LECTURE I: METASTABLE STATES OF THE JOSEPHSON JUNCTION

IRFAN SIDDIQI

Department of Applied Physics Yale University

Daniel Prober Robert Schoelkopf Steve Girvin 7-27-2005

Boulder Summer School

R. Vijay M. Metcalfe E. Boaknin L. Frunzio C. Rigetti M.H. Devoret

W. M. KECK FOUNDATION

OUTLINE

Lecture I: Metastable States of the Josephson Junction

- Josephson junction dynamics
- Non-linear Josephson inductance
- DC / RF current biased junction
 - metastable states
 - escape dynamics
- Bifurcation amplification

Lecture II: Bifurcation Readout for Superconducting Qubits

- Quantum information and superconducting qubits
- Quantronium qubit
 - DC switching readout
 - RF bifurcation readout
- Coherence measurements
- Information flow
- Stark shift spectroscopy and relaxation

GENERALIZED FLUX

JOSEPHSON TUNNEL JUNCTION

• Supercurrent with V=0

• I₀ is material dependent (nA-mA)

• Magnitude I₀ , v=2eV/h (483 MHz/ μ V)

• Fixed V, I oscillates

THE NON-LINEAR JOSEPHSON INDUCTOR

$$\mathbf{L} = \mathbf{L} = \mathbf{L}$$

$$\mathbf{L} = \frac{1}{L} \Phi(t)$$

$$\mathbf{L} = I_0 \sin[\Phi(t)/\varphi_0]$$

$$\mathbf{L} = \frac{I_0}{\varphi_0} \Phi(t) - \frac{I_0}{6} \left(\frac{\Phi(t)}{\varphi_0}\right)^3 + \dots$$

Josephson Inductance

$$L_{J} \equiv \frac{\varphi_{0}}{I_{0}} = \frac{\hbar R_{T}}{\pi \Delta_{BCS}} (BCS)$$

Gauge Invariant Phase Difference

$$\delta \equiv \frac{\Phi}{\varphi_0} \quad \Delta \varphi \sim \delta \mod 2\pi$$

THE EQUATION OF MOTION

 $U(\delta) = -\varphi_0 I_0 \cos \delta - \varphi_0 I(t) \delta$

DC CURRENT BIAS I: I-V Curve

- $V_{DC} = \varphi_0 \left< \delta \right>$
- $I_{DC} < I_0 : \langle \delta \rangle = 0 \longrightarrow$ superconducting $I_{DC} > I_0 : \langle \delta \rangle \neq 0 \longrightarrow$ dissipative

DC CURRENT BIAS II: Metastability & Switching

$$\Gamma_{0\to 1}(I_0, I_{DC}, T) = \frac{\omega_p}{2\pi} \exp\left(-\frac{\Delta U}{kT}\right)$$

 $\Delta U(I_0, I_{DC}) = \left[\frac{2\sqrt{2}}{3}\frac{\hbar}{e}I_0\right] \cdot \left(1 - \frac{I_{DC}}{I_0}\right)^{3/2}$ $u_0 \approx 50 \,\mathrm{K}$ \downarrow $1 \,\mathrm{\mu} \mathrm{A}$

 $(kT >> \hbar\omega)$

DC CURRENT BIAS III: Macroscopic Quantum Tunneling (MQT)

RF CURRENT BIAS I: SOFTENING POTENTIAL

$$I(t) = I_{RF} \sin(\omega t)$$
$$\delta(t) = \delta_{\max} \sin(\omega t + \gamma)$$
$$V(t) = \varphi_0 \dot{\delta}$$

- Frequency decreases w. drive amplitude
- For $\omega < \omega_p$, weak drive \rightarrow off resonance strong drive \rightarrow on resonance

RF CURRENT BIAS II: TWO DYNAMICAL STATES

• If
$$\Delta \omega > \frac{\omega_p}{Q} \frac{\sqrt{3}}{2}$$
, bistability

• Dynamical states differ in oscillation amplitude & phase

$$\varphi_0^2 C_J \frac{d^2 \delta}{dt^2} + \frac{\varphi_0^2}{R} \frac{d\delta}{dt} + \varphi_0 I_0 \left(\delta - \frac{\delta^3}{6}\right) - \varphi_0 I_{RF} \sin(\omega t) = 0$$

EXPERIMENTAL SETUP

Challenges

- Fully coherent microwave measurements
- High speed data acquisition
- Precision circuit design (remember L_J ~ 300pH)
 → special capacitors
- Ultra-low noise wide-band electronics
 → new cryo filters

JUNCTION + MICROWAVE CAPACITOR

HIGH FREQUENCY CRYOGENIC FILTERING

RF CURRENT BIAS III: Plasma Resonance

STRAY REACTANCES

$$\frac{1}{4\pi^2 f_p^2} = \frac{\hbar}{2e} C \frac{1}{I_0} + C L_{stray}$$

PHASE DIAGRAM: EXP & THY IN GOOD AGEEMENT

- Dark region corresponds to well-jumping
- All parameters in prediction measured experimentally!

THE DRIVEN PENDULUM

Dynamical Regime **Drive States** weak harmonic 1 (θ_{max}<<1) medium 2 bifurcation $(\theta_{\max} \sim \pi/4)$ strong >>> 2 chaotic $(\theta_{max} > 2\pi)$

 $\omega < \omega_0$

 $I_0^{-1} \leftrightarrow l$ $C_J^{-1} \leftrightarrow g$ $\omega_p \leftrightarrow \omega_0$

 $\begin{array}{l} \delta & \leftrightarrow \theta \\ V & \leftrightarrow \dot{\theta} \end{array}$

DYNAMICS OF DYNAMICAL SWITCHING

- N = 600,000
- ∆φ = 74 deg
- Hysteresis
 I_B and I_B, correct !

SWITCHING HISTOGRAMS

- Latching
- 40 ns rise + 20 ns settle
- τ_m = 300 ns

DC vs. AC

ATTRACTORS

 $\delta(t) = \delta_{\parallel} \sin(\omega t) + \delta_{\perp} \cos(\omega t)$

1-D METAPOTENTIAL

$$\Gamma_{0\to 1}^{dyn} = \frac{\omega_a}{2\pi} \exp\left(-\frac{\Delta U^{dyn}}{kT}\right)$$

$$I_{B} = \left[\frac{16}{3\sqrt{3}}\alpha^{3/2} \left(1-\alpha\right)^{3/2}\right] I_{0} \approx 0.1I_{0}$$

ESCAPE TEMPERATURE

Quantum Saturation at Different Temperature ! $T_{RF}^{*} = \frac{\hbar\omega}{k}$

$$T_{DC}^{*} = \frac{\hbar \omega_{p}}{7.2k}$$

JOSEPHSON BIFURCATION AMPLIFIER

AMPLIFICATION

DEVICE	INPUT CIRCUIT	OPERATION
SQUID	Flux Loop	DC Switching
SQUID JBA	Flux Loop	RF Bifurcation
Quantronium	Single Cooper Pair Transistor	DC Switching
Quantronium + JBA	Single Cooper Pair Transistor	RF Bifurcation

SQUID JBA

- fidelity = 80% @ 250mK
 for ∆I₀ = 10nA
- predict > 95% @ T=60mK (single shot)

- RF DRIVEN JOSEPHSON JUNCTION
 - non-linear plasma resonance
 - metastable states
 - escape dynamics
- NOVEL QUANTUM SATURATION
- BIFURCATION AMPLIFICATION
 - observe predicted sensitivity
 - SQUID JBA
 - QUBIT READOUT → Next Lecture