, and the surface, does not exist if the condition is imposed that the
the denominator gives no first-order contributions at all, scvormal derivative of the magnetization at the surface van-
that it must be evaluated for a saturated magnetization. Ifshes. As an illustration, consider the differential equation
that state, the dipolar contribution is equal to y"+ k?y=0 for positivex2. The solution is a linear super-
position of e*'**. If the “normal derivative” dy/dx is to
N2 vanish atx=0, the only nontrivial(non-nul) solution must
1 (x—x") . o .
Msf daxl[ |x—x’|3_3 x| (8) involve both these waves. On the other handf is nega-
S

ample tive, only one solutiong e*”r"z, is acceptable for large.
Then, if the conditiony’(0)=0 is imposed, only the null
Equation(8) is the demagnetizing field for the magnetization solution is possible. The same will be true famy homoge-
saturated and normal to the film plane, and is equal taeous linear boundary condition. However, the requirement
47Mg. The condition(7) for marginal stability can, thus, be of a vanishing normal derivative in the present case is not
written strictly correct. As a simple example, consider a linear chain

—2K/Mg, in the present geomeiry 12

A. Discussion of boundary conditions
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of exchange-coupled discrete spins in a magnetic field. Th&ABLE I. Eigenvalues and eigenvectors of the Fourier transformed energy
energy per cross-sectional area may be written as minimization expression. Noté, is the angle between the wave vector and

the x axis.
N (202 (M —M, _ ——
Ep= E -— CO M +HM;a;, (13 Eigenvalues Normalized eigenvector
~ 173
' s D,=1 Vi= (= kg k) Tk
wherelJ is the atomic exchange constant amdb the lattice D,=1+ (4 sir? 6,/C) vi=(ky k) Ikr

constant. Minimization of this expression with respect to the
interior spins gives the usual result in the continuum limit.
However, minimization with respect to the end spin, and

normalization byaMy gives which is zero forx>0. The Fourier transforms of these func-
S

tions are given by

281 (Mz_M1)+H—o (14) -
M2 %M Mg Y m+(|<)=f0 dxeikfo f A€k *Tm, (x), (173
or, in the continuum limit,
2XdM and
Ie
o — 0 _ _
adx x=O+H 0, (15 m,(k)le dxe'kxxffdsze'kT‘XTmf(X)- (17b

wherel2,=A/M?2 andA=2J%/a.?° Equation(15) is homo-
geneous only in the limit of zero field, though it is small for
fields small compared with the exchange field. A similar
conclusion holds if the surface spin is exchange coupled t
some strongly pinned, essentially ‘m”.“_’b“e’ impurity_ §pin. Tﬁe stability equation that results from the vanishing of
We shall suppose that surface conditions are Suf‘fI.C.Ienﬂ.)Eq. (5) yields, in terms of these new functions,

complex so that an inhomogeneous boundary condition is
appropriate even in zero field. {(Hit/Mg)+212V2Hm  (x)—m_(x)}

m(x")
== | & |
all/space |X_X |

By extendingk, into the complex plane, it is seen that the
first of these functions is analytic in the entire upper half
lane, while the second is analytic in the entire lower kalf

Ill. THE SEMI-INFINITE CASE

In this section, we specifically analyze E@a) for the 3 (XT_X@(m(X')'(X_X’)] 18

geometry shown in Fig. 2, where the field is normal to the |x—x'[°

semi-infinite surface. Equatiors) and(9a), of course, apply Equation (18) applies over the entire three-dimensional

only |nS|_de the med'.urr?t%r fo(; thg regf|on>0. Howeve{, The space. Fourier transforms techniques may now be utilized
expression on the right-nand sice o K@ represents € " and, in fact, the Fourier transform of E@.8) is:
total dipolar field generated by the transverse magnetization

increment and applies for all both inside and outside the {(H/Mg)+212k%H{m, (k)—m_(k)}

medium. The difficulty of solving Eq(9a), in its present

form, is due to the fact that in a half-space, the Fourier trans- ~ +7KTLKT* m. (k) J/k?. (19
form method fails. The problem is basically of the Wiener—Equation(19) can be written as a matrix equation

Hopf typel® except that the kernel of the integral does not Bm.=m (20)
have the necessary analyticity properties required by that o
method. However, using Hilbert's methd¥a solution may where

be obtained as follows. B (1+4wk§/Ck2), 4wkykZ/Ck2

A. Definition of auxiliary function | 4mkyk,/C k2 (1+47k3ICK?) | (213
We first define a function that covers the entire space fowith
—ow<x<+o, This function is comprised of the sum of 212
C:(Htot/MS+2|exk ) (21b)

m, (X) andm_(x). m,(x) is defined only for the region of
x>0 and is identical to the magnetization inside the me-  The eigenvalues and eigenvectors Bfare given in
dium; m_ (x) vanishes forx<0: Table I. The Fourier transforms, (k) andm_(k) may be

m.(x)=m(x), x>0 expanded in terms of these eigenvectors:

— 1 2 _ 1 2
=0, x<0, (163 m,=vinP+vyn? m_=vn®+vn?®. (22)

m_(x) is an auxiliary (unphysical function that is defined $ubstitution of Eq(22) into Eq. (20) yields the two equa-

for the region tions
m_(x)#0, x<O0 D;n=n, (239
2 2
=0, x>0, (16b) D,n'?=n®. (23b)
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For the expansion coefficient§!?-n. may be regarded as given by Eq.(15) could be written in the form of a suitable

boundary values just above and just below the kgalxis of
a single vector functiom(k,) of the complex variablé,, .
Taking logarithms of both sides of Eq&3a and (23b)
gives

In n*?—In n*?=—In D, ,. (24)

The eigenvalue®,, D, satisfy the Héder condition on the
real k, axis (at least for fields above nucleatiprin that the
maximum variation is bounded for botd; and D,. The
Hilbert method® may be utilized and, thus, ER4) is sat-
isfied if

In 2k, kq)=— % f:dk; %
+P(ky k7, (25)
or
* InDyAky ky)
n(+1,2)(k) — | D1,2| —12gl/2mi p f,xd K W+ P(k) , (26)

whereP(k) is an arbitrary polynomial.

However, this simple solution fails to meet the boundary
condition at infinitek,. There, the transverse magnetization
components must go to zero, by the Riemann-Lebesg

lemma. On the other hand, expressi@®6) remains finite
there, even if the polynomial is taken to be zefbhis con-
clusion is also found in Miskhelishvif® p. 91) To examine

this dilemma, we consider the mode with the eigenvalue

equal to unity. The corresponding eigenvector nis_ o
(—k,,ky) and it is purely transverse to; . [By contrast, the
other eigenstate is purely longitudinaf=(k, ,k,).] There-

g(x). In this case, it is necessary to solve the inhomogeneous
Hilbert problem,

Bm, =m_+f(k), (29)

wheref(k) =g(k)/C. [C is defined in Eq(21b).] Expanding
f in eigenvectors,

f=v, f{V+v, £?, (29
yields the two equations

DynM=nb+ D) (30a

D,n?=n@+ £, (30b)

whereD; andD, are given in Table I.

The essential point of the discussion is made by consid-
ering Eq.(30b) first. Let X X" denote the solution of the
homogeneous equation faf? (30b). In this case,

X

Dzzﬁ' (32)
so that Eq.(30b) becomes

n? n?  §@

XXX %2
uf;?om which it follows that at a given, fixell,

o F@ (k!
N2 (ky) = zim X (k) Ldk; xh(k;)(kz_xix_ie) :
(33

The dependence in E¢33) on the transvers& vector is
implied, but not shown. The solution given by E83) prop-

fore, Eq.(10) simplifies drastically: the dipolar field does not erly vanishes ak,—-c, providedg(k,)—0 ask,—e.
appear in the transversely polarized state. In this case, it is The solutions<’, ,XZ can be identified with the solution

possible to simply solve the differential equation
2

K2+ 4

]mzo, m-k;=0,
(27)

((Hmt/MsHZIix

of the homogeneoud5). However, it is simpler to proceed
by utilizing the so-called “factorization” methdd as fol-
lows: For positive total fieldD, has no real zeroes and, thus,
we may write

(kx_ql)(kx_qf)(kx_qz)(kx_q,é)

subject tom taking on a given value at=0. Of the two DZ:(kX+ikT)(kX—ikT)(kX+ia)(kX—ia)’ (34
exponential solutions, for the positive total field, we chose

the one tending to zero at infinity. Thus, the initial amplitudewhere

drives the entire solution. More generally, the energy density

may be supplemented with a linear functional af The a= /H_tot+ K2 (35)
coefficient function of this term then acts as an inhomoge- 41z, v

neous term on the right-hand side of the above differential ,

(27). Thus, the more usual solution in which only the ampli-and theg's are the roots of

tude atx=0 is specified, is a special case. If that amplitude (kf+ k‘zl'){(Htot/Ms)+J|2(k>2<+ k%)}+47rk$=0, (36)

(or the coefficient function in the general case zero, the
problem has only the trivial null solution.
The same considerations apply to the discussion(df

Unless an inhomogeneous term is added, the only solution
vanishing at infinite wave number is the null solution. So, we X

must add to the integral on the right-hand side of BY.a
term —g(x)-m(x). If we wish, we may chose g(x) local-

choosingq, ,q, to be in the upper half-plane. Thus, E§1)
may be written in the form

h (kD (—dz) oy (ke—ia) (ke—ike)
T (ketikp(ketia) T (K A1) (ke 02)
The form of Eq.(37) is such that the left-hand side is ana-

(37

ized nearx=0 to parallel the usual procedure of specifying lytic in the upper half-plane and the right-hand side is ana-
the amplitude only ak=0 for the state discussed in the lytic in the lower half-plane. Since the two sides are equal,
previous paragraph. For example, the boundary conditiothey are both equal to a function without any singularities in
H. Suhl and H. N. Bertram
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the finite part of the plane. This function must be a constant 0.2
if the solution to Eq(33) is to vanish at infinity. Thus, from
Eq. (33),

HH, o.‘; S
. . S
Pl = Lt i) R
2mi (ky—q7)(ky—03) 1'8
! H ! H ! 2
xfoc i (kg —iky) (ky—ia)f@(ky) s
e (k=) (K= a2 (K —ky—i€)| angieat !
(38) Position x 0.5
The longitudinal part of the physicah(x) is the inverse % 05 1 15 2 25 3
Fourier transform x
7 3paik. (2)
my(x)= fﬁmd ke™ Xn+ (k). (39 FIG. 3. Spatial variation of magnetization angle vs distance from the surface

for a variety of normalized effective field$4( Hﬁ").
The k, integral, at giverk;, may be evaluated by contour
integration, with the contour closed in the lower half-plane.

The remainingk,, integral cannot be so evaluated, because of N gD (K. ky)e K
the generally unknown analyticity properties gfk,). De- m(x,kr) = fﬁxdkx [Hit/ Mg+ 2|§x(k>,<2+ k%)]' (43)
noting the integral in Eq(38) by I(k,), the result for the o
longitudinal part ofm is This is exactly the same result that would have been ob-
tained, had dipolar effects been neglected and the usual
_igtx (97 +iky) (g1 +ia)l(qr) second-order differential equation with exchange only had
mi(x)=—e "1 - been solved. Evidently, when the total field is positive,
evaluation of this integral gives, at fixek;, exponential
Cigx (93 +iky) (a3 +ia)l(gz) decay for all reasonable forms gf%).
e a;—qt In Fig. 3, the spatial variation of the magnetization is
plotted for the surface stationary states corresponding to a
oo k/2(k.2+a2)f2)(k!)e Tk range of normalized total fields. The actual curves come
- f_wd ks (< —a) (K, — ) (K — ) (K—5) from the analysis in the Appendix. However, the results are

illustrative of the general theory presented here. The field is
(400 plotted asH/HE™, whereH{™=H,—27M; is the sum of crys-
Thus, the solution consists of two decaying exponentialstf"‘"me and(thin-film) sf_lape anisotropy..The. angular varia-
together with a term that, for geneigy does not necessarily tion of the magnetization decreases Wlt_h d|§tance from the
decrease exponentially. For a highly localized driving term’surface as expected. N_ote Fhat as thg field is d_ecreased and
g is practically constant, so th&?)=constC. In that case, e}pproaches the nucleation field for gnlform rotation, the spa-
evaluation of the integral becomes possible, and yields termii2l décay occurs over a progressively eXte”‘jgd distance.
that decrease exponentially exactly like the first two terms i\ Ucléation of the uniform mode occursldt=—H," and at
Eq. (40), plus an additional decaying term arising from thethat value the magnetization deviation would extend uni-
complex zero of located in the lower half-plane. Note that formly throughout the sample.
the denominators of the first two terms of E¢0) are pro-
portional to 1/‘/|e2ka2_Htot- However, the resulting infinity
is integrable, so that this singularity has no special signifi- In the previous sections, nonuniform excitations of the
cance in the calculation of the inverse Fourier transform. magnetization have been considered. The “classic” nonuni-
The other stationary state correspondingDtp is very  form magnetization small-angle excitation for an infinitely
much simpler. Sincdd,;=1, it follows thatx'l=x'l, and large sample is the spin-wave spectréimhe results pre-
sinceD, of course, has no poles or zeroes, we may choseented in this work are related to the spin-wave modes. The
both X’s equal to unity. Then, we simply have excitation frequency of a spin wave with wave-numlber
when precession is taken into account is

IV. DISCUSSION

nP—n®=fb=gWy/C, (42)
w=yV(H+Hg+Dk?)(H+Hyg+Dk?+ 47 sir? 6,),
so that (44)
" © gM(k.) whereD represents the exchange energy. The two terms in
ny =J_mdkX [(Htot/Ms)+2|gxk>,(2+k$](k)’<_kx_ie). Eq. (44) correspond to waves perpendiculat, €0°) and

42) parallel (8,=90°) to the applied field direction. A finite fre-
quency corresponds to a stationary state with a positive sec-

Taking the inverse Fourier transform gives the transversend variation of the system energy. Nucleation occurs when

part of the physicaim at given transverse vectés; : the second variation vanishes, or equivalently, a zero-
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frequency mode first occufsin this simple case, corre- V. CONCLUSIONS
sponding to uniform excitationk&0), the nucleation field
occurs at the Stoner—Wohlfarth value bf=—H,. For
fields before nucleatiodl > —H,, nucleation can occur only
for complex values ok,, e.g.,

We have shown that inhomogeneous boundary condi-
tions will lead to barrier states of the magnetization field near
the surface of ferromagnetic samples. The energy of a barrier
state is proportional to the surface area times the penetration

m, (k) oce'k¥oc @ XVHTHI/D, (45) depth of the state, and for samples exceeding the penetration

i . . . depth, this energy is obviously less than that of the barrier
Thus, the results n th's paper can be.V|ewed as Iocallze_gtates filling the entire volume, which are calculated with
zero-frequency excitations. For a f|n|te.-3|ze sample of Sphe”homogeneous boundary conditions. However, as the applied
cal shzallpe,. the solely magnetostatic modes have Dbeeq gets very close to the coercive field calculated on the
solved:™ This analysis did not include the exchange energyy,aqis”of homogeneous boundary conditions, the penetration
but a somewhat similar discrete spectrum will also occur fordepth becomes largequal to the entire sample dimensians
the long-wavelength portion of the complete spin-wave Speczq then there is not much difference between the two con-
trum. For large ;an;pleéadms greater than the exchange giions. \well below that nominal coercive field, however, the
length, the solutiod” is probably a good approximation t0 4 ier for inhomogeneous boundary conditions is much

the long-wavelength spin-wave spectrum. Nonetheless, thejg, e, explaining the observed high thermal activation rates.
is a lowest-frequency mod@t a finitek) that vanishes at

nucleation @=0). At fields above this nucleation field,

complex wave numbers will yield a vanishing frequency and ACKNOWLEDGMENT
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of axially magnetized, elongated particles, as discussed in

the introduction, it is found for large particles that switching

moves inward from the long sid88! The corresponding ~FPPENDIX

ideal geometry is the semi-infinite plane, magnetized parallel  To check the viability of our approximate procedure, we

to the surface. Although the methods of the preceding sedderive the result in a particular case, nonperturbatively, with-

tions can be applied to this case also, it is simpler to adapdut recourse to the series expansion of the magnetization.

the curling solution for infinite longitudinally magnetized Consider again the semi-infinite medium, initially magne-

cylinders? and to discard the requirement of the vanishingtized normal to the surface, with zero transverse components

derivative normal to the surfacésee the discussion of of the magnetization. The magnetization fluctuation will be

boundary conditions at the end of Sec). IA variational  presumed to correspond to a rotation angle that varies in a

analysis to the energy minimization of E@) in cylindrical  direction normal to the surface onlgorresponding to the

coordinates has the form of a Bessel function of the firstase of a “buckling mode,” withky=0 in the linearized

kind: analysig. This is a possible switching mode that involves
ikz dipolar forces in the simple form of a shape anisotropy that

Myt Ja(pr) e, (46) adds to the effective uniaxial anisotropy. In termségk),
which describes the variation of the azimuthal componenthe rotation angle of the magnetization vector away from the
m, as a function of radius and distance along the cylinder field, the local dipolar energy is simp|y7ﬂv|§ cog 4(x). The

axis, where, in our present notation, energy per unit area can then be written
=J=k*—(HM+K)/2(Mdl ¢,)°. 4 ® de)?
N (HM+K)I2Ml e “7 Eocf dx{lgxlvlg ax —HMj cos 6— K cog 6,
Curling (and, presumably switchindpegins at the least nega- 0 X
tive value of the field that satisfiek (x)=0. When the field (A1)

has not reached that negative value, and an inhomogeneousere KeﬁzK—szg, The extrema of Eq(Al) satisfy the
boundary condition is admitted, then there is a correspondingifferential equation
solution that involves only a surface magnetization fluctua- 42

tion, and has the form: W_h sin —q sin @ cos =0, (A2)
Mgl (1 VK2 + (HM g+ K)/2(Mdl ) ?) /%2, (48)

where

wherel, is the first-order Bessel function of imaginary argu- B 5 L eff 12 na2
ment[note that the surface is at= 1, so that Eq(48) entails h=H/(2IgMs),  a=K=/(1eMy), (A33)
decay of magnetization rotation from the surface to the cenand, in scaled form,
ter atr=0]. If the cylinder radius is much larger than an

: : . . h H H
exchange length, the energy in this state is evidently very _____ ~~  _ — (A3b)
much lower than the energy of a curling state pervading the 9 Hkx=47Mg  Hy
entire volume. We expect that solutions of this form for vari- p fi,st integral of Eq.(A2) is
ous values ok are the seeds of corresponding numbers of

. . ~ _ d 0 2
yortlces(for_sample length., the number isi~Lk/ ) form ~2) +2h cos 6+q co€ =const, (Ada)
ing at the sidewall of the cylinder. dx
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For a surface-localized state, we require a solution for whict
both 6 and #' go to zero as< goes to infinity. This means
that

de\? _
Gx| =2h(1-cos6)+q Sir? 6

=4{h+q cog(6/2)}sir?(6/2).

For positiveh, the solution decays to zero from any assignec
value 6y at x=0. For negativeh of magnitude less thaq,
this solution exists only ford, sufficiently small so that
cog(Ay/2)>|h|/q. If the initial angle fails to meet this con-
dition, the angle oscillates with between two limits, and we
have only a buckling state, pervading the whole sample. It
that case, the constaftall it C) in Eq. (A4a) must be chosen
so that

(Adb)

2h C
cog 6+ — cosf— — =0,
q q

(A5)
has two real roots fo#, and the angle oscillates between the
two.

Writing t=tan(@/2) in Eq.(A4a), and choosing the nega-
tive square root, gives

dt
X —tVht?+(h+q). (AB)
For h+2g>0, this can be integrated to give
1 1
P 20) 1+ 1+« tar? 20(,, A7)
tan36,) 1+ \/1+ K tar? 360

wherex=h/(h+q). The substitution/«tan 36=sinh ¢ ren-

ders Eq. (A7) into the simple form tanBy
=e MFa tanhiy,. Reexpressed in terms af Eq. (A7)
becomes

tan 0=k~ sinh ¢

26 75 tant £ sinh i tan 305)
1—e 279 tanif (3 sinh Y[ Vk tan 36o])
(A8)

Here, 0, is the deviation from saturation at=0. Note that
this solution correctly hag—0 asx—o. Provided|h|<q,
this result remains real and holds, as well, for negative
(i.e., imaginaryx). Equation(A8) is valid up to a maximum
initial value

o= 0w=2 arc cos/|h|/q,

beyond which buckling occurs and depends|bojiq.

Figure 3 shows versusx for 6.;=114.59°, for various
values of|h|/q [or utilizing Eq. (A3b), the variableh/q is
shown aH/HE". The critical value oh/q is then—0.2919.

2

(A9)

For a small initial angle and a correspondingly wide range of

values of|h|/q, the decay is essentially exponential, as indi-
cated by the linearized theory.

To find the energy per unit area, it is convenient to
choose# as an integration variable rather than via the
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FIG. 4. Lines of equal barrier height plotted for the variation of initial
magnetization angle and normalized net magnetic fiblﬂ-(ﬁ").

substitutiondx—d 6/ (d6/dx), which is permissible for ini-
tial angles less than the critical value. The energy deviates
from the (saturategiground stat€by the amount

to

2h(1—2cosf#)—qg cos Y—(—2h—
AE:@XMgf 40 2 )—d (—2h—q})
0

V2h(1—-cos6)+q sir? 6

4h(1—cos6)+q(l—cos ¥)
V2h(1—cos 6)+q sir? 6

6
=812 M2 f °d6 sin(6/2) yh+q co2(012) .
0

This integration can be performed and equals

h h 0
\/—+1— \/—+cos’- =
q q 2
h Vhig+1+1
+—1In d . (A11)
d  Jhig+cos (6,/2)+cog (6y/2)

Contours of equaAE as a function ofh/q and of initial
angle 6, are shown in Fig. 4. To the left of the boundary
curve (/q)+cog(6y/2)=0, buckling occurs.

For small values of the deviation, this model is ad-
equately mimicked by expanding the trigonometric functions
in Eq. (A2) up to cubic terms, which yields

)
:lgxmgfo de

(A10)

AE=BMZg

6" —(h+q) 6+ (h/6+q/2) 6°=0. (A12)
The critical value ofé, is then
h+q
Ocrit= 2 i qz \/3(1—|h|/q), (A13)
3

providedh is only slightly larger than-q. For larger values
of the deviation, the cubic term dominates and E49)
holds. The solution of EqA12) then oscillates between two
limits, yielding the buckling state. A rough estimate of the
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period of the buckling rate may be made by writiry
= Ogitt+ 1 (47). For small values of, the linearized version

of Eqg. (A12) gives a spatial buckling frequency equal to

v2(gq—1hl).
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