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Standard treatments of the magnetization reversal of fine particles yield a reversal mechanism that
begins with nucleation of a nonuniform or uniform energy barrier state that involves virtually the
entire sample volume. Accordingly, the barrier height is essentially proportional to the sample
volume. Such strong volume dependence is not observed, especially in measurements of thermally
activated reversal. Numerical micromagnetic analysis also shows a variety of surface reversal modes
depending on the ratio of the particle size to the exchange length. An analytic model for surface
nucleation is presented here for an idealized system to illustrate this phenomenon. The
corresponding barrier height does not depend on sample volume, though it may depend on surface
area. Any additional size dependence will arise from the finite front velocity with which the reversal
propagates. An example of thermally activated reversal is given that shows ‘‘effective’’ reversal
volumes that correspond to these surface reversal modes, and thus, can be much smaller than the
sample volume. ©1997 American Institute of Physics.@S0021-8979~97!03824-3#
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I. INTRODUCTION

The problem of magnetization reversal for reasons
both academic interest, as well as device applications,
been studied throughout the history of magnetic materi
The magnetization curve~‘‘ M –H loop’’ ! is a classical mea
surement utilized to characterize magnetic materials. Th
retical models of magnetization reversal have been lim
because of complexity due primarily to the long-range m
netostatic fields. In addition, for small particles where t
effects of thermal fluctuations can be significant, analysis
magnetization decay rates are extremely difficult. In gene
a determination, for example, of the coercivity depends
only on the applied field magnitude and direction, but also
the ambient temperature and the temporal duration of
field.

Theoretical investigations are generally formulated
follows: The total energy of the system is expressed a
functional of the~vector! magnetization field. In general, thi
energy functional has several local minima besides at l
one global minimum. These minima are separated by ba
ers. Switching of the magnetization can occur either by th
mal activation over the barrier between adjacent minima
by annihilation of a minimum by an adjacent barrier as
result of the applied magnetic field reaching its coercive~or
nucleation! value.

The purpose of this study is to explore the consequen
of relaxing the usual boundary conditions applied when so
ing continuum micromagnetic or Brown’s equations1 for the
nucleation of reversal field. As expanded upon below,
observed ‘‘effective volume’’ or region associated with t
initiation of magnetization reversal is, typically, muc

a!Electronic mail: nbertram@ucsd.edu
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smaller than the magnetic volume.2 The boundary condition
associated with continuum micromagnetics is that the m
netization surface normal derivative or the out-of-plane m
netization component vanishes. This boundary condit
arises from a continuum expansion of the exchange ene
However, due to surface inhomogeneities in real materi
or even by a direct consideration of atomic exchange,
boundary condition may not be applicable. A relaxation
this boundary condition leads to more positive nucleat
fields and indicates smaller effective nucleation volumes

A calculation of the switching rate usually begins wi
the assumption of exponential relaxation, with the time co
stant derived from the Arrhenius formula for activation ov
a barrier.3 For large barriers, the solution of the Fokker
Plank equation for a single spin also gives an exponen
relaxation.4 The barrier height is determined from a micr
magnetic calculation: Minimization of the energy function
with respect to the vector magnetization yields the start
configuration. The vicinity of that configuration is explore
by determining the second variation of the energy due
arbitrary increments in the vector magnetization. That s
ond variation is bilinear in the increments, and, if it is po
tive definite~i.e., if all its eigenvalues are positive!, the start-
ing configuration is stable. The eigenvalues are functions
the applied field~among other parameters!, and a nucleation
field is reached when the smallest eigenvalue falls to ze
The corresponding eigenmode often gives an approxim
~linearized! indication of the shape of the spatial magnetiz
tion pattern during reversal. When the smallest eigenvalu
still positive, the mode has essentially the same shape,
now it represents the variation of the magnetization in
saddle point configuration associated with the lowest posi
barrier. In this second-order procedure, the height of the b
rier is essentially given by the mode amplitude, which is s
7/82(12)/6128/10/$10.00 © 1997 American Institute of Physics
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arbitrary; to determine it, the fourth variation of the ener
function must be calculated. In general, this procedure ma
sense only for fields not too much less than the nuclea
field, but in sufficiently simple cases no such different
geometry is needed. The classic example is the Ston
Wohlfarth theory,5 which relates to the switching of a com
pletely uniform magnetization. The energy function is th
so simple that the barrier height is immediately writt
down, for all applied field values.~A case almost as simple i
discussed in the Appendix to this paper.!

The Stoner–Wohlfarth theory is realized in particles
dimensions significantly less than an ‘‘exchange length
which ~in a Heisenberg model of magnetism! is essentially
equal to the lattice spacing times the square root of the
change energy divided by a typical demagnetizing energy
this case, the~exchange! barrier to nonuniform rotation is too
large. For larger samples, nonuniform reversal modes m
be considered. Reversal modes~strictly nucleation from the
saturated state! initiated by curling or buckling of the mag
netization field have been studied extensively. A simple r
orous treatment of the curling mode was given by Frei, S
trikman, and Treves6 for infinite circular cylinders. A
rigorous treatment for the nucleation field for ellipsoids
revolution, in general, has also been given by Aharoni.7

Numerical micromagnetic analysis of the equilibriu
magnetization states and reversal modes has been studie
elongated particles, both for rectangular8–10 and ellipsoidal11

shapes. In the case of nonellipsoidal elongated particles,
as rectangular or cylindrical shapes, the nucleation field
curs, typically, at large positive~if not infinite fields!.8,12,13

Nonetheless, the magnetization is approximately uniform
fore reversal. For ellipsoidal particles, the~negative! nucle-
ation and reversal fields coincide. In Fig. 1, the numeri
result for a 10:1 approximately rectangular particle is sho
~crystalline anisotropy has been neglected! along with the
combined Stoner–Wohlfarth/curling result. The essen
scaled parameter is radiusr to exchange lengthl ex

FIG. 1. Reduced nucleation fieldHn /Ms vs reduced radiusr / l ex from mi-
cromagnetic simulation for an elongated particle. For comparison,
Stoner–Wohlfarth/curling result is shown.
J. Appl. Phys., Vol. 82, No. 12, 15 December 1997
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5AA/Ms . The particle was discretized into cubes of si
21ex; finer discretization was shown not to alter the resu
For r / l ex!1, the Stoner–Wohlfarth uniform rotation field i
reached. However, as the radius is increased, there
monotonic decrease of reversal field. Atr 5 l ex, the Stoner–
Wohlfarth approximately intersects that for curling and t
numerical result is about one-half of this value. At appro
mately r 53l ex, the numerical result comes close to that f
curling, although curling is an exact eigenmode only for
lipsoids of revolution.

In numerical studies, it is difficult to precisely determin
the small-angle nucleation eigenmodes, however, gen
patterns may be deduced. For approximatelyr ,1.5l ex, the
reversal mode involves a large magnetization rotation at
particle ends with subsequent ‘‘domain-wall’’ motion alon
the particle length to complete reversal. The reversal volu
in these cases is less than the total volume, and it has b
shown that application of a reversal field to only an ‘‘effe
tive’’ volume at the particle end results in approximately t
same nucleation field and mode.8 ~For the case ofr 5 l ex,
typical of magnetic tape particles, the effective volume
approximately the cube of the diameter.! In particular rel-
evance to the focus of this paper, numerical studies of th
mally induced particle reversal14 show a similar thermally
induced reversal mode. In fact, application of thermal flu
tuations solely to the ends of the particle yields the sa
magnetization decay time as application to the entire volu

For larger radii, approximately,r .1.5l ex, the reversal
processes becomes progressively nonuniform. The~large-
angle! reversal process is dominated by vortex formation
the surfaces along the particle length with reversal by vor
propagation across the particle width. Thus, in this regim
the ‘‘effective’’ volume appears to be a localized surfa
dominated mode, roughly independent of the particle s
Numerical studies of thermal reversal of these larger p
ticles have not yet been performed. The results shown in
1 are hardly changed if the cubic discretization is used
roughly approximate a cylinder of revolution: a 10310
350 array~a 5:1 particle! with r 5 l ex was utilized for this
comparison. In addition, the reversal field is independen
the particle length, except forr ! l ex. For shorter particles
where the particle length is approximately the exchan
length, the particle will switch by the somewhat ellipticit
dependent uniform rotation nucleation field.10

Numerical micromagnetic analysis of the reversal fie
of a well-discretized ellipsoid of revolution of 4.615 elliptic
ity has been solved by a finite element technique.15 The de-
pendence of the nucleation~reversal! field with r /lex follows
that of Stoner–Wohlfarth/curling reasonably well. This res
is expected since nucleation by curling has been shown t
a lower bound for elliposids,16 and the numerical analysi
utilized the boundary conditions given by Brown.1 Although
effective reversal volumes have not been determined for
lipsoids, reversal patterns indicate15 for r' l ex that at magne-
tization deviations somewhat beyond the initial nucleatio
reversal is predominately at the particle center where
largest cross-section diameter occurs. Forr @ l ex, the ~large-
angle! reversal mode is by surface-induced vortex format

e
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and propagation across the width of the particle,15 similar to
rectangular particles.8 The conclusion from numerical studie
is that the ‘‘effective’’ volumes of particle reversal can b
less than the particle volume in agreement with experime
results.2,17

In this paper, we present a model calculation in wh
the barrier is shown to be confined to a thin layer at
surface; consequently, activation energies for switching
at best only weakly dependent on sample volume. A pl
surface bounding a semi-infinite half-space filled with ma
netic material is considered. Uniaxial anisotropy with ea
axis normal to the surface is assumed, and the material i
lowest state is uniformly magnetized by a sufficiently stro
magnetic field normal to the face. A neighboring stationa
state of slightly higher energy is derived by solving the m
cromagnetic equations in the form of a linear integrodiff
ential equation. The boundary conditions are not restricte
in Brown’s analysis;1 thus, the magnetization normal to th
surface or the normal derivative of the magnetization are
required to vanish at the surface. This equation is solved
Wiener–Hopf–Hilbert methods in Fourier space.18,19 In ad-
dition, a rigorous solution, not confined to the vicinity of th
ground state, is derived for a restricted case in the Appen
and it confirms the conclusions of the linearized analy
Although this analysis is strictly applicable only to the id
alized geometry, it is expected to be useful as a guide
nucleation configurations in particles of dimensions well
excess of an exchange length. One may ask why these ‘
face states’’ have been missed in previous analytic tr
ments. The reason is that these treatments have invar
imposed homogeneous boundary conditions on the mag
zation fields~such as vanishing of the normal derivative
the boundary!. It is argued here~by an example! that these
conditions are unduly restrictive. Any type of inhomogene
in the boundary conditions allows for modes confined to
surface.

The outline of this paper is as follows: In Sec. II,
general discussion of stationary states for a magnetic sys
is presented. In Sec. III, application is made to a semi-infin
space with field normal to the surface. In Sec. IV, discuss
is given of these results in terms of the typical spin-wa
spectrum as well as an application to a field parallel to
surface. In the Appendix, a direct calculation is presen
that checks the validity of the perturbative approach take
Secs. II and III.

II. THEORY OF STATIONARY STATES

Of all possible magnetization vector fieldsM ~x!, the
most important ones are those that make the total magn
energyE insensitive to a small variationdM ~x! of M ~x!, to
first order in the small deviation, so thatdE is zero to that
order. The vector fieldM ~x! is then said to be in a stationar
state. If the changed2E calculated to second order indM ~x!
is positive definite~i.e., positive for all possible variation
dM ~x!, then the correspondingM ~x! that madedE vanish
represents a stable magnetic configuration. If there i
dM ~x! that makesd2E vanish, the configuration is margin
ally stable, and a small change in the appropriate param
6130 J. Appl. Phys., Vol. 82, No. 12, 15 December 1997
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then causes the magnetization to switch. That particular fo
of dM ~x! also gives a rough~linearized! indication of the
shape of the switching mode.

The total energy of the system is

E~M !5E d3xF2l ex
2 ~“M !22H•M ~x!1K„M ~x!…

1E d3x8H M ~x!•M ~x8!

ux2x8u3

23
M ~x!•~x2x8!M ~x8!•~x2x8!

ux2x8u5 J G , ~1!

wherel ex5AA/Ms , the exchange length, is a dimensionle
measure of the exchange energy.K is the crystalline anisot-
ropy energy, andH is a uniform applied field. Stationary
states are found by extremizing this energy with respec
M ~x!, subject to the constraint that„M (x)…2 must be inde-
pendent of position and equal to the square of the satura
magnetizationMs . Introducing the Lagrange parameter fie
l~x! and extremizingE11/2*d3xl(x)„M (x)…2, the station-
ary condition is

dE~M !2E d3xl~x!M ~x!•dM ~x!50, ~2!

where

dE~M !5E
sample

d3xdM ~x!•F22l ex
2 ¹2M ~x!

1E
sample

d3x8H ~M ~x8!

ux2x8u3

23
@M ~x!•~x2x8!#~x2x8!

ux2x8u5 J 2H1
]K„M ~x!…

]M ~x! G
12l ex

2 E
surface

dM ~x!•~dS•¹!M ~x!. ~3!

The surface integral, which may also be written
*surfacedM (x)•dM (x)/dn/dS, where dn is an element of
normal, arises from the familiar partial integration of th
incremented exchange term. If Eq.~2! is to hold for arbitrary
dM ~x!, the coefficients ofdM ~x! in both the surface and
volume integrals must vanish at each point. Thus, the nor
derivative ofM must vanish on the surface, so that

l~x!M ~x!5~dE!vol /dM ~x!, ~4!

where

~dE!vol /dM ~x!522l ex
2 ¹2M ~x!1E

sample
d3x8H ~M ~x8!

ux2x8u3

23
@M ~x8!•~x2x8!#~x2x8!

ux2x8u5 J 2H

1
]K„M ~x!…

]M ~x!
. ~5!
H. Suhl and H. N. Bertram
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~Actually, as explained below, the notion of the vanishi
normal derivative is not quite correct, and comes from
incorrect limiting process for the surface energy.!

Remembering that the square of the magnetization v
tor is constant everywhere, it follows that

@l~x!#2Ms
25@~dE!vol /dM ~x!#2, ~6!

and, therefore,

M ~x!

MS
52

~dE!vol /dM ~x!

u~dE!vol /dM ~x!u
. ~7!

We now specialize the problem to the simplest geome
that illustrates the point of this paper. The magnetic medi
occupies the half-space to the right of an infinite bound
planex50 ~Fig. 2!. The applied magnetic field is normal t
that plane, as is the anisotropy axis of a uniaxial anisotr
energyK(M )52KMx

2/Ms
2; both these energies favor align

ment of the magnetization normal to the plane. For a su
ciently large applied field, a stationary state that satisfies
~7!, as well as the boundary condition, is then (Ms,0,0). To
find its stability properties conveniently, we expand arou
the stationary state~7! to first order in the deviation~equiva-
lent to findingd2E!. We write M (x)5„Ms2o(m2),m(x)…,
where m~x! is a small two-component vector in the plan
normal to thex axis. Then, to lowest order in this deviatio
all quantities in the numerator of Eq.~7! are transverse, an
the denominator gives no first-order contributions at all,
that it must be evaluated for a saturated magnetization
that state, the dipolar contribution is equal to

MsE
sample

d3x8H 1

ux2x8u3
23

~x2x8!2

ux2x8u5 J . ~8!

Equation~8! is the demagnetizing field for the magnetizati
saturated and normal to the film plane, and is equal
4pMs . The condition~7! for marginal stability can, thus, b
written

FIG. 2. Illustration of the semi-infinite space of analysis. The plane is
fined by they, z axis. The surface of this space is atx50 and positivex
denotes the distance into the magnetic material. The easy axis for the
talline anisotropy is along thex direction and the applied fieldH, and the
initial saturated magnetizationMs is directed out of the surface~along nega-
tive x!.
J. Appl. Phys., Vol. 82, No. 12, 15 December 1997
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$~H tot /Ms!22l ex
2 ¹2%m~x!52E

sample
d3x8H m~x8!

ux2x8u3

23
~xT2xT8 !~m~x8!•~x2x8!

ux2x8u5 J ,

~9a!

H tot5H12K/Ms24pMs , ~9b!

is the total field seen inside the sample in the continu
limit. Equation ~9a! is meaningful only if the pointx lies
within the sample. If the sample were infinite rather th
semi-infinite, the equation would be trivially solved in term
of Fourier transforms. It would yield the permissible spat
periodicities of extended states, as well as conditions un
which no real periods exist. For the infinite case, Eq.~9! in
wave-number space yields

~H tot /Ms12l ex
2 k2!mk524pkT~kT•mk!/k

2, ~10!

wherekT denotes the transverse part ofk. Elimination of the
two components ofmk gives two possibilities,

H tot /Ms12l ex
2 k214pkT

2/k250 ~11a!

and

~H tot /Ms12l ex
2 k2!50. ~11b!

Equations ~11a! and ~11b! correspond to zero-frequenc
modes of the spin-wave spectrum as discussed in Sec. IV
H tot is positive, not all the wave numbers in Eqs.~11a! and
~11b! can be real, thus, there must be localized states;
imaginaryk, the Fourier transformeikx becomes the local-
ized form e2ukux. Fully extended states exist only for neg
tive H tot , that is, for

H,Hdemag22K/Ms ,~54pMs

22K/Ms , in the present geometry!, ~12!

where Hdemag22K/Ms is the nucleation field for uniform
rotation. Thus, if the surface is regarded as an ‘‘imperf
tion,’’ for fields before nucleation (H tot.0), a localized sta-
tionary state of limited range, decaying exponentially aw
from the surface, can occur. In the following section, t
existence of localized states is established rigorously.

A. Discussion of boundary conditions

A spatially localized state, with exponential decay fro
the surface, does not exist if the condition is imposed that
normal derivative of the magnetization at the surface v
ishes. As an illustration, consider the differential equat
y91k2y50 for positivek2. The solution is a linear super
position of e6 ikx. If the ‘‘normal derivative’’ dy/dx is to
vanish atx50, the only nontrivial~non-null! solution must
involve both these waves. On the other hand, ifk2 is nega-

tive, only one solution,}e2xA2k2
, is acceptable for largex.

Then, if the conditiony8(0)50 is imposed, only the null
solution is possible. The same will be true forany homoge-
neous linear boundary condition. However, the requirem
of a vanishing normal derivative in the present case is
strictly correct. As a simple example, consider a linear ch

-

ys-
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of exchange-coupled discrete spins in a magnetic field.
energy per cross-sectional area may be written as

EA5(
i 51

N H 2JS2

a2 cosS Mi 112Mi

Ms
D1HMiaJ , ~13!

whereJ is the atomic exchange constant anda is the lattice
constant. Minimization of this expression with respect to
interior spins gives the usual result in the continuum lim
However, minimization with respect to the end spinM1 , and
normalization byaMs gives

S 2JS2

a3Ms
2D sinS M22M1

Ms
D1H50, ~14!

or, in the continuum limit,

l ex
2 dM

adx
U

x50

1H50, ~15!

wherel ex
2 5A/Ms

2 andA52JS2/a.20 Equation~15! is homo-
geneous only in the limit of zero field, though it is small f
fields small compared with the exchange field. A simi
conclusion holds if the surface spin is exchange coupled
some strongly pinned, essentially immobile, impurity sp
We shall suppose that surface conditions are sufficie
complex so that an inhomogeneous boundary condition
appropriate even in zero field.

III. THE SEMI-INFINITE CASE

In this section, we specifically analyze Eq.~9a! for the
geometry shown in Fig. 2, where the field is normal to t
semi-infinite surface. Equations~5! and~9a!, of course, apply
only inside the medium or for the regionx.0. However, the
expression on the right-hand side of Eq.~9a! represents the
total dipolar field generated by the transverse magnetiza
increment and applies for allx both inside and outside th
medium. The difficulty of solving Eq.~9a!, in its present
form, is due to the fact that in a half-space, the Fourier tra
form method fails. The problem is basically of the Wiene
Hopf type,19 except that the kernel of the integral does n
have the necessary analyticity properties required by
method. However, using Hilbert’s method,18 a solution may
be obtained as follows.

A. Definition of auxiliary function

We first define a function that covers the entire space
2`,x,1`. This function is comprised of the sum o
m1(x) andm2(x). m1(x) is defined only for the region o
x.0 and is identical to the magnetization inside the m
dium; m1(x) vanishes forx,0:

m1~x!5m~x!, x.0

50, x,0 , ~16a!

m2(x) is an auxiliary~unphysical! function that is defined
for the region

m2~x!Þ0, x,0

50, x.0 , ~16b!
6132 J. Appl. Phys., Vol. 82, No. 12, 15 December 1997
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which is zero forx.0. The Fourier transforms of these fun
tions are given by

m1~k!5E
0

`

dxeikxxE E d2xTeikT•xTm1~x!, ~17a!

and

m2~k!5E
2`

0

dxeikxxE E d2xTeikT•xTm2~x!. ~17b!

By extendingkx into the complex plane, it is seen that th
first of these functions is analytic in the entire upper halfkx

plane, while the second is analytic in the entire lower halfkx

plane.
The stability equation that results from the vanishing

Eq. ~5! yields, in terms of these new functions,

$~H tot /Ms!12l ex
2 ¹2%$m1~x!2m2~x!%

52E
all/space

d3x8H m~x8!

ux2x8u3

23
~xT2xT8 !~m~x8!•~x2x8!

ux2x8u5 J . ~18!

Equation ~18! applies over the entire three-dimension
space. Fourier transforms techniques may now be utili
and, in fact, the Fourier transform of Eq.~18! is:

$~H tot /Ms!12l ex
2 k2%$m1~k!2m2~k!%

54pkT@kT•m1~k!#/k2 . ~19!

Equation~19! can be written as a matrix equation

Bm15m2 , ~20!

where

B5S ~114pky
2/Ck2!,

4pkykz /Ck2

4pkykz /Ck2

~114pkz
2/Ck2! D , ~21a!

with

C5~H tot /MS12l ex
2 k2!. ~21b!

The eigenvalues and eigenvectors ofB are given in
Table I. The Fourier transformsm1(k) andm2(k) may be
expanded in terms of these eigenvectors:

m15vtn1
~1!1vln1

~2! m25vtn2
~1!1vln2

~2! . ~22!

Substitution of Eq.~22! into Eq. ~20! yields the two equa-
tions

D1n1
~1!5n2

~1! , ~23a!

D2n1
~2!5n2

~2! . ~23b!

TABLE I. Eigenvalues and eigenvectors of the Fourier transformed ene
minimization expression. Note:uk is the angle between the wave vector an
the x axis.

Eigenvalues Normalized eigenvector

D151 vt5(2kz ,ky)/kT

D2511(4p sin2 uk /C) vl5(ky ,kz)/kT
H. Suhl and H. N. Bertram
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For the expansion coefficientsn6
(1,2)

•n6 may be regarded a
boundary values just above and just below the realkx axis of
a single vector functionn(kx) of the complex variablekx .
Taking logarithms of both sides of Eqs.~23a! and ~23b!
gives

ln n1
~1,2!2 ln n2

~1,2!52 ln D1,2. ~24!

The eigenvaluesD1 , D2 satisfy the Ho¨lder condition on the
real kx axis ~at least for fields above nucleation!, in that the
maximum variation is bounded for bothD1 and D2 . The
Hilbert method15 may be utilized and, thus, Eq.~24! is sat-
isfied if

ln n1
~1,2!~kx ,kT!52

1

2p i E2`

`

dkx8
ln D1,2~kx8 ,kT!

kx82kx2 i e

1P~kx ,kT!, ~25!

or

n1
~1,2!~k!5uD1,2u21/2e1/2p i pE

2`

`

dk8
ln D1,2~kx8 ,kT!

kx2kx8
1P~k! , ~26!

whereP(k) is an arbitrary polynomial.
However, this simple solution fails to meet the bounda

condition at infinitekz . There, the transverse magnetizati
components must go to zero, by the Riemann–Lebes
lemma. On the other hand, expression~26! remains finite
there, even if the polynomial is taken to be zero.~This con-
clusion is also found in Miskhelishvili,19 p. 91.! To examine
this dilemma, we consider the mode with the eigenva
equal to unity. The corresponding eigenvector ism1}
(2kz ,ky) and it is purely transverse tokT . @By contrast, the
other eigenstate is purely longitudinal:m}(ky ,kz).# There-
fore, Eq.~10! simplifies drastically: the dipolar field does n
appear in the transversely polarized state. In this case,
possible to simply solve the differential equation

H ~H tot /Ms!12l ex
2 S 2kT

21
]2

]x2D J m50, m•kT50,

~27!

subject tom taking on a given value atx50. Of the two
exponential solutions, for the positive total field, we cho
the one tending to zero at infinity. Thus, the initial amplitu
drives the entire solution. More generally, the energy den
may be supplemented with a linear functional ofm. The
coefficient function of this term then acts as an inhomo
neous term on the right-hand side of the above differen
~27!. Thus, the more usual solution in which only the amp
tude atx50 is specified, is a special case. If that amplitu
~or the coefficient function in the general case! is zero, the
problem has only the trivial null solution.

The same considerations apply to the discussion ofn(2).
Unless an inhomogeneous term is added, the only solu
vanishing at infinite wave number is the null solution. So,
must add to the integral on the right-hand side of Eq.~9! a
term 2g(x)•m(x). If we wish, we may chose ag~x! local-
ized nearx50 to parallel the usual procedure of specifyin
the amplitude only atx50 for the state discussed in th
previous paragraph. For example, the boundary condi
J. Appl. Phys., Vol. 82, No. 12, 15 December 1997
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given by Eq.~15! could be written in the form of a suitabl
g~x!. In this case, it is necessary to solve the inhomogene
Hilbert problem,

Bm15m21f~k!, ~28!

wheref(k)5g(k)/C. @C is defined in Eq.~21b!.# Expanding
f in eigenvectors,

f5vt f ~1!1vl f ~2!, ~29!

yields the two equations

D1n1
~1!5n2

~1!1 f ~1!, ~30a!

D2n1
~2!5n2

~2!1 f ~2!, ~30b!

whereD1 andD2 are given in Table I.
The essential point of the discussion is made by con

ering Eq.~30b! first. Let X1
h ,X2

h denote the solution of the
homogeneous equation forn6

(2) ~30b!. In this case,

D25
X2

~h!

X1
h , ~31!

so that Eq.~30b! becomes

n1
~2!

X1
h 2

n2
~2!

X2
h 5

f ~2!

Xh
2 , ~32!

from which it follows that at a given, fixedkT ,

n1
~2!~kx!5

1

2p i
X1

h ~kx! E
2`

`

dkx8
f ~2!~kx8!

Xh
2~kx8!~kx82kx2 i e!

.

~33!

The dependence in Eq.~33! on the transversek vector is
implied, but not shown. The solution given by Eq.~33! prop-
erly vanishes askx→`, providedg(kx)→0 askx→`.

The solutionsX1
h ,X2

h can be identified with the solution
of the homogeneous~15!. However, it is simpler to proceed
by utilizing the so-called ‘‘factorization’’ method16 as fol-
lows: For positive total field,D2 has no real zeroes and, thu
we may write

D25
~kx2q1!~kx2q1* !~kx2q2!~kx2q2* !

~kx1 ikT!~kx2 ikT!~kx1 ia !~kx2 ia!
, ~34!

where

a5AH tot

4l ex
2

1kT
2 , ~35!

and theq’s are the roots of

~kx
21kT

2!$~H tot /Ms!1Jl2~kx
21kT

2!%14pkT
250, ~36!

choosingq1 ,q2 to be in the upper half-plane. Thus, Eq.~31!
may be written in the form

X1
h

~kx2q1* !~kx2q2* !

~kx1 ikT!~kx1 ia !
5X2

h ~kx2 ia !~kx2 ikT!

~kx2q1!~kx2q2!
. ~37!

The form of Eq.~37! is such that the left-hand side is an
lytic in the upper half-plane and the right-hand side is a
lytic in the lower half-plane. Since the two sides are equ
they are both equal to a function without any singularities
6133H. Suhl and H. N. Bertram
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the finite part of the plane. This function must be a consta
if the solution to Eq.~33! is to vanish at infinity. Thus, from
Eq. ~33!,

n1
~2!~kz!5

1

2p i

~kx1 ikT!~kx1 ia !

~kx2q1* !~kx2q2* !

3E
2`

`

dkx8
~kx82 ikT!~kx82 ia ! f ~2!~kx8!

~kx82q1!~kx82q2!~kx82kx2 i e!
.

~38!

The longitudinal part of the physicalm~x! is the inverse
Fourier transform

ml~x!5E
2`

`

d3ke2 ik•xn1
~2!~k!. ~39!

The kx integral, at givenkT , may be evaluated by contou
integration, with the contour closed in the lower half-plan
The remainingkx8 integral cannot be so evaluated, because
the generally unknown analyticity properties ofg(kx8). De-
noting the integral in Eq.~38! by I (kx), the result for the
longitudinal part ofm is

ml~x!52e2 iq1* x
~q1* 1 ikT!~q1* 1 ia !I ~q1* !

q1* 2q2*

2e2 iq2* x
~q2* 1 ikT!~q2* 1 ia !I ~q2* !

q2* 2q1*

2E
2`

`

dkx*
kx8

2~kx8
21a2! f ~2!~kx8!e2 ikx8x

~kx82q1!~kx82q2!~kx82q1* !~kx82q2* !
.

~40!

Thus, the solution consists of two decaying exponenti
together with a term that, for generalg, does not necessaril
decrease exponentially. For a highly localized driving ter
g is practically constant, so thatf (2)5const/C. In that case,
evaluation of the integral becomes possible, and yields te
that decrease exponentially exactly like the first two terms
Eq. ~40!, plus an additional decaying term arising from t
complex zero ofC located in the lower half-plane. Note tha
the denominators of the first two terms of Eq.~40! are pro-
portional to 1/Al ex

2 kT
22H tot. However, the resulting infinity

is integrable, so that this singularity has no special sign
cance in the calculation of the inverse Fourier transform.

The other stationary state corresponding toD1 is very
much simpler. SinceD151, it follows that X1

h 5X2
h , and

sinceD1 , of course, has no poles or zeroes, we may ch
both X’s equal to unity. Then, we simply have

n1
~1!2n2

~1!5 f ~1!5g~1!/C, ~41!

so that

n1
~1!5E

2`

`

dkx8
g~1!~kx8!

@~H tot /Ms!12l ex
2 kx8

21kT
2#~kx82kx2 i e!

.

~42!

Taking the inverse Fourier transform gives the transve
part of the physicalm at given transverse vectorkT :
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m~x,kT!5E
2`

`

dkx8
g~1!~kx8 ;kT!e2 ixkx8

@H tot /Ms12l ex
2 ~kx8

21kT
2!#

. ~43!

This is exactly the same result that would have been o
tained, had dipolar effects been neglected and the us
second-order differential equation with exchange only ha
been solved. Evidently, when the total field is positive
evaluation of this integral gives, at fixedkT , exponential
decay for all reasonable forms ofg(1).

In Fig. 3, the spatial variation of the magnetization is
plotted for the surface stationary states corresponding to
range of normalized total fields. The actual curves com
from the analysis in the Appendix. However, the results a
illustrative of the general theory presented here. The field
plotted asH/Hk

eff , whereHk
eff5Hk22pMs is the sum of crys-

talline and~thin-film! shape anisotropy. The angular varia
tion of the magnetization decreases with distance from th
surface as expected. Note that as the field is decreased
approaches the nucleation field for uniform rotation, the sp
tial decay occurs over a progressively extended distanc
Nucleation of the uniform mode occurs atH52Hk

eff and at
that value the magnetization deviation would extend un
formly throughout the sample.

IV. DISCUSSION

In the previous sections, nonuniform excitations of th
magnetization have been considered. The ‘‘classic’’ nonun
form magnetization small-angle excitation for an infinitely
large sample is the spin-wave spectrum.21 The results pre-
sented in this work are related to the spin-wave modes. T
excitation frequency of a spin wave with wave-numberk
when precession is taken into account is

vk5gA~H1HK1Dk2!~H1HK1Dk214p sin2 uk!,
~44!

whereD represents the exchange energy. The two terms
Eq. ~44! correspond to waves perpendicular (uk50°) and
parallel (uk590°) to the applied field direction. A finite fre-
quency corresponds to a stationary state with a positive se
ond variation of the system energy. Nucleation occurs whe
the second variation vanishes, or equivalently, a zer

FIG. 3. Spatial variation of magnetization angle vs distance from the surfa
for a variety of normalized effective fields (H/Hk

eff).
H. Suhl and H. N. Bertram
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the
frequency mode first occurs.1 In this simple case, corre
sponding to uniform excitation (k50), the nucleation field
occurs at the Stoner–Wohlfarth value ofH52Hk . For
fields before nucleationH.2Hk , nucleation can occur only
for complex values ofkx , e.g.,

mx~k!}eikx}e2xA~H1Hk!/D. ~45!

Thus, the results in this paper can be viewed as locali
zero-frequency excitations. For a finite-size sample of sph
cal shape, the solely magnetostatic modes have b
solved.21 This analysis did not include the exchange ener
but a somewhat similar discrete spectrum will also occur
the long-wavelength portion of the complete spin-wave sp
trum. For large samples~radius greater than the exchan
length!, the solution21 is probably a good approximation t
the long-wavelength spin-wave spectrum. Nonetheless, t
is a lowest-frequency mode~at a finite k! that vanishes a
nucleation (v50). At fields above this nucleation field
complex wave numbers will yield a vanishing frequency a
again, localized modes will occur.

In numerical micromagnetic simulations of the rever
of axially magnetized, elongated particles, as discusse
the introduction, it is found for large particles that switchin
moves inward from the long sides.8,11 The corresponding
ideal geometry is the semi-infinite plane, magnetized para
to the surface. Although the methods of the preceding s
tions can be applied to this case also, it is simpler to ad
the curling solution for infinite longitudinally magnetize
cylinders,6 and to discard the requirement of the vanishi
derivative normal to the surface~see the discussion o
boundary conditions at the end of Sec. II!. A variational
analysis to the energy minimization of Eq.~5! in cylindrical
coordinates has the form of a Bessel function of the fi
kind:

mf}J1~mr !eikz, ~46!

which describes the variation of the azimuthal compon
mf as a function of radiusr and distancez along the cylinder
axis, where, in our present notation,

m5A2k22~HMs1K !/2~Msl ex!
2. ~47!

Curling ~and, presumably switching! begins at the least nega
tive value of the field that satisfiesJ18(m)50. When the field
has not reached that negative value, and an inhomogen
boundary condition is admitted, then there is a correspond
solution that involves only a surface magnetization fluct
tion, and has the form:

mf}I 1~rAk21~HMs1K !/2~Msl ex!
2!eikz, ~48!

whereI 1 is the first-order Bessel function of imaginary arg
ment@note that the surface is atr 51, so that Eq.~48! entails
decay of magnetization rotation from the surface to the c
ter at r 50#. If the cylinder radius is much larger than a
exchange length, the energy in this state is evidently v
much lower than the energy of a curling state pervading
entire volume. We expect that solutions of this form for va
ous values ofk are the seeds of corresponding numbers
vortices~for sample lengthL, the number isn'Lk/p! form-
ing at the sidewall of the cylinder.
J. Appl. Phys., Vol. 82, No. 12, 15 December 1997
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V. CONCLUSIONS

We have shown that inhomogeneous boundary con
tions will lead to barrier states of the magnetization field n
the surface of ferromagnetic samples. The energy of a ba
state is proportional to the surface area times the penetra
depth of the state, and for samples exceeding the penetra
depth, this energy is obviously less than that of the bar
states filling the entire volume, which are calculated w
homogeneous boundary conditions. However, as the app
field gets very close to the coercive field calculated on
basis of homogeneous boundary conditions, the penetra
depth becomes large~equal to the entire sample dimensions!,
and then there is not much difference between the two c
ditions. Well below that nominal coercive field, however, t
barrier for inhomogeneous boundary conditions is mu
lower, explaining the observed high thermal activation rat
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APPENDIX

To check the viability of our approximate procedure, w
derive the result in a particular case, nonperturbatively, w
out recourse to the series expansion of the magnetiza
Consider again the semi-infinite medium, initially magn
tized normal to the surface, with zero transverse compon
of the magnetization. The magnetization fluctuation will
presumed to correspond to a rotation angle that varies
direction normal to the surface only~corresponding to the
case of a ‘‘buckling mode,’’ withkT50 in the linearized
analysis!. This is a possible switching mode that involve
dipolar forces in the simple form of a shape anisotropy t
adds to the effective uniaxial anisotropy. In terms ofu(x),
the rotation angle of the magnetization vector away from
field, the local dipolar energy is simply 2pMs

2 cos2 u(x). The
energy per unit area can then be written

E}E
0

`

dxH l ex
2 Ms

2S du

dxD
2

2HMs cosu2Keff cos2 uJ ,

~A1!

whereKeff5K22pMs
2. The extrema of Eq.~A1! satisfy the

differential equation

d2u

dx22h sin u2q sin u cosu50, ~A2!

where

h5H/~2l ex
2 Ms!, q5Keff/~ l ex

2 Ms
2!, ~A3a!

and, in scaled form,

h

q
5

H

Hk24pMs
5

H

Hk
eff . ~A3b!

A first integral of Eq.~A2! is

S du

dxD
2

12h cosu1q cos2 u5const. ~A4a!
6135H. Suhl and H. N. Bertram
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For a surface-localized state, we require a solution for wh
both u and u8 go to zero asx goes to infinity. This means
that

S du

dxD
2

52h~12cosu!1q sin2 u

54$h1q cos2~u/2!%sin2~u/2!. ~A4b!

For positiveh, the solution decays to zero from any assign
valueu0 at x50. For negativeh of magnitude less thanq,
this solution exists only foru0 sufficiently small so that
cos2(u0/2).uhu/q. If the initial angle fails to meet this con
dition, the angle oscillates withx between two limits, and we
have only a buckling state, pervading the whole sample
that case, the constant~call it C! in Eq. ~A4a! must be chosen
so that

cos2 u1
2h

q
cosu2

C

q
50, ~A5!

has two real roots foru, and the angle oscillates between t
two.

Writing t5tan(u/2) in Eq.~A4a!, and choosing the nega
tive square root, gives

dt

dx
52tAht21~h1q!. ~A6!

For h12q.0, this can be integrated to give

e2A~h1q!x5S tan 1
2u

tan 1
2u0

D •

11A11k tan2 1
2u0

11A11k tan2 1
2u

, ~A7!

wherek5h/(h1q). The substitutionAktan 1
2u5sinhc ren-

ders Eq. ~A7! into the simple form tanh12c

5e2Ah1qx tanh 1
2c0. Reexpressed in terms ofu, Eq. ~A7!

becomes

tan 1
2u5k21/2 sinh c

5k21/2
2e2Ah1qx tanh~ 1

2 sinh21@Ak tan 1
2u0# !

12e22Ah1qx tanh2~ 1
2 sinh21@Ak tan 1

2u0# !
.

~A8!

Here,u0 is the deviation from saturation atx50. Note that
this solution correctly hasu→0 asx→`. Provideduhu,q,
this result remains real and holds, as well, for negativeh
~i.e., imaginaryk!. Equation~A8! is valid up to a maximum
initial value

u05ucrit52 arc cosAuhu/q, ~A9!

beyond which buckling occurs and depends onuhu/q.
Figure 3 showsu versusx for ucrit5114.59°, for various

values ofuhu/q @or utilizing Eq. ~A3b!, the variableh/q is
shown asH/Hk

eff#. The critical value ofh/q is then20.2919.
For a small initial angle and a correspondingly wide range
values ofuhu/q, the decay is essentially exponential, as in
cated by the linearized theory.

To find the energy per unit area, it is convenient
chooseu as an integration variable rather thanx, via the
6136 J. Appl. Phys., Vol. 82, No. 12, 15 December 1997
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substitutiondx→du/(du/dx), which is permissible for ini-
tial angles less than the critical value. The energy deviat
from the ~saturated! ground state~by the amount!:

DE5 l ex
2 Ms

2E
0

u0
du

2h~122 cosu!2q cos 2u2~22h2q%)

A2h~12cosu!1q sin2 u

5 l ex
2 Ms

2E
0

u0
du

4h~12cosu!1q~12cos 2u!

A2h~12cosu!1q sin2 u

58l ex
2 Ms

2E
0

u0
du sin~u/2!Ah1q cos2~u/2! . ~A10!

This integration can be performed and equals

DE58ex
2 Ms

2AqHAh

q
112Ah

q
1cos2

u0

2

1
h

q
ln

Ah/q1111

Ah/q1cos2 ~u0/2!1cos2 ~u0/2!
J . ~A11!

Contours of equalDE as a function ofh/q and of initial
angleu0 are shown in Fig. 4. To the left of the boundary
curve (h/q)1cos2(u0/2)50, buckling occurs.

For small values of the deviation, this model is ad-
equately mimicked by expanding the trigonometric function
in Eq. ~A2! up to cubic terms, which yields

u92~h1q!u1~h/61q/2!u350. ~A12!

The critical value ofu0 is then

ucrit5A2
h1q
1
3h1q

>A3~12uhu/q!, ~A13!

providedh is only slightly larger than2q. For larger values
of the deviation, the cubic term dominates and Eq.~A9!
holds. The solution of Eq.~A12! then oscillates between two
limits, yielding the buckling state. A rough estimate of th

FIG. 4. Lines of equal barrier height plotted for the variation of initia
magnetization angle and normalized net magnetic field (H/Hk

eff).
H. Suhl and H. N. Bertram
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to
period of the buckling rate may be made by writingu
5ucrit1m ~47!. For small values ofm, the linearized version
of Eq. ~A12! gives a spatial buckling frequency equal
A2(q2uhu).
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