LECTURE II: BIFURCATION READOUT FOR SUPERCONDUCTING QUBITS

IRFAN SIDDIQI

Department of Applied Physics Yale University

Daniel Prober Robert Schoelkopf Steve Girvin 7-28-2005

Boulder Summer School

R. Vijay M. Metcalfe E. Boaknin L. Frunzio C. Rigetti M.H. Devoret

W. M. KECK FOUNDATION

OUTLINE

Lecture I: Metastable States of the Josephson Junction

- Josephson junction dynamics
- Non-linear Josephson inductance
- DC / RF current biased junction
 - metastable states
 - escape dynamics
- Bifurcation amplification

Lecture II: Bifurcation Readout for Superconducting Qubits

- Quantum information and superconducting qubits
- Quantronium qubit
 - DC switching readout
 - RF bifurcation readout
- Coherence measurements
- Information flow
- Stark shift spectroscopy and relaxation

QUANTUM INFORMATION

REGISTER WITH N BITS

THE POWER OF SUPERPOSITION

2^N POSSIBLE CONFIGURATIONS

- classically, can write only one number
- "quantally", can write all numbers!
- "entangled" wavefunction

MIRACLE or **MIRAGE**?

- computation
- communication
- precision measurements

- entanglement of $> 10^5$ qubits ?
- can you apply it ?

 -solve quantum control problem
 -solve decoherence problem
 -solve scaling problem

SUPERCONDUCTING QUBITS

Chiorescu et al. (DELFT) **Science** 299 (5614): 1869, 2003.

Advantages

- engineered
- scalable
- electrical control
- strong coupling

Vion et al. (SACLAY) **Science** 296 (5569): 886, 2002.

Challenge: Decoherence

isolate noisy env't
→ use symmetry (Vion, loffe)

readout

THE READOUT PROBLEM FOR SQUBITS

Devoret & Schoelkopf (2000)

WANT:

- Readout ON: $T_1 / \tau_{meas} >> 1$
- Readout OFF: T₁, T₂ not reduced
- Short duty cycle
- No energy dissipated on chip

(sensitivity)

- (low back-action)
- (speed to fight drifts)
- (no spurious noise)

JOSEPHSON QUBITS & READOUT STRATEGY

Can't Use Qubit Symmetry

Box + SET (Chalmers/NEC) (charge/charge)

SQUID + SQUID (DELFT/MIT) (flux/flux)

Junction (NIST) (current/current)

Use Qubit Symmetry

Box + Cavity (Yale/Schoelkopf) (charge/oscillator phase)

linear

SQUID + Oscillator (DELFT) (flux/oscillator phase)

Box + Junction (Saclay) (charge/junction phase)

BOX + NON-LINEAR OSCILLATOR (YALE)

CHARGE QUBIT: COOPER PAIR BOX

$$\hat{H} = \hat{H}_{el} + \hat{H}_J$$

 $\hat{H}_{J} = \frac{E_{J}}{2} \sum_{n} \left(\left| n \right\rangle \left\langle n + 1 \right| \right) + h.c.$

SPLIT COOPER PAIR BOX

$$\hat{H} = \sum_{n} \left[E_{C}(n - N_{g})^{2} | n \rangle \langle n | - \frac{1}{2} E_{j} \cos\left(\frac{\pi \Phi}{\Phi_{0}}\right) (|n\rangle \langle n + 1| + |n + 1\rangle \langle n|) \right]$$

READOUT STRATEGIES

- work @ sweet spot
- readout @ sweet spot

NON-LINEAR INDUCTIVE READOUT: QUANTRONIUM

- measure inductance: 3rd junction
- Saclay: I = i_{dc} (t) Yale : I = i_{rf} (t)
- read/write ports orthogonal
 - \rightarrow noise protection
 - \rightarrow indep. frequencies

QUANTRONIUM with DC Switching Readout

• $I_{DC}=0 \rightarrow Readout off$

• 1/f charge & flux noise immunity

•
$$T_1 = 1.8 \ \mu S$$

 $T_2 = 500 \ ns$ ~10³ ops!
(D. Vion et al., Science 2002)

- Quasiparticles

 -slow reset (>10µs)
- Reduced Visibility

QUANTRONIUM with RF Bifurcation Readout

DISPERSIVE READOUT

- qubit state modifies oscillator frequency
- measure susceptibility, not loss
- cQED: high Q coplanar waveguide resonator
 → weak, continuous measurement
- Quantronium + JBA: anharmonic Josephson oscillator
 → strong, projective measurement

QUANTRONIUM + JBA CHIP

WRITE PORT

SPECTROSCOPIC FINGERPRINT

 $\Delta \omega/2\pi = -100 \text{MHz}$

RABI OSCILLATIONS

EXCITED STATE LIFETIME – T₁

• $T_1 >>$ readout time

PRINCIPLE OF RAMSEY EXPERIMENT (1)

PRINCIPLE OF RAMSEY EXPERIMENT (2)

SINGLE READOUT EFFICIENCY

Readout Pulse Amplitude A (nA)

OBSERVED CONTRAST = 61%

INFORMATION FLOW DURING MEASUREMENT

SINGLE READOUT EFFICIENCY

OBSERVED CONTRAST = 61%

= $(1-R_{ARM}) \times (1-R_{PROJECT}) \times (READOUT EFFICIENCY)$

PRE-MEASUREMENT RELAXATION & CONTRAST

- $R_{PROJECT} = 0 \%$
- R_{ARM} = R_{DISARM}
 (other measurements)
- no excitation of $|0\rangle$
- (1-R_{ARM}) × (1-R_{DISARM})= 66%

OBSERVED CONTRAST = 61%

R_{ARM} = 19% (SPURIOUS RESONANCES)

READOUT EFFICIENCY = 75%

POST-MEASUREMENT RELAXATION

PHASE PORT STARK SHIFT

FLUCTUATORS at $\omega < \omega_{01}$

CHARGE PORT STARK SHIFT

FLUCTUATORS at $\omega > \omega_{01}$

- Gate pulse raises ω₀₁
- When $\omega_{01} = \omega_{fluctuator} \rightarrow relaxation$

STARK COMPENSATION

SUMMARY

(4-20)

🗹 (4 MHz)

HIGH SPEED QUBIT READOUT:

- Readout ON: $T_1 / \tau_{meas} >> 1$
- Readout OFF: T_1 , T_2 not reduced
- Short duty cycle
- No energy dissipated on chip

COHERENCE MEASUREMENTS:

- $T_1 = 1-5 \ \mu s$
- T₂ = 300 ns

INFORMATION FLOW:

- Observed Contrast = 61% (Predict 75%)
- Characterize Pre/Post Measurement Relaxation
- Spectroscopy of Qubit Environment
- Stark Shift Compensation