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I. The Magnetization Field.

In theoretical physics, one objective is to explain what has been seen in
past experiments; the other is to predict what will be seen in future exper-
iments. In either case, the theory must be expressed in terms of quantities
conveniently accessible to experimental measurement. In condensed mat-
ter physics, these measurements, with a few notable exceptions, involve
properties averaged over regions of space large compared with atomic di-
mensions, but small compared with typical spatial variations discernible
by the apparatus. In particular, phenomena in practical applications of
magnetically ordered materials are not conveniently discussed in terms of
individual electronic spins . Instead, one uses the concept of a magnetiza-
tion vector �eld per unit volume, de�ned as a suitable average over
the spin vectors in a neighborhood of the position vector evaluated at
time In a magnetic insulator, with the spins localized at lattice positions,
that average is

where is the Bohr magneton of the th spin localized within the small
volume surrounding Since the are quantum mechanical objects,

, in principle, also obeys quantum mechanics, but since the number of
spins in this de�nition is large, one expects to be able to treat as a
classical vector. Up to the time of this writing, there seems to be no con-
vincing, widely accepted experimental demonstations of residual quantum
aspects, although they must, of course, exist. In the case of magnetic
metals, there are no well de�ned lattice sites that carry the usual half- in-
tegral or integral spins. One then must de�ne a local spin density operator

in terms of the Pauli matrix vector of the indi-
vidual electrons and the two-component electron �elds This is averaged
over a small volume to give the �eld as in the previous case, and once
again behaves almost like a classical vector �eld . It will be treated as
such in most of this book. To avoid involvements in still unanswered basic
questions in the magnetism of metals, we shall use the simpler picture of
magnetic insulators wherever it is necessary to establish a correspondence
between the �eld- and atomic viewpoints.
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An equation is needed to describe the evolution of Even in the
classical approximation to this �eld, this equation must re�ect the reali-
ties of the spin-dependent forces in the magnetic sample, and of the mo-
tion of the constituent spins. Two approaches are possible: a relatively
easy one that uses only symmetry principles, such as crystal symmetries,
time-reversal symmetries and purely phenomenological considerations, and
a considerably harder one that starts with the dynamics of the individual
quantum spins coupled to their environment and to one another through
exchange and dipolar forces. A drawback of the purely phenomenological
approach is that , in contrast to the second, �atomistic�approac h, it cannot
determine the constants that enter the equations for

Actually, a complete theory would establish equations of motion, not
only of , but also of all the degrees of freedom of the environment in
which it is embedded and to which is �rmly coupled. Perhaps the
most important degrees of freedom are the orbital ones, seen by the spins
through spin-orbit coupling. Also, in metals the dynamics of the conduction
electrons is accompanied by magnetic �eld variations, which are coupled to
the magnetization. Evidently, a researcher studying the motion of
from the point of view of applications does not wish to carry around the
�baggage� of these extra degrees of freedom. To get rid of these, one can
imagine solving for the equations of motion of the extra variables, with

regarded as given, and the solution will be some functional of that
given �eld. Then one would substitute the solution into the coupling terms
in the equation for leaving one with an equation for alone.
As will be shown later on, this program can actually be carried out in some
cases. However, there is a price to be paid for this: the resulting equation
of motion cannot be local in the time variable. The reason is well known
from mechanics: The evolution of a �complete� set of dynamical variables
has the property that, given the values of the variables at

in the past completely determines the values of the variables at the
present time. If the equations for some of the variables are solved in terms
of the remaining ones, the time evolution of the latter will depend on their
entire past. However, it is usually the case that, if one is interested only
in sufficiently slow time variations, the resulting equations become local in
time, at least asymptotically. In most of the problems discussed here, the
equations for may be deemed local in time at rates of variation slower
than several gigahertz.
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To begin with, we describe the phenomenological approach. First, sup-
pose that the temperature is sufficiently far below the Curie point so that
the magnetization is very nearly saturated. A �eld applied to it will
result in a torque The newtonian equation of motion is then

where is the angular momentum. Associated with
the spin of an electron is an angular momentum and this relation
survives the coarse-graining operation relating to Thus we have

(1)

The constant is known as the gyromagnetic ratio. Next, we must de�ne
an effective �eld The change in energy E due to an increment in
magnetization is E The total magnetic energy E[ is
the sum of various contributions, that, in the �eld picture can be writ-
ten as volume integrals of corresponding energy densities The main
contributions are

1. The electromagnetic energy E due to an imposed
electromagnetic �eld.

2. The exchange energy, ultimately the result of electron-electron inter-
action plus the exclusion principle.These two effects conspire to make

a correlated state of two neighboring spin orientation the state of lowest
energy (parallel orientation in ferromagnets, antiparallel in antiferromag-
nets.)

As a result, in a ferromagnet, the fully aligned state of all the spins is
the ground state; any deviation from it costs energy. In terms of the �eld
approach, this suggests de�ning the exchange energy as

E (2)

(usually abreviated as ), where the so-called exchange con-
stant is a measure of stiffness of the fully aligned state. is a length, of
the order of one lattice spacing. This form holds for sufficiently slow spatial
variations of terms with higher derivatives of need to be included for
fast variations. A constant value of and only even derivatives evidently
assumes that deviation of alignment in one spatial direction is exactly as
costly as a deviation in the opposite direction. Well inside a uniform ma-
terial, this is a good assumption. It must break down at a surface aswell
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as at grain boundaries. Expression (2) for E assumes cubic symmetry of
the spin sites. For lower symmetries, the three different terms may have
different coefficients.

3. Dipolar interaction energy

(3)
This rather clumsy form of that interaction is often more pro�tably written
as an interaction energy in an additional scalar �eld

E (4)

The �equation of motion� of that �eld is obtained by minimizing this energy
with respect to It is Writing down the usual integral that
solves this Poisson equation, and substituting in the foregoing expression
yields the more elaborate form for

4. Crystalline anisotropy energy. Due to spin-orbit coupling, written
the individual spins see the underlying lattice, and sense its

symmetry.As discussed above, one does not wish to keep track of the or-
bital variables; one wishes to eliminate them in favor of the spin variables.
In the detailed quantum theory,this is accomplished by treating the spin
orbit energy as a perturbation. A simple and very successful (though not
completely legitimate way) is to treat the individual spins in the expression

as though they were classical objects. Schrödinger perturbation the-
ory then involves the matrix elements of the only, yielding polynomials
in the spin components alone. The resulting energy expression is referred
to as a spin Hamiltonian. Clearly, the symmetry of the spin Hamiltonian
thus derived must be thesame as the lattice symmetry. ( In Schrödinger
perturbation theory, the non-locality in time mentioned above is lost. A
time-dependent formulation will reveal it, but is of no importance as long
as the ionic states connected to the ground state by the operator are
sufficiently high in energy.) In the coarse grained, continuum view, one will
get corresponding polynomials in For example, in a cubic lattice, the
dominant form will be

E (5)
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where is a constant found from the microscopic theory, carried to fourth
order in the spin-orbit parameter In a uniaxial crystal, with axis along

the lowest order term would be provided, of course that the
underlying spin is greater than 1/2. In a crystal with inversion symmetry,
the polynomial in the components must be even.

Other forms of energy will be discussed as needed. We must now de�ne
an effective magnetic �eld for use in the equation of motion (1) This is
de�ned as the functional derivative

E E E

(6)
For our purposes it suffices to note that it reduces to an ordinary derivative
of the energy density except in the expression for the exchange energy,
where an integration by parts must be performed to isolate the increment

Then the effective exchange �eld becomes at least
for increments that vanish on the sample boundaries.

The dimensions of the constants encountered so far are as follows:
has dimensions of energy per unit volume, as does It follows that

must be dimensionless. Therefore, if is the exchange energy found in
the microscopically calculated exchange coupling of two neigh-
boring spins (considered dimensionless), then where
is the volume of a lattice cell. The anisotropy constant, for the quartic
anisotropy in equation (6) must have dimensions of a volume, and can sim-
ilarly be related to the microscopically calculated anisotropy constant
(For anisotropy represented by a polynomial of order 2 the dimensions of
of will be It will frequently be convenient to measure in units
of the saturation magnetization , so that With that choice, the
various terms in E must be multiplied by the appropriate power of

Evidently, the equation of motion (1) is nonlinear when is the full
effective �eld Another awkward feature is that the three equations are
subject to one constraint ( and therefore should be reducible
to only two equations. In some fortunate cases such a step also helps to
ameliorate the nonlinear aspects. Possibly the simplest reduction expresses
the direction of in terms of its polar coordinates
using the normalization Resolving the increment along the
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directions of increasing and results in the equations

E
(7)

E

(For all the good it does, these equations have Hamiltonian form, with con-
jugate variables cos They are usually more conveniently written in the
form sin To evaluate the functional differentiations,
E must be expressed in terms of and In all except the exchange contri-
butions to E, the components of are simply written in polar form. Only
the exchange term needs slightly more processing. It becomes

E (8)

As the result, the equations of motion may be written

(9)

Finally we brie�y describe the small motions of the magnetization about
a particular direction , allowing the equations to be linearized. Usually

is taken to be along the axis, and the components in the
and directions are considered small. Then

(10)

So to lowest order in the component may be replaced by wher-
ever it occurs. There remain two coupled linear differential equations for

and . In the in�nite medium at least, the equations are transla-
tionally invariant; therefore they admit of solutions proportional to
called spin waves or magnons. Even though these linear modes do not
immediately help with solutions for large motions, they do sometimes pro-
vide some insight in cases in which linearization (and small improvements
thereon) is not an option. Singling out the �imperturbable� part of to
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be along the axis, rather than in a �natural� way by an im-
posed magnetic �eld or by anisotropy, breaks symmetry, in the sense that
any other direction could have been picked equally well. Such symmetry
breaking implies that there must be a mode of excitation, the so called
Goldstone mode with lowest excitation energy equal to zero. Magnons
are examples of this mode in the limit in which the �natural� direction for
the unperturbed magnetization is absent. When there is an applied steady
�eld or a suitable anisotropy �eld, the lowest magnon energy is no longer
zero (unless demagnetizing effects depress it to zero or beyond). Denoting
the small transverse magnetization components ( by the vector
we expand it in a Fourier series along with the
inverse integrated through the sample volume

In space, the linearized equations are quite simple, especially if the
form (5) of the dipolar energy is used; even before linearization,the dipolar
energy gives an effective �eld whose Fourier component is

(11)

where is the Fourier component of the full Similarly, the effective ex-
change �eld is In this brief survey we omit the anisotropy
�elds. Write (so that , since
to keep real). with this notation, the linearized equation of motion
becomes

(12)

where, for

(13)

and where it has been assumed that a uniform �eld has been applied
in the direction. Equation (12) must break down for values smaller than
reciprocal sample dimensions. Then a full boundary value problem must
be solved, which leads to the familiar demagnetizing �elds; whereof the
term is an example for a simple ellipsoid of revolution about
Equation (13a), together with its conjugate, have an oscillatory solution
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with natural frequency where

(14)

with and
This dispersion relation is shown in Fig 1 for two angles:

and Note that for and the frequency is
so for it becomes negative. Viewing as an excitation
frequency, a negative excitation frequency means that the unexcited state
must be unstable. This agrees with magnetostatics: is the
internal �eld; when negative, it opposes the magnetization direction, so
that the state is unstable. The resulting collapse into a domain structure
cannot be described by a linear theory. This result holds, even though for
small analysis based on plane waves must be abandoned and replaced
by a theory taking the boundary into account. Fortunately, for such small
wavenumbers, the exchange term can be scrapped, and only the essentially
scale independent dipolar term needs to be retained. Such an analysis was
carried out by L.R. Walker, and the modes in that régime are called Walker
modes .

There have been some modest successes in going beyond linear theory
by expanding to one more order, writing with

This results in double and triple terms on the right hand
side of the equations of motion (13a) and its conjugate. The interaction be-
tween these and the linear terms generally causes some degradation of the
amplitude of the linear solution in ferromagnetic resonance experiments,
as descibed in the next lecture. For example, the ferromagnetic resonance
frequency (which is one of the Walker modes, and therefore not contained
in expression (14)) is where is the transverse
demagnetizing factor of the spheroidal sample. Except for absurdly large

�elds, this frequency is degenerate (i.e. synchronous) with a whole
manifold of spin wave frequencies. Such synchronism inevitably will cause
a transfer of energy from the uniform precession frequency to the de-
generate modes, and therefore broaden the resonance line. For sufficiently
large signal amplitudes, the transfer may even become catastrophic, result-
ing, initially, in exponential growth of the degenerate waves. In conclusion
of this section, we note three more points. 1. There is an upper limit to the
allowed values of wavenumbers: they cannot go beyond the zone boundary.
The continuum picture already breaks down for somewhat smaller values,
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particularly if only �rst derivative terms are retained in the exchange en-
ergy. 2. In samples smaller than a typical domain wall thickness, the exci-
tation energies no longer form a continuum as in the above theory. The very
lowest excitation energy (even in the absence of any applied or anisotropy
�elds) must be the energy of a domain wall (which may be regarded as
an �adult� form of localized magnon). For such small samples the entire
spctrum must be viewed as discrete. This inhibits spatially non-uniform
motion of , except in so far as non-uniformity may be enforced by cer-
tain boundary conditions, such as pinning. 3. In crystals with more than
one magnetic ion per unit cell, there will be several additional branches
of the spin wave spectrum located well above the one given by equation
(14). These are the analogue of optical phonon modes, and involve large
angles between the spins of the ions in each unit cell. Accordingly, their
minimum frequency occurs at and is of order the exchange �eld
between pairs within the cell. These branches can become interesting when
their dipersion relations intersect with the dispersion relations of phonons
or other modes, but they will not be considered further in this work

II. Relaxation Processes. Brief Review of Conventional Theory of Distributive Damping

II. 1. General observations.
Given the total magnetic energy, the precessional motion of the mag-

netization �eld can be determined, but to descibe the manner in
which that precession decays, a damping torque must be added to the right
hand side of equation (1), Sect.I . Probably the oldest proposal for the form
of such a term is that of Landau and Lifshitz They propose a form purely
local in space and time, with a structure that forces the magnetization to
seek complete alignment with the local effective �eld. The term

(15)

where is a constant, has that form. It also preserves the magnitude of
as it should, if the damping mechanism cannot change the saturation

magnetization. An alternative form

(16)
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was proposed by Gilbert For small values of the �s, the two forms are
equivalent. Substituting the undamped motion in the
form (16) gives the form (15), with

to lowest order. So, for sufficiently weak damping, and with the �s treated
as empirical constants, there are no differences between the two
forms. On the other hand, when the physical origin of the loss torque
is investigated, the Gilbert form usually wins out. However, as will be
discussed later, not all relaxation mechanisms take the form of either (15)
or (16)

Before examining some physical mechanisms of the loss torque, some
limitations of either form should be noted.

a. Experiments on macroscopic samples usually (though not always)

measure a spatial average over the sample volume
Unless the sample dimensions are smaller than a typical domain wall

thickness, the equation of motion for differs considerably from
that for While the non-dissipative part of the total torque remains
more or less intact, the dissipative part is quite different and does not
conserve the magnitude of The correct equation of motion for

will have dissipative terms similar to the Bloch terms found in
nuclear resonance, in addition to the one of LL-G form.

b. For some mechanisms, the LLG part of the damping is neither local
in time nor in space, except in appropriate limits. This is the result of
eliminating degrees of freedom or other features one does not wish to carry
along, such as lattice distortions, electromagnetic �elds, imperfections, etc.

c. Even in the local limit, the damping term may have the more general
form

(17)

where is a function of the components of dimensionally equivalent to

In regard to a., it is helpful to distinguish two kinds of damping:
damping, which degrades magnetic energy by coupling to external degrees
of freedom, and damping, which degrades the interesting mag-

netic degree of freedom (such as the spatial average only by scat-
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tering to other magnetic degrees of freedom, without degrading the
magnetic energy. That the LL-G form is of the former kind is demonstrated
as follows:

E E
(18)

E E

E E E

E E

In the �nal, fully relaxed state, the effective - must be parallel to and
then the right hand side vanishes. Prior to that, the right hand side gives
the rate of decay towards that state. For the common case in which E is a
bilinear functional of (i.e. homogeneous of degree 2), this is especially
evident. In that case , the right hand side becomes approximately

E E

where E is the magnetic energy in the relaxed state, assuming its mag-
netization to be uniformly saturated. If it is assumed that the coupling
between the space-averaged and the spatially varying magnetic degrees
of freedom is very weak, one is tempted to regard the latter as the exter-
nal agency. One then attempts to write the total energy as the sum of an
energy expressible in terms of and an energy depending only on the
spatially varying part of and a coupling term. (That kind of damping
of is analogous to the decline of forward momentum of a ball on a
horizontal pinball machine: The ball�s total energy does not change, it is
merely transferred from average, systematic forward motion to the �non-
uniform� degrees of freedom, in this example the transverse momenta. The
coupling term in that case is furnished by the pins.)

II.2.. Brief Review of Conventional Theory of Distributive Damping.
We begin with a discussion of distributive damping. Ferromagnetic res-

onance linewidth is a case in point, but we shall discuss its theory only
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to the extent that it furnishes hints to more general situations. The actu-
ally observed magnetic degree of freedom is a spatial average: the so-called
uniform mode excited by a microwave �eld, applied at right angles to a
steady magnetizing �eld. The theory of ferromagnetic resonance, as well
as of antiferromagnetic resonance draws heavily on the spin wave approx-
imation described in the previous section. As indicated there, terms just
beyond the linear approximation couple the uniform mode to spin waves
(aswell as the spin waves to one another.) This coupling transfers some of
the uniform part of the magnetization into spin waves and thus is lost to
direct observation.

We begin by re-stating the total energy in spin wave approximation
expanded up to triple terms in the spin wave amplitudes: Up to triple
terms, it will be convenient to write E E E , where

E (19)

E

Here, the primed symbols

have been renormalized by the prevailing spin wave excitations. The equa-
tions of motion for the �s are obtained, either quantummechanically by
Heisenberg�s equations of motion, or classically by de�ning conjugate vari-
ables and using E as Hamiltonian (so that E etc) .
We shall have no need to specify the structure of the constants . The star
on a symbol stands for complex conjugate (or Hermitian conjugate in the
quantum formulation). Note that each term in equation (19) carries zero
momentum, as appropriate for a perfect medium. However, in practice,
translational invariance is broken by imperfections, irregular boundaries,
etc. Hence the above energy expression must be supplemented by a term,
which, in lowest order is bilinear, and has the general form

E c.c. (20)
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This furnishes the simplest case of distributive decay. Haas and Callen
take the quantummechanical view of the decay of the number of quanta
in the uniform mode , into spin wave quanta. The simplest
process, which they call two-magnon decay, is due to the part of E that
involves one uniform mode and one spin wave. Keeping, for simplicity, only
the �rst term in the sum (20), that part is Treating
these terms as a perturbation, they apply Fermi�s golden rule to calculate
the transition rate from a state with quanta in the uniform precession
and quanta in states with various numbers to new states with quanta

and The net rate of this transition is
If can be replaced by some representative value

this result may be written where is the density of
states with energies degenerate with So we have

(Usually is close to its thermal equilibrium value and is much smaller
than On the other hand, to treat the problem classically, it is necessary
to supplement the equation of motion

(21)

with an equation for namely

(22)

Setting and where and vary slowly
with time, we get

(23)

Assuming that was zero a very long time ago, the second equation gives
and substituting this result in the �rst

gives

(24)
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a simple demonstration that elimination of unfavored degrees of freedom
causes history dependence in the equations of motion of the favored ones.
If we now regard as very slowly varying and take it outside the integral,
then, (noting that + we �nd

(25)

This is the same result for the damping as in the Haas-Callen quantum
treatment, except there they used energy units for the and here we use
frequency units Here we also get a bonus: the detuning of the resonance
frequency by the coupling (the term involving the principal value). That
extra term carries phase information of which, of course, is lost if only
the decay of is considered. What has happened here is that
part of the uniform mode has scattered into spin waves degenerate with
it. The total magnetic energy, however, has not changed. As is readily
veri�ed, the total increment in (aswell as the increment in
total energy) due to the excitation is a constant of the motion under E
A different kinds of damping that does not conserve results from
triple and higher terms in the energy expression (19). For example, the
triple term in E gives

(26)

The second term inside the sum amounts to a largely secular shift in
and is removed by the contact transformation
This small shift in the value around which the transverse magnetization

oscillates will be neglected. It is clear that the very low order perturbation
theory implied by Fermi�s golden rule will involve creating two spin waves
via and then destroying them with However to �consummate�
this process, it is necessary that energy is conserved. In frequency terms,
this means that only those �s can participate for which the frequency on
the left equals the frequency on the right. The golden rule
thus gives a decay rate Using a similar lowest
approximation in a purely classical equations of motion treatment gives the
same result, except that is replaced by because there is no
such thing as classical excitation out of the vaccuum. Of course, except
at extremely low temperatures, the difference is of no consequence. Here,
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we again have distributive loss: the total magnetic energy does not change
(although the total number of quanta is not conserved). However, one
then �nds a phenomenon that shows up the severe limitations of linearized
theory, rendering it of dubious value in describing the large motions of

typical in magnetic recording. If coupling among the waves
is neglected, the �rst term in the sum of the last equation will run with
time according to with constant amplitudes
Coupling among the waves will make these amplitudes functions of time,
slowly varying only if the couplings are small. In addition, the phases of
the may be expected to be random. The time variation of this sum is
sufficiently complex so that there is a temptation to replace it by a random
function of time . Equation (26) then begins to resemble the Langmuir
equation, except that it lacks a friction term. Anticipating that the ultimate
effect of the random force will be frictional, one adds a damping term

to the right hand side. One then solves the equation, and determines
by demanding that the statistical properties of be such that the

statistics of the solution be Boltzmann statistics. The result is a form
of the �uctuation-dissipation theorem. However, this procedure completely
neglects the response of the spin waves to the motion of As is well
known , this recoil becomes overwhelming for large enough . Using E
eqtn (19), the interesting part of the equation of motion of is found to
be

the response to being given by the second term on the right. Ignoring
the sum on the right, which only gives rapidly varying terms, we have

Writing gives

(27)

For spin waves such that this, and the complex conjugate equa-
tion yield exponentially growing amplitudes if is considered
�xed, no matter how small, unless these equations are respectively supple-
mented by damping terms (When there is such damping, its value
sets a threshold that must exceed to result in this blow-up.) Naturally,
this exponential growth does not go on for ever: the enhanced level of these
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spin waves results in increased damping of For the case in which
is driven by a microwave �eld, a compromise is reached, in which the spin
waves are excited far above their thermal number, and the decay rate of

is then large enough to keep its value just below the threshold beyond
which spin waves satisfying will blow up altogether. But these
spin waves can in principle lead to exponential growth of other waves, un-
less these are adequately damped (it is not difficult to satisfy the condition

for a whole manifold of �s. In fact, for all ).

II. 3. Distributive damping of large motions. General Observations. We
must now reexamine distributive damping for motions of so large that
linearized theory, even when extended to allow for mode-mode coupling, is
not appropriate.This is obviously a serious matter in the case of magneti-
zation reversal. Unless intrinsic damping is very heavy, the magnetization
vector will precess relatively rapidly, with a more slowly, but steadily, open-
ing angle such that the corresponding reaches the threshold value
discussed above, and then the further time evolution must be re-evaluated.
As before, interest will center on the motion of the spatial average of
Only the case of uniaxial anisotropy will be considered. Filling in all the
contributions to the equations of motion are

(28)
where dependence of on is implied. In averaging over we note
that the exchange torque contributes nothing to that average. Neglect-
ing possible boundary effects, integrating it by parts gives

This is due to the fact that the exchange torque lies entirely
within the spin system, so that the total spin is a constant of the motion.
In the dipolar torque, write Using the notation (
for the components of the vector product, and introducing the correlation
tensor the th component of the averaged
dipolar torque becomes

(29)

summation over repeated indices being implied. If now depends only on
the magnitude but not the direction of the result is zero, since must
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then equal in the second term, and the angular integration gives 1/3,
so that the �rst term is cancelled. Thus the conclusion is that if the pair
autocorrelation of the magnetization depends only on the magnitude of
the distance (a case of no practical importance), the dipolar torque cannot
change the motion of the averaged But in the general case, the dipolar
torque, prior to averaging, is where

(30)

and the average torque is not zero. The reason is that the underlying lattice
can absorb some of the total spin angular momentum. An averaged torque
of zero is characteristic of equilibrium in the absence of external �elds. In
that state the correlation function should indeed be independent of direc-
tion, at least if boundary effects are neglected. The same remark applies to
the anisotropy torque ( whose
average is obviously zero in equilibrium. In the general case, (28) and (30)
are hard to handle for large signals, except in one rather trivial case, which
does, however provide some insight: Suppose that the spatial variation of
the magnetization vector is restricted to a particular direction, which
makes an angle with the applied �eld and has azimuthal angle 0. If

are the polar angles of the magnetization vector, the component of
along is

In this case we bene�t greatly from the alternative formulation from the
potential �eld formulation of the dipolar interaction discussed earlier. That
interaction was where (or

div In the present case, this means, writing and
denoting by the coordinate along

the simplest solution of which (though by no means the only one) is
So the dipolar energy becomes simply If in the form

(16) for one could express as a Fourier series, that formula would
become very simple; unfortunately the constraint all , would
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be extremely hard to handle (except, of course, in the linearized limit).
Allowing for the full nonlocal character of (30) is very hard. However, it
may be argued that the essential effects lie not so much in the nonlocality,
but rather in the dipolar symmetry of the expression. So we replace it by a
local term in the following manner: Write, with respectively,

(31)

This is obtained by expanding the integrand in (30) up to the fourth power
of the components of and performing the angular integrations, ignoring
the fact that the integral over then diverges. The divergence notwith-
standing, the form 31 is still reasonable, if does not vary too rapidly
with position. This is seen by making use of Rolle�s theorem. Even with
this simpli�cation, the constraint on is still hard to handle.

A formalism should be used that satis�es the constraint
as an identity. The simplest way to do this is to write the equations of
motion in polar coordinates ( with polar axis along the �eld longi-
tude and latitude We recapitulate the way this is done. Chose a set of
rectangular coordinates along increasing, increasing, and the third axis
along see �gure). Chosing to equal unity, the components of in
this system are (0,0, On the other hand, the components of the increment

are ( . The components of are E/ E/(
where we have set A small amount of work shows that in this
coodinate system

E (32)

E

and, restricting ourselves to the uniaxial case with anisotropy axis along

E (33)

The dipolar energy, on the other hand, looks ugly in all systems of coordi-
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nates. In polar coordinates it reads

E

(34)
Here, the undashed are taken at position and the dashed symbols
are taken at The �s denote the direction cosines etcetera. Then

(35)

(36)
In some fortunate circumstances , these expressions simplify greatly. For
example, consider a plane slab of ferromagnetic material, magnetized within
the plane by a �eld , which for this geometry, evokes an only negligible
demagnetizing �eld. Suppose we wish to study a disturbance that depends
only on the coordinate, say, normal to the plane. Then, rather than carry
out the integrations over and in the last two equations, it is preferable
to proceed via the fact that in the interior, div which, in this case of

variation only, gives a dipolar �eld with - component only, such that

where boundary conditions on the faces of the slab have been ignored.The
associated dipolar energy is so that

To begin with, we leave this �eld out altogether, except for its uniform, de-
magnetizing part, where needed. As noted before, the equations of motion
become
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for two conjugate variables and Explicitly, we have

(37)

ec

where If there is intrinsic damping, (local in time), and it
has Landau Lifshitz form, then terms and must be added
to the �rst and second of eqtns 23 respectively. From the �rst of eqtns
37, we immediately see why the equation satis�ed by the spatial average

cannot possibly be tortured into LL-G form: We have

,

if the integral over the bounding surface is assumed to vanish (for example
by pinning to be zero). This is because, under exchange and directed
�elds alone is a constant of the motion. Thus, the only way
can (and will) decay is by damping. As for the averaged trans-
verse components, , they likewise are not affected by the exchange
coupling. But they are more �sensitive� than to distributive distur-
bances. This is a consequence of the priviledged position of along the
axial magnetic �elds that are tacitly assumed to dominate. Distributive dis-
turbances can cause changes in (i.e. that are slow, plus small rapidly
oscillating variations that time-average to zero. On the other hand, the
motion of is dominated by uniform precession in the longitudinal
�elds, and disturbances will dephase the precession, generally by different
amounts at different positions. This causes the spatial average to
decay. No comparable mechanism affects . Some modest further
progress, even for the formidable looking expressions 35 and 36, is possible,
if the axial �elds (applied and anisotropy) are larger than the dipolar �eld.
This will be discussed later.
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II. 4. Some Propagation effects. Breaking Spin Waves. Moving Domain
Walls as Shock Fronts.

Before discussing distributive relaxation mechanisms beyond the spin
wave approximation, we digress to discuss a nonlinear aspect of spin waves
that uses a simple version of the mathematics needed there. In the absence
of intrinsic damping, the magnetic system is its own microcanonic ensemble,
since coupling to external degrees of freedom is then absent. This means
that the magnetic energy E is a constant. So we can classify the states of
the system by the value of this constant. . A particular one of these is :

constant (although will vary in time: .
Its energy is a function of only, and , for the right sign of the lowest
energy has Furthermore, it is also a stationary state. Another group
of states with �xed energy has as before, but a
group that has an extra energy sin . These states are precisely the
usual spin wave states, except that in most of the literature, is set equal
to zero, because the deviation of from 1 is only second order in the spin
wave amplitudes. So the �rst, quite trivial, gesture towards a fully nonlinear
theory, is to observe that, in addition to a number to characterize a spin
wave, one needs to specify a constant angle of precession But this group
of states is not adequate to describe general excitations of the medium. In
the usual spin wave description, a general (small) excitation is described
by a superposition of spin waves. The coefficients in the superposition are
determined by initial conditions. So we must determine how to do this
for large motions, for which linear superposition is not allowed. A way
to do this is as follows: With still constant at note that the so-called
�Complete Integral� of the second of equations (37), where

is an integration constant, can be extended by making an arbitrary
function of differentiating this solution with respect to equating the
result to zero, and then forming the envelope of this group of solutions by
eliminating between the four equations

(38)

making a correspondingly arbitrary function of and .This so-called
envelope is also a solution of the second of (37). The nonlinear analog of the
arbitrary superposition of small amplitude spin waves is the arbitrary choice
of the function Further, an arbitrary superposition of small amplitude
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states, inasmuch as the components were all calculated on the assumption
reveals no information on the inevitable change in implied by

the superposition. One optimistically derives that change only by squaring
the superposition, (call it and writing , with no
regard to the actual dynamics of Our nonlinear analog of this cavalier
treatment of is to treat as �xed at This is inconsistent with the
�rst of (37) (except, of course, for the Complete Integral That defect can
be remedied by an iterative procedure. Successive steps in the procedure
involve solving only partial differential equations, for which a
standard solution method is available . The iterants satisfy

(39)

ec

where and , with the envelope solution of (38).
Substituting in the �rst of (39) makes it a �rst order partial differential
equation for whose solution is substituted in the second of (39), which
becomes a �rst order equation for and so on.

We try this out on the simple case of a single spin wave
traveling in the direction, i.e. we use only the Complete Integral,

without envelope formation. Then the �rst of equations 25, with
becomes

(40)

(Incidentally, equation 40 can be written as a conservation law

connecting the �charge� with a �current� The solution
constant is of no interest, since it has already been assigned to The
general solution of (40) is found by the methods of characteristics whose
equations in this case are:

(41)
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Since the �rst of these three is trivial, we can instead write these as

To get a solution of (40) it is necessary to specify at time zero as some
function of initial position say Then since ,

(42)

Eliminating between these two equations gives as a function of and
Suppose that at time zero is equal to . At large

equation (40) describes a wave propagating with a speed 2
But near the origin, the speed can be larger (for suitable , and
then the large values of propagate faster than the small values. Just
as in a similar situation in �uid dynamics, the wave will break (see �g.II
1). (A slightly more sophisticated theory also applies if there is a large,
discontinuous change in (see Whitham�s book, reference 8.) such as

and This propagates in a similar way, but the
break occurs immediately. The term cosec in equation 39 remains �nite
everywhere except at zero and but there, is strongly zero, so there is
no problem.) From the �gure it is obvious that the next approximation
to the spin wave, will differ from only around the switching region.
Apparently is �sur�ng� on top of the wave. This strongly suggests,
though it does not prove, that this state of affairs will continue to apply for
higher iterants. In the range of values in which is triplevalued, the
system avoids the inherent instability by means of a discontinuous jump
from one stable branch to the other. The nature of this shock is elucidated
by means of the Whitham-Kruskal equal-area construction (reminiscent of
the Maxwell construction for van der Waals �uids). We brie�y describe this
construction, closely following reference 8, for our example, ( disturbance on
top of Consider the area under the curve of vs. . Draw a chord
connecting the points P ( , P ( , where denotes
the speed (�g.II2a). Clearly the points P ,P can
be chosen in such a way that the area under
the rectilinear �gure with corners at P P is equal to

This means that the shaded regions in �g(4a) must have equal areas.
Next, consider the mapping ( which can be shown
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to preserve areas. Also, for reasonable values of , has the same
foldover as So we translate the points P P to a time at which

, as in �gure II2b, the two shaded lobes still have equal
area. Therefore any pair of values of that satisfy the equation

(43)

describe a shock. The position of the shock, X( , say, satis�es

(44)

The three equations (29)&(30) in principle can be solved for and
as functions of . The time at which the shock �rst forms is found from the
fact that at that time the slope of the vs. curve must be in�nite. But
from equation 28, which is
in�nite when This requires that is negative. The shortest
time needed to form the shock is 1/ . In our example,

For small the maximum is attained approximately at giving
a �rst formation time approximately equal to

Note that the broader and smaller the disturbance (larger smaller
the longer the time to �rst formation. The larger the exchange constant
and the larger the shorter the time to formation. For the
formation time would seem to be in�nite, but this is not correct, because
we have neglected the term inside the trigonometric function. However,
the time becomes large, because at the speed changes only
very slowly with , and if the speed were unchanging altogether, no shock
would form at all.

The jump in at the shock front amounts to a domain wall, although
the jump is not very large (it cannot be much bigger than the size of the
original disturbance). The size of the jump is evaluated
at the time and place that solve equations 43 and 44. Evidently that
evaluation requires intervention by a computer.
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I suspect, but have not been able to prove so far, that this effect is the
large amplitude analogue of the spin wave instability discussed at the end
of section II.2.

.Finally it should be noted that in the presence of intrinsic damping, the
equation for acquires a term part of which is proportional to

This probably has the same effect here as the viscous damping term
has on the pro�le of the shock front, smoothing out the discontinuous jump.

II. 5. Large amplitude scattering by imperfections. T T and all that.
We are now ready to resume the discussion of distributive damping. As

in the spin wave approximation, the easier case is that of inhomogeneities
of the medium. Depending on the extent to which the magnetic energy
density is anisotropic, due to crystalline anisotropy, demagnetizing, etc.,
different components of the spatially averaged magnetization vector will
revert to equilibrium at different rates. Consider the following case: non-
uniform uniaxial anisotropy, with anisotropy �eld of the form

, where is a short-range function, and are
random positions of imperfections. Leaving aside dipolar forces, is
a constant of the motion. Therefore can decay only as the result of
intrinsic damping, customarily denoted by a decay rate 1/ So cos is
a constant, and we begin by assuming that itself is also constant, On
the other hand, we anticipate that the average transverse components of

will decline as the result of cumulative dephasing by �collisions� with the
imperfections. It will be shown that this problem reduces to the scattering
of a particle of unit mass in a potential Consider the equation
satis�ed by :

(45)

In rotating coordinates the equation reads

(46)

This equation, too, can be solved using slightly more complicated charac-
teristics which are no longer straight lines, like in the previous section.
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They satisfy

(47)
where stands for and for From the �rst and second of these
follows Newton�s equation:

(48)

subject to having assigned initial values at The fourth equation
gives independent of Then the third of equations (47) gives

and, eliminating between and the solution of (48), gives
as a function of and Equation (48) describes motion in a random

potential and cannot be solved completely. However, we can write down
the energy integral

constant (49)

We chose the constant value to be zero Then

(50)

(51)

and �nally, must be expressed in term of and by inverting the
solution of equation (48). If is a short range potential, and the scattering
is elastic, that solution must have the form , where

is a three dimensional rotation matrix depending on the form of and
on the positions of all the impurities. Therefore Since the
positions are random, there is no statistical distinction between and
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its inverse, so that 50 may be written

(52)

with set equal to zero. Equation (50 ) cannot be solved for general
However, Further progress is possible, if is so short range that there is no
overlap between the �s around neighboring impurities. Then 48 describes
successive elastic scatterings. Suppose �rst that is isotropic. Then the
square of the velocity vector does not change in any of the collisions,
so that is constant, and equal to This agrees with equation 35,
since in any particular collision with the impurity at we may chose
as origin, and is assumed isotropic, so the dependence of the right hand
side of 48 on disappears . In this case, then, equation 52 shows that
the impurities can only shift the phase by a �xed amount times , which
can be relegated to the rotating axis frequency, and which does not con-
tribute to damping. Consider now anisotropic scattering from a particular
imperfection, at say. Suppose that, in this particular collision, the

vector is rotated through angles around the and axes.
Then the collision changes to where For
simplicity, assume that the collisions are all small-angle collisions, so that

for the th collision. In this expression,
is to be interpreted as the direction of the incoming momentum
vector; its magnitude is irrelevant. Thus if then

(53)

where the summation indices stand for . After collsions,
equation 52 gives

(54)

The �rst term gives just a constant phase shift. The second term is re-
sponsible for type damping. is related to the elapsed time by the
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relation density of imperfections collision cross section, and
the are random variables. Thus, in a system of rotating coordinates

and any kind of reasonable distribution of the will give a decaying average
for the exponential; the decay constant is known as 1/ In this incoherent
scattering model, changes only by collisions, which change its direction
but not its magnitude. Therefore the hypothesis of a constant value for is
consistent with the equation of motion of that quantity between the colli-
sions. Collisions will change the value by positive and negative increments
that average to zero. In any case, for this model, does not change
by the imperfections, only through the spatial rate of change of so that,
if one wishes to pursue the course of in detail, one can do so by the itera-
tive procedure discussed in the previous section. Also note that the above
solution is not the only possible one, although it is the most appealing one
because of its reduction to particle dynamics. As in the previous section,
a constant can be added to That constant can be made an arbitrary
function of one or more of the constant parameters entering Differenti-
ating the new solution with respect to each such parameter, equating the
results to zero, and eliminating the parameters between all the resulting
relations gives an envelope that again is a solution of the original equation.
Ultimately, the boundary conditions will decide which solution is the right
one. The simple one that we discussed in detail is probably the relevant
one for the in�nite medium.

To conclude this section, we indicate how to make contact with the rear
guard of spin wave theory of this kind of damping. We expand our solution
in spin waves: In rotating coordinates,

We evaluate the integral by the principle of stationary phase: at given
the phase is stationary at values and obtained by solving the four
equations
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for giving say. Expanding the exponent up to terms bilin-
ear in the deviations and and performing the
integration, gives the Fourier coefficient

where the �s are the eigenvalues of the bilinear form

etcetera

As usual, the Fourier series gets its greatest contribution
from the region of large state density The notion that this region
is around (the uniform precession mode) requires some comment.
The uniform precession is a Walker mode normally calculated without tak-
ing exchange into account. How can it �reach out� all the way to values
implied by ? The answer is that, in the presence of coupling fur-
nished by the imperfections, the original excitation spectrum is changed.
The original levels cross and therefore a gap opens up. originally was
calculated taking into account boundary conditions that become unimpor-
tant at short wavelength and are ignored in the usual s.w. spectrum. When
exchange is included in its calculation does become a function of ini-
tially rising slowly, but more rapidly as the split is approached. As is usual
in such cases, the �attening of the lower branch amounts to a large density
of states (Fig I.3).

Up to this point, the damping was deemed to come from randomly
placed imperfections. But we know from spin wave theory that even in the
perfect sample, dipolar forces can give distributive damping. As already
indicated, this is hard to evaluate for arbitrarily large motions. However,
in the relatively simple case of variation in limited to one direction only,
further progress is possible. From the earlier results we see that if the
angle between and the direction of variation is zero, then the added
dipolar energy just gives an extra uniaxial �hard� anisotropy. This is not
surprising. the biggest effect comes when Then the added energy
(with taken to be 1) is

A more general formulation is obviously needed. We restate equation
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E

Set and, using trigonometric formulae,
discard all terms of the form cos on the grounds that they would
oscillate rapidly. Then the energy becomes

E

Recall that the damping from the dipolar terms in spin wave approxima-
tion occured only at �nite temperatures, with all spin waves in thermal
equilibrium, except, of course, the excitation whose decay is being studied.
Further, the magnetic energies in this problem are much greater than
therefore the deviation of from 0 is small every where. So the dipolar
energy can be expanded to second order in On the other hnd, the phase
angle cannot be treated in this manner; it need never be of any partic-
ular size, (unless there is anisotropy or demagnetization dependent on .
Bearing this in mind, we see that it is sufficient to write

E

where is a constant. The part involving zero, because the angular
integral os Finally, (using there remains �only�

E

At this point, it probably becomes necessary to make a local approxima-
tion similar to the one discussed earlier for cartesian coordinates. Then a
solution for the dephasing of should become possible, but this work is
still incomplete.

III. Intrinsic Damping.
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III. 1. General Aspects. If the magnetic system is coupled to other
degrees of freedom, these may carry away energy from excited

magnetic degrees of freedom of interest, resulting in damping of the lat-
ter that cannot be described as a redistribution of the excitation energy
to other, uninteresting, magnetic motions. for example, spin orbit cou-
pling results in coupling to the underlying lattice. The part of that
coupling, calculated for �xed lattice positions, gives rise to the magnetic
anisotropy constants, but there is also a part; the coupling to
the lattice displacements, i.e. the phonons. As for the static part of the
anisotropy, the orbital angular momenta that enter the expression for spin
orbit coupling, are eliminated in favor of the magnetization �eld, usually
by means of perturbation theory. It is not common practice to similarly
eliminate the phonons in favor of the magnetization �eld. If the phonons
have a �nite lifetime, the result of the elimination will re�ect this �nite life-
time in a loss term in the equations of motion of the magnetization �eld.
Another example is furnished by magnetic metals. Elimination of the elec-
tromagnetic �eld will result in the appearance of the resistivity losses in
the resulting damping term for the magnetic �eld. Also, in magnetic com-
pounds whose ions undergo slow valence �uctuations, elimination of these
leaves behind a dissipative torque on the magnetization �eld of a rather
unusual form. Finally, there are cases in which the magnetization �eld is
coupled to impurities that have their own internal dynamics. Again, these
may be disposed of in favor of the magnetization �eld, which acquires the
appropriate loss torque.Three of these examples are already in the litera-
ture the remaining one will be discussed in detail; the other two only
brie�y. It will appear that a reliable reduction of the motion to describe
magnetic degrees of freedom alone will be critically dependent on the nature
of, and the coupling to, the degrees of freedom to be eliminated. Because
this is not always easy to do, it is tempting to discuss the problem for a
model of the reservoir of external motions: a scalar �eld coupled linearly
to the magnetization components. This was done in reference 11 for a uni-
form magnetization in the linearized limit of small transverse magnetization
components. In that model, the reservoir �eld, say, is characterized by
random �uctuations with delta-function autocorrelation. It is supposed to
be in thermal equilibrium, and its mean square value is consistent with the
�uctuation-dissipation theorem. It is assumed sufficiently robust, so that
the back-reaction of the magnetic motions on can be neglected. This
procedure works well in the linearized limit, provided one neglects certain
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stochastic features of the random �eld, to be dicussed later in this section.

III. 2. Damping torque in a ferromagnetic metal. We discuss this case
only in the limit in which electromagnetic propagation effects are negli-
gible, i.e. for electromagnetic wavelengths much larger than the sample
dimensions. Then the equation of motion of in component form, may
be written

(55)

where the steady applied magnetic �eld, the magnetic �eld satisfying
Maxwells equations. Crystalline anisotropy �elds have been neglected, since
they do not affect the results derived here We wish to eliminate and the
electric �eld between equations (1) and Maxwell�s equations (2)

(56)

where is the conductivity. Eliminating between the last two equations
gives

and since and (from the second of equation
2) some function of (which we discard) , we get

(57)

To solve this equation for in terms of we need the retarded Green�s
function that satis�es the equation

(58)

In in�nite space, is the source-solution of the diffusion equation:

(59)
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The solution of equation 3 is then

(60)

(61)

First, consider some special cases:
a. is independent position. Then in the �rst term on the right of

60, the volume integral only affects and gives unity. Then the time
integral gives the value of at time which contributes nothing to the
torque This may seem strange, in as much as the time derivative
of in (6) seems to be the only candidate for a Gilbert time damping.
The reason is quite simple: if does not depend on position, it cannot
produce a current, and without a current, there can be no dissipation.
This is seen easily by eliminating in favor of resulting in a diffusion
equation for that is driven by a current proportional to Now if

is independent of position, the second term on the right of (60) would
seem to be zero. However, this conclusion ignores boundary conditions
that involve a surface divergence of The correct procedure is to put
the burden of the differentiations on by integration by parts. The result
becomes familiar when

b. is independent of time. Then only the second term in (6) survives.
The time integration involves only and(using the �rst form of (60)), it
gives essentially Then, two integrations by parts result precisely
in the dipolar �eld due to which yields the familiar demagnetizing �eld.
When is not independent of time then the second term tells us what
becomes of the dipolar �eld under the diffusion-like propagation in this
model. (Actually, for consistency, we should have used the Greens function
appropriate to the �nite sample for which the demagnetizing is calculated,
not the in�nite medium Greens function).

Hopefully, in the general case of a both and dependent the non-
local expression can be expanded in an at least asymptotically convergent
series of purely local terms. This procedure is very successful in the case
of interaction of with elastic lattice displacements via magnetostriction.
In its simplest form, it fails completely in the present case. Write
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and Then, for example,

(62)
so to evaluate (6), we need the successive moments

(63)

The case requires evaluation of

(64)

where . This integral diverges, and higher moments even more
so. Thus damping cannot be local in the sense of the above expansion.
However, there is one highly unattractive possibility of saving the moment
expansion, and that is to use the Greens function for a �nite sample. Sup-
pose that where is the spatially uniform part of and

the rest. If the sample is saturated, may be similarly decomposed, its
uniform part calculated as the internal �eld (the external �eld minus the
demagnetizing �eld). If the sample is not saturated, the internal �eld and
the uniform part are zero. For simplicity, assume that the non-uniform part
of vanishes on the boundary. Suppose that { } is the set of eigenfunc-
tions of vanishing on the boundary, with eigenvalues { }.
Then the Greens function is

(65)

Noting that no eigenvalue can be zero (because the only solution of Laplace�s
equation that vanishes on the boundary is identically zero), it is now clear
that we make a moment expansion. For example, because
=1 for all and , the �rst term on the right of eq.(6) gives

(66)

that is to say, simple Gilbert damping. Here, Recall,

however, that a spatially uniform will give zero. That can be seen by
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noting that, for uniform the summation that involves only powers of
and adds up to . So for almost uniform , at

least as much of the damping will come from terms involving powers of
as will come from powers of For example, the lowest term in

the expansion that involves one spatial gradient is

(67)

where . However, terms involving only even

time derivatives presumably do not contribute to damping, but only renor-
malize the effective �eld. The lowest term giving position dependent damp-
ing would involve the moment of ( The reason why these
results diverge in the case of the in�nite medium is that the eigenfunctions
are then exp[ , with lowest eigenvalue causing the sums over
to diverge. In a �nite sample, the lowest eigenvalue is �nite (recall the zero
point energy in quantum mechanics of a potential well).

III. 3. Damping torque due to magnetoelastic coupling. When there is
substantial magnetostriction, the viscous damping of the lattice manifests
itself as a loss torque on the magnetization. This torque is found by elim-
inating the lattice strain components in favor of the magnetization. The
full treatment is found in reference 9; here we only discuss the case of mag-
netic samples small compared with both the wavelength of sound and small
compared with domain wall width. In that case the resulting loss torque is
independent of position. With the sound velocity effectively in�nite in this
limit, the magnetoelastic energy is E where

with repated subscripts summed over. is the shear part of the elastic
energy due to strain components where the is the ith
component of the lattice displacement and strand for and . Since
the sound velocity is taken to be in�nite, the may be considered uniform
throughout the sample. is the magneto-elastic coupling coefficient. is
the shear modulus. (Compressive strain energy is not included. If it were,
there would be the added complication of the saturation magnetization
being affected. A complete theory would have to take it into account). The
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elastic stress tensor is 2 When the functions of the
time, this stress tensor must be balanced by a viscous stress tensor 2
So the equation of motion for becomes

(68)

On the other hand, the equation of motion for is

(69)

Equation 13 may be formally solved for and the result substituted in 14.
This gives

(70)

where ( Young�s modulus, Poisson�s ratio).

The last term depends on prior history of As goes to zero, the term
vanishes in a singular manner. Nevertheless a moment expansion in powers
of is possible, even though it is only asymptotic. This is done by expand-
ing in powers of and integrating, making use of the fact that

is taken to be 1. The result is

(71)
where

(72)
Evidently trhe leading term in the expansion is unequivocally of Gilbert
type. Using the constants in various papers on elastic constants one �nds
that the terms in higher derivative should become signi�cant at frequencies
above a few gigahertz.

The wavelength of sound in typical materials of interest should be of
order of one micrometer, which is also of the order of typical domain wall
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widths. Therefore in samples larger than abot one micrometer. It is then
necessary to include spatial variation aswell. This is done in reference 9.
Here we mention only that the result becomes nonlocal in space aswell
as time, but (in contrast with the electromagnetic case in the unbounded
medium) a moment expansion in both space and time is possible here. It
generates various new terms, the simplest example of which is proportional
to The possible existence of space dependent damping term
had been anticipated by Baryakhtan et al.

IV. Dissipative Damping and Fluctuation-Dissipation Relations

IV. 1.. Fluctuation-Dissipation Relations. Up to this point, the mag-
netic system plus the environment to which it is coupled were considered
on a purely deterministic basis. Thus, the environment was not treated
as a �heat bath� in the usual sense. Our purpose was to have the envi-
ronment�s effect on the motion of the magnetization appear as parameters
or functional forms in the equations of motion of the magnetization only.
However, this is not enough to lead to a solution of some important prob-
lems, particularly problems of magnetization reversal. When there is a
barrier to overcome, a genuine heat bath is required to supply random im-
pulses to nudge the system. Because the equations of motion of are �rst
order in time, there is no inertial kinetic energy to carry over the bar-
rier. Not only that, but since its �rst order derivative depends on
which vanishes at stationary points, the magnetization vector, without
thermal agitation, can neither depart from an (unstable) maximum, nor
overcome a maximum in a �nite time. How is this Brownian motion of
to be described ? Recall the simplest case of the Langevin equation of a free
particle subject to a random force exerted by the reservoir. The particle
can exchange momentum, and perhaps also energy, with the reservoir. This
leads to the degradation of any initial forward motion of the particle, i.e.
a damping. Assuming the reservoir to be in thermal equilibrium and suf-
�ciently robust to be insensitive to the motion of the particle, the velocity
of the latter must ultimately reach a Maxwell distribution. The equation
of motion for the speed with friction constant unit mass, and random
force is

(73)
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and its solution is

(74)

So, after the transient has died out,

(75)

We know that thermal averaging is supposed to give on the left. On
the right, it gives

where is the autocorrelation function of At this point, it is usually
assumed that in which case averaging (3) gives

(76)

Also, the autocorrelation function describing the �uctuations of of is

(77)

The dissipative response to an initial impulse can also be written in this
form; hence the name ��uctuation-dissipation theorem�. Note that no
longer appears in that , but the constant does require informa-
tion on That calculation can be extended to the case of a particle in a
harmonic well. If the particle moves in a general potential, its equation of
motion is no longer linear and no general solution of the Langevin equation
exists. However, one can prove, both classically and quantum mechanically,
that for a response, the �uctuation-dissipation relation still holds.
(In the quantum proof, one still has to make the charitable assumption
that the average of two non-commuting quantities may be replaced by the
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average of their anticommutator). But to determine either the �uctuations
or the response one still needs information on the coupling to
the bath and its statistical properties.

Not surprisingly, an ab initio derivation of the Langevin equation from
full-scale dynamics has not so far been achieved except in very simple cases.
Consider, for example, the Brownian motion of a harmonic oscillator, cou-
pled linerarly to a large reservoir of other harmonic oscillators. This is
like the problem of distributive damping discussed in Section II. There,
the Brownian particle was the uniform part of the magnetization, and the
reservoir the spatially varying part of the magnetization. When that prob-
lem was linearized, and the coupling mechanism was taken to be lowest
order spin wave scattering from imperfections, a damping constant was
found. The reason for success in that case was that the character of the
bath (the synchronous manifold of spin waves, in the case of small mo-
tions) was carefully included in the calculation (in contrast to the Langevin
procedure). For a multidimensional harmonic oscillator that calculation
will in general furnish different damping constants for the different com-
ponents. As demonstrated in the Safanov-Bertram paper, the result can
be very different from that using an a priori form for the damping term in
the equation for and simply adding a random term to the right hand
side of the equation. However, we note here that one can circumvent the
need to involve the direct effect of the random reservoir motions on , if
it is possible to relegate �uctuation-dissipation questions to a lossy buffer
between the equation for and the reservoir. In sections III. 3 and III.
4, the buffers were respectively the electromagnetic �eld with resistivity
losses, and the viscous magnetoelastic medium. The recoil was calculated
from the deterministic part of the motion of the buffer and, as long as we
were interested only in the mean motion of , there was no need to men-
tion any random force. But this is not good enough if there is a barrier
to overcome. Consider the coupling to the electromagnetic case, discussed
in section 1. The heat bath is composed of random currents of �uctuating
charge carriers, and we must determine how these �uctuations affect the
motion of which has no random torque acting on it . The ran-
dom currents must be added to the right hand side of the �rst of Maxwell�s
equation, and we will neglect their recoil, uncritically accepting a Langevin
equation

(78)
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with an electric �eld random in both time and space. Proceding
exactly as in III.2, we now �nd equation III(6) for but with an additional
term on the right hand side:

(79)

where .The crucial point is that in (79) is the
function of . as is of in equation 61. As in Langevin�s

approach, we need not know anything about the statistical properties of
except that they must be such that, leaving aside the magnetization,

the solution of the equation for ,

(80)

gives the magnetic �eld of the black body spectrum, with the displacement
current neglected. Thus, in the equation of motion for appears in addi-
tion to the systematic Gilbert-like loss term (section2), an additive random
torque Thus we have almost the pristine Langevin equation,
escept that, because of the operation, it is multiplicative noise, in con-
trast with the purely additive noise term of the original Langevin equation.
This happy state of affairs is not likely to continue in the general case of a
lossy medium.

Multiplicative noise can give rise to systematic effects, like so called
�noise induced drift�, and it seriously complicates the Langevin equation.
In addition, nonlinear terms in the deterministic part of the equation force
one to resort to an iterative solution procedure, not an easy exercise. A ray
of hope in this regard is provided by an equivalent formulation, the Fokker-
Planck equation. This is a partial differential equation for the probability
distribution of the dependent variables, and it is linear. Actually, this is no
great help , for the same reason that the Schroedinger equation for a particle
in some general potential is no easier to solve than Newton�s equation, even
though the former is linear, and the latter nonlinear. Nevertheless we shall
use the Fokker-Planck equation, mainly because in that formulation all
the effects of the random force, including multiplicative noise, are buried
once and for all in the diffusion coefficient. There is a derivation of the
Fokker-Planck equation to suit every taste, from severely mathematical
to user friendly. Among the latter, very physical derivations are those of
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Chandrasekhar Rev, Mod Phys, April 1943) and of van Kampen book
on Stat. Mech.). Somewhat more mathematical derivations appear in a
recent book by Coffey et al . We shall not derive
the Fokker-Planck equation here. Also, for simplicity we will assume that
the deterministic part of the damping resulting from the recoil of the lossy
environment to the magnetization has simple Gilbert or equivalent Landau-
Lifschitz form, with memory terms neglected. Further, the equation we use
will be for the probability distribution of polar angles of the magnetization,
for reasons explained earlier. In a small enough single-domain particle,
the two polar angles are independent of position, so the equation likewise
involves no position dependence and describes the diffusion of the variables
in space. For larger particles, the two angles are functions of position,
and then we are dealing with a diffusion equation in the function space of

and
IV. 2. The Fokker-Planck equation. All derivations of the F.P. equation

are based on the notion that the �uctuations in the variables of interest in-
duced by random additive or multiplicative noise are very rapid compared
with the motion along their average trajectory, and that their autocorrela-
tion functions also decay rapidly, which is very likely if the random �eld�s
autocorrelation decays rapidly. Under these conditions, double integrals
such as etc., when aver-
aged over all values of the random force, turn out to be proportional to

only, rather than to This assumes that autocorrelation time
time scale of the average motion. Under these conditions the F.P.

equation becomes:

(81)
where

(82)
and where, for brevity, we have written

etc. (The deterministic term simply becomes
and when resolved along and increasing).

41



�

2 2 2

2 2

2

2 2

2

〈 〉

∝

�

�

�

| | 〈 〉

�


 � 
 � 
 �

� 
 � � � 
 � �


 �


 � 
 �

Ev/kT

rndm rndm

rndm

rndm rndm

rndm

rndm

� � = � � =

� � � = 0

= 0

+
1

2
+

sin sin
+

sin
= 0

=
1

sin
=

1

sin

=
2

=

cos sin sin cos
� � � �

� � � = 0

˙ =
sin

sin ˙ =

�

� / t � / t f �, �

� � / t

W e
∂W/∂t ,

∂

∂�
�W

∂E

M∂�
f

∂W

∂�

∂

�∂�
�W

∂E

M �∂�
f

∂W

�∂�

∂W

∂� kT

∂vE

∂�
W,

∂W

�∂� kT

∂vE

�∂�
W

�
vM

kT
f ,

M

E M~h ~u

~u � �, � �, �,
� / t, � / t

~h � � / t .

M� 
∂E

M �∂�
, M �� 

∂E

M∂�

t,
~h

~M.
~M ~h

To start with, consider the model:

, independent of

which actually turns out to be correct. In equilibrium, and
and the F.P. equation can be written

But

Therefore the simplest solution has both brackets equal to zero, giving

the �uctuation-dissipation theorem for this case. The reason why this is
correct, is that the energy in the random �eld is (restoring the saturation
magnetization to facilitate comprison of dimensions)

where is a unit vector with components sin and the
resulting averages both turn out to be proportional
to (without any angular dependence) and This
follows from integrating the equations

over a time interval and averaging, it being assumed that different carte-
sian components of are uncorrelated. So the �uctuation dissipation
theorem holds for arbitrarily large motions of The reason for success
in this case lies in the fact that and enter Maxwell�s equations in
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essentially the same linear way. For other loss mechanisms, such as magne-
toelasticity, this simple result is not guaranteed. Equation 6 may now be
written

where the diffusion coefficient is considered is indepen-
dent of angle. (for example, in the case of a metal magnet, we found above
that this is indeed correct). In the general case, the right hand side must
be written

and similarly, in the second bracket on the left, must be pulled inside
the outer differentiations.

V. Magnetization Reversal in Small Particles

V.1. Overview. Most recording media are composed of more or less
dense planar assemblies of small magnetic particles. In the typical case,
these particles are too small to support magnetic domain walls, yet large
enough to be outside the range of superparamagnetic effects. Imprinting in-
formation on them involves reversal of their magnetization directions from
one stable position to another by means of a magnetic �eld supplied by the
recording head. A fairly detailed understanding of the switching process
should help in delineating some of the material parameters favoring a de-
sired recording performance (such as high recording rate and efficiency).
In its full generality, the problem must deal with magnetic interactions of
the particles (dipolar, and, in some cases, exchange couplings), possible
random spread of their anisotropy axes, and surface anisotropy. As a �rst
step, we consider the problem of switching a small, single domain particle
with uniaxial anisotropy. Initially, its magnetization vector is along the
anisotropy axis, at angle zero, say. A magnetic �eld is now applied along
the same axis, but in the opposite direction, with the object of forcing the
magnetization vector to reverse, so that it ends up at angle at the op-
posite end of the anisotropy axis. Opposing this switch is the anisotropy
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barrier. Evidently, to achieve rapid switching, the applied �eld should sub-
stantially exceed the anisotropy �eld in which case the barrier has
disappeared, but even when the �eld is smaller, thermal agitation can help
the magnetization over the barrier. Customarily, the experimenters plot
the applied �eld, versus a �switching time�, de�ned somewhat loosely, but
precise enough for practical purposes. There is a voluminous literature deal-
ing with the escape of particles over potential barriers. Essentially all of
it uses a form of either the Fokker-Planck equation or (where appropriate)
the Smoluchowski diffusion equation as starting point. Since the original
classic paper of Kramers on this subject, there have been various signi�cant
extensions in the details, if not in the concepts. An exceptionally careful
application of the traditional approach to the switching problem problem
was made by Safanov and Bertram . These authors match the barrierless
diffusion for to the barrier regime for Their results
agree with the experimental �eld vs. switching time curve over most of the
measured range. However, one puzzle remained: the theoretical curve has
a kink at . No such kink is observed in the experiments. In
the following, we begin with the diffusion equation discussed in section IV,
but pursue a direct solution, not dependent on the assumptions of standard
reaction theory. No kink is found at

V. 2. . Rotation in 2d. The procedure will �rst be demonstrated for
a simpler model, in which the rotation of the magnetization vector is very
nearly con�ned to a plane (as it would be in a thin, disc shaped sample).
In that case, the diffusion equation may be written

(83)

where is the magnetic energy per unit volume, the sample volume, and
is the diffusion coefficient. In the present model

where the is just a convenience factor. We restate equation (83) in di-
mensionless form, measuring time in units of and measuring magnetic
energy in terms of thermal energy, so that

and Then equation (83) reads

(84)
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As previously shown by Caroli, Caroli, and Roulet in connection with
diffusion in a bi-stable potential, it is convenient to transform this equation
into a standard form familiar from quantum mechanics. In our particu-
lar case, the transformed equation relates to the quantum mechanics of a
particle in a periodic potential, and allows us to bring to bear some of the
associated folklore. The required transformation is

(85)

which brings equation (2) into the form

(86)

where

(87)

Equation (86) resembles the Schrödinger equation, but for imaginary time.
Written out in full, the potential is

(88)

In a typical switching problem, for may be the Boltzmann
distribution centered on and will equal . At a �eld

is applied. To simplify the argument, we shall assume that
at is zero everywhere, except at (The results are easily
generalized to other initial values of and the results for an arbitrary
initial distribution can then be found by linear superposition.)

For orientation purposes we brie�y discuss the case of free diffusion,
( on the circumference of a circle, subsequent to at
time zero. If were not an angular position variable, but a coordinate
on an in�nite straight line, the well-known solution would be

. However, this function is not single valued on the
circle. On the other hand, a single valued function can be constructed from
it:
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a result which can be written in compact form as one of the functions.
This sum is the response to the delta function that
takes account of the fact that on the circle, there is nothing to distinguish

from A direct way of arriving at the same result is to note that
the even eigenfunctions of the free diffusion equation are with eigen-
values so that an alternative form of the result is
which is, in fact, the Fourier series for For very short times, the series
converges very slowly, and is a poor representation of the essential singular-
ity at For long times, the Fourier series is evidently better. The term
of the series with gives the equilibrium solution, which, in this �eld
free case, is independent of The �switching time �needed to very nearly
reach its equilibrium value is just the lifetime of the initial state. Strictly,
that time is in�nite, but for practical purposes it is sufficient to seek the
time needed to come to within a factor of the �nal state, with close to
unity. That time is obviously dominated by the term of the series
solution. At and time the state is very nearly and this
will equal at a time

Analogous considerations apply when �elds are present. The series so-
lution of equation (86) following the initial periodic function now has
the form

where and are the eigenfunctions and eigenvalues that solve the
equation

with only positive allowed, and only 2 periodic eigenfunctions admit-
ted. The smallest eigenvalue is and the corresponding eigenfunction
is (the corresponding is just the Boltzmann
factor). Because ( the must be either even or odd. Be-
cause the periodic delta function is even, only the even can be used
here. Therefore Furthermore, is symmetric about

therefore the must be even or odd about . Evidently, if they were
odd about they could not satisfy therefore they must be
even about so that (Eigenfunctions odd about must vanish
at Therefore they are appropriate if there is a at , and there is no
sink in our present problem). Just as in the �eld-free case, the series solu-
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tion is not a good description of the short time behavior of At very
short times, the diffusing particle cannot be aware of the presence of
therefore a singularity very similar to that for the free particle must arise.
To deal with it, we again resort to the solution with initial condition

with periodicity restrictions, subsequently forming the desired pe-
riodic solution (Clearly must reduce to
the usual source solution in the �eld free case). At this point, the analogy
with the quantum mechanics of a particle in a periodic potential becomes
useful: describes the motion of a particle released at time zero at
position zero in a periodic lattice, but in imaginary time. In the �eld free
case, the source solution could have been found by superposing the in�nite
space eigenfunctions with a continuous spectrum of eigenvalues and
corresponding time decay e For the particle in a periodic lattice, the
analogues of the plane waves are the Bloch-Floquet functions
where is periodic in In this picture, although still ranges from
minus to plus in�nity, the continuity of the eigenvalue (analogous to
is interrupted by an in�nity of gaps. As the result it is usually more con-
venient to restrict the range of and to introduce the �band index� now
writing the eigensolutions in the form decaying in time like

The various are periodic functions of but for small vary
like In an approximation in which this form is assumed to hold within
each band, it then follows that the analog of the free �eld source solution

is approximately equal to This has the required

singularity at Within each band, the loss parameter is effectively
renormalized to The can be calculated approximately by so called

perturbation theory . Here we only note that the at are
the same as the eigenvalues used in the series representation.

A general feature of the eigenvalue spectrum should be noted: the eigen-
values depend on the magnitude, but not on the sign of This is a con-
sequence of linearity of the diffusion equation, but may be checked by ob-
serving that the eigenvalue equation (4) is unchanged by the replacement

(Obviously the time to evolve in a �eld from initial
position around is the same as the time to evolve in a �eld from
initial position The de�nition of switching time depends on practical
considerations. The most exacting de�nition would require the �nal state
to come within a factor 1 of equilibrium in the switched �eld, with
extremely close to unity. The closer it is to unity, the longer the switching
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time, so that only the term with the smallest need be retained in the
series solution. Then is given by

where the smallest non-zero eigenvalue, and we have chosen a nor-
malization of the eigenfunctions such that It follows that

and if is close to one, the right hand side is very nearly equal to
Thus, for this exacting de�nition of switching time, only the smallest non-
zero eigenvalue needs to be known, but not the eigenfunctions, . In practice,
less stringent de�nitions must be adopted and are usually considered suf-
�cient. In the case of magnetic recording, the switching �eld is applied
for only a short period as the medium passes below the recording head.
Therefore one may have to settle for values of not much greater than
one- half. Then higher terms in the series may have to be included, and
the result will depend on several eigenfunctions and eigenvalues. A formal
procedure of �nding these, is to note that equation (4 ) has the form of
Hill�s equation and to evaluate an in�nite determinant derived from that
equation. Exact analytic results are probably out of reach (the Hill deter-
minant is not sufficiently sparse, having four �lled superdiagonals and four
�lled subdiagonals). Therefore, in Appendix A, we indicate a very rapid
computational way of solving this problem. The results are shown in �gures
V. 1, 2, and 3. Figure 1 shows the �rst �ve eigenvalues as functions of
for Figure V 2 shows the switching �eld as a function of for
the case and various when only the lowest non-vanishing
eigenvalue is considered. Figure V 3 shows the contours of equal in the
( plane for , again using only.

To end this section, we brie�y discuss the case of anisotropy axis inclined
to the direction of by a �nite angle. (A spread in such angles is normally
found in media particles) . Initially, the magnetization is aligned close to
one of the two anisotropy directions, along angle say. The �eld is then
applied to try to force the magnetization into the direction It will succeed
only if is large enough. The �nal angle will be less than as long
as the equation has a solution. Figure
V.3 shows as a function of for values of the parameter
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increasing from zero to 2 in steps of 0.125. Evidently, when is very slightly
greater than 1, the equation has a solution only if exceeds approximately
2 radians. When it is less than that, the �nal angle snaps to the value
In practice, this is the important regime. the potential is now

and is of mixed parity. Therefore each eigenfunctions can be written as
a linear combination of even and odd functions. Substituting that com-
bination in the �Schroedinger� equation then yields two coupled equations
for the even and odd parts. Evidently the even part will have much the
same properties as the even eigenfunction for discussed above. In
particular, its derivative at will be zero. The procedure explained in
Appendix A can then be used. The results for a few values of are shown
in �gure V 4.

V. 2. Rotation in 3d. In that case also, the diffusion equation

can be transformed into Schroedinger-like form

with and, in polar coordinates, for constant
Here, stands for The range of is 0, that of is (

for consistency with the notation of the previous section, assume the �eld
applied along the axis, i.e. The energy is then
with anisotropy energy The effective potential is then

and the eigenvalue problem to be solved is

49



� � � �

� �

� �
� �

� � � �

�

√

� �

�
�

�
√ √

∇
∇ �

� �

k k

k k k k

k

k

dmg

dmg

dmg

x B

k

2

2

2
2 2

1
2

2 1
2

3
2

1
2

1
4

2 2

0 0

1
2

2 2

1
2

2 1
2

2 2 2 2

2 2 2
2

2 4 2 2

2

Oz,
E

� V.
�

�,
w

�. w �
w u/ �

∂ u

∂�
V � u ,

V H �
�

∂

∂�
�
∂E

∂�
H �

∂E

∂�
� �

E H �, V H � H � H ,

H H � �
� � �
u. �

u �J �� , J w

� �.

H H .
E N � � �

E N � �, N � �
E N � � � � , V

N
� � � �

N
� � � �

N N vM /k T.
N M >> H,H .

�,

= sin

+ ( ˆ + ) = 0

ˆ =
1

2
cos +

1

sin
sin

1

4
sin + +

1

2

1

4
cot

= cos ˆ cos + cos(2 ) +

( + cos ) sin
= 0 =

( )

= sin sin
= sin 2 sin sin sin 2

= (2 cos sin ) sin + cos 2

2
(2 cos sin ) sin + cos 2

16
sin 2 sin + sin sin 2

For uniaxial crystalline anisotropy, with axis aligned along and for
particles with rotational symmetry around that axis, will be a function
of only, as will In that case, even though the magnetization vector will
precess in the direction also, that motion cannot affect the switching
process. Thus we can average over in which case the second term on
the left of the preceding equation drops out, since, for single-valuedness,
must be periodic in The resulting is a function of only. The further
transformation then gives

where

cosec

For the case the �rst terms of becomes while
the second term remains unchanged at as in sec-
tion 1. The singularities of the last two terms at and do not
impair the eigenvalue solutions of the equation for (For close to zero
the third and fourth term dominate, and one solution there has the form

where is a Bessel function, so the corresponding is
�nite, and its derivative vanishes there, as it should. (The other solution
goes to in�nity). Similarly one solution remains �nite and its derivative
vanishes as approaches Thus nothing qualitatively different from the
results of section 1 arises in this totally uniaxial case. Suppose, however,
that the crystalline anisotropy is as before, but the particle is no longer
rotationally symmetric around the direction of and Then a demag-
netizing energy arises, and averaging over is
no longer allowed. We have and

so acquires an additional
term

Here is in reduced units; in the original units it is Hence
will be very large in the limit in which In this case,

some progress is possible. Clearly which is a measure of how far the
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magnetization sticks into the energetically unfavorable direction, will be
very small. Then the foregoing expression may be truncated at The
eigenvalue equation for then becomes

where An exact separation of variables in this equation is
not possible. However, note that the -dependent term is small near
or and is largest at A reasonable approximation is therefore
to replace by some constant, between zero and one, in the sec-
ond and third term. Then the equation is separable. The eigenfunctions
are products of the functions without demagnetizing, times harmonic os-
cillator eigenfunctions, and the eigenvalues are the corresponding sums of
eigenvalues. These functions all have a Gaussian decay factor that con-
centrates around , as expected. An estimate of the constant
may be made by considering the exact ground state, which, to order is

A reasonable value of is then obtained by
minimizing the mean deviation

from the true ground state numerically. It is found that for the case
the smallest fractional deviation is obtained for over

the range of values from zero to �ve, and increases linearly from just
below one percent at to just over �ve percent at Assuming
that not only this picture, but also the value of does not change much
in the higher states, each eigenstates of will be products of the form

times a harmonic oscillator wave function of with corresponding
where It would be too much

to expect the �zero point value� to be independent of (all we know is
that its value is zero for

V.3. A note on the conventional treatment. In spite of some pitfalls
already mentioned in the introduction of this chapter, it is worthwhile to
explore the conventional and more intuitive approach with its much simpler
algebra. Equation 1 happens to have the form treated by Kramers in the
so-called high friction limit for particle motion over a potential barrier.
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Kramers de�nes the escape rate as the steady state current divided by the
number of particles in the originating potential well. In the steady state,
equation 1 (in reduced units) has a �rst integral: the current

which may be written

whence

is identi�ed with the location of the originating well, in our case
Kramers neglects back �ow from the �nal well at therefore discards the
�rst term on the right. He also takes to be the Boltzmann distrib-
ution; in our case it would be (The integration is
to extent only through the quadratic portion of the initial well). Kramers
de�nes the escape rate

Most of the second integral in the denominator on the right comes from
the vicinity of the barrier (in our case for negative

In that vicinity, where
and the integration may then be extended from to Also

and so that, �nally
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This works as long as is reasonably smaller than The procedure
breaks down completely when At that point not only is
but also The lowest non-vanishing derivative is

That derivative is negative, so the required integral converges.
Exactly at it can be carried out by setting The
integral then becomes Unfortunately
no such simple result can be found for close to because the quadratic
and higher parts of the exponent scale differently.

However, there is a more serious difficulty. A steady state requires the
existence of a sink somewhere in the system. Then the initial well cannot
be an equilibrium distribution as is assumed here. However, if the barrier is
sufficiently high, the current due to escape will be small, and will decline
very slowly, so the rate formula holds at least initially. Then back-�ow may
be introduced by considering also the time variation of in the �nal well,
and using a master equation to link the two numbers:

In this �adiabatic� picture, is the Kramers rate , and then may be
determined by detailed balance in the usual way. As approaches from
below, the barrier moves toward zero angle; �nally, at just above
the initial well at is converted into a maximum, and this adiabatic
picture fails. Then one must resort to the treatment in sections V. through
3, which does not appeal to adiabaticity . But it is possible to compare the
Kramers method with the method of sections 1 through 3 in the range

Solving the master equation for gives

(89)

Comparison with the earlier results then shows that is essentially equiv-
alent to Furthermore it implies that is closely related

This immediately suggests that one can take a purely phe-
nomenological approach even in the range since the form of the
exact result for at long times has the same form as the result of
the diffusion equation for large times. One only has to abandon the usual
derivation of One may even be tempted to regard the entire series for

as the solution of a master equation of a many-barrier problem with
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speci�ed transition probabilities between any two minima . However, we
do not know at this point whether the pre-exponential factors as well as
the �s of the exact treatment can be made to match the corresponding
quantities in the solution of the master equation for some particular choice
of all the

VI.Magnetization Reversal in Large Specimen.

VI. Overview. The simplest and oldest treatment of this subject, due
to Stoner and Wohlfarth envisages a square hysteresis loop. It is as-
sumed that the magnetization switches uniformly as soon as the applied
�eld exceeds a shape and/or crystalline anisotropy �eld that opposes
reversal. For reasons that will presently become clear, the reversal con-
dition is written as However, experiments gave a
value of substantially less than this relation indicates. The results are
frequently stated in volume terms: observed where
came to be known as the magnetic volume. The reason appears to be that,
for samples larger than a typical domain wall width, spatial variation of
cannot be ignored, and, in fact, facilitates switching. This problem has two
aspects: a. Initiation of the reversal as the result of an applied �eld larger
than a critical value, and b.the subsequent course of the reversal towards
its completion.

a. Evidently, a. is within the province of linearized theory, and therefore
much easier to deal with than b, which strictly speaking, is a problem of
diffusion in function space. We begin (and almost, but not quite, end) with
a discussion of a. The �rst task is to establish the stationary con�gurations
in the space of As discussed in section I., these satisfy the equation

E
(90)

which states that in a stationary con�guration, the magnetization must be
everywhere along the total effective �eld. From hereon, we shall refer to
such a con�guration as a �point�in space, even though, in con�guration
space, it is, of course, an extended feature( for example, a domain con�gu-
ration). To be a stable minimum, a further condition must be satis�ed: the
second functional derivative of E, evaluated at a point satisfying eqn(1),
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must be positive de�nite. It ceases to be positive de�nite for the same pa-
rameter values (e.g. the applied �eld), for which the natural frequency of
at least one type of deviation from the solution of 1 goes to zero. To prove
this, write the equation of motion, for the increment in

E
(91)

where the components are the solution of equation 18. One of the eigen-
values will be zero if the functional determinant with elements
is zero. But this is also the condition for the second functional derivative
of E to cease being positive negative.

The energy landscape of E consists of �maxima�, saddle �points�, and
�minima�. In zero applied �eld, the system sits at the lowest, (the absolute)
minimum. By and large, in an applied reversal �eld less than a certain critical value,
the landscape changes a bit, acquiring a �tilt�, but the �eld still starts
out at the same minimum, which is now less deep, (and will no longer be
the global minimum). It can escape from its minimum by diffusion over
the nearest and lowest saddle point, only to fall into the next minimum,
from which it again escapes. Eventually, the �tilt� provided by the reversal
�eld makes it reach the new absolute minimum, at which point reversal is
complete. All this looks like process b., until the reversal �eld reaches a
critical value . At that point, the initial minimum is swallowed up by the
adjacent saddle point and becomes a new saddle point (a very �at one at
critical, but a regular quadratic saddle point beyond critical). The energy
in the critical �eld needed to bring about this merger is approximately equal
to the height of the original nearby saddle prior to reversal of the �eld. An
approximate idea of the scenes near the original minimum before and after
the merger can be obtained by expanding the total energy E up to quartic
terms in the deviation of from its value at the minimum. Beyond the
critical �eld, the descent of into the nearest minimum is almost ballistic,
but assisted by diffusion enough to take off from the saddle point. The
neighborhood of the critical condition is conveniently studied by lineariza-
tion. This yields the initial exponential growth rate of a small disturbance,
but says nothing about its �post-exponential� development, (although fourth
order development of E may shed some light on it). A classic calculation
of a critical �eld in an extended sample is that of Frei, Shtrickman, and
Treves who evaluated needed to start reversal of the magnetization
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in an axially magnetized circular cylinder, and they indeed found
1. Their procedure is as follows: From equation 18, it is clear that for small
deviations from the initial minimum should be at right angles
to deviations along must be higher order in the Their

is along the cylinder axis, therefore must lie in the transverse
plane. To allow it to have a radial component at the surface would cost
demagnetizing energy and raise the critical �eld. Therefore they take the
lines of to be purely circular, with only a component around
the cylinder axis. To avoid a singularity at the center, they take
to be one of the Bessel functions Finally, they determine the pos-
sible values of by imposing the boundary condition that has been used
traditionally : derivative of total in the direction of the surface normal
should equal zero. So the �s are the roots of This mode is
called a curling mode, because the lines of total are evidently spirals.

However, for all these modes the magnetic volume factor , though
less than the Stoner-Wohfarth value 1, is still much bigger than the one
observed. The reason is that the energies of these states are still of order
of, though less than, the total volume, since the entire sample is required
to act as nucleation center. In fact, even if the sample is perfect, nucle-
ation will occur in a thin surface region. The reason is that the boundary
condition is inhomogeneous, in contrast to the homogeneous boundary con-
dition assumed in the traditional treatments. In the case of
surface pinning, this is quite obvious. But even for a pure Heisenberg near-
est neighbor exchange model, at least one of the nearest neighbors of a
surface spin is missing. Therefore that surface spin has to be treated differ-
ently from the bulk spins, and in the continuum mode, this results in the
normal gradient of to be of order of the applied and anisotropy �elds.
In consequence of an inhomogeneous boundary condition a localized state
arises, with magnetization rapidly decreasing into the interior of the sam-
ple. As the result, the ratio becomes at most an ratio, where

is the surface area. Furthermore, if the inhomogeneity is con�ned to a
small region in the interior, the ratio will become much smaller still.

A rough, qualitative way of discussing this for plane waves is in terms
of the spin wave spectrum, with dispersion relation

where is the wavenumber of a plane wave disturbance. For instability,
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one or the other of the two factors must go to zero. Consider the �rst
factor. Checking �rst for the Stoner-Wohlfarth condition, for which the
reversal mode is uniform, so that we see that If we are
looking for an instability for (i.e. we would need a
negative value of which means that must be imaginary, so that this
spin wave becomes a localized disturbance (rejecting the spatially growing
possibility). As shown in reference 25, homogeneous boundary conditions
can never give such a mode. For a more rigorous discussion for planar
geometry, including the effects of the dipolar �eld inside and outside the
sample, see referenc . It requires the use of the Wiener-Hopf method

VI. 2. The reversal process itself. Diffusion in the function space of
As in the section on reversal in small particles, we begin by considering

the case of a very thin �lm in which rotation of the vector is con�ned
to the plane because of very strong demagnetizing inhibiting rotation out
of the plane. Further, for orientation purposes, it is useful to consider
the case of free diffusion, but this time on a hypercircle, rather than on
the circumference of a circle, as previously, for a small particle. To avoid
notational challanges, continuous two-dimensional space will be replaced
by a two dimensional lattice at discrete points , with spacing allowed to
go to zero at the end of the calculation. Each is speci�ed by an angle

with domain (0,2 At time each the diffusion equation
in the �eld-free case is

(92)

with initial condition If we rule out a sink at
the eigenfunctions are with eigenvalues where the

are zero or positive integers. The solution corresponding to the
function at is then

(93)

As only the term with all survives, with uniformly
spread on the hypercircle. The longest lived term that still has some time-
dependence has just a single one of the 1, and all the others equal to
zero. Thus after a long, but not in�nite, time,

(94)
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For very short times, as in the case of small particles, the eigenfunction
expansion converges too slowly to conveniently represent the singular be-
havior at There, the solution is a product of - functions. When
there is a magnetic energy E, measured as before in units of , the
diffusion equation is

E/
(95)

and can be transformed into Schrödinger form

E/ E/
(96)

by the substitution Suppose that consists of exchange
energy only , with E/

where = If
denotes summation over nearest neighbors, equation 97 becomes

(97)

where the are the vector distances to the nearest neighbors. With
where is the total number of lattice points, equation (97)

can be written

(98)

With this is Schrödinger�s equation for a set of harmonically
interacting particles centered on sites of a planar lattice, and energy
eigenvalue Let Then
the equation becomes

(99)
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(100)

Equation 99 describes harmonic oscillators. With the ground state and
eigenvalue given by

it follows that

(101)

with the time factor cancelling out because of zero point motion. Thus,
for the ground state. This agrees with the fact that (101), translated

back into space, solves (97), with the time variation equal to zero, as it
should for thermal equilibrium. For the excited states, the eigenvalues are
of the form

where the are positive integers or zero. The decaying state with the
lowest nonzero decay constant has the lowest permissible value of and
the corresponting all other equal to zero. Disregarding boundary
conditions, the smallest value is zero. This is, of course unrealistic. The
plane wave modes employed here are appropriate to the in�nite medium.
For the bounded medium, the smallest possible will be of order of the
reciprocal sample dimensions, even if the boundary conditions are homoge-
neous. The reason for these very low eigenvalues is simple: In the absence of
any energy other than exchange, making very long wavelength domain walls
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requires very little energy. This immediately explains why nucleation in a
very small portion of the sample can lead to very rapid reversal. Consider
�rst an abrupt domain wall in the plane, spins up for and down for

Now turn the up spin layer at through some angle towards
the down direction. This makes the layer�s initially negative interaction en-
ergy with the left nearest neighbor upspins less negative by an amount

At the same time it makes its interaction energy with the nearest
neighbor downspins less negative by an amount The
net change of energy is zero. This is why there is no energy cost involved in
moving that domain wall. The same is true for a Bloch wall of �nite width

of order There is a cost in establishing the domain wall (because of

the anisotropy energy but once it is established, there is no barrier to its
movement. This is really a large amplitude version of the Goldstone mode:
because the wall is equally happy wherever it sits, no energy is required to
move it. But the cost in nucleating the domain wall is proportional to the
area of the wall. So even if the wall runs through the whole sample, the
magnetic volume is only where is of order of the wall width. If nucle-
ation occurs near a small imperfection, the problem almost reduces to the
switching of a small particle discussed previously. Once the highly localized
reversal has occured, the remaining impediment to complete the process in
an otherwise pure sample is the frictional retardation of the wall motion.
That motion may be calculated purely ballistically; diffusion is negligible
at that stage. Of course, if the specimen has imperfections at which the
wall can get hung up, the magnetic volume will increase in proportion to
the imperfection density. Dipolar interaction could conceivably change this
picture . That interaction can create domain walls even in the absence of
exchange coupling and the long range character of dipolar coupling might
increase the magnetic volume. But there is probably no serious barrier to
domain wall motion in that case either.

To summarize, it appears that because of domain wall motion, the formi-
dable concept of diffusion in function space is largely circumvented. The

part of the undoubtedly very complex function space of seems
to reduce to a much simpler space of small nucleation centers, or, at worst,
surface con�gurations of

Appendix A: The method required to �nd the eigenfunctions from
the differential equation is the so-called �shooting method�. Normally such
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a second order equation is solved by specifying the values of the unknown
function and its �rst derivative at the initial point, in this case. But
here, the requirement is different: we must specify the value of at
and at Deferring normalization of to the end, we may assign
an arbitrary initial value to at but then require
A �quick and dirty� method of �nding the eigenvalues and functions on a
desktop computer is to make the assignment and then
to run the equation, assigning a large number (400 seems to be good) of trial
eigenvalues. Make a table of these trial eigenvalues and the corresponding
value of We know from the symmetry of the problem that
for the correct eigenvalues, this derivative must vanish. Because we are
making a table of discrete values, we will not hit this value exactly. So we
select from that table successive values of between which
changes sign. The correct value must between these two successive �s.
Evidently, the larger the number of table entries, the more closely one will
come to the exact eigenvalues. A very sensitive test of the quality of this
procedure is to evaluate for the quasi-exact eigenvalue found. The
better that eigenvalue, the closer will equal 1.
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III. 4. Intrinsic damping due to valence fluctuations.

In the previous two examples,  the non-local  loss torque each had an

asymptotic expansions,  of which the leading term was of Gilbert form.

We now show that valence fluctuations in a ferromagnetic compound

result in a loss torque of totally different structure. In the limit of motions

small enough to permit linearization,  the result can always be interpreted

as arising from LL-G damping , but this does not help in the case of large

motions.  The first suggestions of a relation between valence fluctuations

and magnetic losses  were made almost fifty years ago by Galt15 ,  by

Wijn and van der Heide 16 , and by Clogston17. The process was analyzed

in detail by Clogston, and his procedure is utilized here.  Holes or

electrons are imagined to hop by thermal activation between ions

introduced substitutionally or interstitially in the host lattice.  In

particular, the authors of refs. 15 to 17 considered the case of nickel

ferrite with small amounts of divalent iron replacing divalent nickel on

octahedral sites. Their magnetic energies on these sites, and hence their

thermal distribution, will depend on the prevailing direction of   
r 
M 

(considering that Nickel ferrite is ferrimagnetic,  not ferromagnetic). . If

the electrons cannot instantly come to equilibrium  as   
r 
M  changes, the

delay provides a drag on the motion of   
r 
M , and therefore a magnetic loss.

Clogston postulates a set of master equations for the occupation numbers

Ni  of the various sites, and for simplicity replaces the set by a single one,
 ˙ N i = (Ni• - Ni) / t

where    Ni• µ exp(-e i(
r 

M ) / kT) , with   e i(
r 
M ) the energy of the ith site.

Consider the free energy of the mobile carriers 
  
F = Ni

i
Â e i(

r 
M ). Its rate

of change may be divided into a heating rate 
  

˙ N i
i

Â ei (
r 

M )  and a rate of ‘



work done on the system 
  

Ni
i

Â de i(
r 

M )/ dt . We shall be interested only

in the latter. If ni is the deviation of Ni from its equilibrium value,  the

solution of the simple master equation is

  
ni = Ni(t) - Ni•(e i(

r 
M (t)) = - d ¢ t 

-•

t

Ú e-( t - ¢ t ) dNi•

d ¢ t 

Hence, and since we are interested only in the rate of work done on

the system, the non-equilibrium  part of the torque is

  

r 
Q = g

r 
M ¥ ni

i
Â ∂e i ∂

r 
M 

=
1
kT

g
r 

M ¥ d ¢ t e-( t - ¢ t )

-•

t

Ú
r 
h i(t)

i
Â

r 
h i ( ¢ t ) ⋅

r ˙ M ( ¢ t )( )Ni•(e i(
r 

M ))

where, for small concentrations of the mobile carriers, we have set

∂Ni• ∂e i = Ni• / kT , and where   
r 
h i (t) ≡

r 
h i(

r 
M (t)) = ∂e i ∂

r 
M (t) are the local

anisotropy fields.  For processes in which the magnetization changes

slowly on the scale of the valence equilibration time, a series

expansion is justified, with the result

  

r 
Q = t

kT
g

r 
M ¥

r 
h i(t)[1- t n

n=1
Â

i
Â dn

dtn ]
r 
h i(t) ⋅

r ˙ M (t)( )Ni•(e i(
r 
M ))

The first term in the series slightly resembles the Gilbert form, but

only slightly, because the anisotropy fields strongly depend on the

magnetization. For example,  if there are three inequivalent sites, for
which e i = 1

2 k Mi
2 / M2 , i=1,2,3,  where k  is a constant, and the damping

torque is considered small with the non-dissipative  torque   g
r 

M ¥
r 
H ,

then the equations of motion for the direction cosines  ai = Mi / M  are



˙ a 1 = a2 H - gk 2 Ha2a 3 d ¢ t e-(t - ¢ t ) / t

-•

t

Ú a1( ¢ t )a2 ( ¢ t )

˙ a 2 = -a1H - gk 2Ha3a1 d ¢ t e-(t - ¢ t ) / t

-•

t

Ú a1( ¢ t )a2 ( ¢ t )

˙ a 3 = 2gk 2 Ha1a2 d ¢ t e-(t - ¢ t ) / t

-•

t

Ú a1( ¢ t )a2 ( ¢ t )

where  g = Ni / kT , with all occupation numbers approximated by the

same average <Ni>.

It turns out that reversal of magnetization using the last three

equations is much more abrupt than reversal calculated with LL-G

damping. Presumably the reason is that the damping term in the last

three  equations does not immediately 'get off the ground' when the

field is switched, because of the strong dependence of the damping

term on the direction cosines . For detailed pictures, see reference 10.
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