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Random Phase approximation: Gell Mann Brueckner Sawada
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FIG. 1. Inverse susceptibility for various values of 385(1978).
Al{=7;/6.029), The curve marked Brueckner-Sawada is

from Ref, 15 [see Eq. (1.1.)]. The eurve marked “ex- :
act high density” i¢ & Tesult of thie work shore ce fare RPA predicts PM

corrected one of the two terms obtained by BS [see See, metal for rs ~ 18!
IIl, Eq. (3.32)]. The RPA curve is obtained from a com-
putation of Eq. (2,389).
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Ground state of the fermion one-component plasma:
A Monte Carlo study in two and three dimensions

D. Ceperley*
Laboratoire de Fhysique Thearique et Hautes Energies, Université de Paris X1, Orsay, France
(Received 26 April 1978)

We have performed fermion Monte Carlo variational calculations to determine the equation of state of the
uniform electron one-component plasma in two and three dimensions. The ground-state excess energies
calculated by the Monte Carlo method are very precise and in agreement with those of other calculations in
the metallic density range and in the very-low-density Wigner crystals. Three phases have been investigated:
the Wigner crystal, the normal or unpolarized fluid, and the polarized fluid. The Wigner crystal has the
lowest energy for #, > 67 in three dimensions and r, > 33 in two dimensions. The totally polarized quantum
fluid is stable for 26 < r, < 67 in three dimensions and for 13 < r, < 33 in two dimensions, and the normal or
unpolarized fluid is stable at higher densities, r, < 26 in three dimensions and r, < 13 in two dimensions, A
pseudopotential with no adjustable parameters, derived from the random-phase approximation, is found to
give excellent energies. The present results lend support to earlier conjectures that the ground state of the
electron gas will be spin polarized at intermediate densities.
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ML VARIATIONAL TRIAL FUNCTION 3T
In this paper we will assume the trail function is
of the Bijl-Dingle-Jastrow' or product form: 3T
uﬂ
¥1(R) = D(R) exp (- 3 u(lfe-, |1) * (4) el
T3] =]
The function D(R) is the “model” noninteracting
term and serves to give the trail function the de- 3
sired antisymmetry. For the fluid phase we take
D(R) to be a Slater determinant of plane waves. o
In the unpolarized fluid there are séparate deter- do : : é ;— |=a

minants for spin-up and spin-down particles. For
the polarized fluld there is a single determinant.
In the erystal phase D(R) is a Slater determinant
of single-particle orbitals centered around the
lattice sites. The “pseudopotential,” u(7) is re-
pulsive and includes in an approximate way the
effects of particle correlation,

s

FIG. 2. Minus the correlation energy times », va ¥,
from our caleulation (solid line} compared with pertur-
bational caleulations. The symbols represent the re-
gults of (+) the RPA approximation Freeman (Ref. 41),
(1) Hubbard (Ref. 45), (2) Vashishta and Singwi (Ref. 43),
(*) Freeman (e% (Ref. 41), and (%) Lowy and Brown
(Ref, 44).
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Ground State of the Electron Gas by a Stochastic Method

D. M. Ceperley
National Resource for Computation in Chemistry, Lawrvence Bevkeley Laboratory, Bevkeley, Califovnin 94720

and

B. J. Alder
Lawrence Livermore Labavalory, University of Califownia, Livermove, California 94550
(Received 16 April 1980)

An exact stochastie simulation of the Schroedinger equation for charged bosons and
fermions has been used to calculate the correlation energies, to locate the transitions

to their Tespective crystal phases at zero temperature within 10%, and fo establish the
stability at intermediate densities of a ferromagnetic fluid of electrons.

Polerized Fermi fluid

s

= o
e 1.
T~ ] Mefastable
L . - Bose fluid
Unpolarized

Fermi fluid ) \

Wigner crystal

I 1
80 120
r

160 200
]

FIG. 2. The energy of the four phases studied relative to that of the lowest boson state times #; * in rydbergs vs
¥, in Bohr radii. Below ¥, = 160 the Bose fluid is the most stable phase, while above, the Wigner crystal i= most
stable, The energies of the polarized and unpolarized Fermi fluid are seen to intersect at vy = 75. The polarized
(ferromagnetic) Fermi fluid is stable between ¥, = 75 and v, = 100, the Fermi Wigner crystal above r, = 100, and

the normal paramagnetic Fermi fluid below v, = 75.
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A “'strong ferromagnet” has
essentially filled majority
band and partially filled
minority band. (Ni, FeCo
alloys)

A “weak ferromagnet” has
partially filled majority as well
as minority band. ( Fe, Co)




Definitions

strong ferrom.

weak ferrom.

Paramagnet
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fully pololarized

partially polarized

Fe, Co

no polarisation

Ti,



Half metallic alloy with full

polarisation:

Examples:

ferromagnetic oxide CrO2 and some
intermetallic compounds (Heusler-
alloys) PtMnSb, NiMnSb, Co2MnA|,
Co2MnSb.

£
S
ik

£
52t

e

i

it
s
S

2

i

R
e
SR
SRR

Y
Y
R

i
£

e
i
e e

i
i
i

i

i

52t

i

£




LDA Local Density Functional theory and its applications in
Magnetism: Numerical procedure based on the Kohn Sham

scheme and the Hohenberg Kohn variational principle

PHYSICAL REVIEW B VOLUME 38, NUMBER 10 1 OCTOBER 1988

Stoner model of ferromagnetism and total-energy band theory

P. M. Marcus and V. L. Moruzzi
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
(Received 7 March 1988)

The Stoner model of ferromagnetism in metals is generalized to reproduce the results of spin-
polarized total-energy band calculations with the fixed-spin-moment procedure. The Stoner param-
eter for the exchange field is made a function of both volume and magnetic moment and evaluated
from the band calculations. A generalized Stoner condition for the occurrence of ferromagnetism is
derived and applied to fec Fe. Our previous results on the high-spin and low-spin phases of fce Fe
are reproduced and differences from a recent Stoner analysis of fee Fe are explained.
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where N'=(aN/aM),, I'=(dI/dM),, I1"=(d31
/dM?),. Then

2N(0, V) B INi(eg, V)
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(3.11)

X(0)=




Tshe spin-polarized Kohn-Sham equations may be writ-
ten

(= V24 e, (0),ng (T Wy(r) =€y (r)
i=1,2,...,N;and j=ud, @.1)

where u and d designate up- and down-spin distributions,
respectively, and the effective potential is

B (1, (D), ng(E) =TI+ by jln, (r)ng(r)),  (2.2)

and the Coulomb part is the sum of a nuclear and an elec-
tronic part

GoonlT) =, (r)+d A1)

7 .
P nir') To»
= —2 -l %, 23
§|r_np| -'r:f|r—r1
with the electron number density for each spin
X,
nirl=3 |¥;(r) |3 j=ud, (2.4)

i=1

and the total electron number density

nirl= % n;ir) . (2.5)
j=ud

In (2.3), R, is the lattice vector of the nucleus of charge
Z, and the sum is over all nuclei. In(2.2)

d[ne,ln, ngll )
acj = a-l"ij ] J _Hid i [26}

where €,.(n,,n,4) is a known function in the local-density
approximation.” The equations (2.1) are solved self-
consistently under the two constraints

[ nind’r=N;, j=ud, 2.7

where N, and N, are specified separately and the total
number of electrons per atom is

N=3 N;. (2.8)
J=ud

If the system is neutral, N is fixed by the Z values and
only the difference

M=N,—N, (2.9)

can vary; M is then the magnetic moment of the system
in Bohr magnetons.

The total energy of the system is a function of M and
of the set of nuclear coordinates |R, |, and is given by

ET{M,IRFilzzeijuzlfvn{r}qbelw{r}djr
A
—I-fv In{rlexc{r}—zn_,{r}ﬂﬁxc;{r} dr .
I

(2.10)

This doubly constrained self-consistent ground-state cal-
culation, which fixes both N and M, is called the fixed-
spin moment procedure.” For cubic bulk crystals it leads
to a thermodynamic function E;(M, V), which contains
information about the stable and metastable ferromagnet-
ic bulk phases and their stability ranges in F. We note
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TABLE L. Theoretical equilibrium lattice constants a,., (in a.u.), spin magnetic moments (in wg) and total hyperfine field 8, (in kG) as
well as their core and valence parts. B, and B,,,. for bee Fe, fee Co, and fee Ni. respectively. In addition the decomposition of 8, into
its contributions from the 15, 25, and 3s shells is given. The last line represents the ratio of the core hyperfine field B_, and the spin
magnetic moment g, in kGl g . respectively. As explained in the text the abbreviations VBH and so on denote the various parametrizations
for the used exchange-correlation potentials. All results have been obtained assuming a nucleus of finite radius r, with r, =822, 833, and
84451077 a.u. for Fe. Co, and Ni, respectively. The corresponding experimental values for the lattice constant are 3.406, 6,707, and 6.658
au., 213 py. 1.52 g and 0.57 py for the magnetic moment and —33%, =215, and —75 kG for the total hyperfine field. respectively.

ial Fe
VBH TWM VWN LM-JWM  PW-ITWM PW-VWN GGA91 EVO3
Qs 5.245 5.270 5263 5.344 5511 5.496 5.438 5.774
Prapin 2.09 218 2.16 2.34 254 2.50 2.46 287
B, —18 —18 ~19 1 75 7.2 74 13 LDA and the
Ba, —470 —513 —508 —620 —481 —474 — 500 —937 »
B, 284 203 298 327 270 273 317 504 TranS|t|On metals_
Beor —213 ~238 —229 —303 —203 —192 —280 —420
B -4 -13 —14 -56 -36 -39 —36 15
By 222 -250 243 -311 -239 -23] —316 —405
Broitepin —102 —109 —106 —130 —80 -77 —114 — 146 Phys Rev 853,
ihi Co
VBH WM VN LM-JWM  PW-ITWM  PW-VWN GGA91 EVO3 9776 (96)
Qs 6.533 £.550 £.550 6.631 6.798 £.790 6.715 7.076
Pespin 1.53 1.60 1.50 1.66 171 1.70 1.68 1.89
By, -16 -17 —17 —11 5.6 55 —6.8 8.0
Ba, —396 —425 —420 —497 —382 —380 —461 ~714
B,, 249 260 262 283 246 250 m 412
B, —163 — 182 —175 —225 —131 —125 —196 —204
B —65 —59 —62 —50 -32 —34 44 -1
By 228 —241 237 —275 —163 ~159 —240 —305
Breor tagin —106 ~114 —110 —136 —77 —74 -7 —155
el Wi
VBH TWM VIWN LM-JWM  PW-ITWM PW-VWN GGA9] EVO3
. 6.533 £.549 6.543 6.623 6,802 £.795 6.715 7.080
Frspin 0.60 0.62 061 0.64 0.63 0.63 0.63 0.75
B, -75 -78 ~78 —5.0 23 22 32 33
B, —170 —179 —178 —210 —162 —161 —191 -3
Ba, 11 114 115 125 112 113 119 191
Beo —67 —73 -71 —40 —48 —45 —76 —128
B -17 —16 ~16 —16 -13 —13 —15 -12
By —83 -89 —87 —106 —60 -50 -1 — 140
Bl tin ~112 —117 —116 —140 -76 -7l -121 -7

844107 au. for Fe, Co, and Ni, respectively. The corresponding experimental values for the lattice constant are 5.406, 6.707, and 6.658
au., 203 pg. 152 g and 057 gy for the magnetic moment and —339, =215, and =75 kG for the total hyperfine field. respectively.



FIG. 3. A replot of the data of Weiss and Forrer to
conform to the variables of Eq. (1),

Arrott Noakes: Ni
(1967 PRL)
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FIG. 2. Arrott plots for alloy V at eight temperatures be-
tween 45 and 80 K.
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Low-temperature behavior of Ni;Al alloys near the
spin-fluctuator — ferromagnet phase boundary

S. K. Dhar,* K. A. Gschneidner, Jr., L. L. Miller, and D. C. Johnston
Ames Laboratory, Departments of Materials Science and Engineering and of Physics, Iowa State University,
Ames, Towa 50011
(Received 5 July 1989)




Na Cl structure of MO, where M= transition metal.

Note the M surrounded by O octahedra.



3d Transition Metal Monoxides

Compound M-M Electrical Magnetic

Distance Properties Properties
TiO (d®) 2.94 4 Metallic  Pauli Paramagnetic

VO (d%) 2.89 A Intermediate Intermediate

MnO (d®) 3.14 A Semiconductor AFM Ty = 122 K
FeO (d®) 3.03 A Semiconductor AFM Ty = 198 K
CoO (d’) 3.01 A Semiconductor AFM Ty = 293 K
NiO (d® 295 A Semiconductor AFM Ty = 523 K

AFM = Antiferromagnetic
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Example of t_2g overlap with Example of e.g. overlap of Cu
oxygen p levels d levels with oxygen p levels



