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The theory of spin waves, leading to the Bloch T4 law for the
temperature variation of saturation magnetization, is discussed
for ferromagnetic insulators and metals, with emphasis on its
relation to the theory of the energy of the Bloch interdomain wall.
The analysis indicates that spin-wave theory is of more general
validity than the Heitler-London-Heisenberg model from which
it was originally derived. Many properties of spin waves of long
wavelength can be derived without specialized assumptions, by a
field-theoretical treatment of the ferromagnetic material as a
continuous medium in which the densities of the three components
of spin are regarded as amplitudes of a quantized vector field. As
applications, the effects of anisotropy energy and magnetic forces
are calculated; and it is shown that the Holstein-Primakoff result

for the field dependence of the saturation magnetization can be
derived in an elementary manner. An examination of the condi-
tions for validity of the field theory indicates that it should be
valid for insulators, and probably also for metals, independently
of any simplifying assumptions. The connection with the itinerant
electron model of a metal is discussed; it appears that this model
is incomplete in that it omits certain spin wave states which can
be proved to exist, and that when these are included, it will yield
both a magnetization reversal proportional to T and a specific
heat proportional to T. Incidental results include some insight
into the relation between the exchange and Ising models for a
two-dimensional lattice, an upper limit to the effective exchange
integral, and a treatment of spin waves in rhombic lattices.

I. INTRODUCTION

HE quantum-mechanical theory of ferromagne-
tism! is beset by so many difficulties and uncer-
tainties that especial importance attaches to those few
quantitative relationships between measurable quanti-
ties which it is capable of predicting with reasonable
rigor. One such relationship, which is generally regarded
as being valid whenever the basic assumptions of the
Heitler-London-Heisenberg model are applicable, is
Bloch’s T? law of variation of saturation moment with
temperature near the absolute zero, based on the theory
of spin waves.? According to this model the decrease of
saturation moment with increasing temperature is
determined by the “stiffness” of the exchange coupling
which tends to align the spins of all the atoms parallel.
This same stiffness, in competition with anisotropy
forces, determines the thickness and specific surface
energy of the boundary region, known as the Bloch
wall, which separates adjacent domains having different
directions of magnetization.? If the anisotropy constants
are known, one can, according to this model, deduce
the exchange stiffness and hence the temperature varia-
tion of magnetization from a knowledge of the Bloch
wall energy, or vice versa. When this is done, the
relation between these, in principle, measurable quanti-
ties [Eq. (5) below] turns out to involve only the
saturation magnetization, and to be independent of
such details .of the model as the number of nearest
neighbors. This suggests that the validity of this relation
is more general than that of the Heitler-London-
Heisenberg model from which it was derived. This
surmise acquires added plausibility from the success of

! For a brief critical review of this field see, for example, J. H.
Van Vleck, Revs. Modern Phys. 17, 27 (1945).

# F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932); C. Mgller,
Z. Physik 82, 559 (1933); W. Opechowski, Physica 4, 715 (1937).

8 F. Bloch, Z. Physik 74, 295 (1932) ; L. Landau and E. Lifshitz,
Physik. Z. Sowjetunion 8, 153 (1935); E. Lifshitz, J. Phys.
(U.S.S.R.) 8, 337 (1944); L. Néel, Cahiers phys. 25, 1 (1944).
For a summary see C, Kittel, Revs. Modern Phys. 21, 541 (1949).

some attempts to develop the theory of spin waves on
a more or less phenomenological basis.* The principal
purposes of the present paper are to verify this surmise,
to give a more soundly based phenomenological theory
of spin waves, and to show that with the aid of this
theory one can deduce quite simply all of the formulas
governing a broad class of properties of a ferromagnetic
substance in the region of low temperatures.

Since only rather simple reasoning is required for the
exposition of the present approach to spin wave theory,
and for the derivation of practical results from it, we
shall present these topics first, in Secs. ITA and IIB,
respectively. The applications include calculations of
the effect of anisotropy and magnetic forces on spin
waves and the T% law, and it will be shown that the
results of Holstein and Primakoff® on the field depen-
dence of intrinsic magnetization can be derived easily
by the present method. Appendix A gives a brief
derivation of the principal equations of the theory for
the special case in which the atomic model is assumed,
and evaluates the coefficient in the 7% law for a simple
rhombic lattice. Section III is devoted to an analysis
of the justification of the theory of spin waves and
especially of the form of it presented in Sec. II, which
enables all of the properties of spin waves to be derived
from the Bloch wall coefficient, 4, defined by Eq. (3)
below. This analysis, though incomplete, seems to us
to indicate strongly that the methods of Sec. II are
justified, and that their justification is not contingent
upon the choice of any particular approximate model
for the ferromagnetic electrons. A corollary of this
conclusion is that the criticisms which Wohlfarth® has

4 G. Heller and H. A. Kramers, Proc. Roy. Acad. Amsterdam
37, 378 (1934); E. Lifshitz, J. Phys. (U.S.S.R.) 8, 337 (1944);
W. Doring, Z. Physik 124, 501 (1947). In Appendix A of the
present paper we give a simple derivation of the phenomeno-
logical theory from the atomic model.

5 T, Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).

8 E. P. Wohlfarth, Proc. Leeds Phil. Soc. 5, 213 (1949). E. C.
Stoner, Report of the Grenoble Cenference (1950).
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recently leveled against the theory of spin waves and
the 7% law are not justified.

A brief recapitulation of the results yielded by the
atomic model for the temperature variation of magnet-
ization? and for the Bloch wall® will serve to clarify our
first objectives and to introduce some basic equations
and definitions. If M (T') is the saturation magnetization
at temperature T, the 7% law can be written as?

M(T)/M(0)=1—(T/©)+0(T?), M
where for any crystal structure of high symmetry®s
0*=2.21Z(R.3/ Q)RS3 (J /&), ¢)]

Z being the number of nearest neighbors of any given
atom, R, their distance, Q, the atomic volume, S, the
spin quantum number of an individual atom, & Boltz-
mann’s constant, and J the interatomic exchange
integral, defined so that the effective interaction energy
of two nearest neighbor atoms is a constant minus
2J801-S¢2. The temperature dependence given by Eq.
(1) constitutes a significant prediction even if J is
regarded as an adjustable parameter; however, as we
have pointed out above, the same model which leads to
Eq. (1) also leads to a relation between J and the
specific surface energy of the Bloch wall. This surface
energy, and the thickness of the transition region as
well, can be computed by a simple variational calcula-
tion based on the assumption that the energy per unit
volume at any point in the transition region is a sum
of two terms: a term arising from anisotropy and
magnetostrictive effects, which depends on the local
orientation of the magnetization vector, and a term

A|VM[2/M2 ©)

proportional to the square of the rate at which the
direction of the magnetization vector M is changing
with position.® The atomic model on which Eq. (2) is

¢s Tt is shown in Appendix A that for a simple rhombic lattice
J has merely to be replaced by the geometric mean of the J’s
going with the three rectangular directions.

b As none of the references we have cited explains why Eq. (3)
should be the most general allowable form for this term in a cubic
crystal, a word of explanation is in order here. Since we are
interested only in non-uniformities in spin direction which change
very gradually with position, we wish an expression which is of
the lowest order in the derivatives of M which the symmetry of
the problem permits; this requires that the expression be quadratic
in the derivatives, but as there are three such quantities which
have the symmetry required for an isotropic medium (viz. |VM |2,
(V-M)?, and |VvXM]%), and four which have the symmetry
required for a cubic crystal, one might think that any linear
combination of these would be a possible form for the required
energy expression. The reason this is not so is that the energy
expression in question is intended to represent only the energy
increase which would result from the given variation of M if there
were no magnetic terms in the hamiltonian, the latter being taken
into account by magnetic, anisotropy, and magnetostrictive terms
in the macroscopic calculation (see Kittel, reference 3). When
magnetic terms are omitted from the hamiltonian, the energy is
invariant with respect to spin rotations, so the required expression
must have the form Zq Cu(0Ma/0%,)(0M o/ 3%,), with Cyy a
tensor with the symmetry of the crystal. For cubic crystals Eq.
(3) is, therefore, the most general allowable form, while for
hexagonal and tetragonal classes two coefficients, An and A4y,
would be required.
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based gives for the coefficient 4 in Eq. (3)
A=ZSPRT /6. 4

Since the other quantities entering into the surface
energy of the Bloch wall are measurable, elimination of
J between Egs. (2) and (4) amounts to a prediction of
a definite relationship between this surface energy and
the variation of saturation magnetization with temper-
ature, both measurable quantities.”® It is noteworthy
that the relation obtained from Egs. (2) and (4), viz.,

A=0.0754(So/ ) Heb*, (5)

involves only the magnetization per unit volume, and
is independent of the atomic arrangement. We shall
attempt to show in this paper that Eq. (5) is always
valid, regardless of whether the atomic model used by
Heisenberg and Bloch is a good approximation.

II. FIELD THEORY OF SPIN WAVES
A. Basic Equations

We shall begin by showing how the properties of spin
waves of long wavelength can be derived formally by
treating the ferromagnetic material as a continuous
medium in which the densities of the three components
of spin are regarded as amplitudes of a vector field
which is quantized in the way demanded by the known
commutation relations for spin components. Qur ap-
proach will be merely a more sophisticated version of
that used by Lifshitz* who, following a suggestion of
Landau, interpreted the energy (3) as implying the
existence of a restoring torque tending to straighten
out any distortion in the spin alignment and who used
this torque to construct a quasi-classical time-dependent
wave equation for the spin. This approach differs from
that of Heller and Kramers* and that of Déring? in that
it is not based explicitly on a model in which each
electron is attached to a particular atom; and it differs
from that of Bloch? and of Mgller? both in this respect
and in that the problem is formulated in terms of
densities of spin moment, rather than in terms of
probability amplitudes for the different states of spin.

Consider the vector operator defined by

$0=5; ¢3(r—r)), ©)

where ¢,%, 6,9, ¢, are the Pauli matrices for the ith
electron, r; is its position vector, & is the Dirac delta-
function, and the summation is over all the electrons
of a ferromagnetic crystal. The operator (6) represents
the density of spin moment per unit volume at the
point r, in units of %/2. Its Fourier components are
the operators

s®=3", exp(ik-r;)ot. ™)

7 Careful measurements of M at low temperatures have been
made for several ferromagnetic elements and alloys by M. Fallot,
Ann. physique 6, 305 (1936).

8 A rough measurement of the surface energy of Bloch wall in
3.85 percent SiFe has been obtained by Williams, Bozorth, and
Shockley, Phys. Rev. 75, 155 (1949); there is hope that more
accurate measurements may be possible in the future.
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From the commutation relations
0 Va, D= ¢, D g D =250,
etc., we find easily
$:05, 0 — 5, 05,00 = 25 O§(r— 1) (8)
§, W5, ) — 5, 05 (B = Djs (b+E") (9)

with corresponding equations resulting from cyclic
permutation of x, v, 2. If k and %’ are small and if the
specimen has an almost uniform spontaneous magnet-
ization in the z-direction, the right of Eq. (9) will have
very nearly the eigenvalue zero if k--k'#0, and the
eigenvalue 4iS if k+k'=0, where S is the total spin
quantum number for the ferromagnetic ground state
of the specimen, which we suppose to have very nearly
the same energy and magnetic moment as the state in
question. Since the hermitian adjoint of s® is s®+
=s0® we can rewrite Eq. (9) for this case as

52T, B — 5, 05 B 418, (10)

We now make the assumption that, since the mean
energy of any slightly non-uniform distribution of spin
density is given by the volume integral of Eq. (3), this
integral in operator form can be used as a hamiltonian
to find the stationary states associated with the spin
fluctuations. The legitimacy of this assumption will be
discussed in Sec. III below; it is obviously applicable
only to spin disturbances of long wavelength, For the
present case, where M is always oriented very nearly
in the z-direction, this hamiltonian for a specimen of
volume Q takes the form

H' = (AQ2/4S?) f | Vs |2dr = (AQ/AS)Y, BsP+.s®

(11)
~ (AQ/ASDY s B (5. PFs, B4 5,00 +s, (00

if higher order terms in s,% and 5,% are neglected.
The general term of the summation in Eq. (11) can be
thrown into harmonic oscillator form by expressing it
in terms of the hermitian operators defined by

040 = (85)H(s, 0+ 5,0),
P 0= (85) (5,0 45,04,
O_® =;(85)~¥(s,® — 5,0 +),
P_(0 = §(88)~}(5, ) — 5,0 F),

It is easily verified that the first two and the last two
lines of Eq. (12) each constitute a canonically conjugate
pair. The hamiltonian (11) reduces to

H'=(249/S) T $(P;®' 0, "
R +P_®4 0 _WhE

where the summation is to be extended over only half
of k-space, since the contributions of k and —k to Eq.
(11) are both included in the kth term of Eq. (13).
The hamiltonian (11) or (13) yields both the equa-
tions of motion of the spin system in time, and the

(12)

(13)
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eigenvalues of the energy. The latter are of course sums
of expressions of the form (2. ®+431)(24Q/S)k2, where
ny®=0, 1, 2, «--. Since the ground state, whose
energy we shall take to be Ey, is the state for which all
1, ® =0, the levels are

E(n ®'s5)=Eot+ 3. (0 P4n_®)(240/H%. (14)
half &

Thus, the energy of a spin wave of wave vector k is
(249Q/S)R; this relation between 4 and the energy of
the spin wave is the same as that yielded by the
atomic-model theories of reference 2; and when the
usual statistical treatment is employed to calculate the
number of spin waves excited at temperature T, it
gives a value for the 6* of Eq. (1) agreeing with Eq. (3).

The time derivative of the spin density at the point
r ean be obtained from the integral expression for the
hamiltonian in Eq. (11): using the usual square bracket
abbreviation for the commutator of two operators and
the summation convention for repeated suffixes, we have

— ik, =[H', 54"]

1335(”) 355(")
= (/457 f [ , s,,(ﬁ]df'

dx, dx,

asgt™ 9 ,
- __l.[sﬂ(r )’ Sa(')]
oz, Ox,

— (AQY/AS?) f

0 , 355(") ,
+ ,[Sﬁ(r )7 Sa(r)] P dr
Xy 0%y

= 2i( AL /45" eau(Vs5 754"+ 5, V2s5) (15)

by Eq. (8), where €.s.=1 if aBu is an even permutation
of xyz, —1 if an odd permutation, and 0 otherwise. If
we set M= —(el/2mc)s™ in Eq. (15) and ignore the
noncommutativity of the different components, we get
the equation of motion derived phenomenologically by
Landau and Lifshitz® and by Doring:*

dM/dt=—2(e/me)(A/MOMXVM.  (16)

Note that this is the same as Eq. (A4) of Appendix A.
As can be seen from this or from the classical approxi-
mation to the motion of one of the oscillators of Eq.
(13), a spin wave of large amplitude is a disturbance in
which the direction of M at each point of space moves
in time around a narrow cone, the amplitude of the
motion being a sinusoidal function of position. From
this physical picture of the motion it is obvious that
the first two terms of Eq. (1) will give a good approxi-
mation to the saturation moment as long as the temper-
ature is low enough so that the only disturbances of the
spin system which are appreciably excited are ones of
sufficiently long wavelength for Eq. (3) to apply to
them, ie., of a wavelength much greater than the
lattice constant.
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B. Effect of Magnetic Fields, Anisotropy, etc.,
on Spin Waves

So far we have considered only the energy levels of
an assembly of electrons uninfluenced by any purely
magnetic forces. In actual materials there will be a
spin-orbit interaction giving rise to anisotropy effects,
a long-range magnetic interaction of the spins which
will increase the energy of states for which the magnet-
ization has a divergence, and, of course, a magnetic
interaction of the electrons with any external field
which may be applied. The last-named interaction is
modified by the spin-orbit interaction in such a manner
as to give an effective g-factor differing slightly from 2;
higher order effects of this sort will for simplicity be
neglected in the present treatment, though they might
be treated by methods similar to those used here. To
this approximation, at least, the magnetic effects which
we have named can all be taken into account by adding
appropriate terms to the hamiltonian (11) or (13). If
one is not interested in zero-point energy, the effect of
these additional terms on the energy levels can be
calculated even more simply by merely adding appro-
priate terms to the phenomenological equation of
motion (16) and calculating the frequencies of the
normal modes classically. Such calculations amount to
a simplified version of the theory of Holstein and
Primakoff* with the advantage of not being based on
any particular atomic model. In this section we shall
carry these calculations far enough to show that ani-
sotropy and spin-spin interactions do not modify the
T} law (1) appreciably, and shall give expressions
which need only to be integrated by the methods of
Sec. IV of reference S in order to give the formulas of
Holstein and Primakoff for the dependence of intrinsic
magnetization on field.

Our starting point is Eq. (16) which gives the contri-
bution of the spatial variation of the magnetization M
to the time derivative dM/d¢; we must add to this the
contributions of the various magnetic interactions. A
magnetic field H, whether externally imposed or due to
the spins themselves, contributes a term — (e/mc)MXH
to dM/dt. The effect of anisotropy forces on dM/dt is
similar to the effect of a field, and can be written
—(¢/mc)M X Hor when M deviates only slightly from
a direction of easy magnetization. For example, for a
cubic crystal with the (001) direction an easy direction
of magnetization the anisotropy energy per unit volume
is given, for small values of the angle 6 between M and
(001), by fx=2K#, where K is the first-order anisotropy
constant. Comparison with the expression —H-M for
the magnetic energy gives, therefore, for this case

H.=2K/M. aan

Gathering together the terms enumerated, we have
as the equation of motion for M,

dM/dt= — (e/me)[ 2(A/ MHMX V' M+M

X (Hext+Heff+H8)]7 (18)
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where Hex is the externally applied field and H, is the
field due to the spins themselves. The only complicating
feature in the problem of determining the normal
frequencies is the fact that H, depends on the distri-
bution of M. Explicitly, it is determined by

V-H,=—47zV-M, VxH,=0. (19)
If we try to get a solution of the form

M=M,+AM, exp[i(wi+k-1)] (20)

H,=H; exp[i(wi-+k-r)], (21)

we find from Eq. (19)
Ho= - 47rk . AMok/kz.

Inserting this into Eq. (18), taking M. in the z-direction,
and neglecting second-order terms, we get the pair of
equations

iwAM0x= - E(kxky/kaAMo;
— [k -+ E(R/R) JAM o, (22)

iwAM0y= [nk2+ §-+ S(k:c?/kz):]A]‘le_*._ E(krky/kg)AMﬂy)

where £=4xM(¢/mc), n=2(4/M,)(e/mc), ¢=(Hex:
~+Hge)(e/mc). These give a secular equation for w,
whose solution is

W= 02kt (2nb+ £ sin0 ) BB+ (24 £¢ sin?fy,  (23)

where 8 is the angle between k and the z-direction,
ie., M,.

The first term on the right of Eq. (23) represents the
square of the frequency of a spin wave in the absence
of magnetic interactions and coincides with the value
used in the preceding section. For large & the difference
between this and the correct frequency is given by

hoo— hnk2~h[ ¢+ (£/2) sin%6;

= 2(Hoxt Hots) B+ 47M B8 sin®0y,  (24)
where 8 is the Bohr magneton, e#/2mc. As k—0,
ha—h[ 24 ¢ sin?6, [P = [ (Hexe Herr)

X(H et Hese+4mM , sin?6,) '8,  (25)

a quantity which is always less than Eq. (24). Equation
(25) is related to the expression (BH)!, which occurs in
the theory of ferromagnetic resonance. From Eqs. (24)
and (25) one can infer the behavior shown schematically
in Fig. 1 for hw as a function of k. It is easily verified
that the difference (Aw—Ank?) is always less than the
right of Eq. (24), so if this quantity is <<kT over the
range of temperatures normally used in comparing the
T* law with experiment, the conventional treatment
which assumes w=nk? can legitimately be used for the
calculation of 6* in Eq. (1). If (HexstHesr)<<d7 M, the
condition is T>>4xM,/k=1.7° if M,=2X10? gauss; it
is thus fairly well satisfied for the common ferro-
magnetic substances over the experimentally significant
part of the low temperature range. However, for para-
magnetic salts (if such exist) with high anisotropy
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energy and low Curie points the anisotropy corrections
could be very important and could change the character
of the temperature dependence of the saturation
magnetization.

The complete expression for the magnetization M at
any low temperature T can be deduced as a function
of Hex by evaluating the integral

kdk

[ o
o exp(hw/kT)—1

which is proportional to M{0)—M(T). Since w is given
by Eq. (23), approximations must be used to evaluate
the integral; as this problem has been fully discussed
by Holstein and Primakoff in Sec. IV of their paper,}?
we shall give merely the correspondence between our
notation and theirs, which enables the treatment we
have just given to be substituted for the first three sec-
tions of their papér. They express hw as (42— | Bil?)?},
where, as comparison of their expressions with Eq. (23)
shows, we must take

Ap=(44/M )BR*+2(H e+ Here) B+47M B sin®8,  (27)
lBkl =41I'Msﬂ sin20k. (28)

Holstein and Primakoff® have pointed out that even
at the absolute zero the magnetization is slightly
dependent on the field, and that, strictly speaking, this
variation should be added to that of M(T)—M(0) to
get the total variation of M (T) with Hx. This variation
of M(0) with H ., which arises from the field depen-
dence of the zero-point energy of the spin waves, is
negligible for most practical purposes; however, it is
interesting to examine how it comes about physically.
Consider a spin wave whose wave vector k is in the
x-direction, M, being, as always, in the z-direction.
From Eq. (22) we find for the ratio of axes of the
elliptical cone which the spin vector describes

AM oo/ AMoy=il (nF+ )/ ¥+ 1+ 6T (29)

A straightforward calculation of the magnetic, ani-
sotropy, and exchange energy associated with this spin
wave gives

total energy =[Q/4(e/mc)M , [ (nk*+ ¢+ £) | AM o, |2
+ (a2 ) [ AM o, |2],  (30)

where Q is the volume of the specimen. Setting this
equal to Zw/2 and using Eq. (29), we can calculate the
zero-point amplitudes AM,, and AMg,. In particular,
we find

[AM o |2| AM o, | 2= (48M .,/ Q). 31)

Thus the geometric mean of |AMy,|? and [AM,|? is
always the same as in the simple theory which neglects
magnetic effects. Their algebraic mean, which deter-
mines the magnetization reversal associated with the
spin wave, is always greater than the geometric mean,
by an amount which increases as their ratio departs
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hw

(eH)"2p
| Cnel

Fic. 1. Schematic variation of the frequency w of a spin wave
with its wave vector k, in the presence of external and anisotropy
fields, for k||M,(0=0) and k1 M,(¢=r/2). The dashed line is
the parabola given by the simple theory, ignoring magnetic and
anisotropy terms. Distances above it are expressed in terms of
H=Hexs+ Hesr and B= H-+4wM,. When H becomes <4wM,, the
6=0 curve approaches the dashed parabola, while for small k the
curve for §=m/2 approaches a straight line passing through the
origin.

increasingly from unity. If (Hexet Hesr)<K4wM,, the
absolute value of the right of Eq. (29) will be <1 for
spin waves of small %, so that these spin waves will
give a greater magnetization reversal than the simple
theory predicts, and in particular, a nonvanishing
zero-point reversal.

It is interesting to note that for a two-dimensional
lattice the integral corresponding to Eq. (26), which
has k instead of k? in the numerator, diverges if w is
taken proportional to %%, as in the simple theory, but
converges if w is modified by an anisotropy field accord-
ing to Eq. (23). The divergence given by the simple
theory signifies that in the absence of anisotropy a
two-dimensional lattice cannot be ferromagnetic;®* the
convergence in the presence of anisotropy suggests that
in layer lattices with exchange interaction the ani-
sotropy energy may be able to induce a type of ferro-
magnetic behavior.

82 This was first pointed out by F. Bloch, Z. Physik 61, 206
(1930). The transition in thin films between three dimensions and
two dimensions has recently been studied theoretically by M. J.
Klein and R. S. Smith, Phys. Rev. 81, 378 (1951). However.
L. Onsager, Phys. Rev. 65, 117 (1944), finds that if one uses the
Ising model interaction ZS5;*S;?, two-dimensional lattices are
ferromagnetic. The different types of behavior can be understood
physically in terms of the energy required to reach a state of zero
magnetic moment, starting from a saturated ground state. For a
plane array N atoms on a side the energy required on the Ising
model is =NJ, while on the correct exchange model it is =.J.
The latter result is readily demonstrated: the exchange energy
between two spins making an angle ¢ with each other is =J ¢,
where we wish ¢ to be of the order of 1/N for a state of zero net
moment. The number of pairs of spins involved is of the order of
N3, so that the energy is =J(1/N):N*=].
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III. CRITIQUE OF THE FIELD THEORY

A. Survey of Evidence on the Validity of the Spin
Wave Picture

We turn now to the question of the validity of the
theory of spin waves as applied to the calculation of the
properties of ferromagnetics at moderately low temper-
atures, and in particular to the validity of the formula-
tion which we have given in the preceding sections,
according to which the properties of long-wavelength
spin waves are derivable from the value of the Bloch
wall coefficient 4 of Eq. (3). Although it would be
difficult to construct a completely rigorous theory of
spin waves, and especially so if one wished to avoid
assuming any specialized model for the ferromagnetic
crystal, there are a number of arguments which seem
to us to indicate fairly convincingly that the theory of
spin waves, in the form used in this paper, is fairly
accurately valid for any ferromagnetic substance, i.e.,
that equations such as Eqgs. (1), (5), etc., are correct
over an experimentally significant range of tempera-
tures, and that this validity is not dependent on the
choice of any particular theoretical model. Since Wohl-
farth® and Stoner® have recently argued the contrary,
we shall undertake to summarize the evidence from
the literature and to add some new arguments.

Evidence from the past literature consists of a number
of indications that the theory of spin waves is valid for
the atomic model. These include:

(i) Bethe’s? rigorous calculation of the energy levels of a linear
chain of one-electron atoms, based on the hamiltonian —JZ8;-S;.
This shows that the distribution of states in energy for this model
is at low energies asymptotically the same as that given by
Bloch’s? theory of spin waves, and does not deviate significantly
from the latter until energies are reached for which the mean
number of reversed spins is a perceptible fraction of the total.

(ii) Opechowski’s? calculation of the partition function for
a three-dimensional array of atoms, with the hamiltonian
—JZ8;-8;. This calculation, though not rigorous in the mathe-
matical sense, is significant in that it uses an approach totally
different from that of the spin wave theory, yet arrives at an
identical result; moreover, by evaluating the 7% term in Eq. (1),
it indicates that the T1 law is a good approximation until several
percent of the spins have been reversed. It is interesting to note
that the statistical treatment of Kramers,!® on which Opechowski
based his work, assumes at the outset the physically obvious fact
that the crystal is homogeneous; i.e., that the logarithm of the
partititon function is asymptotically proportional to the number
N of atoms in the crystal. This fact can be seen, in an intuitive
way, to be the reason that the criterion for validity of Bloch’s
theory should be the smallness of the mean fraction /N of the
spins which are reversed, rather than the smallness of the ratio
7?/N, whose exponential exp(?/N) gives the factor by which
Bloch’s theory overestimates the number of states with » reversed
spins.

(iii) The analysis of Holstein and Primakoff,? who have made
a rough estimate of the errors involved in Bloch’s spin wave

°H. A. Bethe, Z. Physik 71, 205 (1931) ; Handbuch der Physik
XXIV 2, p. 604. Some, for our purposes, minor corrections have
I()fggs?ven by L. Hulthén, Arkiv Mat. Astron. Fysik 264, No. 11

wH, A Kramers, Communs. Kamerlingh Onnes Lab. Univ.,
Leiden, Suppl. No. 83 (1936).
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treatment and have concluded that they are probably small in
the range of temperatures where the proportion of reversed spins
is not over one or two percent.

From this evidence one might conclude merely that
the theory of spin waves and the T* law are valid for
the atomic model, but that they might fail for metals,
where the occurrence of nonintegral magneton numbers
shows the atomic model in its simple form to be inappli-
cable. However, it will be shown in a forthcoming paper
by one of us that spin waves also have a place in the
so-called ““itinerant electron’ model of a ferromagnetic
metal, and that, at least as far as the calculations have
been carried, the whole theory of Sec. ITA seems to be
as valid for this as for the atomic model.

Forgetting specific models for the moment, one can
argue quite generally that for any ferromagnetic there
must exist many low lying energy states which differ

- from the ground state principally in having the direction

of the magnetization vector M fluctuate from point to
point; moreover, if by linear combinations of these we
form a state in which M approximates to a classical
vector field of varying direction, the change of M with
time must be given by Eq. (16). This can be seen
from the fact that application of a magnetic field
—2(4/M*)V*M would make the given distribution of
M an equilibrium distribution; the time change of M
in the absence of any such field will therefore be
essentially the same as that which would be produced
by the reverse field, and the latter is known from
ferromagnetic resonance experiments to be a gyroscopic
response to the type (16). It therefore seems fairly
certain that the kth Fourier component of the temper-
ature fluctuations in M will have the amplitude given
by the equipartition principle whenever this amplitude
is large enough for this component of the motion to be
treated classically. This seems to justify the spin wave
theory for the calculation of the temperature variation
of magnetization, as far as the contributions of very
small wave vectors k are concerned. If we can justify
the theory for values of k for which the quantum energy
is of the order of £T', therefore, it will probably be safe
to accept the theory completely.

The following two sections will be devoted for the
most part to the problem just mentioned, or more
specifically, to the problem of the existence of excited
states of the crystal which have the properties of spin
waves with single-quantum excitation, and the energies
of these states. This problem is much simpler for a
ferromagnetic insulator than for a metal, for reasons
which are illustrated in Fig. 2. Here the energies of the
various stationary states are depicted for various values
of the quantum numbers commonly used to classify the
states. These quantum numbers are S, the total spin,
S, the z-component of spin, and k, the total wave
vector, defined by the condition that exp(—ik-t) be
the eigenvalue of the operation of translating the whole

1 C. Herring, Energy of a Bloch Wall on the Band Picture, 11.
Perturbation Approach (to be published).
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wave function by a lattice vector t. In general there
will be an infinite number of eigenfunctions associated
with each set of values of these quantum numbers. As
is shown graphically in Fig. 2, the corresponding energy
values have a continuous distribution if we are dealing
with a metal; but for the case of a ferromagnetic
insulator the lower lying states are discrete, at least for
the ground-state value of S and the next smaller value.??
This difference between insulators and metals makes
the case of an insulator much easier to discuss. We
shall, therefore, attack insulators first, in the section to
follow, where without assuming any specific model it
will be shown that the energy of a spin wave of wave
vector k is asymptotically (24Q/S)k* when % is small,
provided the Slater picture of Fig. 2 is qualitatively
correct and provided two further physical assumptions,
both almost certainly correct, are fulfilled. By showing
the kind of physical assumptions which one must
make to establish this result, this proof will clarify the
problem of justifying the field theory for the case of a
ferromagnetic metal, which we shall discuss in Sec.
IIIC.

B. Relation of the Wall and Spin Wave Problems
for an Insulator

Referring to Fig. 2, let us consider a ferromagnetic
insulator whose ground state has energy E, and
quantum numbers S, k=0, and let ¥, be that one of
the degenerate set of ground-state wave functions which
has S,=.S. For an insulator we may define a spin wave
state in general to be any eigenstate ¥ of spin (§—1)
and wave vector k>0; we shall be concerned almost
exclusively with spin wave states of the lowest band,
defined as those whose energies join on continuously to
E, as k is decreased to zero.

Let us assume the spin wave states and their energies
to be known, and calculate the coefficient 4 in Eq. (3)
by a perturbation method. If we assume a small torque
a,R sinkx to act on each electron, the hamiltonian
will contain a term which by Eq. (7) may be written

(R/28)(5,® —5,0P). (32)

The perturbation of the energy of ¥, by this operator
can be calculated and compared with what we would
expect phenomenologically from Eq. (3). For the
perturbed state we may set

M,=M,° sinkx. (33)

The change in energy density, relative to the unper-
turbed state, consists of a positive term of the form (3)

12 These qualitative facts relating to the existence and spectrum
of spin waves for an insulator have been elegantly demonstrated
by J. C. Slater, Phys. Rev. 52, 198 (1937). Slater’s picture is
based on a solution of the quantum-mechanical problem which
is only approximate, but which is sufficiently good to leave no
doubt that the qualitative features of the spectrum would be
unchanged by any further refinements, provided that the ground
state of the insulator can be at least roughly described as having
a filled band of majority spin electrons.
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F1c. 2. Portions of typical energy spectra for a ferromagnetic
insulator (top row) and a ferromagnetlc metal (bottom row). The
ground "state is taken 'to have spin 5, wave vector k=0, and
energy”Eo* For an insulator the lowest excited states with spin §
correspond essentially to excitation of one of the ferromagnetic
electrons to a higher band without change of spin; the lowest
states for spin (S+41) correspond to excitation of an electron of
minority spin to a higher band, with reversal of spin. For spin
< S, on the other hand, there are spin wave states whose energies
get almost as low as E,, and, at somewhat higher energies, a
continuum corresponding to reversal of spins of electrons in the
ferromagnetic band. The form shown for these levels is essentially
that given by Slater (reference 12). For a metal with partially
filled bands of both spins, on the other hand, there is an energy
continuum whose bottom for k0 or for spin #.5 is only infinitesi-
mally above Eg; a metal with only completely filled bands of
minority spin would differ from the case shown in having no
low-lying states of spin (S+41).

and a negative term proportional to the amount of
yielding to the applied force; if Q is the volume of the
crystal the change in energy is therefore, to the second
order in R,

AE= (QAM F/2M2) — (QRM,"/2).

The value of M,° must be so chosen as to make this a
minimum; this gives

M = RM?/2KA, 349)
and
AE=—QRM?*/8k*A, (35)
or
= —QR*M?*/8F°AE. (36)

Thus, A can be calculated from the second-order energy
perturbation by Eq. (36) or from the first-order per-
turbation of M by Eq. (34). If the perturbations are
calculated by applying the Rayleigh-Schridinger meth-
od with the perturbation operator (32), this method of
calculating A involves an assumption which we shall
label (a) to facilitate reference to it later:

(a) It is assumed that the value of A associated with very
small perturbations—i.e., those for which A,?<the zero-point
fluctuation in the corresponding Fourier component of My—is the
same as that going with the larger perturbations to which Eq. (3)
is intended to apply. It seems physically obvious that this will be
the case here, because the energy depends only on local conditions,
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whose change in a relatively large perturbation is qualitatively
the same as that in a small one.!?

Let us therefore consider Eq. (32). It connects the
unperturbed state ¥, only with states of wave vector
=k, and since it is the y component of a vector operator,
it can connect ¥, only with states of spin S or S+1,
S;=8=+1. All of the states satisfying these requirements
lie above Eq by an amount which remains finite as k—0,
except for states of the lowest spin wave band (Fig. 2).
Thus, only the latter states can give a contribution of
order 1/F® to the energy perturbation; and so by Eq.
(36) only these states need be considered in the calcu-
lation of 4. The energy perturbation AE accordingly
consists of two equal terms, the contributions from the
spin wave states ¥, and W_, of the lowest band.
Explicitly,

AE= —'R2l [‘I’k, Su(k)‘I’()] I Z/Z(Ek_EQ) (37)

Now, it is not hard to see that, as k—0, the numerator
of Eq. (37) must approach a limit independent of the
detailed nature of the wave functions. A simple way of
proving this is to calculate the energy of the state
s,y For small k this state is everywhere very
similar to We as far as local properties of the wave
function are concerned, and its energy is easily shown
to differ from E, by an amount of order 2, being, as is
shown in Appendix B,

(Sy”c)‘I’O; Hsu(k)\I’O)/(Sy(k)‘I’Oy Sy(k)\I/O)
=Eo+(N/25)E  (38)

rydberg units if & is in ag~!, where & is the total
number of electrons in the specimen. Since s,®¥; has
wave vector k, it must be a linear combination of ¥,
and states of the higher spin wave bands. Since the
latter have energies which remain above E, by a finite
amount as k—0, their coefficients must be 0(%), so we
must have

(T, 5,0%0) 2= (5, P %, 5, T0)+-0(R).  (39)

In Appendix B it is shown that the first term on the
right of Eq. (39) has asymptotically the value 25 when
the specimen is very large and k very small.
Combining this value of Eq. (39) with Egs. (37) and
(36) we get for the value of the coefficient 4 in Eq. (3)

A=—1m
2Q k-0 B

S E—Eq
) (40)

in agreement with Eq. (14). This relation should be
rigorously valid for any ferromagnetic insulator. Besides
(a), we have used two further assumptions in its
derivation:

(b) It has been assumed that the only states with which s,®
connects ¥ are the spin wave state ¥; of the lowest band and

18 The correctness of this assumption can be confirmed for a
special case in the Slater-Fock approximation of determinantal
wave functions, since calculations with and without this assump-
tion agree. These will be reported in two papers to be published
by C. Herring.
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other states whose energies remain above E, by a finite amount
as k0.

(c) Appendix B has made use of the assumption that when the
system is in the state W, there is no long-range correlation
between the values of the x- and y-components of the spins of
electrons found in elements of volume which are a moderately
large distance apart.

The former of these, especially, is not obviously true
for a metal, since, as Fig. 2 shows, there is a continuum
of states with which s, might conceivably connect ¥,.
However, we shall cite evidence in the next section
that something very similar to this assumption is
probably true for metals.

We have thus shown that for an insulator the cor-
rectness of the energies predicted by the field theory of
Sec. ITA for states of single-quantum excitation is
equivalent to the correctness of assumptions (a), (b),
and (c). This complements the classical argument,
given at the end of the preceding section, to the effect
that the theory should be correct for motions with
many-quantum excitation.

C. Spin Waves in a Metal

As a background for a discussion of spin waves in a
metal it will be helpful to recall some of the properties
which the itinerant electron model predicts for the
energy spectrum of a metal. In the familiar form of the
theory using this model the various energy levels must
be classified merely according to the z-component of
spin, since the determinantal wave functions which the
theory uses are in general not eigenfunctions of S2
When overlapping bands are present, the minimum of -
the total energy occurs in general for a state corre-
sponding to partially filled bands of both spins; this is
of course the way in which nonintegral magneton
numbers are explained by this model. This fact implies
that there will in general be low-lying excited states of
the metal with both higher and lower values of .S, than
the ground state. It is commonly assumed that for a
more exact model the same property would be possessed
by the total spin S. If this is the case, a decrease of
magnetization with temperature can result only from
there being more states per unit energy in the low
energy range for values of S smaller than the ground
state value than for values the same amount larger.
The usual form of the itinerant electron model does in
fact predict an asymmetry of this sort in the distribu-
tions for different values of §., and this asymmetry
has been shown by Stoner! to lead to a temperature
variation of magnetization of the form

M(D)/MO)~1—-CT (41)

“E, C. Stoner, Proc. Roy. Soc. (London) Al165, 372 (1938).
Stoner’s derivation assumes a parabolic band form but is easily
generalized to bands of arbitrary form, no specializing assumption
being necessary except that the exchange terms in the energy be
approximated in such way as to yield an electronic specific heat
linear in 7" at low temperatures. However, whereas C in Eq. (41)
is always positive if the band form is parabolic, it may be of
either sign with more general band forms.
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When in the ground state one of the two directions of
spin has only completely filled or completely empty
bands of electrons, there is a minimum energy below
which excited states of higher or lower spin do not
exist, the lowest such states being ones of lower spin;
for this case (41) is replaced by an exponential approach
to saturation.

The success of the itinerant electron model in ac-
counting for such phenomena as electronic specific heat
suggests that the true energy states of a ferromagnetic
metal correspond to a considerable degree with those
given by the picture just described. However, it is easy
to show that the correspondence is incomplete in one
important respect: there exist low-lying states of the
metal which are orthogonal to all the low-lying states
of the usual itinerant electron model; and, as far as
we have heen able to deduce their properties, these
states are of the nature of spin waves. To show that
these states exist, consider the state ¥, of the metal
which is derived from the ground state ¥, by applying
a sinusoidal perturbing torque of amplitude R and long
wavelength 2r/k to the spin system, i.e., by adding a
term of the form (32) to the hamiltonian. The deriva-
tive 8W¥,,/dR will be a linear combination of those states
of the metal with which the perturbation operator
connects ¥y, and in order that the energy of ¥,, contain
a term of order R*/k? as k—0 [see Eq. (35)], at least
some of these states must have energies which are
infinitesimal of order %% Now, if the stationary states
of the metal are assumed to be of the determinantal
form occurring in the itinerant electron theory, the
only states with which the perturbation operator (32)
will connect ¥q will be states with an electron removed
from some state k, and placed in a state (k.+k) of
opposite spin. When £ is small, these states all have
energies which lie above that of the ground state by
amounts of the order of the exchange energy J of an
electron; none of the energies is infinitesimal. Thus, the
assumption that all the low-lying excited levels are the
ones given by the usual itinerant electron theory leads
to a contradiction with the existence of a term of the
form (3) in the energy. It will be shown later by one
of us' that when ¥, is approximated by a determinant,
d¥,/dR is, in fact, independent of all the low-lying
excited states which appear in the usual itinerant
electron theory and has a mean energy E; which is
related to A4 by Eq. (40).

One is thus led to surmise that the low-lying station-
ary states of a ferromagnetic metal are of two types:
first, states which may be described as having “no spin
waves excited” and which have a distribution in energy
and in S which is qualitatively similar to the distribu-
tion in energy and S, which the itinerant electron model
predicts; second, states derivable from these by excita-
tion of spin waves. Each state of the former type may,
we surmise, be the ancestor of many successive genera-
tions of the second type, of successively lower values
of S. These progency will cause a marked asymmetry
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in the densities of states for spins higher and lower than
that of the ground state, and will lead to the T# law (1);
however, they will contribute only a T% term to the
specific heat,® which as 7—0 will be swamped by
the T term contributed by the parent states. If, as this
picture suggests, the 7% effect of Eq. (41) and the T*?
effect of Eq. (1) are simultaneously present, it will
provide a natural explanation for the apparent mild
contradiction between the experiments of Fallot* and
the theoretical finding of Opechowski? that on the
atomic model the coefficient of the small 72 term in
Eq. (1) should have a positive sign.

Although this hypothesis is still very much in the
realm of speculation, the evidence already discussed in
support of it can be reinforced by a few additional
fragments of reasoning. To begin with, we may inquire
what meaning can be given to the conception of a
“state with no spin waves excited.” The reasoning of
the preceding section and of Appendix B suggests that
the states to which this designation can most conveni-
ently be applied are those states with S,=.5 which
satisfy assumption (c), i.e., which have no long-range
correlation between the x- and y-components of the
spins of electrons in different parts of the crystal, if
stationary states with this property exist. It is shown in
Appendix B that any operator of the form [s,® 445, 7,
k small, takes any state of the type just mentioned into
a state whose normalization integral is very small.
Since this operator is essentially the destruction oper-
ator for a spin wave of wave vector k in the field theory,
this suggests describing the states in question as having
“no spin waves excited,” at least as far as long wave-
length spin waves are concerned. Moreover, any linear
combination of a small number of such states will have
approximately the same property. Finally, it is physi-
cally plausible that when the hamiltonian operates on
a wave function without long-range spin correlations,
the result will nearly always be a wave function with
the same property. It is, therefore, reasonable to expect
that stationary states will exist which possess, or
almost possess, this property.

A second point concerns the interpretation of the
result, quoted above, that when the eigenfunction ¥,,
in a sinusoidal perturbing field is approximated by a
determinant of one-electron functions, the mean energy
of 8¥,,/dR is given by Eq. (40). Now for an insulator
d¥,,/dR is an eigenfunction with energy Ei, plus terms
of order k as k—0; for a metal, on the other hand, we
have to consider the possibility that d¥,/dR may be a
linear combination of a number of low energy eigen-
functions with appreciably different energies. One might
at first think that mere knowledge of the mean energy
of 0¥,/dR would give almost no information on the
energies of the latter states, since some might lie above
and some below the mean. However, it is shown in

5 See, for example, N. F. Mott and H. Jones, Theory of the
Prgjég]rties of Metals and Alloys (Oxford University Press, 1936),
p. 237.
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Appéndix C by a comparison of this mean energy with
the perturbed energy of ¥, and an application of the
Schwarz inequality one can deduce the relation

E—E,<(20/8)AR+0(RY), (42)

where E is the mean energy of d¥.,/dR, E, is the ground
state energy, and k is the wave vector of the perturba-
tion (32). The equality, i.e., Eq. (40), can hold only if
the expansion coefficients ¢; and energies E; of the
eigenfunctions contained in d¥./dR satisfy the condi-
tion

C,'(E,‘—'Eo) = C,5E+O(k), (43)

where SE is independent of 4. For this case the energies
E; of these states for which ¢; is of order 272 or larger
must lie in a very narrow range centered at the point
(Ey+8E). Thus, if the equality which has been proved
to hold in Eq. (42) in the determinantal approximation
holds true in general, 8¥,/dR will be very nearly an
eigenfunction of a single energy, which may be called a
spin wave. Moreover, it is shown in Appendix C that
in this case d¥,,/dR will differ only infinitesimally from
a multiple of (P_*+iQ_®)¥, where the operator in
parentheses is just the creation operator for the “minus”
type of spin wave in the theory of Sec. IIA.

D. Miscellaneous Comments

It is worth pointing out that there are more familiar
problems which involve an approximation similar to
that involved in the substitution of the H' of Eq. (11),
a quadratic expression in the spin densities, for the
true hamiltonian H. This substitution is #no! analogous
to the substitution of —23"7.S;-S; for the true hamil-
tonian in an exchange degeneracy problem: in the latter
case a certain subspace of Hilbert space, known at the
outset, is taken into itself by the approximate hamil-
tonian, whose matrix in this subspace coincides with
that of the true hamiltonian; in our case no such sub-
space is known. This leads to the paradox that, although
the eigenfunction of Eq. (11) having a n,® =1, other
n’s=0, is proportional to (P.®+iQ,®)¥,, where ¥,
is the ground-state wave function, nevertheless, as can
be seen from the analysis of Sec. IIIB, the energy of
the state (P, %®-4-1Q,®)¥, as calculated with the true
hamiltonian is in general significantly higher than the
correct energy as given by Eq. (14).

The use of Eq. (11) is more nearly analogous to the
use of the adiabatic approximation to calculate the
low-lying vibrational levels of a molecule, a procedure
which leads to a paradox of the same form as that just
mentioned. If R is the internuclear distance in a
diatomic molecule, pr the conjugate momentum, u the
reduced mass, and « the angular frequency of the
vibration in R, the reader can easily verify that the
wave function obtained by operating on the ground
state eigenfunction with pr+iuw(R—Ro) has a mean
energy, computed with the true hamiltonian for elec-
trons and nuclei, which differs from that of the first
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excited state by an amount of the same order as the
energy of excitation itself. Another example, which
resembles our magnetic problem more closely, is the
problem of computing the quantized energies of the
low-lying acoustical modes of vibration of a crystal
whose unit cell contains atoms which do not occupy
symmetry positions. It is well known that the energies
of these acoustical vibrational levels can be computed
from a knowledge of the elastic constants of the crystal;
ie., of the minimum energy consistent with a given
long-wavelength variation of the mean displacement
of the atoms in a unit cell. In general, however, any
elastic distortion will change the relative positions of
the atoms in a unit cell,'® and the eigenstates of a
phenomenological hamiltonian constructed in the way
we have been discussing will not manifest this change;
they will therefore have the wrong energy when the
energy is computed with the correct hamiltonian.
Since the relative displacements are of the order of the
amplitude, @, of the wave times its wave vector, %, the
energy discrepancy per unit volume will be of order
a?k?, which is of the same order as the vibrational energy
itself. In spite of this the phenomenological hamiltonian
gives the correct energies.

Another point worth noting is that Eq. (38), which
was derived primarily as a tool for the proof of Eq. (40),
gives as a by-product an upper limit to E;, and corre-
spondingly an upper limit to 4. In atomic units

A<N/4Q. (44)

If this is applied to a case in which the Heitler-London-
Heisenberg model is valid and in which it is legitimate
to treat the ferromagnetic electrons as a system inde-
pendent of the other electrons, so that N/Q=2S5,/Qo,
we have from Eq. (4)

J<3/ZSoR,2. (45)

Although this limit is some tens of times larger than
the J’s usually assumed for ferromagnetic substances,
it is interesting that a relation of this kind should exist,
since the definition of J would lead one to expect
merely an upper limit going as R, and, of course,
independent of Z.

We wish to thank Professor J. M. Luttinger for some
illuminating discussions of field theory.

APPENDIX A. SEMICLASSICAL THEORY OF SPIN
WAVES ON THE ATOMIC MODEL, WITH
APPLICATION TO RHOMBIC LATTICES

We give first a semiclassical derivation of spin-wave theory on
the atomic model. The derivation is rather simpler and more
concise than previous derivations in the literature.

The hamiltonian of the system is

H=—272:;8-S;, (A1)

where S; is the spin operator in units of % for the ith atom. Each
atom has 2S5 resultant electron spins. The quantum equation of

18 See, for example, M. Born and M. Goeppert-Mayer, Handbuch
der Physik XXIV 2, p. 630,
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motion for Sy, is

'L'hdSm/dl= Esmy H’]
=2J1(Z8:-8,)8,,—8,(Z8;-8;) ]
=2J2,0(Sn-S)Sn—Sn(Sn-S,)]
= —2J2; S;X[S»XSn],

which becomes, using the commutation relation S)XS=1S,
1dSm/di=27SnX Z8;. (A2)

For a simple cubic lattice with lattice constant @ we have by
series expansion

Z;i8;=6Sn+aviS+-. - -, (A3)

where the 5’s are now considered as classical vectors, and not as
quantum operators. For small distortions we neglect higher order
terms in the series expansion, and thus we have the equation of
motion

hdS/dt=2Ta2[SXV?S]
for the spin considered as a classical quantity. One can easily
verify, by replacing (A3) by an expression involving $ZR,R,3S5n/
9x,0x,, that for any lattice of cubic symmetry with Z nearest
neighbors to each lattice site,

kdS/dt=(ZR:2T/3)SX VS, (A4)
where R, is the separation of nearest neighbors. Let
S=S;4e (A5)

where S; is the unperturbed spin vector, and € represents a spin
wave of small amplitude. With this substitution Eq. (A4) reduces
to

Peg/dt= —~(ZR,2T So/31)*V'es, (A6)

where we have supposed that ¢/So<X1, thereby determining the
range of validity of the theory. Equation (A6) is essentially a
wave equation, and it has solutions of the form

ez =eo exp[i(wt+k-r)],
ha=(ZR2TSo/3)k2. (AT)

This is the fundamental relation between frequency and wave
number of a spin wave. The wave is quantized in the usual way,
setting E=nhw, where » is readily shown to be the number of
reversed spins in the system.

We go on to consider spin wave theory for a simple rhombic
lattice with exchange integrals J,, Js, J. connecting neighbors
along the three mutually perpendicular axes @, b, ¢. The equation
of motion becomes

where

) ) BZS)
= oy 22 — gt —
hdS/ds ZSX(a S o ax2+b2]bay2+c x4 Pyl (A8)
which leads to the relation
hew=25,(aJ ok 2+ 02T vk 242 T R .E). (A9)

The reversed magnetization is proportional to

[ akedi,db./Cexplia/bT) ~17;
on substituting

2= 25002 T ok RT; 22=280 k32/RT;

V2 =28002T kP RT; rP=a4yit2?
the integral becomes
N(kT/ZSD)*f 4nridr
JITAIS J exp(rd) -1

where N=1/abc is the number of atoms per unit volume. This
expression goes over into the usual expression for a simple cubic
crystal on letting e=b=¢, Jo=Jy=J.. For the rhombic case
we have

My=M1-0117(ET/2S0)Y/TAT T }]. (A10)
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APPENDIX B. SOME PROPERTIES OF STATES
OF THE FORM s,(»W,, ETC.

Let ¥y be a state with total spin S and z-component of spin
S.=S, and consider the state 5,9W¥,, where s,® is the kth Fourier
component of the y-component of spin density, as defined by
Eq. (7). The normalization integral of this state is the mean
value, in the state ¥, of the operator

5y, = N4 Zine; 0,90, cos[k- (6—1)],  (BD)

where N is the total number of electrons present. The mean
value of the second term of (B1) in the state ¥y is

(Wo, Binei 0Py cos[k- (rj—r;) ]Wy)
= [ [aP@, £ coslk-(ri—r)Jdrdrs, (B2)

where AP(ry, ry)dridre is the probability that, when the system
is in the state W, an electron will be found in dr; at ry, another
in dry at r,, these two having parallel y-components of spin,
minus the corresponding probability for antiparallel y-components.
Now, since ¥, is an eigenfunction of S,, the mean value of the
y-component of spin of an electron found at any given point of
space vanishes; if we may assume the physical nature of the
problem to require that the spin distributions in dr; and dr.
approach statistical independence as |r;—r;| becomes large, we
must have

AP(ry, r5)—0 as

This requirement, though undoubtedly fulfilled by the ground
state of an insulator, is, as we shall see below, not necessarily
fulfilled by other states, e.g., by spin wave states. Actually, it is
to be expected that AP will differ significantly from zero only
when |r;—r;| is less than a few lattice spacings. Since we are
interested only in infinitesimal values of %, we may therefore set
cosfk: (ri~r;)]=11in Eq. (B2):

®2) = [ [aP(r,, r)drat-0()
=(Wo, Bipj 0,0, Do) +OR). (B3)
The scalar product in Eq. (B3) is easily expressed in terms of
the spin quantum numbers. For
S2= BN/ + 1) Zis; 09004+ (D) Tisil 0,0 0.0 0,06, S 2=
(V/ )+ (1) Zies 0.0,
Combining, we have
2(82—82) —~N=32.i(0, Do, D4 ayg, ). (B4)

Now, in any eigenstate of S, the means of the two terms on the
right of Eq. (B4) are the same, so for the state ¥, for which $2
is S(S+1) and S, is S,

[t1~rp|—>0.

(Wo, Zipej 0P oy D) =25 —N. (B5)
Combining (BS3), (B3), (B2), and (B1) we have, therefore,
(54T, 5, W) =25+, (B6)

where & is O(k?) as £—0 and O(1) as N and the size of the crystal
become infinite at fixed k. _
Next consider the mean energy Ey of 5,/9W,, given by

Exl(s, %0, 5,50W0) = (s,00%q, Hs,(9%y)
= Eo(s, P ¥, 5,09%0) + (¥q, 5,0 [ Hs,® —5,®H o). (BT

Only the kinetic energy operator contributes to the commutator;
in atomic units we have

s, W[ Hs,® —5, W = Rs, W s,
—2ik-E,~,,~ oD, W) exp[ik- (r;— ) ]V,‘. (B8)

It is clear at this point that the E given by Eq. (B7) will be
Ey+O(k?) if ¥, has any symmetry property which requires Ey
and £ _; to be the same. To evaluate the coefficient of 42 explicitly
for the case where ¥, is the ground state of an insulator we may
take this symmetry property to be invariance under Wigner’s
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TABLE I. Group-theoretical restrictions on the lengths of
components of 8%*hky,

Subgpace (S —-1) S (S+1)
Wave function
($2) -is, 1)) o [ 0 L,
RN 0 Lo L./(2S+2}
(520%) —is, k) ¥y L. Lo(2/5)t Lo/ [(S+ns+n1t

time-reversal operation,!” and shall accordingly replace the second
term on the right of Eq. (B8), which we may call G, by the average
of G, the time-reversed operator, and the adjoints of these, the
latter averaging being permissible since the mean value of G
must be real. The result is

G—k- Z.'_,‘ gD, D(sinfk- (r;— 1) JV;— V; sin[k- (r;—1;)])
= —kﬁE.-,g,» dy(i)o,,(i) cos[k- (l.','—!‘,')]. (B9)

Combining with Eqgs. (B8) and (B7) and the previous evaluation
of Eq. (B2), we have, finally,

Ev=Eo+(N/2S)k (B10)

to within an error which is O(%%) as k—0, and O(N™1) as N—x,

A slight extension of the argument leading to Eq. (B6) enables
us to calculate the orders of magnitude of the portions of s*¥,
which have spins (§—1}, S, and (S+1). Remembering that ¥,
has S;=, we can use the group-theoretical relations between the
different matrix elements of a vector operator’® to express the
lengths of the projections of the various 5,"¥; (u=x, v, 2) onto
the subspace of spin §’ in terms of a single constant dependent
on S’, as shown in Table I. The entries in the table are the values
of the square root of the normalization integral of the projection
of the wave function indicated at the left of each row onto the
subspace of the spin indicated in each column. Without further
assumptions regarding the nature of the state ¥y we can say
nothing about the values of the constants L, Ly, L. However,
if ¥, has the property of having no long-range correlations
between x- and y-components of spin density we can evaluate
them by the method used for Eq. (B6). We have

(5e Py ®) (5.5, ®) =2N — 4,
+Zii(02 D+ 0y V0, ) coslk- (rj—1:) ]
=3 000y — 0,00, ) sin[k- (rj—1)]. (B11)

The square of the quantity L. of Table I is the expectation value
of (B11). If ¥y has the property just mentioned and has in
addition any symmetry property which requires this to be the
same for k and —k, this expectation value is given to within an
error of order Nk? by setting the cosine equal to unity and the
sine to zero in (B11); using (B4) this gives

Ly2=0NE). (B12)

A similar argument using the operator 5,95, gives a value for
Lo*+4-L2/(25+2); neglecting the second of these terms, we find

LE=0(NE). (B13)

The operator (s;® —is,®)*(5,® —7i5,®) differs from the right of
(B11) only in having a plus sign for the term 45,; its mean value
gives [L.24+(2L#/S)+ L2/ (S+1)(254+1)], and since the last
two of these terms are negligible compared with the first, we have

L 2=85+0O(N#). (B14)

17 E. Wigner, Gittingen Nachrichten (1932), p. 546.

13 See for example E. Wigner, Gruppentheorie und ihre Anwend-
ung auf die Quantenmechanik der Atomspekiren (Friedrich Vieweg
und Sohr, Braunschweig, 1931), p. 264.

C. HERRING AND C. KITTEL

It is now very easy to show that the lack of long-range corre-
lations between x- and y-components of spin density, which we
have assumed in deriving the preceding equations, especially
Eq. (B12), cannot be valid for states with spin waves excited.
For suppose ¥, to be a state with no spin waves excited, so that
Egs. (B12), (B13), and (B14) apply to it. Then

(52 —is, MWy /L_= ¥, 4+0(k), (B15)

where ¥, is a state of spin (S—1), which, for the case where ¥,
is the ground state of an insulator, differs only by O(%) from the
normalized eigenfunction of the lowest spin-wave band. Taking
the scalar product of (B15) with ¥; and using the properties of
adjoint operators,

(Lsa™0+is, 0 ], To) = L_[14-0(k)]=O(NY),

whence it is obvious that the length of [s5,"®+-i5,0"®]w; is
O(NY), rather than O(V3k) as it would be if Eq. (B12) applied to it.

APPENDIX C. MEAN ENERGY OF aW",/8R

Let ¥,(R) be the ground-state eigenfunction of the sum of the
crystal hamiltonian and the perturbation (32). Its energy will be
of the form (Eo+AE), where E, is the energy of the unperturbed
ground-state eigenfunction ¥, and

AE=—R?Z;| Au|?/(Bi~ Eo), (cn
where Ajo is the matrix element of the perturbation connecting
the eigenfunctions ¥, and ¥;. Defining ¢; as the coefficient of
R¥;in ¥, ie.,

¢i=—Aw/(Ei—Eo),
we can rewrite Eq. (C1) as
AE=RZ; ciAipp*. (C3)
The mean value E of the crystal hamiltonian in the state d¥,/dR
is given by

(C2)

E—Eo=—(Z; cibu®)/Z:i|ci |2 (C4)

Applying the Schwarz inequality to Eq. (C4) and noting that the
left side is >0, we have

E—Eo<[(Zs] Aiol?)/Zs|s]2T0. (C3)

Likewise, applying the Schwarz inequality to Eq. (C3) and using
Eq. (36) of the text,

AZ QMBI (Zs]| Aio|D(Zi]es |2 T (C6)

The equality holds in Egs. (C5) and (C6) if and only if Ay «g;,
i.e., if E; is the same for all states for which A;+0. Now, if ¥,
satisfies the postulate (c) of Sec. IIB, regarding the absence of
long-range correlations between xz- and y-components of spin,
we have from Eq. (B6) of Appendix B

Zi| Avo)|?=mean square of (32)/R?=S-+O0(F2). (7))

Combining Egs. (C5), (C6), and (C7) gives, therefore, with
M=25/2, ~
E—E,<(20/S)AR4-0(k%). (C8)

If the O(k%) in Eq. (C8) is to be merely that due to the O(%?) in
Eg. (C7), the multidimensional vectors ¢ and A must be parallel,
as mentioned above. However, if (K —E,) departs from the first
term on the right of (C8) by this plus an additional amount of
order %4, these two vectors may make a small angle of order %
with each other, so that we have merely

Aiy= —¢i(E;— Eo) = —c:0 E4+O(k), (c9)

where $E is some constant independent of 4, but dependent on &
and of order %2, so that ¢;6F is O(k 1),



