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The whys and wherefores of stochasticity

A system evolves stochastically if its dynamics is partly generated by a force of random
strength or by a force at random times or by both. For stochastic systems, it is not
possible to exactly determine the state of the system at later times given its state
at the current time. Instead, to describe a stochastic system, we use the probability
that the system is in a certain state and can predict exactly how this probability
changes with time. Nevertheless, such a calculation is often difficult, and we usually
focus on finding the moments of the probability distribution, such as the mean and
variance. These two quantities are commonly measured experimentally. The level of
stochasticity in a system is often referred to as its ‘noise’.

Any chemical reaction is stochastic. Reactants come together by diffusion, their
motion driven by rapid and frequent collisions with other molecules. Once together,
these same collisions alter the internal energies of the reactants, and so their propen-
sity to react. Both effects cause individual reaction events to occur randomly and
drive the overall reaction stochastic. Is stochasticity important in biology? Intu-
itively, stochasticity is only significant when mean numbers of molecules are low.
Then, individual reactions, which at most change the numbers of molecules by one
or two, matter. Low numbers are frequent in vivo: gene copy number is typically one
or two, and transcription factors often number in the tens, at least in bacteria [1, 2].

Unambiguously measuring stochastic gene expression, however, can be challenging
[2]. Naively, we could place Green Fluorescent Protein (GFP) on a bacterial chro-
mosome downstream of a promoter that is activated by the system of interest. By
measuring the variation in fluorescence across a population of cells, we could measure
the noise in the system. Every biochemical reaction, however, is potentially stochas-
tic. Fluorescence variation could be because of noise in the process under study or
could result from the general background ‘hum’ of stochasticity: stochastic effects in
ribosome synthesis could lead to different numbers of ribosomes and so to differences
in gene expression in each cell; stochastic effects in the cell cycle machinery may
desynchronize the population; stochastic effects in signaling networks could cause
each cell to respond uniquely, and so on.

Variation has then two classes: intrinsic stochasticity — stochasticity inherent
in the dynamics of the system and that arises from fluctuations in the reactions
occurring in the system — and extrinsic stochasticity — stochasticity originating
from fluctuations in other cellular processes that interact with the system under study
[3, 4]. To determine whether variation is intrinsic or extrinsic, it helps to visualize
an identical second copy of the system, present in the same cell and exposed to the
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same intracellular environment. For example, take a simple system like constitutive
gene expression. Imagine another identical copy of the gene in each cell. Variation
in the number of free ribosomes will equally affect both system copies: expression
from both genes will fall if the number of free ribosomes falls and will rise if the
number of free ribosomes rises — an extrinsic variation. Variation in the number of
actively translating ribosomes, however, is intrinsic. It can be varied independently for
each gene system. The same technique works experimentally [4]: two distinguishable
alleles of GFP are placed downstream of identical promoters. The intrinsic noise is
given by the variation in the difference in concentration of the two alleles, the total
noise is determined from the variation in either one of the alleles, and then a simple
relationship between these measurements gives extrinsic noise [3]. Stochasticity in
gene expression has thus been quantified in both bacteria [4] and yeast [5].

A stochastic description of chemical reactions

For any system of chemical reactions, the ultimate level of description is the chemical
master equation. This equation governs how the probability of the system being in
any particular state changes with time. A system state is defined by the number of
molecules present for each chemical species, and will change every time a reaction
occurs. The master equation contains within it the deterministic approximation (a
set of coupled differential equations) that is often used to describe system dynamics.
The mean of each chemical species can be shown to obey more and more accurately
these deterministic equations as the numbers of molecules of all species increase. The
master equation itself is usually only solvable analytically for linear systems, i.e.,
systems having only first-order chemical reactions.

Nevertheless, several approximations exist, all of which exploit the tendency of
fluctuations to decrease as the numbers of molecules increase. The most systematic
(and complex) is the linear noise approach of van Kampen [6]. If the concentration
of each chemical species is fixed, then changing the system size (system volume), Ω,
alters the number of molecules of every chemical species. The linear noise approxi-
mation is based on a systematic expansion of the master equation in Ω−1. It leads to
diffusion-like equations that accurately describe small fluctuations around any stable
attractor of the system. For systems that tend only to steady-state, a Langevin ap-
proach is also often used [7, 8, 9]. Here additive, white noise terms are included in the
deterministic equations, with the magnitude of these noise terms being determined
by steady-state properties of the chemical reactions. At steady-state, the Langevin
and linear noise approaches are equivalent.

Unfortunately, all these methods become intractable, in general, once the number
of chemical species in the system reaches more than three (we then need to analytically
calculate the inverse of a 4 × 4 matrix or its eigenvalues). Rather than numerically
solve the master equation, the Gillespie algorithm [10], a Monte Carlo method, is
often used to simulate one sample time course from the master equation. By doing
many simulations and averaging, the mean and variance for each chemical species can
be calculated as a function of time.

Here we will introduce the master equation, Langevin theory, and the Gillespie
algorithm.
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The master equation

Once molecules start to react, the intrinsic stochasticity destroys any certainty we
had of the numbers and types of molecules present. We must adopt a probabilistic
description. For example, the reactions of Fig. 1 can be described by

P(nA molecules of A, nB molecules of B, and nC molecules of C at time t)

and how this probability evolves with time. Each reaction rate is interpreted as the
probability per unit time of the appropriate individual reaction.

d

A B C
f

φ
Figure 1: A simple chemical system: A and B bind irreversibly to form complex C
with probability f per unit time and individual C molecules degrade with probability
d per unit time.

We will write PnA,nB ,nC
(t) for the probability that the system is in the state of nA

molecules of A, nB molecules of B, and nC molecules of C at time t. Consider a time
interval δt small enough so that at most only one reaction can occur. If the system at
time t + δt has nA, nB, and nC molecules of A, B, and C, then if reaction f occurred
during the interval δt, the system must have been in the state nA + 1, nB + 1, and
nC − 1 at time t. The probability of this reaction is

P(f reaction) = f(nA + 1)(nB + 1)δt. (1)

Alternatively, reaction d could have occurred during δt and so the system then must
have been in the state nA, nB, and nC + 1 at time t. Its probability is

P(d reaction) = d(nC + 1)δt. (2)

Finally, no reaction may have occurred at all, and so the system would be unchanged
at t (in the state nA, nB, and nC):

P(no reaction) = 1 − fnAnBδt − dnCδt. (3)

Thus we can write

PnA,nB ,nC
(t + δt) =

PnA+1,nB+1,nC−1(t)(nA + 1)(nB + 1)fδt + PnA,nB ,nC+1(t)(nC + 1)dδt

+PnA,nB ,nC
(t)
[

1 − nAnBfδt − nCdδt
]

(4)

Dividing (4) through by δt and taking the limit δt → 0 gives

∂

∂t
PnA,nB ,nC

= f
[

(nA + 1)(nB + 1)PnA+1,nB+1,nC−1 − nAnBPnA,nB ,nC

]

−d
[

nCPnA,nB ,nC
− (nC + 1)PnA,nB ,nC+1

]

(5)



PS Swain, Boulder 07 4

Eq. (5) is called a master equation (presumably because all the moments of the
distribution can be derived from it) and describes how the probability of the system
being in any state changes with time.

Recovering the deterministic equations

Solving the master equation is possible for linear systems, i.e. those with only first-
order chemical reactions, but often only at steady-state. The standard methods of
solution are given in [6] and [11]. We will use (5) to derive the equation of motion for
the mean of C. The mean of C is defined as

〈C(t)〉 =
∑

nA,nB ,nC

nCPnA,nB ,nC
(t) (6)

and is only a function of time.
Multiplying (5) by nC and summing over nA, nB, and nC gives

∂

∂t
〈C〉 = f

∑

(nC − 1 + 1)(nA + 1)(nB + 1)PnA+1,nB+1,nC−1

−f
∑

nAnBnCPnA,nB ,nC
− d

∑

n2
CPnA,nB ,nC

+d
∑

(nC + 1 − 1)(nC + 1)PnA,nB ,nC+1 (7)

where the terms in round brackets have been factored to follow the subscripts of P .
Therefore, by using results such as

〈ABC〉 =
∞
∑

nA,nB ,nC=0

nAnBnCPnA,nB ,nC

=
∞
∑

nA,nB ,nC=0

(nA + 1)(nB + 1)(nC − 1)PnA+1,nB+1,nC−1 (8)

as PnA,nB ,nC
(t) is zero if any of nA, nB, or nC are negative (negative numbers of

molecules can not exist), we have

∂

∂t
〈C〉 = f

[

〈ABC〉 + 〈AB〉
]

− f〈ABC〉 − d〈C2〉 + d
[

〈C2〉 − 〈C〉
]

= f〈AB〉 − d〈C〉 (9)

Applying the law of mass action to Fig. 1, the concentration of C, [C], obeys

d

dt
[C] = f̃ [A][B] − d̃[C] (10)

where f̃ and d̃ are the macroscopic (deterministic) rate constants. The macroscopic
concentration is related to the mean number of molecules by

[C] =
〈C〉
V

(11)

and so the deterministic equations are equations for the rate of change of the means
of the different chemical species: using (11), (10) becomes

d

dt
〈C〉 =

f̃

V
〈A〉〈B〉 − d̃〈C〉. (12)
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The deterministic equation, (12), should be compared with the microscopic equa-
tion for the mean derived from the master equation, (9). A relationship exists between
the stochastic probabilities of reaction per unit time to the deterministic reaction rate
constants:

f̃ =
V 〈AB〉
〈A〉〈B〉 · f second-order reaction

d̃ = d first-order reaction (13)

For first-order reactions both the rate constant and the probability are the same. The
macroscopic rate f̃ can only have been accurately measured under conditions where
the deterministic approximation holds. Then

〈AB〉 ' 〈A〉〈B〉 (14)

and so
f̃ ' fV (15)

Eq. (15) is almost always used to relate the macroscopic rate and the probability of
reaction for second-order reactions.

Eqs. (13) and (15) provide the inter-conversion between reaction rate constants
and reaction probabilities.

An exception: homo-dimerization reactions

2A
f

A A

Figure 2: The formation of a homo-dimer. Two A monomers combine to form an A
dimer.

A homo-dimerization reaction is illustrated in Fig. 2. Two like-molecules bind
to each other to form a dimer. This reaction is very common among transcription
factors. The master equation is now

∂PnA

∂t
= f

[(

nA + 2
2

)

PnA+2 −
(

nA

2

)

PnA

]

(16)

where each coefficient is the number of ways of forming a dimer. Eq. (13) becomes

2
f̃

V
〈A〉2 = f〈A(A − 1)〉. (17)

Nevertheless, consistency of the deterministic approximation implies

〈A(A − 1)〉 ' 〈A〉2 (18)

and so to

f̃ ' fV

2
(19)

which is the inter-conversion formula for dimerization reactions.
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Converting a macroscopic kinetic rate for Escherichia coli

For example, a diffusion-limited reaction is expected to have

f̃ = 109 M−1 s−1

for concentrations measured in molar units [12]. The volume of a typical E. coli

bacterium is approximately 2 × 10−15 litres [4]. Using NAvo as the Avogado number,
(15) implies

f =
f̃

V

=
109

NAvoV

=
109

6 × 1023 × 2 × 10−15

' 1 (20)

i.e. a rate of 109 M−1 s−1 corresponds to a probability per second of almost one for
a single reaction (a useful relationship to remember). Similarly, 1 molecule can be
shown to have a concentration of around 1 nM.

The definition of noise

Noise is typically defined as the coefficient of variation: the ratio of the standard
deviation of a distribution to its mean. We will denote noise by η:

η =

√

〈N2〉 − 〈N〉2
〈N〉 (21)

for the random variable N . The noise, η, is dimensionless and measures the magnitude
of a typical fluctuation as a fraction of the mean.

Example: Poisson (‘birth-and-death’) processes

A very simple model of gene expression can be obtained from the reaction scheme of
Fig. 1 by letting nA and nB become constant. For example, nA could be the number of
molecules of DNA and nB could be the number of molecules of RNA polymerase. By
defining k = fnAnB, Fig. 1 collapses to the scheme of Fig. 3. Protein C is produced
on average every 1/k seconds and degrades (‘dies’) every 1/d seconds.

φC
k d

Figure 3: A simple model of gene expression.

The master equation for Fig. 3 is a simplified version of (5):

∂

∂t
Pn = k

[

Pn−1 − Pn

]

− d
[

nPn − (n + 1)Pn+1

]

(22)
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with Pn(t) the probability of having n molecules of protein C at time t. Although we
will not solve (22) explicitly, the steady-state solution can be found using moment
generating functions [6] and is

Pn = e−k/d (k/d)n

n!
(23)

which is a Poisson distribution. The first two moments are

〈n〉 = k/d

〈n2〉 − 〈n〉2 = k/d = 〈n〉 (24)

which implies that noise is

η = 1/
√

〈n〉. (25)

Eq. (25) demonstrates a general ‘rule-of-thumb’: noise (stochastic effects) gener-
ally become more significant as the number of molecules in the system decrease (Fig.
4).
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Figure 4: Three simulation runs of two simple (birth-and-death) models of gene ex-
pression. Each model involves the reactions of Fig. 3, but has different rate constants
leading to different mean protein levels.

Langevin theory: an improved model of gene ex-

pression

The scheme of Fig. 3 lumps the processes of transcription and translation into one
first-order reaction k. These two processes should be individually modelled. Fig. 5
makes this distinction, but is still simple enough to be exactly soluble [13]. Both
mRNA, M , and protein, N , are now present and each has their own half-life (set by
the inverse of their degradation rates).
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M

φ φ

v0 v1

dd0 1

+ MN

Figure 5: A model of gene expression that explicitly includes transcription (rate v0)
and translation (rate v1) as first-order processes. mRNA is denoted by M and protein
by N .

The Langevin solution

Langevin theory gives an approximation to the solution of the master equation. It is
strictly only valid near steady-state and when numbers of molecules are large. Noise
terms are explicitly added to the deterministic equations of the system. For the model
of Fig. 5, the deterministic equations are

dM

dt
= v0 − d0M

dN

dt
= v1M − d1N (26)

A Langevin model adds a stochastic variable, ξ(t), to each

dM

dt
= v0 − d0M + ξ1(t)

dN

dt
= v1M − d1N + ξ2(t) (27)

and is only fully specified when the probability distributions for the ξi are given.
The ξi must be specified so that they mimic thermal fluctuations and so successfully
model intrinsic noise. The solution of the Langevin equation should then be a good
approximation to that of the Master equation (and an exact solution in some limit).

To define ξ, we must give its mean and variance as functions of time and its
autocorrelation.

Understanding noise: autocorrelations

The autocorrelation time of a stochastic variable describes the average life-time of
a typical fluctuation, as well as the average time separating such fluctuations. We
will denote it by τ . Fig. 6 shows typical behaviour of a stochastic variable obeying
a Poisson distribution. Time has been rescaled by the autocorrelation time. On
average, the number of molecules changes significantly only over a time τ (1 in these
units).

The autocorrelation time is found from the autocorrelation function. For a stochas-
tic variable N , the autocorrelation function is

CN(t1, t2) =
〈[

N(t1) − 〈N(t1)〉
][

N(t2) − 〈N(t2)〉
]〉

=
〈{

N(t1)N(t2) − 〈N(t1)〉N(t2) − N(t1)〈N(t2)〉 + 〈N(t1)〉〈N(t2)〉
}〉

= 〈N(t1)N(t2)〉 − 〈N(t1)〉〈N(t2)〉. (28)
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Figure 6: A time-series of the Poisson process of Fig. 3. Time has been rescaled
by the autocorrelation time. The deviation from the mean, n − 〈n〉, in numbers of
molecules is plotted on the y-axis.

It quantifies how a deviation of N away from its mean at time t2 is correlated with the
deviation from the mean at a later time t1. It is determined by the typical life-time
of a fluctuation. When t1 = t2, (28) is just the variance of N(t).

Stationary processes are processes that are invariant under time translations and
so are statistically identical at all time points. For a stationary process, such as the
steady-state behaviour of a chemical system, the autocorrelation function obeys

CN(t1, t2) = CN(t1 − t2). (29)

It is a function of one variable: the time difference between the two time points
considered. Fig. 7 shows the steady-state autocorrelation function for the Poisson
model of gene expression. It is normalized by the variance and is fit well by an
exponential decay: e−t/τ . A typical fluctuation only persists for the timescale τ as
enough new reaction events occur during τ to significantly change the dynamics and
remove any memory the system may have had of earlier behaviour.

For simple, linear systems, the time-scale associated with degradation sets the
steady-state autocorrelation time. Degradation provides the restoring force that keeps
the number of proteins fluctuating around their mean steady-state value. The prob-
ability of degradation in time δt, d × n × δt, changes as the number of proteins n
changes. It increases as the number of proteins rises above the mean value, increas-
ing the probability of degradation and of return to mean levels; it decreases as the
number of proteins falls below mean levels, decreasing the probability of degradation
and increasing again the probability of returning to mean values. For a linear system
with multiple time-scales, the autocorrelation function is a sum of terms, each expo-
nentially decreasing with t1 − t2 at a time-scale set by the inverse of a degradation
rate.
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Figure 7: Auto-correlation function for the Poisson process of Fig. 3. The dotted line
is an exponential fit using an autocorrelation time of 1/d ' 4.2 minutes.

White noise

In Langevin theory, a stochastic variable, ξ, is added to each deterministic equation.
This variable describes thermal fluctuations: those fluctuations that arise from colli-
sions of the molecule of interest with the molecules of the surrounding gas or solvent.
Such collisions can act to either increase or decrease the probability of reaction. A

priori, there is no reason why thermal fluctuations would favour one effect over the
other and so ξ(t) is defined to have a mean of zero:

〈ξ(t)〉 = 0. (30)

The time-scale associated with a collision with a solvent molecule is assumed to be
much shorter than the time-scale of a typical reaction. The changes in internal energy
and position of the molecule of interest because of collisions with solvent molecules are
therefore uncorrelated at the reaction time-scale. Mathematically, the autocorrelation
time, τ , of the autocorrelation function

Cξ(t1 − t2) = 〈ξ(t1)ξ(t2)〉 (31)

is taken to zero. If Γ is the variance of ξ at time t, the auto-correlation function is

Cξ(t1 − t2) = Γe−(t1−t2)/τ (32)

which becomes

〈ξ(t1)ξ(t2)〉 =

{

0 for t1 6= t2
Γ for t1 = t2

(33)

in the limit of τ → 0. Hence

〈ξ(t1)ξ(t2)〉 = Γδ(t1 − t2) (34)
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where δ(t) is the Dirac delta function. A stochastic variable that obeys (30) and
(34) is referred to as ‘white’ noise. It is completely uncorrelated and has zero mean.
Stochastic variables with zero mean and a finite auto-correlation time are considered
‘coloured’. The parameter Γ is the noise strength and needs to be carefully specified
(see [6] for a discussion of how Einstein famously chose Γ to appropriately model
Brownian motion).

Langevin theory for stochastic gene expression

We now return to modelling the gene expression of Fig. 5. Eq. (27) is shown again
below

dM

dt
= v0 − d0M + ξ1(t)

dN

dt
= v1M − d1N + ξ2(t) (35)

and is the deterministic equations of Fig. 5 with additive, white noise terms.
Although we expect ξ1 and ξ2 to have zero mean and zero autocorrelation times,

we can show that this assumptions are true explicitly by first considering the steady-
state solution of (35) in the absence of the stochastic variables ξi:

Ms =
v0

d0
; Ns =

v1

d1
Ms (36)

If we assume that the system is at or very close to steady-state, and consider a time
interval δt small enough such that at most only one reaction can occur, then ξ1 and
ξ2 can only have the values

ξiδt =











+1
0
−1

(37)

where i = 1 or 2, as the number of N or M molecules can only increase or decrease
by one or remain unchanged in time δt.

Define
P (i, j) = P(ξ1δt = i, ξ2δt = j)

i.e. the probability that the number of mRNAs changes by an amount i and that
the number of proteins changes by an amount j. Then the reaction scheme of Fig. 5
implies

P (+1, 0) = v0δt

P (+1,−1) = 0

P (+1, +1) = 0

P (−1, 0) = d0Msδt

P (−1, +1) = 0

P (−1,−1) = 0
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P (0, +1) = v1Msδt

P (0, 0) = 1 − v0δt − v1Msδt − d0Msδt − d1Nsδt

P (0,−1) = d1Nsδt (38)

at steady-state.
We can use these probabilities to calculate the moments of the ξi. First,

〈ξ1δt〉 = (+1) × v0δt + (−1) × d0Msδt + (0) × (1 − v0δt − d0Msδt)

= (v0 − d0Ms)δt

= 0 (39)

and

〈ξ2δt〉 = (+1) × v1Msδt + (−1) × d1Nsδt

= (v1Ms − d1Ns)δt

= 0 (40)

using (36). The means are both zero, as expected, and the ξi act to keep the system
at steady-state (as they should).

For the mean square, we have

〈ξ2
1δt

2〉 = (+1)2 × v0δt + (−1)2 × d0Msδt

= (v0 + d0Ms)δt

= 2d0Msδt (41)

and, similarly,

〈ξ2
2δt

2〉 = 2d1Nsδt

〈ξ1ξ2〉 = 0 (42)

If the system is close to steady-state and the steady-state values of Ms and Ns are
large enough such that

|M − Ms| � Ms ; |N − Ns| � Ns (43)

hold, then we can assume that (38) is valid for all times. Consequently, ξ1 at time
t1, say, is completely uncorrelated with ξ1 at time t2, where |t2 − t1| > δt (just
as the throws of a die, whose outcomes are also given by fixed probabilities, are
uncorrelated). Thus, we define as white noise terms

〈ξ1(t1)ξ1(t2)〉 = 2d0Msδ(t1 − t2)

〈ξ2(t1)ξ2(t2)〉 = 2d1Nsδ(t1 − t2)

〈ξ1(t1)ξ2(t2)〉 = 0 (44)

with the noise strengths coming from (41) and (42).
This definition of ξ1 and ξ2 implies that the steady-state solution of (35) will have

the true mean and variance of N and M obtained from the master equation, providing
(43) is obeyed.
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A further simplification

Although it is possible to directly solve the two coupled differential equations of (35),
we can also take advantage of the different time-scales associated with mRNA and
protein. Typically, mRNA life-time is of order minutes while protein life-time is of
order hours. Fig. 8 shows a simulated time series of protein and mRNA. The much
longer autocorrelation time of protein (1/d1) compared to mRNA (1/d0) is clearly
visible.
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Figure 8: Protein and mRNA numbers from a simulation of the scheme of Fig. 5.
Protein half-life is approximately 1 hour while that of mRNA is only 3 minutes.

Many mRNA fluctuations occur during one protein fluctuation, and so the mean
level of mRNA quickly reaches steady-state as protein fluctuates. Therefore, we can
set

dM

dt
' 0 (45)

which implies that

M =
v0

d0

+
ξ1

d0

= Ms +
ξ1

d0

(46)

Consequently, the equation for protein, (35), becomes

dN

dt
= v1Ms − d1N +

v1

d0
ξ1 + ξ2 (47)
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and so is a function of the two stochastic variables ξ1 and ξ2. To simplify (47), we
define a new stochastic variable

Ψ =
v1

d0
ξ1 + ξ2 (48)

which has mean
〈Ψ〉 =

v1

d0
〈ξ1〉 + 〈ξ2〉 = 0 (49)

from (39) and (40), and mean square

〈Ψ(t1)Ψ(t2)〉 =
(

v1

d0

)2

〈ξ1(t1)ξ1(t2)〉 + 2
(

v1

d0

)

〈ξ1(t1)ξ2(t2)〉

+〈ξ2(t1)ξ2(t2)〉 (50)

From Eqs. (44), this result simplifies

〈Ψ(t1)Ψ(t2)〉 =
(

v1

d0

)2

2d0Msδ(t1 − t2) + 2d1Nsδ(t1 − t2)

= 2

[

v2
1

d0
Ms + d1Ns

]

δ(t1 − t2)

= 2d1

[

v1

d1

Ms
v1

d0

+ Ns

]

δ(t1 − t2)

= 2d1Ns

[

1 +
v1

d0

]

δ(t1 − t2) (51)

and so we need only consider one equation:

dN

dt
= v1Ms − d1N + Ψ(t) (52)

The effects of the mRNA fluctuations have been absorbed into the protein noise term
and its magnitude has increased — compare (51) and (44).

Solving the model

Eq. (52) can be written as

d

dt

(

Ned1t
)

= v1Mse
d1t + Ψed1t (53)

and so integrated

N(t)ed1t − Ns =
v1Ms

d1

(

ed1t − 1
)

+
∫ t

0
Ψ(t′)ed1t′dt′ (54)

where we have assumed that N = Ns when t = 0. Thus

N(t) = Ns + e−d1t
∫ t

0
Ψ(t′)ed1t′dt′ (55)
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Using the properties of Ψ(t), (49) and (51), as well as (55), the mean protein
number satisfies

〈N(t)〉 = Ns + e−d1t
∫ t

0
〈Ψ(t′)〉ed1t′dt′

= Ns (56)

and so the steady-state is stable to fluctuations (as expected).
We can also use (55) to find the autocorrelation function of the protein number:

〈N(t1)N(t2)〉

=
〈[

Ns + e−d1t1

∫ t1

0
Ψ(t′)ed1t′dt′

]

×
[

Ns + e−d1t2

∫ t2

0
Ψ(t′′)ed1t′′dt′′

]〉

= N2
s + e−d1(t1+t2)

∫ t1

0
ed1t′dt′

∫ t2

0
ed1t′′dt′′〈Ψ(t′)Ψ(t′′)〉 (57)

as 〈Ψ〉 = 0. From (51), we then have

〈N(t1)N(t2)〉−N2
s = 2d1Ns

(

1 +
v1

d0

)

e−d1(t1+t2)
∫ t1

0
dt′
∫ t2

0
dt′′ed1(t′+t′′)δ(t′ − t′′) (58)

To evaluate the double integral, we need to determine when t′ is equal to t′′. If
t1 ≥ t2, then the integral can be decomposed into

∫ t1

0
dt′
∫ t2

0
dt′′ =

(
∫ t1

t2
dt′ +

∫ t2

0
dt′
)
∫ t2

0
dt′′

=
∫ t1

t2
dt′
∫ t2

0
dt′′ +

∫ t2

0
dt′
∫ t2

0
dt′′ (59)

where we now explicitly see that t′ > t′′ for the first term (and there will be no
contribution from the delta function) and t′ can equal t′′ for the second term (and
there will be a contribution from the delta function). Therefore,

∫ t1

0
dt′
∫ t2

0
dt′′ed1(t′+t′′)δ(t′ − t′′)

=
∫ t1

t2
dt′
∫ t2

0
dt′′ed1(t′+t′′)δ(t′ − t′′) +

∫ t2

0
dt′
∫ t2

0
dt′′ed1(t′+t′′)δ(t′ − t′′)

=
∫ t2

0
e2d1t′dt′

=
1

2d1

(

e2d1t2 − 1
)

(60)

as the first integral evaluates to zero.
Consequently, (58) becomes

〈N(t1)N(t2)〉 − N2
s = 2d1Ns

(

1 +
v1

d0

)

e−d1(t1+t2) 1

2d1

(

e2d1t2 − 1
)

= Ns

(

1 +
v1

d0

)

(

e−d1(t1−t2) − e−d1(t1+t2)
)

(61)

and we finally have

〈N(t1)N(t2)〉 − 〈N(t1)〉〈N(t2)〉 = Ns

(

1 +
v1

d0

)

(

e−d1(t1−t2) − e−d1(t1+t2)
)

(62)
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as 〈N(t)〉 = Ns.
Eq. (62) is the autocorrelation function for protein number and becomes

CN = Ns

(

1 +
v1

d0

)

e−d1(t1−t2) (63)

after long times t1 > t2 � 1. The protein autocorrelation time is 1/d1.
Eq. (52) has the same structure as the equation for mRNA

dM

dt
= v0 − d0M + ξ1(t) (64)

i.e. a constant rate of production and first-order degradation. The solution of (64) will
therefore be of the same form as (63), but with d1 replaced by d0 and the magnitude
of the noise term coming from (44) rather than (51). This substitution gives

CM = Mse
−d0(t1−t2) (65)

so that the autocorrelation time of the mRNA is 1/d0.
When t1 = t2, the autocorrelation becomes the variance. We calculate the noise

in mRNA levels as

η2
M =

〈M(t)2〉 − 〈M(t)〉2
〈M(t)〉2

=
Ms

M2
s

=
1

〈M〉 (66)

Eqs. (65) and (66) are the solutions to any simple birth-and-death model and corre-
spond to the expressions given in (24) and (25).

The protein noise is a little more complicated. It satisfies

η2
N =

1

Ns
+

v1

d0

1

Ns

=
1

Ns

+
d1

d0

1

Ms

=
1

〈N〉 +
d1

d0

1

〈M〉 (67)

which should be compared with (25) for the simple model of Fig. 3. The mRNA acts
as a fluctuating source of proteins and increases the noise above the Poisson value.
Eq. (67) can be described as

(protein noise)2 = (Poisson noise)2 +
mRNA lifetime

protein lifetime
× (mRNA noise)2 (68)

The Poisson noise is augmented by a time average of the mRNA noise. As the
protein life-time increases compared to the mRNA life-time, each protein averages
over more mRNA fluctuations and the overall protein noise decreases. Ultimately, ηN

approaches the Poisson result as d1/d0 → 0.
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Typical numbers for constitutive expression

Some typical numbers for constitutive (unregulated) expression in E. coli are

d1 = 1/hour ; d0 = 1/3 minutes

〈N〉 = 103 ; 〈M〉 = 5 (69)

and so (67) becomes

η2
N = 1/1000 + 3/60 × 1/5

= 0.001 + 0.01 (70)

The mRNA term determines the overall magnitude of the noise.
Using (36), Eq. (67) can be re-written as

η2
N =

d1

v1Ms
+

d1

d0
· 1

Ms
(71)

Only the first term contains the translation rate v1. Therefore, transcription domi-
nates translation, and determines protein noise, if

d1

d0

· 1

Ms

� d1

v1Ms

(72)

which simplifies to
v1 � d0. (73)

Ribosomes are believed to translate at a rate of around 40 nt s−1 [14]. For a 1000 nt
protein, v1 satisfies

1

v1

=
1000 nt

40 nt s−1
(74)

and so v1 ' 0.04 s−1. Eq. (73) then becomes

0.04 � 1

3 × 60
' 0.006 (75)

which certainly holds. Transcription, rather than translation, is often the likely source
of gene expression noise [3, 15]. More recently, it has been shown that including
transitions in the state of the DNA between forms capable and incapable of initiating
transcription better fits experimental data [5, 16]. Physically, this additional process
may correspond to re-modelling of the secondary structure of chromosomes.

Simulating stochastic biochemical reactions

The Gillespie algorithm [10] is most commonly used to stochastically simulate bio-
chemical systems. The equivalent of two dice are rolled on the computer: one to
choose which reaction will occur next and the other to choose when that reaction
will occur. Assume that we have a system in which n different reactions are possible,
then the probability that starting from time t a reaction only occurs between t + τ
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and t + τ + δτ must be calculated for each reaction. Let this probability be Pi(τ)δτ
for reaction i, say.

For example, if reaction i corresponds to the second-order reaction of Fig. 1, then

P(reaction i in time δτ ) = nAnBfδτ

= aiδτ (76)

where ai is referred to as the propensity of reaction i. Therefore,

Pi(τ)δτ = P(no reaction for time τ)

×P(reaction i happens in time δτ)

≡ P0(τ)aiδτ (77)

with P0(τ) the probability that no reaction occurs during the interval τ . This prob-
ability satisfies

P0(τ + δτ) = P0(τ)
[

1 −
n
∑

j=1

ajδτ
]

(78)

which implies
dP0

dτ
= −P0

n
∑

j=1

aj (79)

and so
P0(τ) = exp

(

−τ
∑

aj

)

. (80)

Thus we have
Pi(τ) = aie

−τ
∑

aj (81)

from (80).
To choose which reaction to simulate, an n-sided die is rolled with each side

corresponding to a reaction and weighted by the reaction’s propensity. A second die
is then used to determine the time when the reaction occurs by sampling from (80).
All the chemical species and the time variable are updated to reflect the occurrence
of the reaction, and the process is then repeated. See [10] for more details.

Appendix 1: Dirac delta function

The Dirac delta function can be considered the limit of a zero mean normal distribu-
tion as its standard deviation tends to zero:

δ(x) = lim
n→∞

n√
π

e−n2x2

(A1)

This limit gives a function whose integral over all x is one, but that becomes increas-
ingly more and more spiked at zero (Fig. 9). Ultimately

δ(x) = 0 for all x 6= 0 (A2)

and is not strictly defined at x = 0, but does retain the property
∫

∞

−∞

δ(x)dx = 1. (A3)
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Figure 9: The Dirac delta function is the ‘spike’ limit of a normal distribution as its
standard deviation tends to zero.

These two characteristics imply that the integral of a product of a delta function
and another function, f(x), will only give a non-zero result at x = 0. The delta
function effectively selects the value f(0) from the integral:

∫

∞

−∞

f(x)δ(x)dx = f(0) (A4)

More generally,
∫

∞

−∞

f(x)δ(x − y)dx = f(y). (A5)

Appendix 2: Sampling from a probability distribution

Often we wish to sample from a particular probability distribution, P (x), say. The
cumulative distribution of P (x) is

F (x) =
∫ x

xmin

P (x′)dx′ (A6)

and

P(x ≤ x0) =
∫ x0

xmin

P (x′)dx′

= F (x0) (A7)

A sketch of the typical behaviour of F (x) is shown in Fig. 10. If x ≤ x0, then
F (x) ≤ F (x0) because F (x) is a monotonic function (by definition).
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xmax
xmin

1

0

Figure 10: A typical plot of cumulative frequency versus x.

To sample from P (x), first let y be a uniform random number with 0 ≤ y ≤ 1
(easily obtained on a computer), then

P(y ≤ y0) =
∫ y0

0
dy′ = y0 (A8)

for some 0 ≤ y0 ≤ 1. Define
x = F−1(y) (A9)

where F (x) is the cumulative frequency of P (x). Consequently,

P(x ≤ x0) = P(F−1(y) ≤ x0)

= P(F.F−1(y) ≤ F (x0)) (A10)

given that F (x) is monotonic. As F.F−1(y) = y, we have

P(x ≤ x0) = P(y ≤ F (x0))

= F (x0) (A11)

as y is a sample between 0 and 1 from the uniform distribution: see (A8). Thus the
x of (A9) obeys (A7) and so is a sample from P (x).

If we can calculate the inverse function of the cumulative frequency of a dis-
tribution P (x), then applying this inverse function to a sample from the uniform
distribution gives a sample from P (x).
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