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Abstract. When a macroscopic system in contact with a heat reservoir is driven away from equilibrium,
the second law of thermodynamics places a strict bound on the amount of work performed on the
system. With a microscopic system the situation is more subtle, as thermal fluctuations give rise to a
statistical distribution of work values. In recent years it has been realized that such distributions encode
surprisingly more information than one might expect from traditional thermodynamic arguments. I will
discuss a number of exact results that relate equilibrium properties of the system, in particular free
energy differences, to the fluctuations in the work performed during such a nonequilibrium process. I
will describe the theoretical foundations of these relations, connections with irreversibility and the second
law of thermodynamics, and potential experimental and computational applications.

PACS. 05.70.Ln Nonequilibrium and irreversible thermodynamics – 05.40.-a Fluctuation phenomena,
random processes, noise, and Brownian motion – 82.37.Rs Single molecule manipulation of proteins and
other biological molecules

1 Introduction

The focus of this contribution is a set of results pertain-
ing to systems that are driven away from an initial state
of thermal equilibrium. In principle these results are valid
quite generally, but in practice they are relevant mainly
for microscopic systems. Indeed, the topic that I will dis-
cuss represents one small corner of a considerably broader,
active field of research, which might be called the thermo-
dynamics of small systems [1]. The question at the heart
of this field is how (and to what extent, and in what forms)
the laws of thermodynamics – originally formulated to de-
scribe the behavior of macroscopic systems such as steam
engines – apply to microscopic systems such as biomolec-
ular machines. As an example, consider the RNA poly-
merase, which attaches itself to a double strand of DNA,
marches along that strand, and copies a piece of the ge-
netic code onto a single strand of RNA, occasionally back-
tracking to correct a copying error. While the RNA poly-
merase and the steam engine are separated by about eight
orders of magnitude in length scale, they both function by
using some form of free energy to carry out a specific task,
whether that task involves pumping water out of a mine
shaft, or copying a piece of genetic code. How do the laws
developed by Sadi Carnot and his successors apply to mi-
croscopic systems such as the RNA polymerase?

While the preceding comments hopefully convey a
sense of the broader context in which to understand this
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Fig. 1. Stretching a rubber band.

contribution, I will focus on a very specific topic, which
involves the relationship between work and free energy in
nonequilibrium thermodynamic processes. With that in
mind, let me begin with a very simple, pedagogical exam-
ple of such a process.

2 Stretching a rubber band

Imagine an ordinary rubber band, attached at one end to
a fixed wall, and at the other to an ideal spring, as de-
picted in Figure 1. Let z denote the length of the rubber
band, and λ the distance from the fixed wall to a particle
attached to the far end of the spring. We will view λ as
a degree of freedom that we control directly, by manipu-
lating the position of the particle. We recognize here the
basic elements of a textbook discussion of thermodynamic
processes: a system of interest, the rubber band; a thermal



332 The European Physical Journal B

Fig. 2. Stretching a single molecule (not to scale).

environment, the surrounding air; and a work parameter,
λ, used to act on the system of interest.

With these elements let us imagine that we subject
the system to a nonequilibrium process, as follows. The
system begins in a state of thermal equilibrium with its
surroundings, with the parameter at some initial value,
λ = A. Then we stretch the rubber band by varying the
work parameter, from A to a final value λ = B > A. Let us
imagine that this is done rather rapidly and violently, so
that the rubber band heats up – as rubber bands do, when
they are stretched rapidly – and thus is driven away from
equilibrium with the surrounding air. During this step we
perform work, W , on the system. Finally, imagine that at
the end we hold the work parameter fixed at λ = B, allow-
ing the rubber band to cool off and once again equilibrate
with its environment. We thus have an irreversible pro-
cess during which external work is performed in driving
the system from one equilibrium state (A) to another (B).

For such a process the second law of thermodynamics
asserts that the work must be no less than the free energy
difference, ΔF , between the two equilibrium states:

W ≥ ΔF = FB − FA, (1)

where the equality (W = ΔF ) holds if we perform the
process reversibly. Formally, equation (1) follows from the
Clausius inequality, generally written in terms of heat and
entropy (

∫
dQ/T ≤ ΔS) rather than work and free energy.

We can also understand equation (1) phenomenologically:
when a rubber band is stretched rapidly, it heats up, and
when it heats up its tension increases. Consequently, more
work is required to stretch a rubber band irreversibly, than
reversibly.

3 Stretching a single molecule

Now consider what happens during a single-molecule
pulling experiment, depicted schematically in Figure 2.
In this microscopic analogue of a stretched rubber band,
DNA handles are used to “glue” a strand of RNA to two
microspheres (polystyrene beads), one held in place by a
micropipette, the other confined by an optical trap. The
entire system is immersed in aqueous solution at room
temperature and pressure, and we manipulate the dis-
tance from the end of the pipette to the center of the
optical trap, λ, by varying the position of the trap. In this

ρ(W)

W [pN nm]ΔF

Fig. 3. Distribution of work values for a microscopic system
subject to an irreversible process.

example the system of interest is the RNA strand tethered
to the beads, the thermal environment is the surrounding
water, and λ once more denotes the work parameter. The
optical trap plays the role of the spring in Section 2, cre-
ating an approximately harmonic potential for the bead.

We again imagine an irreversible process: first the sys-
tem is prepared in equilibrium at λ = A; then we perform
work (W ) on the RNA strand as we stretch it by varying λ
from A to B according to some pre-determined schedule,
or protocol; and finally the system is allowed to once again
reach thermal equilibrium, with the pipette-to-trap dis-
tance held fixed at λ = B.

Suppose we perform this experiment repeatedly, al-
ways preparing the system in the same equilibrium state,
and always following the same protocol when manipulat-
ing the work parameter from A to B. The work we perform
nevertheless differs measurably from one realization to the
next, due to the inevitable randomness of atomic and
molecular motions. In other words, thermal fluctuations
of the RNA and surrounding water molecules give rise
to statistical fluctuations in the work required to stretch
the biomolecule. In this case the Clausius inequality must
be interpreted statistically. This is illustrated in Figure 3,
where ρ(W ) depicts the distribution of work values ob-
served over many realizations of such a process. The av-
erage work exceeds the free energy difference between the
initial and final states of the system,

〈W 〉 ≥ ΔF, (2)

but there is a substantial spread of work values around
this average. As we repeatedly perform this experiment,
we might even observe occasional realizations for which W
falls below ΔF , as depicted by the far left tail of ρ(W ) in
Figure 3. These “violations of the second law” [2] are for-
tuitous events, during which random thermal fluctuations
interfere constructively (so to speak) in a manner that
facilitates the stretching process.

4 Nonequilibrium work relations

The observations of the previous section represent a rea-
sonable, statistical extrapolation of the second law of ther-
modynamics to the realm of microscopic systems. It turns
out, however, that one can make considerably stronger
statements regarding the fluctuations in work.

One such statement is the following nonequilibrium
work relation [3,4]:

〈
e−βW

〉
= e−βΔF . (3)
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Here as in equation (2), angular brackets denote an aver-
age over a statistical ensemble of realizations of a given
thermodynamic process, equivalently an integral over the
observed work distribution, ρ(W ). The factor β = 1/kBT
is the inverse temperature of the surrounding thermal en-
vironment, and can also be viewed as the initial inverse
temperature of the system itself, since the system is pre-
sumed to be prepared in equilibrium with its surround-
ings. (However, it would be incorrect to view β−1 as the
temperature of the system during the process; indeed, the
system might not even have a well-defined temperature as
it is driven away from equilibrium.)

Equation (3) places a rather strong and unexpected
constraint on the distribution of work values, ρ(W ), which
(unlike Eq. (2)) is not naturally suggested by macroscopic
experience. Two features make this result particularly in-
teresting (and occasionally controversial [5–8]). First, it
remains valid even if the system is driven far from ther-
mal equilibrium. Thus it goes beyond the near-equilibrium
predictions of linear response theory. Second, it asserts
that we can determine equilibrium properties of a system
of interest – specifically, free energy differences – by ob-
serving how the system responds when driven away from
equilibrium. This feature renders equation (3) potentially
useful in both experimental and computational contexts,
as I will discuss in Section 8 below.

5 Forward and reverse processes, Crooks’s
fluctuation theorem

Equation (3) pertains to a thermodynamic process during
which a work parameter λ is manipulated from A to B. A
closely related prediction applies to a comparison of two
process: the forward process just described; and a coun-
terpart reverse process, during which λ is varied from B
back to A, following a protocol that is the time-reversal
of the one used during the forward process (Eq. (21)).

Let us first consider such a comparison in the macro-
scopic setting. As in Section 2, we imagine that we stretch
the rubber band by moving the right end of the spring
from A to B, say at some constant speed u. Then, after
the rubber band has re-equilibrated with the surrounding
air, we move the particle back in the opposite direction,
again at speed u, from B to A. Let WF and WR denote the
work performed during these two steps. The subscripts,
for “forward” and “reverse”, indicate that we treat these
steps as distinct processes. However, we can equally well
view the combination of the two, in succession, as a single
thermodynamic cycle, λ : A → B → A. The work val-
ues WF,R must then be consistent with the Kelvin-Planck
statement of the second law of thermodynamics [9], which
forbids the systematic conversion of heat to work, when
the heat is drawn during a cyclic process from a single
thermal reservoir. In our setting this implies

WF + WR > 0. (4)

The work we perform to stretch the rubber band during
the first half-cycle (WF ) must exceed the work that we

ρF(W)

ρR(-W)
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Fig. 4. Work distributions for the forward and reverse pro-
cesses. Equation (5) is illustrated by the fact that the mean of
ρF (W ) is found to the right of the mean of ρR(−W ).

recover in allowing the rubber band to contract during
the second half-cycle (−WR). This is essentially a “no free
lunch” theorem. It rules out a perpetual motion machine
of the second kind, by which energy would be harvested
from the thermal motions in a roomful of air simply by
repeatedly stretching and contracting a rubber band.

In the microscopic, single-molecule setting of Figure 2,
imagine that we repeatedly move the laser trap back and
forth between two positions A and B, measuring the work
performed during each half-cycle, and allowing the strand
of RNA to re-equilibrate with the surrounding water each
time A or B is reached. Letting ρF (W ) denote the distri-
bution of work values observed over many repetitions of
the stretching step (A → B), and defining ρR(W ) simi-
larly for the contraction step (B → A), the analogue of
equation (4) is the statistical statement,

〈W 〉F + 〈W 〉R > 0, (5)

with angular brackets denoting averages over the distri-
butions ρF and ρR; see Figure 4. This result states that
there is no free lunch on average: we might occasionally
observe a cycle during which more work is recovered when
the molecule contracts than was performed to stretch it
in the first place, but such events are the exception rather
than the rule.

While equation (5) is a statement about the means
of the work distributions, the fluctuations around these
means are interesting in their own right. Crooks has shown
that ρF and ρR satisfy the symmetry relation [10,11],

ρF (+W )
ρR(−W )

= eβ(W−ΔF ). (6)

This result is closely related to various fluctuation the-
orems that have been derived for entropy production in
out-of-equilibrium systems (see e.g. Refs. [12–21], and ref-
erences therein), in particular to the transient fluctuation
theorem of Evans and Searles [13,18].

Since equation (6) tells us that ρF (W ) is obtained
by multiplying ρR(−W ) by a monotonically increasing
function, of W , it immediately follows that the mean of
ρF (W ) is located to the right of the mean of ρR(−W ),
which is precisely the content of equation (5). More-
over, equation (6) implies that ρF (W ) and ρR(−W ) in-
tersect at W = ΔF [22], as depicted in Figure 4.
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Finally, by multiplying both sides of equation (6) by
ρR(−W ) exp(−βW ), then integrating over all values of W ,
we obtain equation (3).

As was the case with equation (3), (6) remains valid
even if the system is driven far from equilibrium during
the forward and reverse processes.

6 Simple derivations

Over the past decade or so, a number of derivations of
these and closely related results have appeared in the liter-
ature, see for instance references [3,4,10,11,23–38]. More-
over, this work has brought new attention to a set of re-
sults obtained nearly three decades ago by Bochkov and
Kuzovlev [39–42]; see references [43–45] for discussions of
the relation between these two sets of predictions. Here I
will discuss three derivations of nonequilibrium work rela-
tions. While my focus will be limited to systems described
using the methods of classical statistical mechanics, there
has been considerable interest in extending these results
to the quantum regime, as found in references [46–56].

6.1 Hamiltonian evolution

First, consider the special case in which the system is
thermodynamically isolated – that is, not in contact with
a thermal reservoir – as the work parameter is varied
from A to B. Specifically, imagine a hypothetical single-
molecule pulling experiment that is prepared by allowing
the trapped strand of RNA to equilibrate with a gas-phase
environment (e.g. air at room temperature and pressure),
rather than in aqueous surroundings. The gas is then evac-
uated, leaving only the molecule attached to the beads,
along with the manipulation apparatus, i.e. the optical
trap used to grab one of the polystyrene beads, and some
sort of anchor to hold the other bead fixed. This is not a
physically realistic situation, but the purpose here is sim-
ply to illustrate how a result like equation (3) might be
derived from first principles, while avoiding some of the
technical details that arise when properly accounting for
the degrees of freedom of the thermal environment. Once
the system has been thus prepared in equilibrium, and the
thermal reservoir removed, we stretch the molecule in vac-
uum by moving the optical trap from A to B. The process
is then repeated many times, always first preparing the
system in equilibrium with thermal surroundings, which
are then removed.

Because the system is thermodynamically isolated as λ
is switched from A to B, we use Hamilton’s equations to
describe its microscopic evolution. Specifically, let x =
(q,p) denote a microstate of the system, that is a sin-
gle point in its many-dimensional phase space, which in-
cludes all the relevant coordinates needed to specify the
microscopic configuration of the system (q) as well as the
momenta associated with these coordinates (p).

Next, let H(x; λ) be the Hamiltonian that: (i) gives
the internal energy of the system as a function of its mi-
crostate x; and (ii) generates the microscopic evolution,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (7)

Note that the position of the optical trap, λ, enters as a
parameter of the Hamiltonian. When this system is equi-
librated with a thermal environment, at fixed λ, its mi-
crostate can be viewed as a random variable sampled from
the Boltzmann-Gibbs distribution

peq
λ (x) =

1
Zλ

e−βH(x;λ). (8)

The partition function and free energy associated with
this equilibrium state are given by expressions familiar
from classical statistical mechanics:

Zλ =
∫

dx e−βH , Fλ = −β−1 ln Zλ. (9)

(Strictly speaking, the partition function includes a factor
that makes it dimensionless. Since this factor would in
any case drop out later in our analysis, because we are
ultimately interested in free energy differences, we omit it
from the start.)

During a given realization of the process, after be-
ing prepared in equilibrium the system evolves in time
(Eq. (7)) as λ is switched from λ0 = A to λτ = B. Here
the notation λt, 0 ≤ t ≤ τ , denotes the externally imposed
schedule, or protocol, for varying the work parameter; and
xt denotes the phase space evolution of the system. Be-
cause the system is thermally isolated from t = 0 to t = τ ,
the work performed is simply the net change in its internal
energy: W = H(xτ ; B) − H(x0; A). This is just the first
law of thermodynamics, taking into account that there is
no heat transfer (Q = 0) because the system is isolated.

Let us now evaluate the average of e−βW , over an en-
semble of realizations of this process. Since Hamiltonian
evolution is deterministic, we can express the work W as
a function of the initial conditions:

W (x0) = H (xτ (x0); B)−H(x0; A). (10)

Here xτ (x0) denotes the final conditions in phase space, for
the trajectory launched from initial conditions x0. The left
side of equation (3) is then an average of exp[−βW (x0)],
over initial conditions sampled from the equilibrium dis-
tribution at λ = A:

〈
e−βW

〉
=

∫
dx0 peq

A (x0) e−βW (x0) (11)

=
1

ZA

∫
dx0 e−βH(xτ (x0);B) (12)

=
1

ZA

∫
dxτ

∣
∣
∣
∣
∂xτ

∂x0

∣
∣
∣
∣

−1

e−βH(xτ ;B). (13)

We get from the first line to the second by substitution of
equations (8) and (10); then to the third line by chang-
ing the variables of integration from x0 to xτ (x0). Such a
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change of variables is permitted since initial conditions x0

and final conditions xτ are in one-to-one correspondence
under Hamiltonian evolution. The additional factor in the
last line is the Jacobian associated with this change of
variables: if we evolve an infinitesimal cell in phase space
containing x0, under Hamilton’s equations, to a cell con-
taining xτ (x0), then |∂xτ/∂x0| is the ratio of the phase
space volumes of these cells. By Liouville’s theorem this
ratio is exactly unity, hence

〈
e−βW

〉
=

1
ZA

∫
dxτ e−βH(xτ ;B) =

ZB

ZA
= e−βΔF . (14)

It must be stressed that the derivation just presented ap-
plies under the restrictive conditions of an isolated system.
It was this assumption that allowed us to write W as the
change in the system’s internal energy; to use Hamilton’s
equations to describe its microscopic evolution; and finally
to invoke conservation of phase space volume (Liouville’s
theorem). However, this Hamiltonian approach can be
generalized [28] to encompass the more interesting situ-
ation in which the system continues to exchange energy
(heat) with the reservoir – e.g. the surrounding water – as
the work parameter is varied from A to B. In the general-
ized derivation, Hamilton’s equations apply to motion in
the full phase space describing both the system and the
thermal reservoir. Apart from technical complications in-
volving the free-energetic cost of solvating the RNA strand
in the surrounding water, the steps used to obtain equa-
tion (3) are essentially the same as those outlined above.

6.2 Stochastic evolution

Now let us consider a different approach to modeling the
microscopic evolution of a system driven away from ther-
mal equilibrium. As before we will be interested in the
evolution of the system over a time interval 0 ≤ t ≤ τ
as the work parameter λ is varied according to some pre-
determined protocol. However, following Crooks [10], now
we will describe the microscopic history of the system as
a sequence x0, x1, · · ·xN , representing the points in phase
space visited at times t0, t1, · · · tN , where tn = nτ/N .
Moreover, let us assume that this evolution is a Markov
process: given the microstate xn at time tn, the subse-
quent microstate xn+1 is sampled randomly from a tran-
sition probability distribution P that depends on xn, but
not on the points in phase space visited prior to time tn.
Physically, the randomness arises from the interactions
with the thermal environment. We motivate the Markov
assumption by assuming that this randomness is uncorre-
lated over time intervals longer than δt = τ/N .

The transition probability to the next microstate xn+1

depends not only on the current microstate xn, but also on
the current value of the work parameter, λn. We will use
the notation P (xn → xn+1; λn) to reflect this dependence.
Moreover, we will assume that this transition probability
obeys detailed balance [57]:

P (x→ x′; λ)
P (x← x′; λ)

=
e−βH(x′;λ)

e−βH(x;λ)
, (15)

for any x, x′, λ, where the arrows denote the sense of the
transition.

When this system evolves as λ is varied in discrete
steps from A to B, as during the forward process, the
evolution during one time step proceeds by a sequence

(xn, λn)→ (xn, λn+1)→ (xn+1, λn+1) (16)

representing an update in the value of the work param-
eter, followed by a random step taken by the system. A
trajectory from t0 = 0 to tN = τ is then generated by first
sampling x0 from the initial distribution peq

A , and then re-
peating the above sequence (Eq. (16)) in time increments
δt. For the reverse process (A← B) the situation is much
the same, except initial conditions are sampled from peq

B ,
and we assume that during a given time step the system
first takes a random step, and then the work parameter is
updated: (xn+1, λn+1)← (xn+1, λn)← (xn, λn).

The net change in the internal energy of the system,
ΔE = H(xN , λN )−H(x0, λ0), can be written as a sum of
two contributions: the changes in energy due to increments
in the work parameter,

W =
N−1∑

n=0

[H(xn; λn+1)−H(xn; λn)] , (17)

and those due to the transitions from one point in phase
space to the next,

Q =
N−1∑

n=0

[H(xn+1; λn+1)−H(xn; λn+1)] . (18)

As suggested by the notation, and as argued by
Crooks [10], these two contributions are naturally inter-
preted as the work, W , performed on the system, and the
heat, Q, that it absorbs from its surroundings. The iden-
tity ΔE = W + Q is the first law of thermodynamics, in
this discrete-time formulation of the system’s microscopic
evolution.

The probability to generate a trajectory is the prob-
ability to sample the initial microstate x0, multiplied by
the probabilities to generate the subsequent transitions:

peq
λ0

(x0)P (x0 → x1; λ1) · · ·P (xN−1 → xN ; λN ). (19)

Now let us compare the probability of generating a par-
ticular trajectory during the forward process, PF [x], and
that of generating the time-reversed trajectory during the
reverse process, PR[x̄], using the convenient shorthand
x = (x0 → · · ·xN ) and x̄ = (x0 ← · · ·xN ) to specify
a conjugate pair of trajectories, i.e. a pair related by time-
reversal. The ratio of these probabilities is:

peq
A (x0)

peq
B (xN )

P (x0 → x1; λF
1 ) · · ·P (xN−1 → xN ; λF

N )
P (x0 ← x1; λR

N−1) · · ·P (xN−1 ← xN ; λR
0 )

. (20)

Here (λF
0 , λF

1 , · · ·λF
N ) is the protocol for varying the work

parameter from A to B during the forward process, and
analogous notation is used for the reverse process (R).
Since these protocols are related by time-reversal,

λR
n = λF

N−n, (21)
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we see that every factor P (x → x′; λ) in the numera-
tor of equation (20) is matched by P (x ← x′; λ) in the
denominator.

The analysis now reduces to algebraic manipulations.
Equations (15), (17), (18), and (20) lead to the simple
result, [10]

PF [x]
PR[x̄]

= eβ(W F −ΔF ), (22)

where WF [x] is the work performed on the system dur-
ing the forward process. If we similarly let WR denote
the work performed during the reverse process, then by
equation (17)

WR[x̄] = −WF [x] (23)

for a conjugate pair of trajectories, x and x̄. The work
distributions ρF and ρR are obtained by integrating over
all possible discrete trajectories:

ρF (+W ) =
∫

dx PF [x] δ
(
W −WF [x]

)
(24)

ρR(−W ) =
∫

dx̄ PR[x̄] δ
(
W + WR[x̄]

)
, (25)

where dx = dx̄ = dx0 · · ·dxN . From equations (22)
and (23) it follows that these two distributions satisfy
equations (6) [11].

6.3 Feynman-Kac theorem

Hummer and Szabo [24,58] have argued that equation (3)
follows from the Feynman-Kac theorem of statistical me-
chanics [59]. (See also Ge and Jiang [38] for a mathemat-
ically rigorous analysis of this issue, and Ao [60] for a
discussion in a broader context.) To sketch their deriva-
tion, let us assume that the microscopic history of the
system is described by continuous-time phase space tra-
jectory, xt. The system might be thermodynamically iso-
lated during the interval 0 ≤ t ≤ τ (in which case xt obeys
Hamilton’s equations, as in Sect. 6.1), or it might be in
contact with a thermal reservoir. A statistical ensemble of
such trajectories, x1

t , x
2
t , · · · , xn

t , · · · , can be described by
a time-dependent phase space distribution,

f(x, t) = 〈δ(x− xt)〉 , (26)

which gives the probability density to find the system at
a phase space location x at time t. In this equation xt

is the microstate reached by a particular trajectory at
time t, and the angular brackets denote an average over
the ensemble of realizations. Under appropriate assump-
tions [4,24,61], f(x, t) satisfies an equation of motion of
the form

∂f

∂t
= Ltf, (27)

where Lt is a linear operator whose time-dependence en-
ters through the value of the work parameter: Lt =
L(λt). For example, if the system evolves under Hamil-
ton’s equations, then L(λ) is the Liouville operator,

L(λ) = (∂pH) ∂q − (∂qH) ∂p, where H = H(x; λ). Alter-
natively, if Langevin dynamics are used to model the mi-
croscopic motion of the system, then L(λ) includes dif-
fusive terms, in either configuration space or momentum
space. We will further assume that this operator “annihi-
lates” the equilibrium distribution, i.e. that

L(λ) exp[−βH(x; λ)] = 0, (28)

for any value of λ. The physical interpretation of this as-
sumption is simple: if the work parameter is held fixed,
then the equilibrium distribution is a stationary solution
of the dynamics (f = peq satisfies Eq. (27)). In other
words, the system remains in equilibrium unless we ac-
tively drive it away from that state by varying λ.

Now consider the function

p(x, t) =
1

ZA
exp [−βH(x; λt)] . (29)

Apart from the mismatched normalization factor, this
is the equilibrium distribution corresponding to λt. By
equation (28), p satisfies a “sink equation” [24]

∂p

∂t
= Ltp− βλ̇

∂H

∂λ
p. (30)

The Feynman-Kac theorem states that the solution of such
an equation can be represented by an ensemble of trajec-
tories evolving under the original dynamics (Eq. (27)),
in which each trajectory xt carries a time-dependent
statistical weight e−βwt , analogous to the phase eiS/�

appearing in the path-integral formulation of quantum
mechanics [62]. In detail, the Feynman-Kac solution of
equation (30) is

p(x, t) =
〈
δ(x− xt) e−βwt

〉
, (31)

where

wt =
∫ t

0

ds λ̇
∂H

∂λ
(xs; λs) (32)

is the work performed to time t, for a given realization
of the process. Comparing equations (29) and (32) (and
assuming an equilibrium distribution at t = 0), we arrive
at

〈
δ(x− xt) e−βwt

〉
=

1
ZA

exp [−βH(x; λt)] . (33)

If we integrate both sides with respect to x, and evaluate
at t = τ , we once again obtain 〈e−βW 〉 = e−βΔF , where
W = wτ is the work performed over the entire interval.

Beyond providing an alternative derivation of equa-
tion (3), (33) reveals that, in principle, if we are presented
with an ensemble of microscopic trajectories describing
a system driven away from thermal equilibrium, then by
the simple trick of endowing each realization with a time-
dependent, statistical weight e−βwt , we can reconstruct
the equilibrium distribution corresponding to the evolv-
ing value of λt. (See Refs. [24,61,63] for discussions of this
point, and Figs. 4–6 of reference [4] for an explicit example
of such a reconstruction.)
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As an application of this approach, Hummer and Szabo
take advantage of equation (33) to construct a method for
using non-equilibrium data – e.g. from single-molecule ma-
nipulation experiments – to determine equilibrium poten-
tials of mean force. These potentials are free energy pro-
files along a suitably chosen reaction coordinate (such as
the end-to-end distance of a stretched polymer molecule,
in Ref. [24]), rather than an externally manipulated work
parameter, λ.

7 Irreversibility and the second law

I have already remarked that Crooks’s fluctuation theo-
rem implies the Kelvin-Planck inequality formulated in
equation (5) (see comments following Eq. (6)). In fact
there are several interesting connections between nonequi-
librium work relations and the second law of thermody-
namics.

To begin, note that the relation 〈e−βW 〉 = e−βΔF

(Eq. (3)), when combined with 〈ex〉 ≥ e〈x〉 (Jensen’s in-
equality [57]), yields the Clausius inequality, in the sta-
tistical form given by equation (2). This might appear to
represent a microscopic, first-principles derivation of the
second law of thermodynamics, but such a broad inter-
pretation is not warranted. Derivations of equation (3)
always begin with the system in a state of thermal equi-
librium, generally described by the canonical distribution.
This apparently innocent, uncontroversial premise is the
Trojan horse by which rather strong assumptions regard-
ing equipartition have been slipped into the analysis from
the outset. As Gibbs showed over a century ago, if one is
willing to accept the form p ∝ e−βH as a statistical repre-
sentation of an equilibrium state, then statements of the
second law of thermodynamics (such as the Carnot limit
on the work performed by a heat engine, see Eq. (481) of
Ref. [64]) follow straightforwardly.

While it is instructive to see that 〈e−βW 〉 = e−βΔF

implies 〈W 〉 ≥ ΔF , with just a bit more effort, following
the derivation of equation (16) of reference [65], we can
use equation (3) to obtain a stronger, less expected result
(Eq. (37) below). For a given thermodynamic process, let
P [W < ΔF − ζ] denote the probability to observe a value
of work that falls below ΔF − ζ, where ζ is an arbitrary
positive value with units of energy. This probability is sim-
ply the area beneath the tail of the distribution ρ(W ), to
the left of the point W = ΔF − ζ, so we have

P =
∫ ΔF−ζ

−∞
dW ρ(W ) (34)

≤
∫ ΔF−ζ

−∞
dW ρ(W ) eβ(ΔF−ζ−W ) (35)

≤ e−βζ

∫ +∞

−∞
dW ρ(W ) eβ(ΔF−W ). (36)

By equation (3) the last integrand is unity, hence

P [W < ΔF − ζ] ≤ exp(−βζ). (37)

Thus the left tail of ρ(W ) is exponentially suppressed:
while microscopic “violations” of the Clausius inequality

(W < ΔF ) might occasionally be observed, large viola-
tions (ζ 	 kBT ) are effectively forbidden, in agreement
with macroscopic experience.

Yet another connection with irreversibility is related to
the conjugate pairing of realizations: for every trajectory x
that represents a possible microscopic history of the sys-
tem during the forward process, its time-reversed twin x̄ is
a possible realization of the reverse process. (This sort of
pairing appeared in Section 6.2 in the context of discrete-
time, Markov dynamics, but it applies equally well when
the microscopic evolution is modeled by Hamilton’s equa-
tions [66,67].) Suppose we are shown a movie in which
we observe the evolution of some system – say, an opti-
cally manipulated biomolecule – as a work parameter λ
is varied in the forward direction, from A to B. We are
then asked to “guess the direction of time”, that is, to
determine whether: (i) we are watching an actual depic-
tion of the forward process, or whether, instead, (ii) the
reverse process was filmed, and now we are being shown
that movie, run backward. This is essentially an exercise
in statistical inference. Assuming no prior bias in favor
of either hypothesis, the likelihood that the observed tra-
jectory originated with the forward process, L(F |x), is
proportional to the probability of generating this trajec-
tory when performing that process, PF [x]; and similarly
in the reverse case. Normalizing over the two alternatives
(F and R), we have [68,69],

L(F |x) =
PF [x]

PF [x] + PR[x̄]
=

1
1 + exp[−β(W −ΔF )]

,

(38)
using equation (6). This result conforms to our expecta-
tions based on the Clausius inequality: if W greatly ex-
ceeds ΔF , then L(F |x) ≈ 1, hence we can state with
virtual certainty that the movie depicts a realization of
the forward process; while in the opposite case we get
L(F |x) ≈ 0, and we can be equally confident that we are
viewing a realization of a reverse process (run backward in
time). The transition from one regime to the other occurs
over a few kBT around W = ΔF .

Equation (38) relates dissipated work, Wdiss =
W − ΔF , to our ability to distinguish between for-
ward and reverse trajectories. Using similar manipula-
tions one can establish a direct connection between phys-
ical and information-theoretic measures of irreversibility,
namely [67,70]

〈Wdiss〉F = kBT ·D[F |R], (39)

where on the right side D denotes the relative entropy [71]
between distributions (in either path space [67] or phase
space [70]) representing forward and reverse processes.
This result follows by substituting equation (22) (or its
continuous-time analogue) into the definition of relative
entropy; a similar result for the work distributions ρF

and ρR is an immediate consequence of equation (6). As
shown by Parrondo, Kawai, and Van den Broeck [70],
equation (39) implies a number of inequalities related to
the second law of thermodynamics, such as the Landauer
principle on the inherent dissipation that accompanies



338 The European Physical Journal B

information erasure [72]. A result analogous to equa-
tion (39) also applies to systems in nonequilibrium steady
states [73].

Finally, it is interesting to note that when the left side
of equation (3) is evaluated in practice, by taking the aver-
age of e−βW over many realizations of a given process, the
realizations that contribute most to this average are those
during which the system appears as though it is evolving
backward in time, in a sense made precise in reference [67].

8 Experiments and simulations

To this point, this contribution has focused on theoretical
aspects of nonequilibrium work relations. These results,
however, have generated considerable interest with respect
to their potential applications, in both experimental and
computational contexts.

As mentioned above, in 2001 Hummer and Szabo ar-
gued that relations such as equation (33) are potentially
useful tools for using data obtained from single-molecule
manipulation experiments to estimate equilibrium free
energy profiles along biologically relevant reaction coor-
dinates [24]. Shortly thereafter, Liphardt et al. [74] pub-
lished the results of experiments along these lines, demon-
strating the practical feasibility of this approach. In these
experiments, a single strand of RNA was manipulated us-
ing a setup similar to the one depicted schematically in
Figure 2. In the absence of external forces, the RNA in this
case adopts a single “hairpin” structure. The thermody-
namic process in these experiments involved stretching the
RNA, causing the structure to unfold. Be repeatedly per-
forming such experiments to obtain a distribution of val-
ues of the work required to stretch the molecule, Liphardt
et al. provided the first laboratory evidence in support of
equation (3). Subsequently, similar RNA-pulling experi-
ments performed by Collin et al. [22] provided confirma-
tion of Crooks’s fluctuation theorem.

More recently Harris et al. [75] have used atomic force
microscopy to stretch a protein molecule that was con-
structed as a chain of titin I27 domains, linked in series.
The I27 domain is the building block of the giant mus-
cle protein, titin. The protein molecule was attached at
one end to a gold substrate on a movable stage, and at
the other end to the tip of a microscopic cantilever. The
molecule was then stretched by using a piezoelectric ac-
tuator to translate the stage, and the displacement of the
cantilever from its equilibrium position was monitored as
the domains unfolded, one by one. The work W performed
in the process of unfolding each domain was then deduced
from the force-displacement data, and from these work
values the unfolding free energy barrier was obtained us-
ing the prescription of reference [24].

(In the time since the submission of this contribution,
applications of nonequilibrium work relations to the anal-
ysis of single-molecule manipulations have been reported
by two other groups [76,77].)

Apart from potential biomolecular applications,
nonequilibrium work relations have been probed using a
mechanical torsional pendulum, by Douarche et al. [78,79].
In these experiments the torsional thermal fluctuations of

a brass wire, suspended in a viscous fluid and with a mir-
ror attached to it, were observed by scattering laser light
off the mirror. A time-dependent, oscillatory torque was
applied to the brass wire by means of an external mag-
netic field, thus driving the system away from equilibrium
and performing work on it. The statistical distributions
of work values were found to satisfy both equations (3)
and (6).

These predictions have also been tested in experiments
in which optically trapped, micron-size polystyrene beads
are first brought to equilibrium with surrounding fluid,
then by varying either the position of the focal point or
the intensity of the beam, the location or profile of the trap
is varied with time. This can take place near a charged sur-
face [80], to produce an asymmetric trap, or in the bulk
of the liquid [81]. In either situation, the work W per-
formed on the bead is obtained by monitoring the motion
of the bead inside the trap, and the statistical fluctua-
tions of W were again found to agree with equations (3)
and (6) [80,81]. Experiments using optically trapped beads
have also provided confirmation of the transient fluctu-
ation theorem [2,13], and an analogue of equation (3)
pertaining to transitions between nonequilibrium steady
states [25,82].

Nonequilibrium work relations also offer a new ap-
proach to the numerical estimation of free energy dif-
ferences, a computationally challenging problem with
numerous applications in physics, chemistry and biol-
ogy [57,83–85]. While traditional free energy estimation
methods rely on simulations of systems in thermal equi-
librium, equations (3), (6), and (33) reveal that the same
information can be obtained from simulations of a system
driven away from equilibrium. For instance, reference [86]
describes the use of nonequilibrium steered molecular dy-
namics simulations to reconstruct the free energy land-
scape experienced by an ammonium molecule as it makes
its way through a barrel-like protein involved in the
regulation of histidine biosynthesis. As with most numer-
ical free energy estimation methods, these techniques suf-
fer from poor convergence, ultimately related to the diffi-
culty of efficiently sampling the relevant regions of phase
space; see for instance references [67,87–97] (and refer-
ences therein) for discussions of these issues and strate-
gies for addressing poor convergence. I will not attempt a
comprehensive summary of this currently active area of re-
search. The interested reader can find useful introductions
to nonequilibrium-based free energy estimations methods
in references [85,98].

9 Summary

In this contribution I have attempted to provide a brief in-
troduction to nonequilibrium work relations, a set of theo-
retical predictions describing statistical fluctuations in the
work performed when driving a system away from equi-
librium. The central message here is that these work fluc-
tuations satisfy rather strict laws that we would not rea-
sonably have guessed, simply by extrapolating down from
macroscopic experience. These laws are closely related to
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the microscopic description of irreversibility. Indeed, in the
context considered here they effectively represent what the
second law of thermodynamics “looks like”, to a micro-
scopic system. Furthermore, they are potentially useful,
as they reveal how to extract information about equilib-
rium properties of a system (e.g. free energy differences)
by observing its out-of-equilibrium behavior.

I am grateful for financial support provided by the University
of Maryland.
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