

Figure I 1
The spinwave spectrum as function of wavenumber k. \square is the angle between k and the direction of the applied and axial anisotropy fields. The uniform mode with frequency $\square \square$ is degenerate with spin waves in all directions along and transverse to the field. [appears that the most intense coupling is to the wave with $\square=0$.

Figure II 1

A breaking wave dragged by a simple transversely polarized spin wave, after an initial deviation of polar angle around the origin.

Figure II 2 (a)

The velocity at time zero as a function of position X. It is always possible to draw a chord through the graph such that the two shaded regions have equal area. This chord is constructed by requiring that the area of the rectilinear figure $\mathrm{XoP}_{1} \mathrm{P}_{2} \mathrm{X}_{1}$ be equal to the integral of the velocity from X_{0} to X_{1}.

Figure II 2(b)

In the simplest model, in which the velocity is taken to be equal to the amplitude, the transformation from figure (a) to figure (b) is area preserving. The general case can be reduced to this by expanding the velocity up to the first power in the deviation from some particular velocity.

Figure V 1
The first six eigenvalues for nine values of H , with $\mathrm{Hk}=3$

Figure V 2
Contours of equal time needed to reach complete reversal within a factor $1-\exp (-1)$. Anisotropy axis completely aligned with applied field. Abscissa: anisotropy field Hk .
Ordinate: applied field H.Time in units of 1/D

Figure V 3

Initial angle of inclination of anisotropy axis versus final inclination of M for values of H / Hk from) to 2 in steps of . 125

Figure V 4

The first five values of $1 / \bar{i}_{i}, i=1,2 \ldots . .5$ as a function of inclination (in radians) of the anisotropy axis.

