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Abstract—The aim of this paper is to express the effects of
basic dissipative mechanisms involved in the dynamics of the
magnetization field in terms of the one most commonly
observed quantity: the spatial average of that field. - The
mechanisms may be roughly divided into direct relaxation to
the lattice, and indirect relaxation via excitation of many
magnetic modes. Two illustrative examples of these categories
‘are treated; direct relaxation via magnetostriction into a lattice
of known elastic constant, and relaxation into synchronous
spin waves brought about by imperfections. Finally, a some-
what speculative account is presented of time constants to be
expected in magnetization reversal.

Index terms — dissipation mechanisms, micromagnetics, non-
linear effects

I. INTRODUCTION

Damping of the motion of the magnetization vector,
particularly “the damping of large motion, plays a
significant role in the performance of magnetic recording
devices.

At the phenomenological level, a great deal is
known about the behavior of small motions, such as
occur in ferromagnetic resonance experiments, and
modest advances into the realm of not quite so small
motions have been made for the case of resonance at
high signal powers. However, the problem of dissipation
in truly large motions remains, at least in structures
whose size exceeds typical dimensions of a domain wall,

To be of use -in practice, the formulation of loss
processes should be as far as possible in terms of the one
quantity that appears in the ultimate applications: the
spatial average mf(1)=(m(%,1)) of the magnetization
vector. The vast number of microscopic (or even
mesoscopic) degrees of freedom responsible for the
losses should be encapsulated as constants, or at least as
simple functional structures, in the equations of motion
of that spatial average alone. This presentation
emphasizes that viewpoint. A price must be paid for this:
eliminating unwanted degrees of freedom in favor of the
wanted ones makes the equations of motion of the latter
non-local in time. But in the appropriate limiting cases,
local equations can usually be recovered.

II. DIRECT AND INDIRECT DAMPING MECHANISMS
A. Direct Damping

First, we note that there are two main pathways for
degradation of the uniform mode. 1. Direct flow of energy

Manuscript received October 17, 1997.

This work was supported in part by NSFDMR 94-00439,
Prof. Harry Suhl, Ph: (619) 534-4748; Fx: (619) 534-0173;
E-mail: hsuhl@ucsd.edu

from the uniform mode into lattice motions (and* possibly
conduction electrons, in the case of metals) and 2.
Energy flow from that mode into non-uniform  magnetic
modes which we shall call magnons or spin waves (even
when these are not small). Of course, these modes must
eventually decay to the lattice, but this has no. direct
effect on the uniform mode (Fig. 1).
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Figure 1. Two paths for degradation of uniform -motion: 1) Direct
relaxation to the lattice; 2) Decay into non-uniform motions, which in
turn decay to the lattice. .

For samples smaller than a domain wall thickness,
mechanism 2 will be inhibited, because spatial variation
of the spin orientations would entail too much exchange
energy. Then we have the relatively simple case 1, and
we begin by analyzing the case.in which the coupling to
the lattice is furnished by the magnetoelastic energy, and
the sound velocity is considered infinite (small samples).
All strains and stresses are then uniform. For simplicity,
we shall consider shear motions of the lattice only.
Reference [1] gives the shear pait of the total elastic
energy: F=Ll£,~2j +Bejjm;m; (repeated subscripts being
summed over), where g is the shear modulus, B a
measure of the magnetoelastic *energy, m;  the
components of the magnetization  vector, and
ejj =(y2)(9u,-/8xj +8uj/&>c,-) is the strain tensor in terms
of the displacement components u; of the lattice point at
X. The equations of motion for the strains: Viscous stress
tensor=minus elastic ‘stress tensor OF[dey; are 23

nézj+#€ij+‘é‘3mimj=o (1)
where 7] is the shear viscosity of the lattice. Equation
(1) is solved for the e's in terms of the m's, and
substituted in the equation of motion m =y x (dF/dm)
for #71. The result is ‘
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where A =pu/n=E/2n(1+c), (E = Young's modulus,
o=Poisson's ratio). Note that the second term in the
parentheses vanishes in a singular manner as the shear
viscosity goes to zero. But, because for small viscosity
the memory is short, an asymptotic expansion can be
constructed by a change of variable to 7=t-¢", and
making a moment expansion in powers of 7. To third
order the resulting damping terms have the form

Qi X o+ Gy X P + oy X pri+ 3im(i)? | 3)

the first of which has Gilbert's form. The constants are

a; =282 (1+6)% /E*;
a, =-8n21B%(1+0)3 /E3;
as =8n°B%(1+0)* /E*

The expansion (3), being only asymptotic, fails at high
frequencies. To estimate its limit of validity, the small
signal case, for which (2) is easily solved exactly,
should suffice. It gives a damping constant

ZBZya)/(n(lZHDZ)), which attains its maximum at
w=A., (There is also a small in-phase frequency
dependent shift of amount equal to (@/A) times the
damping rate which slightly alters the resonance
condition in an applied field) When shear wave

propagation effects are included, equation (1) becomes
(repeated subscripts being summed over)

where p is the mass density of the lattice. At one GHtz,
the sound wavelength should be of order of one micro-
meter, just about of order of the length at which wall
formation becomes energetically feasible. For samples in
excess of this size, both sound propagation and non-
uniform magnetization fields must be considered. By the
same procedure as before; we find an equation of the
form (2), except that 1" must be replaced by the four-
vectors (¢, %),(¢, %), and

e M) o ARz 501 i =1)
where

ROE Lo = e—plilzt/(n(tzﬂflz/cz)
cos {¢+p 1512 t/(n(t2+ 1312 /cz)},
(5

¢= -%-arctan{l x| /ct)

and c is the shear wave velocity. The integration limits
on ¢ are, of course, still - and ¢, while the x' integrations
extend throughout space. Writing ¢ =¢-17, X'=%-%,
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n=2m

averages of the form <T X ) can be constructed from

the kernel, and the first few terms of the asymptotic
series can be found. The first few terms correspond to (n
=1, m=0), (n =1, m=1) and (n =0, m=1). The last of these
merely gives a small shift in the exchange field and is
loss free. The other two imply loss, with a torque of the
form

pix| ()il 22 2.

1

(summation convention). The last two terms show that
loss can occur as the result of twisting of the magneti-
zation vector, as in domain wall motion. That terms of
this form can occur in principle is known {3, 4]. Here we
have a recipe for evaluating them in the case of
magnetoelastic coupling.

We have also derived the form of the memory kernel
for the case of eddy currents by eliminating the electro-
magnetic field in favor of the magnetization vector. This
will be discussed in a forthcoming submission.

B. Indirect Damping

We next turn to mechanism 2: degrading of the
uniform motion by coupling to other modes of the spin
system for sufficiently large samples. Embryonic forms of
the special effects to be expected here are already
apparent in the case of small motions in ferromagnetic
resonance experiments with driving fields in the
microwave range; hence we begin with a brief review of
this subject. The magnetization vector in these experi-
ments deviates only very slightly from complete lineup
in the direction of the dc field. In lowest approximation
the spatial Fourier coefficients of the small components
transverse to the lineup behave like uncoupled two-
dimensional harmonic oscillators, called magnons, or
spin waves. In higher approximations, the spin waves are
coupled, the coupling terms being classified according to
the number of spin wave amplitudes occurring in them.
Neglecting crystalline anisotropy and disregarding
boundary conditions except those affecting the uniform
mode, the excitation frequencies of these spin waves are
given by :

(mH—szM +wex12kz) X
k= Vog-N %2 in? (6)
H = Ny0pg + @px°k“ + @ pysin“0

where oy =1H, @y = 4mpMs and @,, the exchange
energy in frequency units. £ is a length of order of the
lattice spacing. € is the angle between the directions of
H and k. This formula breaks down for excitations of
wavelength comparable with, or larger than, sample
dimensions. So-called Walker modes [5] must then be
used. The most important of these is the uniform mode,
whose excitation frequency is

o '_"wH"(Nz"NT)wM
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where a spheroidal sample has been assumed, with
demagnetizing factors N,, Ny respectively along and
transverse to, the field applied along the axis (0z) of the
spheroid. .

Motion in this uniform mode can be degraded by
splitting into- spin waves synchronous (or 'degenerate')
with it, both in regard to excitation frequency (energy)
and momentam. Thus, for suitable ranges of the field, we
can have wg=w; +w_; =20, and this can hold for a

whole manifold of momenta. Similarly, for a different
manifold of k& - values, we can have two uniform

precessian quanta turning into two spin wave quanta:

2 wg= @y +@_y = 2wy and so on for higher splittings, but
only these two have been explored experimentally and
theoretically. These processes can occur spontaneously
as well as by thermal agitation; the latter process
contributes a small temperature dependent line width
noticeable only in extremely pure samples. The former
process can result in an unstable growth of the spin
waves in the entire degenerate manifold to large non-
thermal values, provided the uniform mode exceeds a
certain  critical value determined by the damping of the
spin wave modes. These run-away modes, in turn provide
extra damping of the uniform mode, until a compromise
is reached in which the uniform mode cannot be excited
further, no matter how large the microwave field.

In a sample with imperfections, the dominant loss
mechanism is usually scattering from the uniform mode
by the process @y = @; + momentum =k absorbed by an

imperfection. A very simple calculation shows that the
resulting decay constant for the uniform mode must have
the form:
Sl
Wy =Wy

where p, is the coupling strength (in frequency units) of
the uniform mode to spin ‘wave k. (for realistic imperfec-
tions, the calculation of the p's is non-trivial [6]). All
these processes have one thing in common: they do not
preserve the magnitude of the uniform mode. Therefore,
in the desired equation of motion for the uniform mode
alone, they cannot be described by a damping term of
either Gilbert or Landau-Lifshitz form. Clearly this
feature must carry over to the case of large motions also.
It follows that this kind of damping, leaving aside the
above mentioned instabilities for the moment, must in
general give an equation of motion of the form (m now
refers to the uniform component only)

&ﬁi=(ﬁzx1§)_-§_1_&n i =123 €

i j:l Tl:i J
reminiscent of the equations used in paramagnetic and
nuclear resonance. &n ;i is the deviation of j from its

equilibrium value. Of course, the relaxation times T;; are
constants only in the small motion limit. In the general
case, they will also depend on scalars like m? and/or

7-H. (A formal expression for the relaxation times will
be presented in a forthcoming submission.)

HI. VERY LARGE MOTIONS

Next, we discuss some insights furnished by spin
wave theory into the very large. motions of. the
magnetization that occur in the process of switching by
sudden reversal of the applied field. Disregarding thermal
activation, switching is considered to begin for a value of
the applied field at. which the minimum in magnetic
energy turns into a saddle point. At that value, one of the
curvatures of the energy surface at the stationary point
changes sign. Neglecting precession effects and retaining
only the Landau-Lifshitz term, this results in an initial
growth rate (which may be identified with the initial
switching rate) that is proportional to the loss parameter
in the Landau-Lifshitz equation: zero loss parameter-no
switching, This procedure fails to take account of the
losses due to the second mechanism, which cannot very
well be forced into Landau-Lifshitz or Gilbert form.

To illustrate this point, assume that the Landau-
Lifshitz loss parameter is, in fact, zero. Suppose that the
applied “magnetic field- is suddenly decreased to zero
from an initial value in excess of N,ws. This causes

the portion of the portion of the spin wave spectrum with
VR 1< 1 By 1= Ny 040 /22 0005
negative, indicating instability. We know that the
magnetization will break up into a' more or less complex
domain structure. However, initially, for a brief moment,
the magnetization vector: that” was uniformly aligned
along H stays put -in its original direction until some
thermal agitation causes it to precess slightly in what is
now a negative internal field. Weakly excited spin waves
with less than the critical wave number are in a similar
position. So, for a brief instant we may once again assign
positive excitation energies to disturbances with k <
kerit, effectively flipping over the portion of the spectrum
that has sunk below the axis, as.shown in Figure 2. Now
any small thermal agitation' of .the uniform motion will
cause unstable excitation- of synchronous pairs of -spin
waves, conserving energy and momentum. These, in turn,
can likewise yield unstable growth of other spin waves.
Even though one may be inclined to dismiss this entire
approach as fanciful, it seems to have features close to
the actual .state of affairs. The magnetization breaks up
into a domain structure that minimizes the total energy,
including that in the fringing fields. Simple
considerations show that in  a sample without
imperfections, the resulting domain structure will favor a
certain periodicity characterized by a wave number, K,
say. In this state, the excitation spectrum will have
minima at |k l=X. The value of K, representing a
balance between exchange forces, that would like to
keep it small, and demagnetizing forces, that would like
to keep it large, must, in fact, be of order of k. It

follows that Figure 2b is a reasonable facsimile of the
true excitation spectrum of the collapsed state, and
presumably is almost unaffected by the cascade of
unstable spin waves effecting the collapse. Before
turning to the second part of the process, in which H
goes from zero to -H, we calculate the order of
magnitude of the initial switching rate. To begin with,

wave numbers to turn




the appropriate spin waves feed on the thermal deviation
of the uniform mode from complete alignment with the
(now defunct) applied field. A prominent process is the
spontaneous split wy = wy +w_;, for which there is

evidently plenty of phasespace (see reference [7] for

(®)

Figure 2. Spin wave spectra. In filled regions between the
graphs waves propagate inclined at angles 6 between O and 7/2
to the z-axis. Solid lines: 6=0, dashed lines: 8=n/2. Wave
number k in units of reciprocal exchange length. (2) Normal
spectrum of the saturated sample (H/4nM, (0))-N, =0.5; (b) Initial
spectrum after sudden reversal of the field to a value such that
IHI/(47M, (0))+N,=1.5.

details). Although the analysis is done most easily in
terms of spin wave amplitudes, a more picturesque
description has been championed by the Russian school
[8], using the language (though of course not the
axiomatic structure) of quantum mechanics. Let
ng =apa; be the number of spin waves (complex
amplitudes q;) with wave number k in the manifold
satisfying  wg =wp +w_g, and by =(apa_g) the
‘anomalous’ average of the product of two spin wave
amplitudes with opposite momenta, pulled into
coherence by coupling to the uniform mode. Then
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iy =(8ka +g72bk)x]"o' br = 2gxning, ®)
rio + Xng=0
20, =

where g, of order wyy, is a measure of the coupling
energy y graya’rag+ comp. conj., and the phase of the
uniform mode g, has been chosen real. Initially, before
ng has a chance to change, the first two equations show
that n; increases exponentially at the rate wgny. This is
also the rate at which the spatially uniform part of m,
will decline. (Even though that quantity appears to be
conserved according to the last equation of (8), it will
decline if it is expanded beyond second order in the

amplitudes).  Also, at reasonable temperatures,
ng = kT/wq - Thus the initial switching rate is temperature

dependent, equal to @y (kT/wg)=kT/N,, (KT in

frequency units). (We suspect that this rate gets larger
as more and more spin waves ‘split into others.)

Next we consider the process of reassembling the
uniform magnetization when the applied field goes from
zero to —H. Evidently the magnetization reassembles
partly by sweeping domain walls out of the sample, and
partly by coalescence of the favorably aligned domains
at the expense of the others. Within the present
formalism we cannot say much about the former process,
but the latter can be mimicked in the spin wave picture
as long as the reversed field is not too much larger than
N,wp. With H reversed and greater in magnitude than
N,wys; the spin wave spectrum is normal again, and the
domain structure persisting for an instant longer may be
regarded as a highly excited spin wave state with wave
number k_;,.If ! #1 is not too large, so that

wp <%(oM[8NZ+1—-\/16N§ +16NZ+1} ®)

then pairs of spin waves with wave number f_;/2 can

grow unstable. This implies a spatial period doubling
tending to bring the system closer to the uniform state,
with magnetization reversed. For sufficiently small
fields, further period doubling by unstable growth of pairs

with wave numbers k., /4 can take place, and so on.

The mathematics is essentially the same as for the
unstable growth of (* k) spin waves described earlier.
Eventually a uniform, reversed state may be reached,
provided the applied field is small enough.

For larger reversed fields, the phasespace available
to these processes disappears. The route to the reversed
magnetization should then be governed by direct losses
to the lattice, for which an example was given above. In
that case two distinct damping rates might be observed
during the switching process. In a high quality sample,
the first half of the switching process should be rapid,
governed by spin wave excitations, while the second half
should proceed much more slowly, with conventional
damping by direct coupling to the lattice degrees of
freedom. Although some experiments apparently are
consistent with this conclusion [9], it is too early to
claim it as a universal feature of magnetization reversal.
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Finally, one more loss mechanism should be
mentioned. During the second phase of the reversal,
domain ‘wall motion takes place, under certain
circumstances resulting in losses by radiation of spin

- waves. This occurs when the wall velocity equals the

group velocity dwy /dk of some spin waves. Details of

this mechanism are found in ref. [10].

The discussion of damping mechanisms presented
here is not sufficiently exhaustive to cover all cases of
interest. For example, in yttrium iron garnet with certdin
rare earth impurities, the energy levels of these impurity
may be a sensitive function of the orientation of the
magnetization of the host [11], which leads to giant
anisotropy peaks [12]. Kramers-Kronig-like relations must
exist between crystal anisotropy and damping, (in fact,
strong damping is observed in these cases [6]), but
anisotropy and its implications have been ignored in the
above discussion.

CONCLUSION

This investigation has shown that, for sufficiently
small particles, the magnetization coupled to shear
distortions of the lattice with very small shear viscosity
leads to the Gilbert form .of the damping term (equivalent
tot Landau-Lifshitz form in that limit). The damping
constant is expressed in terms of the elastic constants
and is proportional to the shear viscosity. Also, the first
few higher terms in an asymptotic expansion in powers of
the viscosity are derived. These, of course, no longer
have Gilbert-Landau-Lifshitz (GLL) form, but still
preserve’ magnitude of the uniform part of the
magnetization. For samples larger than a wavelength of
sound, propagation effects lend to a damping contribution
that depends on spatial variation of the magnetization
field. However, for samples of this size, degradation of
the uniform motion by spin wave excitations needs to be
taken into account, Then the damping of the uniform
motion no longer conserves its length, and the GLL
damping term no longer applies. Instead, damping terms
take forms similar to those found in paramagnetic
resonance. Finally, an estimate is made of the initial

switching rate of magnetization  reversal caused byispin

wave excitations. The possibility emerges that the

switching rate may pass through two regimes: a fast rate
prevailing until the uniform part of the magnetization
vector is fully destroyed, and a slow rate prevailing while
it reassembles to its new orientation.
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