
13
Heisenberg spins: ferromagnets and

antiferromagnets

Part 2 of this book dealt with the magnetically ordered and quantum
paramagnetic phases of models of N -component quantum rotors. In
Chapter 10 we showed how the N = 2 rotors could be mapped onto
certain boson models in the vicinity of a phase transition between a
Mott insulator and a superfluid. In this chapter we shall consider models
of Heisenberg spins: these directly represent the spin fluctuations of
physical electrons in insulators or other systems with an energy gap
towards charged excitations (e.g., certain quantum Hall states). We
shall describe the conditions under which certain models of Heisenberg
spins reduce to N = 3 quantum rotor models, thus providing the long-
promised physical motivation for studying the latter models; recall that
a preview of this mapping already appeared in Section 5.1.1.1. We shall
also discuss the physical properties of Heisenberg spin models under
conditions in which they do not map onto the rotor models of Part 2.

We will deal with lattice models with the Hamiltonian

HS = −
∑

i,j

JijŜi · Ŝj −H ·
∑

i

Ŝi. (13.1)

Here the magnetic field H is precisely the same (with no overall scale
factor) as that appearing in the rotor Hamiltonian (5.1): H couples to
a conserved total spin (or for the rotors the total angular momentum)
which, as we will see, commutes with the rest of the Hamiltonian. The Ŝi

are Heisenberg spin operators whose basic properties were introduced in
Section 5.1.1.1: they satisfy the commutation relations (5.8) on each site
i, and act on the 2S +1 states (5.9) of the spin S representation on each
site. The Jij are a set of translationally-invariant exchange interactions
between these sites.

We will begin in Section 13.1 by showing how to set up a path integral
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for systems with states restricted in the manner (5.9,5.10) on each site.
Then Section 13.2 will consider the properties of ferromagnets in which
all Jij > 0, and the ground state is the fully polarized state with all
spins parallel and the total spin takes its maximum possible value. The
properties of antiferromagnets in which the ground state has negligible
total spin will be discussed in Section 13.3–these are likely to arise when
all Jij < 0. Finally Section 13.4 will consider more complex situations
with partial uniform polarization of the spins, which is accompanied by
a certain ‘canted’ order in dimensions d > 1.

13.1 Coherent state path integral

We have previously encountered the coherent state path integral in Sec-
tion 10.2 where we introduced, following Refs [385, 486], a path integral
representation of canonical bosons. An important feature of the path
integral was the ‘Berry phase’ term b†db/dτ in (10.19) which accounted
for the kinematics of ordinary bosons, and played an important role in
the structure of the Mott insulating phases and the nature of their tran-
sitions to the superfluid. In this section we will present a reasonably
complete derivation of the corresponding path integral for the quantum
mechanics of the spin states (5.9). Many derivations of this path inte-
gral exist in the literature, but we shall follow here the approach used in
Ref [425] which has the advantage of explicitly maintaining spin rotation
invariance. The reader is also referred to a collection of reprints [300]
for further information on coherent states and their relationship to path
integrals.

We shall deal in this section with a single Heisenberg spin, and will
therefore drop the site index. There is no loss of generality in this, as the
same manipulations can be carried out independently on each site. The
derivation of any path integral proceeds by the insertion of a complete
set of states at infinitesimal intervals in time upon the time evolution
operator of the system. It would clearly pay to choose a set of states
under which the matrix elements of Ŝ are simple: for this reason the
states in (5.9) are not convenient. Instead, we shall use the so-called
spin-coherent states. These are an infinite set of states |N〉, labeled
by the points N on the surface of the unit sphere; so N is a three-
component vector satisfying N2 = 1. As there are only a total of 2S +1
independent states, these states clearly cannot be mutually orthogonal.
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They are normalized to unity

〈N|N〉 = 1, (13.2)

〈N|N′〉 6= 0 for N 6= N′, and satisfy the completeness relation

∫

dN
2π
|N〉〈N| = 1 =

S
∑

m=−S

|S, m〉〈S, m|, (13.3)

where the integral of N is over the unit sphere. Because of their non-
orthogonality, these states are called ‘over-complete’. What makes them
extremely useful is that the diagonal expectation value of the operator
Ŝ is very simple:

〈N|Ŝ|N〉 = SN. (13.4)

So the state |N〉 is almost like a classical spin of length S pointing
in the N direction; indeed, the spin coherent states are the minimum
uncertainty states localized as much in the N direction as the principles
of quantum mechanics will allow, and in the large S limit, |N〉 reduces
to a classical spin in the N direction.

The relations (13.2), (13.3), and (13.4) define the spin coherent states.
Let us explicitly construct them. For N = (0, 0, 1), the state |N〉 is easy
to determine; we have

|N = (0, 0, 1)〉 = |S,m = S〉 ≡ |Ψ0〉 (13.5)

We have labeled this particular coherent state as a reference state |Ψ0〉
as it will be needed frequently in the following. Now it should be clear
that for other values of N we can obtain |N〉 simply by acting on |Ψ0〉 by
an operator which performs a SU(2) rotation from the direction (0, 0, 1)
to the direction N. In this manner we obtain the following explicit
representation for the coherent state |N〉

|N〉 = exp
(

zŜ+ − z∗Ŝ−
)

|Ψ0〉 (13.6)

where the complex number z is related to the vector N. This relationship
is simplest in spherical co-ordinates; if we parameterize N as

N = (sin θ cosφ, sin θ sin φ, cos θ) (13.7)

then

z = −θ
2

exp(−iφ). (13.8)

We leave it as an exercise for the reader to verify that (13.6) satisfies
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(13.2), (13.3) and (13.4); this verification is aided by the knowledge that
the value of the expression exp(−ia · Ŝ)Ŝ exp(ia · Ŝ), where a is some
vector, is determined solely by the spin commutation relations (5.8),
and can therefore be worked out by temporarily assuming that the Ŝ
are twice the Pauli matrices–the result, when expressed in terms of Ŝ,
is valid for arbitrary S.

It will be useful for our subsequent formulation to rewrite the above
results in a somewhat different manner, making the SU(2) symmetry
more manifest. Define the 2× 2 matrix of operators Ŝ by

Ŝ =

(

Ŝz Ŝx − iŜy

Ŝx + iŜy −Ŝz

)

. (13.9)

Then Eqn. (13.5) can be rewritten as

〈N|Ŝαβ |N〉 = SWαβ , (13.10)

where the matrix W is

W =
(

Nz Nx − iNy

Nx + iNy −Nz

)

≡ N · ~σ (13.11)

where ~σ are the Pauli matrices. So instead of labeling the coherent states
with the unit vector N, we could equally well use the traceless Hermitean
matrix W . Furthermore, there is a simple relationship between W and
the complex number z. In particular, if we use the spin-1/2 version of
the operator in Eqn. (13.6)

U = exp
[(

0 z
−z∗ 0

)]

(13.12)

(U is thus a 2× 2 matrix), then we find

W = UσzU† (13.13)

We proceed to the derivation of the coherent state path integral for
the partition function

Z = Tr exp(−H(Ŝ)/T ); (13.14)

we will restrict the following discussion to Hamiltonians in which H is
a linear function of any given Ŝ on a fixed site. The H in Eqn. (13.1)
is certainly of this type. The transformation of Z into a path-integral
proceeds along the same lines as that discussed in Refs [385, 486] for
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bosons. We break up the exponential into a large number of exponentials
of infinitesimal time evolution operators

Z = lim
M→∞

M
∏

i=1

exp(−∆τiH(Ŝ)), (13.15)

where ∆τi = 1/MT , and insert a set of coherent states between each
exponential by using the identity (13.3); we label the state inserted at a
‘time’ τ by |N(τ)〉. We can then evaluate the expectation value of each
exponential by use of the identity (13.4)

〈N(τ)| exp(−∆τH(Ŝ))|N(τ + ∆τ)〉
≈ 〈N(τ)|1−∆τH(Ŝ)|N(τ + ∆τ)〉

≈ 1−∆τ〈N(τ)| d
dτ
|N(τ)〉 −∆τH(SN)

≈ exp
(

−∆τ〈N(τ)| d
dτ
|N(τ)〉 −∆τH(SN)

)

. (13.16)

In each step we have retained expressions correct to order ∆τ . The
coherent states at time τ and τ + ∆τ can in principle have completely
different orientations, so, a priori, it is not clear that expanding these
states in derivatives of time is a valid procedure. This is a subtlety that
afflicts all coherent state path integrals, and has been discussed more
carefully by Negele and Orland [385]: the conclusion of their analysis
is that except for the single ‘tadpole’ diagram where a point-splitting
of time becomes necessary, this expansion in derivatives of time always
leads to correct results. In any case, the resulting coherent state path
integral is a formal expression which cannot be directly evaluated, and
in case of any doubt one should always return to the original discrete
time product in (13.15).

Keeping in mind the above caution, we insert (13.16) into (13.15),
take the limit of small ∆τ and obtain the following functional integral
for Z

Z =
∫

N(0)=N(1/T )
DN(τ) exp

{

−
∫ 1/T

0
dτ [SB + H(SN(τ))]

}

,

(13.17)
where

SB = 〈N(τ)| d
dτ
|N(τ)〉 (13.18)

and H(SN) is obtained by replacing every occurrence of Ŝ in the Hamil-
tonian by SN. The promised Berry phase term is SB , and it represents



13.1 Coherent state path integral 327

the overlap between the coherent states at two infinitesimally separated
times. It can be shown straightforwardly from the normalization condi-
tion, 〈N|N〉 = 1, that SB is pure imaginary. In the remainder of this
section we will manipulate SB into a physically more transparent form
using the expressions above for the coherent states. For the case of the
boson coherent state path integral, it is precisely the analog of SB which
becomes b†(∂b/∂τ) in (10.19).

Clearly, the τ -dependence of N(τ) implies a τ dependent z(τ) through
(13.8). From (13.6) we have therefore

d
dτ
|N(τ)〉 =

d
dτ

exp
(

z(τ)Ŝ+ − z∗(τ)Ŝ−
)

|Ψ0〉 (13.19)

Taking this derivative is however not so simple: notice that if an operator
Ô does not commute with its derivative dÔ/dτ then

d
dτ

exp(Ô) 6= dÔ
dτ

exp(Ô) (13.20)

The correct form of this result is in fact

d
dτ

exp(Ô) =
∫ 1

0
du exp(Ô(1− u))

dÔ
dτ

exp(Ôu), (13.21)

where u is just a dummy integration variable. This result can be checked
by expanding both sides in powers of Ô and verifying that they agree
term by term. More constructively, a ‘hand-waving’ derivation can be
given as follows

d
dτ

exp(Ô) =
d
dτ

exp
(

Ô
∫ 1

0
du

)

= lim
M→∞

d
dτ

exp

(

M
∑

i=1

Ô∆ui

)

with ∆ui = 1/M

≈ lim
M→∞

d
dτ

M
∏

i=1

exp
(

Ô∆ui

)

≈ lim
M→∞

M
∑

j=1

j
∏

i=1

exp
(

Ô∆ui

) dÔ
dτ

∆uj

M
∏

i=j+1

exp
(

Ô∆ui

)

(13.22)

Finally, taking the limit M → ∞, we obtain the needed result (13.21).
Now using (13.19) and (13.21) we find

SB =
∫ 1/T

0
dτ〈N(τ)| d

dτ
|N(τ)〉
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=
∫ 1/T

0
dτ

∫ 1

0
du〈N(τ, u)|

(

∂z
∂τ

Ŝ+ −
∂z∗

∂τ
Ŝ−

)

|N(τ, u)〉 (13.23)

where N(τ, u) is defined by

|N(τ, u)〉 = exp
(

u
(

z(τ)Ŝ+ − z∗(τ)Ŝ−
))

|Ψ0〉 (13.24)

From this definition, three important properties of N(τ, u) should be
apparent

N(τ, u = 1) ≡ N(τ),

N(τ, u = 0) = (0, 0, 1),

and N(τ, u) moves with u along the great circle

between N(τ, u = 0) and N(τ, u = 1) (13.25)

We can visualize the dependence on u by imagining a string connecting
the physical value of N(τ) = N(τ, u = 1) to the North pole, along which
u decreases to 0. Associated with each N(τ, u) we can also define a u-
dependent W (τ, u) as in Eqn. (13.11); the analog of (13.25) is W (τ, u =
1) ≡ W (τ) and W (τ, u = 1) = σz. A simple explicit expression for
W (τ, u) is also possible: we simply generalize (13.12) to

U(τ, u) = exp
[

u
(

0 z
−z∗ 0

)]

(13.26)

then the relationship (13.13) gives us W (τ, u). Now we can use the
expression (13.10) to rewrite (13.23) as

SB = S
∫ 1/T

0
dτ

∫ 1

0
du

[

∂z
∂τ

W21(τ, u)− ∂z∗

∂τ
W12(τ, u)

]

, (13.27)

As everything is a periodic function of τ , we may freely integrate this
expression by parts and obtain

SB = −S
∫ 1/T

0
dτ

∫ 1

0
duTr

[(

0 z(τ)
−z∗(τ) 0

)

∂τW (τ, u)
]

. (13.28)

where the trace is over the 2× 2 matrix indices. The definitions (13.13)
and (13.26) can be used to easily establish the identity

(

0 z(τ)
−z∗(τ) 0

)

= −1
2
W (τ, u)

∂W (τ, u)
∂u

, (13.29)

which when inserted into (13.28) yields the expression for SB in one of
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its final forms

SB =
∫ 1/T

0
dτ

∫ 1

0
du

[

S
2

Tr
(

W (τ, u)
∂W (τ, u)

∂u
∂W (τ, u)

∂τ

)]

(13.30)

An expression for SB solely in terms of N(τ, u) can be obtained by
substituting in (13.11); this yields the final expression for SB , which
when inserted in (13.17) gives us the coherent state path integral for a
spin:

SB = iS
∫ 1/T

0
dτ

∫ 1

0
du N ·

(

∂N
∂u

× ∂N
∂τ

)

(13.31)

This expression has a simple geometric interpretation. The function
N(τ, u) is a map from the rectangle 0 ≤ τ ≤ 1/T , 0 ≤ u ≤ 1 to the
unit sphere. As N moves from N(τ) to N(τ + ∆τ) it drags along the
string connecting it to the North pole represented by the u dependence
of N(τ, u) (recall (13.25)). It is easy to see that the contribution to SB

of this evolution is simply iS times the oriented area swept out by the
string. The value of this area clearly depends upon the fact that u = 0
end of the string was pinned at the North pole: this was a ‘gauge’ choice,
and by choosing the phases of the coherent states differently, we could
have pinned the point u = 0 anywhere on the sphere. However when we
consider the complete integral over τ in (13.31), the boundary condition
N(1/T ) = N(0) (required by the trace in (13.14) shows that N(τ) sweeps
out a closed loop on the unit sphere. Then the total τ integral in (13.31)
is the area contained within this loop, and is independent of the choice
of the location of the u = 0 point. Actually this last statement is not
completely correct: the ‘inside’ of a closed loop is not well-defined and
the location of the u = 0 point makes the oriented area uncertain modulo
4π (which is the total area of the unit sphere). So the net contribution
of eSB is uncertain up to a factor of ei4πS . For consistency, we can now
demand that this arbitrary factor always equal unity, which, of course,
leads to the familiar requirement that 2S be an integer.

13.2 Quantized ferromagnets

We turn to the lattice model HS in (13.1), and consider the case of fer-
romagnetic interactions where all Jij > 0. In this case, the state with
all spins parallel

∏

i |S, S〉i is the exact ground state (see, e.g., Ref. [28];
we have assumed that the field H points along the spin quantization z
axis). The adjective ‘quantized’ in the title refers to the fact that the
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magnetization density, M0, (this is magnitude of the expectation value
of the total spin magnetization

∑

i Ŝi divided by the system volume) is
pinned at a simple value which can be determined a priori, and which
does not vary as the exchange constants Jij are varied. In Section 13.4,
we will meet examples of quantized ferromagnets in which the magnetic
moment is quantized, but not at a fully polarized value: fractional quan-
tization is also possible, but in every case twice the average total spin
moment per unit cell is an integer. The discussion in this chapter will
apply to the low energy properties of all such quantized ferromagnets,
but will only explicitly refer to the fully polarized case.

Apart from their quantized moment, the characteristic property of a
quantized ferromagnet is that the only low-lying excitation which carries
spin is a ‘spin-wave’ which arises from a slow rotation of the orientation
of the ordered moment. Many readers may be familiar with the fact that
the wave function of a single spin-wave excitation can also be written
down exactly for a fully polarized, quantized ferromagnet: these well-
known results will also emerge below. The purpose of our discussion
shall be two-fold: (i) to obtain a continuum field theory of the low-lying
excitations of the quantized ferromagnet, and to understand its behavior
under a scaling transformation, and (ii) to use the continuum theory to
systematically enumerate the parameters required describe the low T
properties of such ferromagnets.

We begin by constructing the continuum field theory for the low-lying
excitations above the fully-polarized ferromagnetic ground state. It is
reasonable to expect that these will consist of fluctuations in which the
orientations of the spins varies slowly from site to site. We start with
the functional integral like (13.17) for the spin orientation Ni(τ) on each
site i, and perform a gradient expansion by introducing the continuum
field N(x, τ). Keeping terms up to second spatial derivatives we obtain
for the partition function Z = Tre−HS/T [271]:

Z =
∫

DN(x, τ)δ(N2 − 1) exp

(

−
∫ 1/T

0
dτ

∫

ddxLF

)

LF = iM0

∫ 1

0
duN ·

(

∂N
∂u

× ∂N
∂τ

)

−M0N ·H +
ρs

2
(∇N)2, (13.32)

where M0 ≡ S/v is the magnetization density of the ground state, v
is the volume per site, and ρs is the spin stiffness. We introduced the
analogous stiffness for the rotor model in Section 5.3.3; here, the gradient
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expansion upon the partition function of HS gives us

ρs =
S2

2v

∑

m

Jrx2
m1, (13.33)

where the Jm are the set of exchange constants coupling a given site i to
the other sites separated from i by (xm1, xm2 . . . xmd); the sum over m
includes separate terms for ~xm and −~xm. The continuum theory (13.32)
should really be regarded as a convenient schematic representation of
the quantum ferromagnet, and we will often need to go back to the
underlying lattice model HS to regulate short distance singularities.

We consider the behavior of LF under a rescaling transformation [429]
at T = 0. The continuum theory is characterized by two dimensionful
couplings M0 and ρs, and despite the non-linear constraint in (13.32),
some special properties of the quantum theory make it possible to de-
termine their exact renormalization group flow equations (this should
be contrasted from the rotor theory (5.16) where no such exact results
were available). First, we noticed at the end of Section 13.1 that the
single spin Berry phase was uncertain up to an additive constant of 4πS,
and this imposed the requirement that S be integer or half-integer. Pre-
cisely the same argument applied to the Berry phase of the continuum
ferromagnet (13.32) in a hypercubic box of volume Ld, implies 2M0Ld

must be an integer (this is just a fancy way of saying that the continuum
ferromagnet must model an integral number of spins). This integer can-
not change under any scaling transformation, and as L transform as a
physical length, the invariance of M0Ld leads to the exact flow equation

dM0

d`
= dM0. (13.34)

This equation describes the quantization of the average magnetic mo-
ment at its fully saturated value.

A closely related scaling equation holds for ρs, and this follows from
the exactly known single spin-wave spectrum. To prepare for some future
computations, we derive this by going back to the lattice Hamiltonian,
HS , and then taking the continuum limit of the resulting response func-
tions. The most convenient formalism for computations is provided by
the Dyson-Maleev transformation [140, 349] from the spin operators Ŝi

to Bose operators b̂i. Explicitly, the mapping is

Ŝ+i =
√

2Sb̂†i

Ŝ−i =
√

2S
(

b̂i −
1

2S
b̂†i b̂ib̂i

)
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Ŝz = −S + b̂†i b̂i. (13.35)

Along with the constraint b̂†i b̂i ≤ 2S, this defines an exact mapping be-
tween the Hilbert space of the spin S spins (2S + 1 states per spin)
and the bosons (2S + 1 possible boson occupation numbers); in prac-
tice, one does not even have to impose the constraint b̂†i b̂i ≤ 2S, as all
matrix elements out of the physical sector vanish. The reader can verify
that the operators in (13.35) do indeed satisfy the commutation rela-
tions (5.8). The relations (13.35) do not satisfy the hermiticity require-
ment Ŝ+i = (Ŝ−i)†, but this can be repaired by performing a similarity
transformation on the space of spin states: the reader should consult
Ref [16] for more information, as here we shall mainly use (13.35) as
a black-box tool. Inserting (13.35) into (13.1), and Fourier transform-
ing to momentum space by defining b̂(~k) =

√
v

∑

i b̂ie−i~k·~x (these Bose
operators then satisfy the canonical continuum commutation relations
[b̂(~k), b̂†(~k′)] = (2π)3δd(~k − ~k′)), the Hamiltonian becomes

HS =
∫

ddk
(2π)d

{

S
[

J(0)− J(~k)
]

+ H
}

b̂†(~k)b̂(~k) +

v
2

∫ 4
∏

i=1

ddki

(2π)d (2π)dδd(~k1 + ~k2 − ~k3 − ~k4)
[

J(~k1)− J(~k1 − ~k4)
]

×b̂†(~k1)b̂†(~k2)b̂(~k3)b̂(~k4) (13.36)

where all momentum integrals are over the first Brillouin zone of the
lattice, and

J(~k) =
∑

m

Jme−i~k·~xm . (13.37)

This bosonic form for HS can be analyzed by the methods developed in
Chapter 11 for (11.1). The ground state is the vacuum, |0〉, with no b̂
particles (the fully polarized ferromagnet), while the lowest excitations
are single boson states, b̂†(~k)|0〉, (‘spin waves’) which are exact eigen-
states of HS with energy ε~k = S(J(0) − J(~k) + H. We have ε~k > 0
for all ~k, which indicates that the choice of the no boson state as the
ground state is a consistent one. At T = 0, the one particle propagator
is given exactly by the free particle propagator, as in (11.50), for there
are no other particles present. Taking the small momentum limit of this
propagator, and using the correspondence between the continuum fields

b̂†(~k, ωn) = (M0/2)1/2N+(−~k,−ωn) (13.38)

which follows from our definitions above (N± = Nx ± iNy), we obtain
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an exact result for a two-point correlator of (13.32)
〈

N−(−~k,−ωn)N+(~k, ωn)
〉

=
2

−iωnM0 + ρsk2 + M0H
. (13.39)

This represents the propagation of spin waves with the exact dispersion
εk = (ρs/M0)k2 +H. The consistency of this dispersion with the scaling
transformation requires dim[H] = z (as before in (5.42)), and the exact
scaling equation

dρs

d`
= (d + z − 2)ρs. (13.40)

As the spin-wave disperses quadratically with momentum at small k,
it is convenient to choose z = 2 (other choices are also permissible, as
physical observables will have compensating scale dependence arising
from that of ρs).

The exact results (13.34), (13.39) and (13.40) are strongly reminiscent
of the behavior of the Bose gas in Section 11.8. In both cases, the
simplicity is due to the fluctuationless nature of the ground state and
the exactly known single particle excitations. For the case of the Bose
gas we had an additional non-linearity u, whose renormalization was
determined by examining the two-particle scattering amplitude. In the
present situation, the dimensionful parameters ρs and M0 determine
both the single particle dispersion (13.39) and the strengths of the non-
linear couplings. It might therefore seem that the finite T properties of
(13.32) must be given by universal functions of T , and the bare couplings
ρs and M0, consistent with the requirements of scaling and engineering
dimensional analysis. However, this will be only the case if a short
distance cutoff scale (explicitly present in (13.36) but not in (13.32)) did
not influence the low energy properties. Such a scale might be required to
cut-off large momentum (ultraviolet) divergences of momentum integrals
over virtual excitations. Motivated by the structure of the Bose gas
problem in Section 11.3, we look for ultraviolet divergences in the two
spin-wave scattering amplitude at T = 0 (we need not consider T > 0
explicitly as the finite T corrections all involve Bose functions which fall
off exponentially at large momentum). For the Bose gas problem we
found ultraviolet divergences for d ≥ 2, and this identified d = 2 as the
upper critical dimension below which the universality of the continuum
theory was robust. We will compute the on-shell T matrix of two spin
waves coming in with momenta ~k1 and ~k2, and scattering into spin waves
with momenta ~k1 + ~q and ~k2 − ~q. Conservation of energy requires

J(~k1) + J(~k2) = J(~k1 + ~q) + J(~k2 − ~q). (13.41)
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To zeroth order in 1/S, the Hamiltonian (13.36) gives us the bare T -
matrix element v[J(~k1 + ~q) + J(~k2 − ~q) − J(~k1 + ~q − ~k2) − J(~q)]. The
first order in 1/S correction to the T -matrix is given by the first dia-
gram in Fig 11.3, and by standard quantum mechanical perturbation
theory [521], it evaluates to (this expression is the analog of (11.44))

v2

S

∫

ddq1

(2π)d [J(~k1 + ~q1) + J(~k2 − ~q1)− J(~k1 + ~q1 − ~k2)− J(~q1)]

×[J(~k1 + ~q) + J(~k2 − ~q)− J(~k1 + ~q − ~k2 + ~q1)− J(~q − ~q1)]

J(~k1) + J(~k2)− J(~k1 + ~q1)− J(~k2 − ~q1)
. (13.42)

To understand the implications of this result for the continuum theory
(13.32) we allow the external momenta ~k1, ~k2, ~q to become small, but
for the moment allow the internal momentum ~q1 to be large. Then there
is a term from (13.42) which is quadratic in external momenta; however
this can be seen to vanish after use of the identity

∫

ddq1e−i~q1·~xm = 0
(valid because all the ~xm 6= 0)–it is clear that the lattice regularization
is crucial in obtaining this result, and it turns out that it is mainly this
step which cannot be deduced from the continuum theory (13.32). The
next term is quartic in external momenta, and it simplifies to

v2

S

∫

ddq1

(2π)d

[

∑

m Jme−i~q1·~xm(~k1 · ~xm)(~k2 · ~xm)
]2

∑

m Jm(1− e−i~q1·~xm)
; (13.43)

We take the small ~q1 limit of (13.43) and obtain the result for the cor-
rection to the two spin-wave T -matrix [307] at low momenta:

4ρs

M3
0

(~k1 · ~k2)2
∫

ddq1

(2π)d

1
q2
1
; (13.44)

this expression involves only couplings present in LF in (13.32) and so
could also have been obtained directly from the continuum quantum
theory after ignoring ultraviolet divergences in terms lower order in the
external momenta. The integral in (13.44) is dominated by the ultravi-
olet for d > 2 and so we have to return to the lattice expression (13.43).
However it is ultraviolet finite for d < 2, and the continuum theory is in-
sensitive to lattice perturbations; the infrared divergence will of course
be cutoff by the external momenta, which have not been kept in the
propagator in the above approximation. So as in the case of the dilute
Bose gas in Section 11.3, we see the emergence of d = 2 as a critical
dimension.

It is very useful to interpret (13.44) in renormalization group sense.
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If we imagine we are integrating out virtual spin wave fluctuations be-
tween momentum scales Λ and Λe−` (Λ is a momentum cutoff), then
these become the boundaries of the integration in (13.44), and the re-
sult generates a four gradient term to LF . The generated term cannot
be quadratic in N, as that would modify the exactly known spin wave
dispersion. The simplest terms which modify only the two spin-wave
scattering amplitude are quartic also in N; by noting the momentum
dependence on (13.44), using the low momentum limit of the energy
conservation equation (13.41), and imposing the restrictions of rotation
invariance of rotational invariance, a simple analysis shows that the gen-
erated term is [429]

LF → LF + λ(∇aNα∇aNα∇bNβ∇bNβ − 2∇aNα∇bNα∇aNβ∇bNβ),
(13.45)

where λ is a new coupling constant of the continuum theory. Converting
from scattering amplitudes of b to N quanta using (13.38), (13.45) and
(13.44) imply the flow equation

dλ
d`

= (d− 2)λ +
ρs

M0
. (13.46)

As with (11.47), this flow equation is believed to be exact. So for d <
2, λ is attracted to a universal critical value, and the parameters ρs

and M0 completely determine the low energy physics of the continuum
theory (13.32). On the other hand, λ becomes large at long distances for
d ≥ 2, and its bare value is important: it is responsible for temperature
dependent corrections to the magnetization computed by Dyson [140].

For d < 2 these considerations imply that we may write down universal
scaling forms for the continuum ferromagnet (13.32). The usual scaling
and dimensional considerations imply for the free energy density [429]

F � TM0Φfm

(

ρs

M (d−2)/d
0 T

,
H
T

)

, (13.47)

where Φfm is a universal function; corresponding results follow for ob-
servables which are derivatives of the free energy. Actually, our argu-
ments for universality have really been made in an expansion in pow-
ers of 1/S, and so the result (13.47) only holds as an asymptotic ex-
pansion in inverse powers of ρs/(M

(d−2)/d
0 T ), and this represented by

the symbol �. Indeed, (13.47) is expected to be true to all orders in
ρs/(M

(d−2)/d
0 T ), but this is not the same thing as being exactly true.

Lattice effects become significant when T ∼ ρs/M
(d−2)/d
0 , for then the
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wavelength of the characteristic spin-wave is of order M1/d
0 , which is of

order a lattice spacing; these effects appear as essential singularities and
destroy strict equality for (13.47). Some short distance regularization
at the scale M1/d

0 is always required for any consistent theory of quan-
tum ferromagnets [217]. Similar considerations apply for expansions in
1/N [27, 31, 524], and for ferromagnets with more complicated replica
and supersymmetries [208, 209].

Finally, we briefly note that effective classical models for thermal fluc-
tuations in ferromagnets can be derived for T � ρs/M

(d−2)/d
0 , precisely

as was done for the rotor models in Part 2. In d = 1 we would get the
effective theory (2.68) with ξ = ρs/T [517], while in d = 2 we would
obtain the model (7.8) [303] with a ΛMS which can be computed from
(13.36) by methods parallel to those in Section 7.1.1.

13.3 Antiferromagnets

This section will consider models HS in (13.1) with all Jij < 0. Classi-
cally (i.e., in the limit S →∞), such models will minimize their energies
by making nearest neighbor spins acquire an anti-parallel orientation.
On bi-partite lattices (i.e., lattices which can be split into two equiva-
lent sublattices so that all nearest neighbors of any site on one sublattice
belong to the other sublattice) with nearest neighbor interactions, the
anti-parallel constraint is easy to satisfy: the spins simply point in op-
posite directions on the two sublattices. Notice that any pair of spins is
either parallel or antiparallel, and so such an ordering is collinear . We
will begin by exclusively considering quantum antiferromagnets whose
classical ground state is collinear in Section 13.3.1: such an ordering
is expected to be present at least over short distances in the quantum
case. Non-collinear ordering arises on non-bipartite lattices or even on
bipartite lattices with further neighbor interactions: such antiferromag-
nets are classically frustrated and possess ground states in which the
spins are coplanar (as on the triangular lattice with nearest neighbor
interactions), or in some rare cases, can even form structures which are
three-dimensional in spin space. We will consider the non-collinear cases
in Section 13.3.2.

13.3.1 Collinear order

For definiteness, we will begin by considering antiferromagnets on a d-
dimensional hypercubic lattice with only a nearest neighbor exchange
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Jij = −J < 0; other collinear antiferromagnets can be treated in a simi-
lar manner. In the classical limit of large S, as noted above, the ground
state has spins oriented in opposite directions on the two sublattices:
this is the so-called Néel-ordered state. For smaller S this orientation
should survive at least over a few lattice spacings, suggesting that a
continuum description of the quantum antiferromagnet may be possi-
ble [218, 3, 4]. We therefore begin by introducing a parameterization of
the unit length spin field Ni(τ) which captures this local ordering. We
write

Ni(x, τ) = λin(xi, τ))
√

1− (ad/S)2L2(xi, τ)+(ad/S)L(xi, τ), (13.48)

where λi equals ±1 on the two sublattices and a is the lattice spac-
ing. The fields n(xi) and L(xi) parameterize the staggered and uniform
components of the Heisenberg spins. The prefactor of ad/S has been
associated with L so that the spatial integral of L over any region is
precisely the total magnetization inside it. Both fields are assumed to
be slowly varying on the scale of a lattice spacing. This is certainly true
as S →∞, and it is hoped that this assumption remains valid down to
S = 1/2. So we will treat n(x, τ) and L(x, τ) as continuum quantum
fields which can be expanded in spatial gradients over separations of
order a. These continuum fields satisfy the constraints

n2 = 1 , n · L = 0, (13.49)

which combined with (13.48) imply that N2
i = 1 is obeyed. Further,

spins on nearby sites are expected to be predominantly antiparallel, so
the uniform component L should be small; more precisely we have

L2 � S2a−2d. (13.50)

The field n(x, τ) clearly plays the role of the order parameter asso-
ciated with Néel ordering. Note that although n varies slowly on the
scale of a lattice spacing, values of n on well separated points can be
considerably different, leaving open the possibility of a quantum param-
agnetic phase with no magnetic long range order. Magnetic Néel order
requires that the time-average orientation of n(x, τ) is correlated across
the sample: whether this happens will be determined by the effective
action for n fluctuations, which we will now derive.

We insert the decomposition (13.48) for Ni into HS(SNi(τ)) and
expand the result in gradients, and in powers of L. This yields

HS =
∫

ddx
[

JS2a2−d

2
(∇xn)2 + dJadL2 −H · L

]
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≡ 1
2

∫

ddx
[

Nc
g

(∇xn)2 +
cg
N

L2 −H · L
]

. (13.51)

In the second equation we have introduced the couplings c = 2
√

dJSa
and g = (N/S)2

√
dad−1: the notation is suggestive and anticipates our

eventual mapping of the present model to the rotor models in (3.12) and
(5.16). In the present case N = 3, but we introduced a general factor of
N for notational consistency with Part 2. If we had used a different form
for HS with modified short-range exchange interactions, the continuum
limit of H would have been the same but with new values of g and c.

To complete the expression for the coherent state path-integral of the
antiferromagnet in the continuum limit, we also need the expression for
SB in terms of n,L. We insert (13.48) into the (13.31) and retain terms
up to linear order in L: this yields

SB = S ′B + i
∫

ddx
∫ 1/T

0
dτ

∫ 1

0
du

[

n ·
(

∂n
∂u

× ∂L
∂τ

)

+ +n ·
(

∂L
∂u

× ∂n
∂τ

)

+ L ·
(

∂n
∂u

× ∂n
∂τ

)]

(13.52)

where

S ′B = iS
∑

i

λi

∫ 1/T

0
dτ

∫ 1

0
du n(xi) ·

(

∂n(xi)
∂u

× ∂n(xi)
∂τ

)

(13.53)

The evaluation of S ′B in the continuum limit is a rather subtle matter,
as the leading λi in (13.53) shows that it is the sum of terms which
oscillate in sign on the two sublattices. The naive assumption would be
that these oscillating terms just cancel out, and therefore S ′B = 0 in the
continuum limit. For some purposes this assumption is in fact adequate,
but there are a number of important cases where S ′B is non-vanishing
and is crucial for a complete understanding of the physics. We will
postpone a careful evaluation of S ′B to the following subsections where
we will consider its consequences in d = 1 and d = 2 separately. Let us
first simplify the other terms in (13.52) a bit further.

We use the fact that the vectors L, ∂n/∂τ , ∂n/∂u are all perpendicular
to n; hence, they lie in a plane and have a vanishing triple product:

L ·
(

∂n
∂u

× ∂n
∂τ

)

= 0. (13.54)

Using (13.54) in (13.52) we find

SB = S ′B + i
∫

ddx
∫ 1/T

0
dτ

∫ 1

0
du

[

∂
∂τ

(

n ·
(

∂n
∂u

× L
))
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+
∂
∂u

(

n ·
(

L× ∂n
∂τ

))]

(13.55)

The total τ derivative yields 0 after using the periodicity of the fields
in τ , while the total u derivative yields a surface contribution at u = 1.
This gives finally

SB = S ′B − i
∫

ddx
∫ 1/T

0
dτL ·

(

n× ∂n
∂τ

)

(13.56)

Putting together (13.51) and (13.56) in (13.17) we obtain the following
path-integral for the partition function of the antiferromagnet

Z =
∫

DnDLδ(n2 − 1)δ(L · n) exp(−S ′B − S ′n)

S ′n =
1
2

∫ 1/T

0
dτ

∫

ddx
[

Nc
g

(∇xn)2

+
cg
N

L2 − 2iL ·
(

n× ∂n
∂τ

− iH
)]

(13.57)

The functional integral over L can be carried out explicitly (after im-
posing the constraint L · n = 0, e.g., by adding a term w(L · n)2 to
the Hamiltonian, and taking the limit w → ∞ after carrying out the
integral) and we obtain the final result of this section [218, 3, 4]

Z =
∫

Dnδ(n2 − 1) exp(−S ′B − Sn)

Sn =
N
2cg

∫ 1/T

0
dτ

∫

ddx
[

c2(∇xn)2 + (∂τn− iH× n)2
]

. (13.58)

Note that Sn is identical to the rotor model action studied in (5.16).
However, before we can carry over all the results of Part 2 here, we have
to examine the consequences of S ′B , and this will be done separately in
the following two subsections in dimensions d = 1 and d = 2 respectively.

13.3.1.1 d = 1

It is simpler to evaluate S′B in d = 1 by a geometric argument, rather
than working directly with the formal expression (13.53). We have al-
ready argued below (13.31), that the contribution of each site i in (13.53)
equals λiS times the area on the unit sphere contained inside the close
loop defined by the periodic time evolution of n(xi, τ): we define this
area to equal Ai. Let us examine the contribution of two neighboring
sites, i and i + 1, to S ′B . The weight λi will have opposite signs on
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these sites, and so the net contribution will be the difference of the ar-
eas. We can further assume that the order parameter field n(xi) only
varies slightly between i and i + 1: under these conditions, and using
the definition of an area element on the sphere, we have (after defining
∆n(xi) = n(xi+1)− n(xi))

Ai+1 −Ai ≈
∫ 1/T

0
dτn(xi) ·

(

∆n(xi)×
∂n(xi)

∂τ

)

≈ a
∫

dτn(xi) ·
(

∂n(xi)
∂xi

× ∂n(xi)
∂τ

)

(13.59)

The summation in (13.53) can be carried out over pairs of sites: all
terms are of the same sign and therefore the summation can be easily
converted into an integral. In this manner we obtain our final result for
S ′B in d = 1 [218, 3, 4]:

S ′B = i
θ
4π

∫

dx
∫ 1/T

0
dτn ·

(

∂n
∂x

× ∂n
∂τ

)

(13.60)

where θ = 2πS. Some comments and/or cautions about the derivation
leading up to (13.60) are in order. The arbitrary way in which the sites in
(13.59) were paired suggests that the answer is sensitive to the boundary
conditions, and upon whether there are an even or odd number of sites in
the system. There are indeed interesting boundary effects in the physics
of antiferromagnetic spin chains [10, 11, 212], but we will not discuss
them here. The overall sign of the answer in (13.60) also depends upon
the sign of λi, but as we will see shortly, the physics is does not depend
upon the sign of θ. Finally the result (13.60) can also be derived by
analytic computations from (13.53): we can write the oscillating sum
as half the spatial integral of the spatial derivative of the contribution
of each site (by the same arguments leading to (13.59))– then using the
fact that the triple product of ∂n/∂x, ∂n/∂τ and ∂n/∂u must vanish
we can obtain (13.60) using manipulations similar to those leading to
(13.56).

In its present form, S ′B is the so-called topological θ-term, familiar in
the particle theory literature. The co-efficient of θ in (13.60) computes a
simple topological invariant which, for periodic boundary conditions in
space, is always an integer. If we consider the field configuration n(x, τ)
as a map from two-dimensional spacetime, with periodic boundary con-
ditions, to the surface of a unit sphere, then the topological invariant
is simply the number of times spacetime has been wrapped around the
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sphere. It is useful to visualize the simplest configuration of n(x, τ) cor-
responding to the topological invariant of unity. Let the unit sphere be
placed on an elastic sheet, representing space time. Now fold up the
sheet to cover the sphere once: the orientation of n at (x, τ) is given by
the point on the sphere adjacent to the point (x, τ) on the sheet. Such a
spacetime configuration represents a tunneling event: deep in the past,
or far in the future, n points to the north pole; however at some time, in
a certain compact region of space, the n orientation tunnels all the way
to the vicinity of the south pole and back; configurations with larger
topologically invariants can be similarly interpreted. The result (13.23)
implies that each such tunneling event yields a factor of eiθ = (−1)2S

to the path integral for the partition function. This is the only con-
sequence of the S′B term. Of course, the terms in Sn give the usual
positive weights (in imaginary time) also present for the rotor model.
Notice that as θ is always an integral multiple of π, the sign of θ does
not change the value of eiθ.

We are now able to state our principal conclusions, first reached by
Haldane. For integer S, the phase factor with topologically non-trivial
tunneling events is simply unity, and the theory reduces to the rotor
model action Sn, which has been studied in some detail in Chapters 5
and 6. On the other hand, for half-integer S, there are clearly substantial
differences: the present formulation of the theory in (13.58) is however
not a particularly convenient way of exploring the physics—it does tell us
that the low energy properties of all the half-integer cases are the same,
and we will explore the S = 1/2 case in the Chapter 14 by alternative
methods.

We anticipate these results by sketching the renormalization group
flows for the dimensionless coupling g for the cases θ = 0 and θ = π in
Fig 13.1. For the case of integer S, where θ = 0, the flow just represents
(6.8): all values of g flow eventually to strong coupling, and as we saw in
Chapter 6, there is always an energy gap above the ground state. For the
case θ = π, the perturbative flow at small g is the same as before, as it is
independent of θ. However, more sophisticated considerations [9, 5, 579,
152] to be discussed in Chapter 14, show that there is a fixed point at
g = gc, of order unity, which attracts all couplings with g < gc. We will
also see that the ground state is then a so-called ‘Tomonaga-Luttinger
liquid’ and has gapless, linearly dispersing excitations. For g > gc (and
θ = π) the flow is again to strong coupling, and the ground state will
be seen to be a ‘spin-Peierls’ state with an energy gap to all excitations
(such a state will be described shortly below for d = 2).
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θ = 0

θ = π

g0

g
gc0 Tomonaga

Luttinger liquid
spin-Peierls

Quantum paramagnet with an energy gap

Fig. 13.1. Renormalization group flows for the dimensionless coupling g in
(13.58) for d = 1 with S ′B given by (13.60). For θ = 0, the flow is given by
(6.8), and there is always an energy gap above the ground state. For θ = π,
there is a fixed point g = gc, and near it the flow is dg/d` ∝ (g − gc)2.

We conclude by reviewing a bit more explicitly the implications of
the results of Chapters 5 and 6 for antiferromagnetic chains of integer
spins. The mapping between correlation functions of the two theories is
provided by (13.48). From this, we see that the correlator χu defined
in (6.1) also specifies the fluctuations of the magnetization of the spin
chain: at wavevector k this is a correlation function of the Ŝi spins near
the wavevector q = k. Further the correlations of the order parame-
ter n given by χ in (5.2) at wavevector k, map onto correlations of Ŝi

at wavevector q = k + Q, where Q = π/a is the ordering wavevector
of the classical antiferromagnetic chain; all of the results for the rotor
correlation functions in Chapter 6 can therefore be applied to integer
spin antiferromagnets. We saw in Chapter 6 that the d = 1, N = 3
quantum rotor model always had a gap: the same is therefore true of
integer spin antiferromagnetic chains–this is the so-called Haldane gap
(we will see in the following chapter that half-integer spin chains can be
gapless). The T = 0 spectrum of the integer spin antiferromagnets is
qualitatively the same as that discussed in the strong coupling expansion
in Section 5.1.1: the lowest excited states are a triplet of S = 1 parti-
cles with infinite lifetime: for the spin chain, this particle appears as a
pole in the Ŝ-Ŝ correlation function which has its minimum at q = π/a.
Higher excited states consist of multi-particle continua of this triplet of
particles.
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13.3.1.2 d = 2

We will consider the properties of the theory (13.58) on the d = 2 square
lattice.

This requires evaluation of the oscillating sum in S ′B in (13.53). Using
techniques very similar to those used in d = 1, it is not difficult to
establish an important result: S ′B vanishes for all smooth spacetime
configurations of n(x, τ). Simply evaluate (13.53) row by row on the
square lattice. The sum on each row is precisely the same as that carried
out in d = 1, and equals (13.60) on each row, up to an overall sign.
Moreover, because of the structure of the sublattices, this overall sign
will oscillate as we move from row to row. Now, note that the arguments
in Section 13.3.1.1 imply that the contribution of each row is quantized
in integer multiples of θ. If, as we are assuming, n(x, τ) is smoothly
varying, the contribution of the rows must also change smoothly as we
move from row to row. This is only compatible with the quantization if
each row yields precisely the same integer. Hence their oscillating sum
appearing in S ′B vanishes.

However, this is not the end of the story. It turns out there are im-
portant singular configurations of n(x, τ) that do yield a non-vanishing
contribution to S ′B . We postpone discussion of the consequences of these
contributions until later in this subsection; first, we discuss the implica-
tion of the results of Part 2 for square lattice antiferromagnets, assuming
that S ′B vanishes identically for all S.

The properties of the N = 3, d = 2 quantum rotor model were first
discussed using the large N expansion in Chapter 5), and then in some
more detail in Chapters 7, 8, and 9. The most significant feature of these
results was the existence of a quantum phase transition at a critical value
g = gc, separating a magnetically ordered ground state from a quantum
paramagnetic ground state.

The magnetically ordered state of the rotor model corresponds to a
“Néel” ground state of the antiferromagnet: this is a state in which the
spin-rotation invariance of the Hamiltonian (13.1) is broken because of
a non-zero, expectation value of the spin operator, which takes opposite
signs on the two sublattices: from (13.48) we see

〈

Ŝi

〉

∝ λiS 〈n(xi)〉 = SN0ez, (13.61)

where ez is a unit vector pointing the ez direction (say) of spin space.
Note that there was no state with such a broken symmetry in d = 1. The
missing proportionality constant in (13.61) depends upon microscopic
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details, and is not of any importance: in Part 2 we expressed physical
properties of the rotor model on the ordered side in terms of N0: these
can be applied unchanged to the antiferromagnet simply by replacing N0

by the actual expectation value of λi

〈

Ŝi

〉

. As in d = 1, correlators of L

at wavevector ~k map onto correlators of Ŝ at ~q = ~k, while correlators of n
at ~k map onto ~q = ~k + ~Q, with ~Q = (π/a, π/a) the ordering wavevector.
As was the case for the rotor model, the broken rotational invariance is
restored at any non-zero temperature, and the antiferromagnet instead
acquires an exponentially large correlation length given by (7.10) and
(7.20). In these results, we take for the value of ρs the actual T = 0 spin
stiffness of the quantum antiferromagnet. The non-zero temperature
static and dynamic correlations are described by (7.1), with the function
Φ− as described in Chapter 7.

Numerical studies of the square lattice antiferromagnets with near-
est neighbor antiferromagnets have shown fairly conclusively that the
ground state has Néel order for all values of S including S = 1/2 [431,
253]. Thus it appears that all such antiferromagnets map onto the rotor
model with g < gc. For S = 1/2 it has been argued [102, 103] that
the value of g is sufficiently close to gc so that the universal crossover
between the low and high T limits of the continuum rotor field theory
shown in Fig 5.2 can be observed with increasing temperature, as we
have discussed in Section 5.5. For larger S, the antiferromagnets appear
to go directly from the universal low T region on the ordered side of
Fig 5.2 to a non-universal lattice high T region [144].

Clearly, it would also be physically interesting to find collinear antifer-
romagnets which map onto rotor models with g > gc, and therefore do
not have Néel order in their ground state. A convenient choice, studied
extensively in the literature, has been the square lattice antiferromag-
net with first and second neighbor antiferromagnetic exchanges, labeled
J1 and J2 respectively. The classical limit of this model has collinear
Néel order for all J2/J1, and so the quantum fluctuations should con-
tinue to be described by (13.58). Numerical and series expansion stud-
ies [91, 97, 119, 158, 186, 185, 375, 413, 480, 481, 329] for S = 1/2 have
shown that this model loses the order (13.61) around J2/J1 = Jc ≈ 0.4 .
So we can identify the point J2/J1 = Jc with the quantum critical point
g = gc of the rotor model. The quantum paramagnetic state of the rotor
model should therefore yield the characteristics of the antiferromagnet
with J2/J1 just above Jc: spin rotation invariance is restored, and there
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is a gap to all excitations. Nonzero temperature properties are described
by (7.3) with ∆+ the actual energy gap of the antiferromagnet.

One important property of the quantum paramagnetic state of the
rotor model deserves special mention, as it has crucial implications for
the corresponding antiferromagnet. Recall that the excited states of the
rotor model were described in terms of a N -fold degenerate quasiparti-
cle and its multiparticle continua. This lead to the spectrum shown in
Fig 4.1 and discussed in the strong-coupling expansion of Section 5.1.1:
there is an infinitely sharp delta function in Imχ(k, ω) at the position of
the quasi-particle energy ω = εk. For N = 3, this is clearly a quasipar-
ticle with total angular momentum S = 1; so the dominant excitation
of this phase of quantum antiferromagnet is a S = 1 particle with its
energy minimum at ~q = ~Q, and this will lead to a delta function in the
dynamic spin susceptibility at wavevectors near ~Q. Note that this S = 1
particle exists for all values of the spin S of the individual spins of the
underlying antiferromagnet. This gapped S = 1 excitation should also
be contrasted with the spin-wave excitations of the ordered Néel state
which are gapless, two-fold degenerate, and do not carry definite total
spin (although they are eigenstates of total Ŝz, with eigenvalues ±1 for
a Néel state polarized in the z direction).

We conclude this subsection by returning to consideration of S ′B , the
consequences of which have been ignored so far. A full computation is
quite technical and lengthy, and we will be satisfied here by highlighting
some essential features, and refer the reader to the original literature
for further details [426, 427]. Before outlining the calculation, let us de-
scribe the consequences of S ′B in simple physical terms. There are two
important results that emerge:
(i) All of the results above on the nature of the quantum critical point,
and on the crossovers in its vicinity on both the Néel ordered and quan-
tum paramagnetic side remain unchanged [381, 469, 103].
(ii) On certain lattices, and for certain values of S, a new spontaneously
broken lattice symmetry emerges everywhere in the quantum param-
agnet [426] (spin rotation invariance remains unbroken in the quantum
paramagnet, and there is no change in the structure of the Néel state).
This broken symmetry is associated with the appearance of spin-Peierls
order, which we will describe momentarily.

It is believed that the spin-Peierls order parameter does not play an
essential role in the quantum critical point noted in (i), and that its
fluctuations only become important at sufficiently low energies and long
distances so as not to modify the crossovers of the quantum rotor model
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2S (mod 4) = 1,3

2S (mod 4) = 0

or

2S (mod 4) = 2

Fig. 13.2. Quantum paramagnetic ground states of the weakly frustrated
square lattice antiferromagnet as a function of 2S(mod 4). The values of
Pij on the nearest neighbor links are schematically indicated by the different
kinds of lines on the links; those on thick lines are larger than those on the
thin lines, and weakest are on the empty links.

computed in Part 2. To describe the spin-Peierls order, consider the
quantity

Pij =
〈

Ŝi · Ŝj

〉

. (13.62)

Note that Pij is a scalar under spin rotations, and so a non-zero value
does not break a spin rotation symmetry. The Hamiltonian HS in (13.1)
is also invariant under a group of lattice symmetries (involving lattice
rotation, reflection and translations), and the values of the Pij for all
pairs sites i, j should, in general, also respect these symmetries. A spin-
Peierls state is one in which the values of Pij break a lattice symmetry;
this broken symmetry will be observable experimentally in lattice distor-
tions whose pattern will reflect that in Pij—the distortion arise from the
coupling between the spin exchange energy and phonon displacements
which have not been included in the Hamiltonians we are considering
here. For the case of a square lattice with first and second neighbor in-
teractions, the quantum paramagnet with J2/J1 just above Jc possesses
spin-Peierls order of the type shown in Fig 13.2. For S = 1/2, like values
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of Pij line up in columns or plaquettes which clearly break symmetry
of rotation by 90 degrees about each lattice point; the ground state is
four-fold degenerate, and a similar spin-Peierls ordering is expected for
all half-integral S. If it was possible to obtain a quantum paramagnet
for S = 1 (or other odd integer S) by a continuous transition from a Néel
state, then it is predicted to have a two-fold degenerate ground state,
with the Pij on the horizontal bonds differing from those on the vertical
bonds (see Fig 13.2). Finally, only for even integer S, is the paramagnetic
state non-degenerate and breaks no lattice symmetry [10, 11]. Related
results exist for quantum paramagnetic states accessed by a continuous
transition from other collinear states on the square or other lattices. In
all cases there are special values of S for which the quantum paramag-
net is non-degenerate and has no spin-Peierls order; these special values
extend to all values of S only for lattices with small symmetry groups.

Let us , finally, consider the complete evaluation of S ′B , and discuss its
relationship to the spin-Peierls ordering just described. We will consider
the case of the square lattice with nearest neighbor exchanges, and pos-
sible further neighbor exchanges which do not destroy the collinear, two
sublattice ordering of the classical Néel state. We have already argued
at the beginning of this subsection that S ′B vanishes for smooth space-
time configurations of n(x, τ). We should therefore consider singular
configurations, and for the case of 3-component vector order parameter,
the only topologically stable possibility is the so-called ‘hedgehog’ sin-
gularity [219]. This is a singularity occurring at point in spacetime and
corresponds to a tunneling event in which the ‘Skyrmion number’, Y , of
a given time slice of n(x, t) changes. The latter is defined by the spatial
integral

Y (τ) =
1
4π

∫

d2xn ·
(

∂n
∂x1

× ∂n
∂x2

)

. (13.63)

Compare (13.63) to the topological θ term in d = 1 of (13.60): the two
expressions are identical except that we now have an integral over space
only, while earlier we had a spacetime integral. By the same arguments
as made below (13.60), Y is an integer for periodic boundary condi-
tions in space. Let us describe a hedgehog tunneling event in which Y
changes from 1 to 0, in a pictorial language used by Haldane [219]. As
below (13.60) we can represent a configuration with Y = 1 as an elas-
tic sheet (now representing space, rather than spacetime) wrapped on
a sphere. In reality, the spins lie on a lattice, and so the elastic sheet
has a fine square mesh on it. Now imagine a tunneling event in which
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one square on the mesh expands and allows the sphere to pass through;
the resulting configuration will have its Y changed to 0. It remains to
evaluate the summation in (13.53) for the evolution of n(x, τ) just de-
scribed. Actually, we cannot consider hedgehog tunneling events singly,
as then the periodic boundary conditions in τ , required for a meaning-
ful evaluation of (13.53), will not be satisfied. We therefore consider a
sequence of events at well separated times, centered at the midpoints
of plaquettes labeled a, and involving the change in Skyrmion number
∆Ya such that

∑

a ∆Ya = 0. These events are to be considered as saddle
points in the evaluation of the coherent state path integral of the lattice
antiferromagnet: the configuration of n(x, τ) at the saddle point mini-
mizes the action, and, provided the hedgehogs are well separated, can
reasonably be expected to have four-fold rotational symmetry about the
plaquette a around which the tunneling occurs. As at the beginning of
Section 13.3.1.1, let us write S ′B as

S ′B = S
∑

i

λiAi, (13.64)

where Ai is the contribution of site i. Now we can evaluate Ai by
following the area swept out on the unit sphere by each site on the
elastic sheet during the tunneling event: from this it is simple to see
the following important intermediate result—the lattice configuration of
Ai has a vortex of strength 4π∆Ya around plaquette a. As the sum in
(13.64) cannot change from smooth changes in the lattice configuration
of Ai, we need only take a representative configuration which has the
proper vortex singularities; for instance, we can take

Ai = 2
∑

a

∆Ya arctan
(

xi1 −Xa1

xi2 −Xa2

)

, (13.65)

where xi1,2 are the components of the lattice points xi, and Xa is the
position of the center of plaquette a. We have to insert (13.65) into
(13.64) and evaluate the sum over i. This is a mathematical step, and
the details are given by Haldane [219]: it is not difficult to see that the
result takes the form

S ′B = iπS
∑

a

∆Yaζa. (13.66)

The values of the ζa depend upon the co-ordinates of plaquette a; a
number of choices for these values are possible, but e−S

′
B remains the

same provided
∑

a ∆Ya = 0. A particular choice is ζa = 0, 1, 2, 3 if the
co-ordinates Xa are (even,even), (even,odd), (odd,odd), (odd,even).



13.3 Antiferromagnets 349

Now a last step remains: we have to sum over all possible hedgehog
events, while including the phase factors arising from eS

′
B with each such

event. Refs [426, 427] showed how such a summation could be carried
out systematically in a certain large N expansion: describing this here
would take us too far afield, and we refer the reader to Ref [427] for fairly
explicit details. The hedgehog events are completely suppressed by the
action arising from Sn for g < gc, and therefore have no significant
consequence for the Néel phase. In contrast, for g > gc, these events
proliferate, and it was shown in the quoted papers how the Berry phases
in (13.66) necessarily led to a spontaneously broken symmetry and the
appearance of the spin-Peierls order that has already been described.
Note that for S even integer, (13.66) is always an integral multiple of
2πi, and so SB has no effect—the properties in this case are therefore
the same as the rotor model, and there is no spin-Peierls order [10].

The reader may object that the above arguments for the ubiquity of
spin-Peierls order in collinear S = 1/2 antiferromagnets rely on theo-
ries obtained in a semiclassical large S limit, and could possibly break
down at small S. This issue has been addressed by studies designed
to directly study S = 1/2 quantum antiferromagnets either by phe-
nomenological [299, 436] or large N approaches [425]. Neighboring spins
are assumed to form singlet bonds in pairs, and then the low-lying, spin-
singlet excitations arise from resonance between different arrangements
of the bonds (the ‘resonating valence bond’ picture [22, 42]). From both
approaches, the so-called quantum dimer model [436] appears as an ef-
fective Hamiltonian for the low energy spin-singlet states. This latter
model can be studied quite reliably by a series of duality transforma-
tions [582, 427, 175, 463] and an ‘instanton’ gas model emerges which
is, quite remarkably, equivalent to the hedgehog gas model obtained
above from a semiclassical perspective. In particular, each instanton
has a Berry phase which is given precisely by (13.66). In this con-
text, the phases in (13.66) are a consequence of the constraint that each
S = 1/2 spin can form a valence bond with exactly one of its neigh-
bors, whereas, here we obtained (13.66) from a very different coherent
state path integral. The identity of these two distinct approaches rein-
forces our confidence in the correctness of (13.66), and to the presence
of spin-Peierls order for S = 1/2, which follows quite robustly [427] from
it. The quantum dimer model has also been examined in exact diago-
nalization studies, and again the evidence for spin-Peierls order is quite
convincing [330].
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13.3.2 Non-collinear ordering and deconfined spinons

We turn to consideration of quantum antiferromagnets which have more
complicated ordered magnetic states than those described so far. We
will consider models (13.1) on non-bipartite lattices, or with further
neighbor interactions so that simple collinear states are not likely to be
the ground states. Throughout, we will only be considering states which
do not have a macroscopic magnetic moment, i.e., the expectation value
of

∑

i Ŝi in any low-lying state is not of the order of the number of
sites in the system. Such states are expected to be preferred in models
with all Jij < 0. Also we will only consider the case of d = 2 here,
as d = 1 antiferromagnets are better treated by the methods of the
following chapter.

The simplest, and most thoroughly studied example of a non-collinear
antiferromagnet is the triangular lattice with a nearest-neighbor antifer-
romagnetic exchange. In the limit S →∞, the classical ground state is
easy to work out: it is characterized by the expectation value

〈

Ŝi

〉

= S
(

n1 cos( ~Q · ~xi) + n2 sin( ~Q · ~xi)
)

, (13.67)

where the ordering wavevector ~Q = (4π/a)(1/3, 1/
√

3) on a triangu-
lar lattice with (a, 0, 0) one of the vectors connecting nearest-neighbor
lattice sites, and n1,2 are arbitrary vectors in spin space satisfying

n2
1 = n2

2 = 1 ; n1 · n2 = 0 (13.68)

These constraints define two orthogonal unit vectors, and each such pair
defines a different classical ground state. This is a key difference from
the collinear states in Section 13.3.1.2, where only a single unit vector
was sufficient to characterize the ground state, as in (13.61). Alterna-
tively stated, the order parameter characterizing the broken symmetry
in the classical ground state is a pair of orthogonal vectors [222, 136].
One possible ground state is shown in Fig 13.3, for the case where n1,
n2 lie in the plane of the lattice. Other antiferromagnets with coplanar
ordering in their classical ground states can be treated in an essentially
identical manner. Another important example studied in the literature
is the square lattice antiferromagnet with first, second, and third neigh-
bor exchanges (the J1-J2-J3 model). For a range of parameters this
model has an incommensurate spiral ground state: such an ordering is
described as in (13.67), but the wavevector ~Q is no longer pinned at
a precise value, and varies continuously as the values of exchange con-
stants are changed. As we move from site to site in the direction ~Q the
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Fig. 13.3. Magnetically ordered ground state on the triangular lattice. The
spins have been taken to lie in the plane of the triangular lattice, but this need
not generally be the case.

spin orientation rotates by some irrational angle in the plane defined by
n1 and n2. Finally antiferromagnets in which the spin arrangement is
not even coplanar but genuinely three-dimensional can be treated using
similar methods, but will not be considered here.

Instead of working with vectors n1, n2 which satisfy the constraints
(13.68), it is convenient to introduce an alternative parameterization
of the space of ground states. It takes 6 real numbers to specify the
two vectors n1, n2, and the 3 constraints (13.68) reduce the degrees of
freedom to 3. We can use these 3 real numbers to introduce two complex
numbers z1, z2 subject to the single constraint

|z1|2 + |z2|2 = 1. (13.69)

We relate these numbers to n1, n2 by [25, 104]

n2α + in1α =
2

∑

a,b,c=1

εaczcσα
abzb, (13.70)

where α = x, y, z, σα are the Pauli matrices, and εab is the second-
rank antisymmetric tensor ε12 = −ε21 = 1, ε11 = ε22 = 0. The reader
can check that the parameterization (13.70) for n1,2 automatically sat-
isfies (13.68) provided the single constraint (13.69) holds. So we have
succeeded in reducing the number of constraints down from 3 to 1. How-
ever the mapping from z1,2 to n1,2 is not one-to-one but two-to-one; the
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two-fold redundancy is apparent from (13.70) as za and −za correspond
to precisely the same n1,2, and therefore the same spin configuration;
this redundancy will be crucial to our subsequent considerations. To
describe it further, let us decompose za into its real and imaginary parts

z1 = m1 + im2 ; z2 = m3 + im4. (13.71)

Then the order parameter becomes a 4-component, real vector mρ (ρ =
1, 2, 3, 4) and (13.69) translates into the constraint that this vector has
unit length (of course, there is no reason the effective action for mρ

should be invariant under O(4) rotations in this space–the underlying
symmetry is always O(3)). The identity of za and −za means that mρ is
a headless vector, much like a nematic liquid crystal, which is described
by a headless 3-vector.

We can proceed to examine the quantum fluctuations about the above
classical states by precisely the same strategy as that followed in Sec-
tion 13.3.1.2. We allow n1,2, and therefore za, to be slowly varying
functions of spacetime. We also introduce a slowly varying uniform mag-
netization field L(x, t) such that the spatial integral over L is precisely
the total magnetization. Then, following (13.48) we parameterize

N(i, τ) =
(

n1(xi, τ) cos( ~Q · ~xi) + n2(xi, τ) sin( ~Q · ~xi)
)

×
√

1− v2L2(xi, τ) + vL(xi, τ), (13.72)

where v is the volume per site. This is to be inserted in the coherent
state path integral of HS in (13.1) and the result expanded in gradients.
Finally the uniform magnetization variable L is to be integrated out as
below (13.56). The steps are similar to those in Section 13.3.1.2 and will
not be explicitly carried out. Rather, let us try to anticipate the form
of the answer on general symmetry grounds.

We list the constraints that must be obeyed by the final effective
action:
(i) We must clearly require invariance under spin rotations. These are
realized by the global SU(2) transformation

(

z1

z2

)

→ U
(

z1

z2

)

≡
(

α β
−β∗ α∗

) (

z1

z2

)

(13.73)

where α and β are complex numbers satisfying |α|2 + |β|2 = 1. Applying
this to (13.70), we see that this performs the rotation n1,2α → Rαβn1,2β

where

U†σαU = Rαβσβ (13.74)
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(ii) Next, we consider the consequences of lattice translations. Any spa-
tial configuration of n1,2(x, τ) should have its energy unchanged under
translation by a lattice vector ~y. By combining (13.70) with (13.72) we
see that such a translation is realized by a simple overall phase change
of the z:

za → e−i ~Q·~y/2za. (13.75)

Note that this transformation is not a special case of (13.73), which was
restricted to unitary matrices with unit determinant. For the case of
the triangular lattices (13.75) requires that the action be invariant un-
der multiplication of za by the cube roots of unity. For incommensurate
spiral states, by different choices of ~y we see that (13.75) requires invari-
ance under multiplication of za by an arbitrary U(1) phase factor.
(iii) Finally, let us recall the two-fold redundancy in the mapping from
za to the n1,2 discussed below (13.70). The change in sign of za can
vary from point to point in spacetime with no consequence for the n1,2:
therefore, we require invariance under the discrete Z2 gauge transforma-
tion

z(x, τ) → η(x, τ)z(x, τ) (13.76)

where η(x, τ) = ±1 but can otherwise vary arbitrarily. In the naive
continuum limit, the gauge nature of the transformation (13.76) does not
impose any additional constraints beyond those arising from a constant
η. However, the theory has to be regularized at short scales, and the
Z2 gauge symmetry does impose additional constraints on any effective
lattice action. Moreover, the invariance (13.76) will also play a crucial
role in the nature of the possible topological defects.

Let us write down the simplest action consistent with the above con-
straints in the naive continuum limit. Up to second order in spatial
gradients, there are only two independent terms: |∇za|2 and |z∗a∇za|2
(a third possibility, |εabza∇zb|2 satisfies a simple linear relation with
these two). Identical considerations also apply to the terms with two
temporal gradients. We are therefore led to the following effective ac-
tion for the za, which plays the role of Sn in Section 13.3.1.2

Sz =
∫

d2xdτ
∑

µ=~x,τ

1
gµ

[

|∂µza|2 + γµ|z∗a∇za|2
]

(13.77)

where gx, gτ , γx and γτ are coupling constants. In addition, as in
Section 13.3.1.2, there could be Berry phases, associated with singular
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configurations of the za. These have to be analyzed on a lattice-by-lattice
basis and are not completely understood.

However, even at the level of the action Sz, and ignoring possible
Berry phases, open questions remain (in contrast, the action Sn is be-
lieved to be quite thoroughly understood). There are vexing differences
among different ways of analyzing Sz: numerical simulations and renor-
malization group analyses using expansions in (d − 1), (3 − d), or the
inverse of the number of za components [130, 26]. There is little doubt
that the fate of the Z2 gauge symmetry (13.76) plays a crucial role in
these differences, as the different approaches treat it in quite inequiva-
lent manners. In particular, the system allows a Z2 vortex excitation,
and the nature of the quantum paramagnet depends upon whether such
vortices proliferate or are suppressed. Because of the importance this
vortex, let us describe its structure more carefully. The vortex is best
visualized in terms of the headless vector mρ: as one circles the core of
the vortex, mρ rotates by 180 degrees about a fixed axis orthogonal to
mρ. So upon returning to the original point, mρ has now turned into
−mρ, but this is acceptable as the overall sign of mρ is not significant
(in mathematical terms, the order parameter mρ belongs to the space
S4/Z2, and the vortex is associated with its first homotopy group Z2).
An especially clear discussion of such vortices, and their relationship
to the Z2 gauge symmetry has been given by Lammert et al. [314] in
the context of nematic liquid crystals, and the reader is urged to con-
sult their paper. In the present quantum problem, there could also be
important Berry phases associated with the Z2 vortices, with values de-
pending upon microscopic details, as was found for the hedgehogs in
Section 13.3.1.2.

We will not survey all earlier approaches to the analysis of Sz here,
but highlight a promising scenario which has some striking consequences
for the quantum paramagnet. This scenario emerged first in a direct
large N study [428, 464, 444] of the quantum antiferromagnet (13.1)
on frustrated lattices, and related results emerge from studies of the
continuum theory Sz in an expansion in the inverse of the number of za

components, or in an expansion in (d− 1) [33, 104, 34, 107]. There are
two phases: a magnetically ordered phase and a quantum paramagnet,
and these are separated by a second order quantum phase transition.
The Z2 vortices are obviously suppressed in the magnetically ordered
phase by the non-zero spin stiffness, but they remain suppressed in the
quantum paramagnet, as is also found to be the case in the corresponding
phases of the nematic liquid crystal [314]. The physical properties of
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both phases can be rapidly understood by considering the case γµ = 0
in (13.77), although this special value will not modify the general form of
the following results. For γµ = 0, we insert (13.71) into (13.77), and see
straightforwardly that the action Sz is symmetric under O(4) rotations
of the mρ, and becomes precisely equivalent to the N = 4 case of the
quantum rotor model Sn studied intensively in Part 2. The properties of
Sz therefore follow directly from the results of Part 2. The magnetically
ordered phase has 3 = 4−1 linearly dispersing spin wave excitations, and
magnetic order disappears at any non-zero temperature. The quantum
paramagnetic phase has an energy gap, ∆+, and the excitations are built
out of the Fock space of a 4-fold degenerate particle.

Despite the mapping above to Part 2, there is a crucial distinction
in the physical interpretation of the structure of the quantum param-
agnet. Its particle excitations are the bosonic quanta of the za field,
and the transformation (13.73) under spin rotations makes it clear that
these bosons carry spin S = 1/2. (This accounts for a 2-fold degeneracy
of the particle states; an additional factor of 2 comes from account-
ing for the particle and anti-particle states). This should be contrasted
with the S = 1 particle that was found in the quantum paramagnetic
with collinear correlations in Section 13.3.1.2. These S = 1/2 bosonic
particles are labeled ‘spinons’: we can view the S = 1 particle as the
bound state of two S = 1/2 particles, and therefore a quantum transi-
tion from a quantum paramagnet with collinear correlations to one with
non-collinear correlations can be viewed as one of the deconfinement
of spinons: a simple theory for such a transition has been discussed in
Refs [428, 464, 444]. Here let us discuss an important physical property
of a quantum paramagnet with deconfined spinons: we compute the dy-
namic susceptibility at the non-collinear ordering wavevector, defined
by

χ(k, iωn)δαβ =
v
M

∑

i,j

∫ 1/T

0
dτ

〈

Ŝiα(iτ)Ŝjβ(0)
〉

e−i((~k+~Q)·(~xi−~xj)−ωnτ).

(13.78)
Using (13.70) and (13.72) we see that (ignoring the contribution of L,
which will only renormalize a pre-factor that can absorbed into a redef-
inition of the quasiparticle amplitude A):

χ(k, iωn) =
S2

6

2
∑

a,b=1

∫

d2x
∫ 1/T

0
〈za(x, iτ)zb(x, iτ)z∗a(0, 0)z∗b (0, 0)〉 .

(13.79)
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So χ is given by the propagator of two spinons, rather than the single
particle propagator which appeared in (5.2). As discussed above, the z
quanta of the quantum paramagnet have a quasiparticle pole at T = 0 as
in (4.99) or (5.30); the contribution of this pole leads to the expression

χ(k, ωn) = A2S2Π(k, ωn), (13.80)

where the two-particle propagator Π was discussed in (7.42). At T = 0,
taking the imaginary part of (7.46) we obtain

Imχ(k, ω) =
A2S2

8c2

sgn(ω)√
ω2 − c2k2

θ
(

|ω| − (c2k2 + 4∆2
+)1/2

)

, (13.81)

where θ is the unit step function. So there is no pole in χ(k, ω) as
there was for the case of a quantum paramagnet with collinear spin
correlations; rather there is a branch cut at frequencies greater than
(c2k2 + 4∆2

+)1/2, which corresponds to the threshold for the creation of
a pair of spinons. This branch cut is a characteristic property of the
deconfinement of spinons in a quantum paramagnet.

We emphasize that the suppression of the Z2 vortices was crucial to
the existence of the free bosonic spinons in this quantum paramagnet.
In the absence of such vortices, it is possible to consistently assign a
global phase to a spinon wavefunction without any sign ambiguities.
The wavefunction of a spinon changes in sign upon transport around
a Z2 vortex, and so spinons are expected to confine into integer spin
excitations when such vortices proliferate [428, 464].

We close this subsection by noting some related issues that have been
discussed in the literature.

A spinon-based approach can also be used to describe the collinear
antiferromagnets of Section 13.3.1. One obtains the action (13.77),
but at the special point γµ = 1, where the reader can easily check
that it is invariant under the U(1) gauge transformation za(x, τ) →
eiη(x,τ)za(x, τ). This theory has been analyzed by a number of meth-
ods [564, 118, 426, 427, 72, 106] with the conclusion that the spinons
are confined , and the resulting spectrum is in agreement with the form
already obtained in Section 13.3.1 by other methods.

Another possible quantum paramagnetic state of frustrated antiferro-
magnets is the “chiral spin liquid” [282, 317, 561, 223] (and the related
‘flux phase’ [13]). In this state, the local spin correlations are not only
non-collinear, but also non-coplanar, and the ground state breaks parity
and time-reversal invariance. Classically, it is quite difficult to con-
struct antiferromagnets with non-coplanar spin ordering in the ground
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states: some rather intricate lattices or multiple spin couplings are usu-
ally necessary. The chiral spin liquid would then be accessed by quan-
tum disordering transition from such a magnetically ordered state. The
interest in such a state has been driven primarily by the fact its ex-
citations have rather remarkable properties: they are S = 1/2 spinons
which obey fractional statistics. Furthermore, it has been predicted that
doping such a state would lead to a new type of ‘anyonic’ superconduc-
tivity [316, 317, 156, 226, 93]. However, no experimental realization of
this exotic possibility has so far been found. There have also been ar-
guments [317] that S = 1/2 spinon excitations of any two dimensional
quantum paramagnet should obey fractional statistics; this appears to
be in disagreement [464] with the bosonic spinon states discussed in the
body of this section.

13.4 Partial polarization and canted states

This section will interpolate between the ferromagnetic states studied in
Section 13.2, with maximum uniform spin polarization in their ground
states, and the antiferromagnets of Section 13.3, which had a thermo-
dynamically negligible spin polarization. One way to do this would be
examine the ground states of models HS in (13.1) at H = 0, but with
a set of Jij which can take both signs. Models of this type were exam-
ined in Ref [466], and it was argued that they could be described by a
ferromagnetic extension of the rotor models studied in Part 2. The prop-
erties of such models are quite intricate, and we refer the reader to the
original paper for further details. Here, we shall look at a closely related
model whose properties are significantly simpler to delineate. We will
begin with an antiferromagnet with all Jij < 0, and attempt to force in
a macroscopic moment by placing it in a strong uniform field H. So the
uniform magnetization will not arise spontaneously from ferromagnetic
exchange interactions, but will instead be induced by an external field.
This will cause important differences in nature of certain spin-wave ex-
citations, which are no longer required to be gapless due to the explicit
breaking of rotational invariance in the Hamiltonian. Nevertheless, nu-
merous other features will be very similar to the far more complicated
models considered in Ref [466]. Further, the case of an antiferromag-
net in a strong uniform field is of direct physical importance, having
been investigated in several recent experiments, as we shall discuss in
Section 13.5.

The low energy properties of an antiferromagnet in a field H are de-
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scribed by the action Sn in (13.58) or (5.16). So far, analyses of these
models has been restricted to H = 0, and to linear response to a weak
H. Here, we will look at the full non-linear response to a strong H. It
should be noted here that, in d = 1, closely related results can also be
obtained by the bosonization technique of Chapter 14 [397], while mak-
ing no reference to the rotor model—we will not follow such an approach
here.

We prefer to begin our analysis by placing the continuum model Sn

on a lattice at some short distance scale, and working with the discrete
lattice Hamiltonian. This is the inverse of the mapping carried out in
Chapter 5, and we therefore obtain the rotor model Hamiltonian HR in
(5.1):

HR =
Jg
2

∑

i

L̂2
i − J

∑

〈ij〉

n̂i · n̂j −H ·
∑

i

L̂i. (13.82)

The lattice sites in this rotor Hamiltonian are not to be identified with
the lattice sites of HS in (13.1); rather each rotor is an effective degree
of freedom for a cluster of an even number of spins in the original model.
Each such cluster will have a spin singlet ground state for H = 0, as does
the on-site Hamiltonian for each rotor in (13.82) - see (2.71). The rotor
also has an infinite tower of states with increasing angular momentum in
(2.71); in contrast a cluster of p Heisenberg spins with spin S can have a
maximum total angular momentum pS. This difference will have some
significant consequences for the topology of the phase diagram, but will
leave many essential features unaltered–we will comment on this issue
later.

We proceed to understanding the properties of HR in the remainder of
this section. The analysis will be quite similar to that discussed for the
Boson Hubbard model in Chapter 10, and the results bear some similar-
ity to those in Ref. [280]; indeed, we will find that the phase diagram of
HR is quite similar to that of HB in (10.4), and the universality classes
of the quantum phase transitions reduce either to the models studied
in Part 2, or to those in Chapter 11. This similarity is not surprising
at one level: the model HR in the presence of a non-zero H only has
a global U(1) symmetry corresponding to rotations about an axis par-
allel to the field (rotations about all other axes are not allowed by the
non-zero H), and the model HB also has only a U(1) symmetry. (In the
models considered in Ref [466], uniform moments appear spontaneously
due to ferromagnetic exchange in a model with full O(3) symmetry, and
this reasoning does not hold: however the similarity to HB persists,
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with many (but not all) quantum critical points belonging to the same
universality classes as those of HB .)

Most of the physics of HR already becomes apparent in a mean-field
theory similar to that in Section 10.1. As in (10.7), we make a mean-
field ansatz for HMF as the sum of single-site Hamiltonians with initially
arbitrary variational parameters:

HMF =
∑

i

(

Jg
2

L̂2
i −H ·

∑

i

L̂i −N · n̂i

)

. (13.83)

Here the N are a set of three variational parameters which represent the
effects of the exchange J with nearest neighbors in mean-field theory;
they play a role similar to that of the complex number ΨB in Sec-
tion 10.1. We have assumed that the N are site-independent and are
therefore excluding the possibility of states with spatial structure: this
is for simplicity and it is not difficult to extend our analysis to allow for
broken translational symmetries in HR.

Now the analysis proceeds as in Section 10.1: determine the ground
state wavefunction of HMF , and optimize the expectation value of HR

in this wavefunction towards variations in N. This was done numeri-
cally, and leads to the phase diagram in Fig 13.4; we will discuss the
properties of each of the phases in turn, and then consider the nature of
the transitions between them.

13.4.1 Quantum paramagnet

The optimum value of the variational parameter is N = 0. For this
value, HMF is exactly diagonalizable–the eigenstates are simply the ro-
tor eigenstates |`,m〉 of (5.4) and have eigenvalues Jg`(` + 1)/2−Hm.
The quantum paramagnet appears when parameters are such that the
minimum energy state has ` = m = 0: this happens for small H/J and
large g. This quantum paramagnet is precisely the corresponding state
of the rotor model studied in Part 2–the field H couples only to the
total spin which is identically zero in the spin singlet ground state: as
a result the wavefunction and all equal time correlations are unaffected
by a non-zero H. The energy of the spin triplet particle excitations
does change as was shown in (5.6), but their wavefunctions also remain
unaffected.



360 Heisenberg spins: ferromagnets and antiferromagnets

0

1

2

3

4

0 0.5 1 1.5 2

Canted

Q.F. 3

Q.F. 2

Quantum
Paramagnet

Q.F. 1

Z/g

H/Jg

Neel

M

Fig. 13.4. Mean field phase diagram of HR (in (13.82)), the O(3) quantum
rotor model in a field H. The notation Q.F. ` refers to a quantized ferromagnet
with 〈L̂z〉 = `. Compare with the phase diagram of the boson Hubbard model
in Fig 10.1: in the latter case, there is no special meaning to the vertical co-
ordinate = 0, and the vertical axis is unbounded below. The positions of the
phase boundaries follow from (13.85). The multicritical point M is precisely
the critical point of the O(3) quantum rotor model studied in Part 2.

13.4.2 Quantized ferromagnets

These phases also have N = 0, and so the eigenenergies of HMF are those
listed above. The minimum energy state has m = `, and the different
quantized ferromagnets are identified by the different positive integer
values of ` as shown in Fig 13.4. The analogy between these phases and
the Mott-insulating phases of Section 10.1 should be clear: the boson
number n0 corresponds to the integer `. We argued in Section 10.1
that the quantization of n0 was not an artifact of mean field theory
but an exact statement about the full interacting model. Precisely the
same arguments apply here to 〈L̂z〉 (we are assuming H is oriented
in the z direction), as the total angular momentum in the z direction
commutes with HR. Such quantized ferromagnetic phases also appear in
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the models of Ref [466] where ferromagnetism was induced by exchange
interactions: in this case complete rotational symmetry of the underlying
Hamiltonian implies that the there are gapless spin-wave excitations of
the type considered in Section 13.2 with dispersion εk = (ρs/M0)k2.
In the present model HR the spin wave modes acquire a gap from the
external field, and we have εk = (ρs/M0)k2 +H. In these respects these
quantized ferromagnets are identical to the fully-polarized ferromagnets
of Section 13.2: we simply have to set M0 equal to the actual quantized
value of the ground state magnetization density.

Let us also note some aspects of the interpretation of these quantized
ferromagnet phases for underlying spin models like HS . We noted above
that each rotor was an effective degree of freedom for an even number,
p, of Heisenberg spins. Such a cluster has maximum spin pS, and so
the quantized ferromagnets with ` > pS clearly cannot exist, and are
artifacts of the mapping to the rotor model which introduced an infinite
tower of states on each site. Also, for some antiferromagnets, making
clusters of p spins may involving reducing the symmetry of the under-
lying lattice. In this case the quantized ferromagnets with 0 < ` < pS
necessarily involve a spontaneously broken translational symmetry: each
spin has an average fractional moment of `/p and this can be quantized
only if p spins spontaneously group together and carry a total moment
` together. This spontaneously broken symmetry will effect the critical
theory of the transition out of the quantized phase, but we will not dis-
cuss this further here. Finally, the rotor with ` = p is a fully polarized
ferromagnet which can exist without any broken translational symmetry.

It should also be noted that very similar considerations apply for the
case of p odd: then we have to work with rotors which carry half integral
angular momenta [489, 466].

13.4.3 Canted and Néel States

These states both have N 6= 0, and are thus the analogs of the superfluid
state of the boson model of Section 10.1. The Néel state occurs precisely
at H = 0, and the full rotational invariance of the Hamiltonian then
implies that the direction of N is immaterial. The canted state occurs
at non-zero H. If we write H = Hez, the numerical optimization of the
mean-field Hamiltonian (13.83) shows that the vector N prefers to lie
in the x-y plane; the direction within the plane is immaterial, reflecting
the U(1) symmetry of the problem. This orientation of the Néel order
parameter in a plane perpendicular to an applied uniform field is quite
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generic, and the reasons for it will become more evident in Section 13.4.4
below. We choose Nx 6= 0 and Ny = 0. The resulting canted state is
characterized by the non-zero expectation values

〈n̂x〉 = Nx/(JZ) 6= 0 〈L̂z〉 6= 0, (13.84)

and all other components of n̂ and L̂ have vanishing expectation values.
The first relation in (13.84) should be compared with (10.9)–its origin is
the same. Both non-zero expectation values in (13.84) vary continuously
as a function of J , g or H, and nothing is pinned at a quantized value;
as there is a non-zero, continuously varying ferromagnetic moment in
the canted phase, this is an example of an ‘unquantized’ ferromagnet.
The results (13.84) also make the origin of term ‘canted’ clear, as shown
in illustration within the canted region of Fig 13.6. In terms of the
underlying Heisenberg spins, a non-zero 〈n̂x〉 implies antiferromagnetic
ordering within the x direction in spin space, while a non-zero 〈L̂z〉
implies a uniform ferromagnetic moment in the z direction.

We show a plot of the H dependence of the T = 0 magnetization 〈L̂z〉
in Fig 13.5. Notice that there are plateaus in the magnetization while
the system is in the quantum paramagnetic or quantized ferromagnetic
phases. In between these phases is the canted phase, or the unquan-
tized ferromagnet, in which the magnetization continuously interpolates
between the quantized values.

The excitation structure of the canted phase is easy to work out.
We simply follow the same procedure as that used to the Néel state in
Section 5.1.2. Examining equations of the motion of small fluctuations
about the ordered state one finds a gapless spin wave excitations with
energy εk ∼ k corresponding to rotations of the n̂ in the x-y plane.
For the case where the canted state appears in a model with full O(3)
symmetry, there is an additional gapless mode with dispersion εk ∼
k2 [466].

The mean field boundary between the canted/Néel states and the
quantized ferromagnets/quantum paramagnet can be computed ana-
lytically, using the same analysis leading up to (10.14) for the boson
model. We expand the ground state energy of the quantized ferro-
magnet/quantum paramagnet in powers of Nx and demand that the
co-efficient of the N2

x vanish. This leads to the analog of the condition
r = 0 with the expressions (10.15), (10.16); in the present situation we
find the condition

g
Z

=
` + 1

(2` + 3)(` + 1−H/Jg)
− `

(2` + 1)(`−H/Jg)
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< L  >z

1

2

3

Fig. 13.5. Schematic of the magnetization, 〈L̂z〉, as a function of the field H
for the rotor model (13.82). It is assumed that the value of Z/g in Fig 13.4
is small enough that a vertical line will intersect the Q.F. ` phases for ` ≤ 3.
The magnetization is initially pinned at 0 when the system is in the quantum
paramagnet, and is subsequently pinned at ` in the Q.F. phases. The mag-
netization interpolates between these plateaus in the canted or ‘unquantized
ferromagnet’ phase.

1
(2` + 1)(2` + 3)(` + 1 + H/Jg)

(13.85)

for the instability of the quantized ferromagnet/quantum paramagnet
with 〈L̂z〉 = ` (the denominators in (13.85) are always positive over
the range of applicability for a given value of `). Simple application of
(13.85) led to Fig 13.4.

An important feature of the above results deserves special mention.
Notice that the only phase with a continually varying uniform magnetic
moment (an unquantized ferromagnet) is the canted phase. This phase
has a broken symmetry in the x-y plane and an associated gapless mode.
This result is believed [466] to be a general principle: phases with con-
tinuously varying values of a ferromagnetic moment must have gapless
spin modes in addition to the usual ferromagnetic spin-waves that are
present for the case of a spontaneously generated moment; moreover,
unlike the spin-waves, these gapless modes do not acquire a gap in the
presence of a uniform field H. In d ≥ 2, for the rotor models considered
here, the gapless modes are associated with the broken symmetry lead-
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ing to canted order in such phases. In d = 1, the analysis in Chapter 11
shows that the order in the x-y plane becomes quasi long-range but the
gapless mode survives.

(For completeness, we also note here another physical example of an
unquantized ferromagnet: the Stoner ferromagnet [514] of an interacting
Fermi gas, in which there are two Fermi surfaces, one each for up and
down spins, with unequal Fermi wavevectors kF↑ 6= kF↓. The values of
kF↑ and kF↓ can vary continuously as the interaction strength is var-
ied (provided they are both non-zero), and so can the mean magnetic
moment. Consistent with the general principle above, in addition to
the ferromagnetic spin-waves, this system has low energy spin-flip exci-
tations at finite wave-vectors involving particle-hole pairs near the two
Fermi surfaces.)

13.4.4 Zero temperature critical properties

It is clear that the H = 0 transition between the quantum paramagnet
and the Néel state is precisely the same as N = 3 model intensively
studied in Part 2; this critical point is denoted M in Fig 13.4. We will
show that the generic H 6= 0 transition between the quantized ferro-
magnet/quantum paramagnet and the canted state is in the universality
class of the dilute Bose gas field theory in (11.1), which was thoroughly
studied in Chapter 11. We will do this by examining the line of second
order transitions coming into the point M ; the remaining portions of the
phase boundary can be analyzed in a similar manner. It should also be
noted that there are also special ‘particle-hole’ symmetric points at the
tips of the lobes surrounding the quantized ferromagnet phases where
the z = 1 theory of Part 2 will apply, just as was the case for the Boson
Hubbard model in Sections 10.1 and 10.2.

The promised result is most easily established by using the ‘soft-spin’
theory of the point M studied in Chapter 8. In the presence of a field
H = Hez the generalization of the N = 3 version of (8.2) is

Sφ =
∫

ddx
∫ 1/T

0
dτ

{

1
2

[

(∂τφx − iHφy)2 + (∂τφy + iHφx)2

+(∂τφz)2 + c2(∇x~φ)2 + rφ2
α

]

+
u0

4!
(φ2

α)2
}

(13.86)

The uniform magnetic moment density is given by

1
v
〈L̂z〉 = − ∂F

∂H
(13.87)
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where v is the volume per rotor, and F is the free energy density asso-
ciated with the action Sφ.

Let us first discuss the mean field properties of Sφ, obtained by min-
imizing the action, while ignoring all spatial and time dependence of
φα; this will reproduce the structure in the vicinity of the point M in
Fig 13.4 obtained earlier using the mean-field Hamiltonian (13.83). No-
tice that the components φx, φy have a quadratic term with coefficient
r −H2, while φz has the usual coefficient r; so ordering is preferred in
the x-y plane, and this was the reason for the choice in the orientation
of the N vector in Section 13.4.3. For r − H2 > 0, the ground state
has 〈φα〉 = 0, and is therefore in the quantum paramagnetic phase. For
r−H2 < 0, the ground state has 〈φα〉 6= 0 and in the x-y plane. This is
the C phase and the fields have the expectation values

φα =

(

(

6(H2 − r)
u0

)1/2

, 0, 0

)

1
v
〈L̂z〉 =

6H(H2 − r)
u0

, (13.88)

or any rotation of φα in the x − y plane. Notice that 〈L̂z〉 vanishes
for H = 0, and therefore the line r < 0, H = 0 is the Néel state.
The resulting mean field phase diagram is shown in Fig 13.6 and is
identical to the vicinity of the point M in Fig 13.4. Let us focus on the
vicinity of the generic transition between the quantum paramagnet and
the canted phase: this corresponds to the regime |r − H2| � |r|. In
this region we can neglect φz fluctuations and focus only on the φx +
iφy which is undergoing Bose condensation. Further, the second-order
time derivative in Sφ can be dropped as the low energy properties are
dominated by the more relevant first order time derivative that appears
by expanding the first two terms in Sφ. Making these approximations,
and defining

Ψ =
φx + iφy√

H
, (13.89)

we see that Sφ reduces to

SΨ =
∫

d2x
∫ 1/T

0
dτ

[

Ψ∗
∂Ψ
∂τ

+
c2

2H
|∇xΨ|2

+
(r −H2)

2H
|Ψ|2 +

u0

24H2 |Ψ|
4
]

. (13.90)

This is precisely the theory (11.1), establishing the claim made at the
beginning of this subsection.
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Neel

Canted

Fig. 13.6. Mean field phase diagram of Sφ (in (13.86)) at T = 0. The ar-
rows denote the relative orientation of the spins in the corresponding phases
of double layer systems, which map onto the rotor model as discussed in Sec-
tion 5.1.1.1; the field H is assumed to point towards the top of the page. The
multi-critical point M is the N = 3 case of the quantum critical point studied
in Part 2. Notice that the vicinity of M is similar to that in Fig 13.4.

13.5 Applications and extensions

There has been a great deal of theoretical work on possible quantum
paramagnetic ground states of two dimensional, S = 1/2 Heisenberg
antiferromagnets. On the square lattice, we have already noted the
studies on the J1−J2 and J1−J2−J3 models which show clear evidence
for the existence of a quantum paramagnetic ground state in a window
around J2/J1 ≈ 0.5, J3 = 0. Some of these studies [186, 185, 375,
413, 480, 329, 309] also show reasonable evidence for the existence of
columnar spin-Peierls order of the type discussed in Section 13.3.1.2 and
shown in Fig 13.2, as was predicted from the Berry phase analyses of
Refs [426, 427, 428, 464]. More recently, Zhitomirsky and Ueda [583]
have suggested that the plaquette state in Fig 13.2 may be the lowest
energy one: this possibility was not thoroughly tested in the earlier
work. Experimental evidence for a direct transition from the Néel to
the spin-Peierls state has appeared in recent work of the group led by
S. E. Brown [96].

The weight of the evidence on the triangular lattice is that the model
with only nearest neighbor interactions has long range Néel order of
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the type shown in Fig 13.3 [100, 306, 51]; other types of magnetic or-
der appear upon including further neighbor exchanges [321]. However,
the introduction of multiple spin ring exchanges can induce quantum
paramagnetic ground states [370], and these are candidates for exhibit-
ing deconfined spinon excitations in two dimensions. The latter case of
multiple spin exchange appears to have an experimental realization in
experiments on an adsorbed 3He layer on graphite [437].

The nearest neighbor S = 1/2 antiferromagnet on the kagome lat-
tice has also been intensively studied: here it is virtually certain that
the ground state is a quantum paramagnet with a gap towards excita-
tions with non-zero spin. However, there appear to be a large number
of low-lying, singlet excitations. These could possibly be described by
an effective quantum dimer model [436] and arguments have been ad-
vanced [444] that this model should have a gap on the kagome lattice.
The current situation, along with earlier references to the literature, has
been discussed by Waldtmann et al. [557].

The most precise study of the quantum critical point between an or-
dered Néel state and a quantum paramagnet has been carried out by
Troyer et al. [531] on a depleted square lattice. All universal proper-
ties are in agreement with those of the O(3) quantum rotor model of
Part 2, supporting the irrelevancy of the Berry phase terms, discussed
in Section 13.3.1.2, for the critical phenomena.

An important experimental candidate for a gapped quantum param-
agnetic ground state in two dimensions in CaV4O9. The experimental
measurements [520] clearly indicate the presence of a spin gap, but there
remains a debate upon the nature of the microscopic spin Hamiltonian
needed to explain the observations [188, 408, 288].

Many of the spin-gapped insulators found in recent years, including
the spin-ladder compounds, can be naturally decomposed into pairs of
spins without reducing the symmetries of the lattice, as for the model
of Section 5.1.1.1. Microscopic studies [198, 391, 392, 409, 308] of such
systems can be performed using the ‘bond boson’ method [459] in which
triplet and singlet bosons reside on the bonds connecting the two spins
in a pair.

The analyses of Section 13.4 should make it clear that the dilute Bose
gas quantum critical point of Chapter 11 describes the closing of a spin
gap of an antiferromagnet by a strong external magnetic field [478, 6,
7, 536, 503, 467, 94]. This critical point has been intensively studied
recently in spin ladder organic compound Cu2(C5H12N2)2Cl4 [82, 83,
84, 225, 146]. The onset of magnetization plateaus at a finite field (as in
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Fig 13.5) is also described by the same quantum critical point, and such
plateaus have been observed recently in experiments on one-dimensional
spin chains [383, 493].

A novel realization of the d = 2 continuum quantum ferromagnets of
Section 13.2 is provided by magnetization studies of single layer quantum
Hall systems at filling factor ν = 1 [501, 155, 286, 287]. These are
electronic systems with a gap towards charged excitations, and a strong
ferromagnetic exchange between the electronic spins. As a result, the
low-lying spin excitations are well described by the continuum theory
(13.32). The magnetization of this system for different T and H has been
measured in NMR [40] and optical [14, 350] experiments, and the results
have been interpreted by computations on (13.32) [27, 429, 524, 240].

Exciting recent developments have appeared in studies of double layer
quantum Hall systems, when two single layer systems in a ferromag-
netic quantum Hall state with a charge gap, are brought close to each
other [410, 401, 474, 402]. There is an antiferromagnetic exchange pair-
ing between the layers [581], which suggests that we may consider the
two layers to be similar to the two sublattices of an antiferromagnet,
and that there is an effective rotor model description of the spin exci-
tations. Indeed, it has been argued [128, 129] that the system maps
precisely onto the model studied in Section 13.4. Detailed light scat-
tering studies have mapped out the phase diagram of the system [402],
and the results are consistent with Figs 13.4 and 13.6. Specific quan-
titative predictions for quantum critical behavior have been made in
Refs [128, 129, 532, 355, 456], and these and dynamical results like those
in Section 8.3 could be tested in future experiments.
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Abstract

This is a summary of a central argument in recent review articles
by the author (Physica A 313, 252 (2002), Annals of Physics 303, 226
(2003), and Rev. Mod. Phys, July 2003). An effective field theory is
derived for the low energy spin singlet excitations in a paramagnetic
Mott insulator with collinear spin correlations.

1 INTRODUCTION

In a recent article [1](intended for an audience of experimentalists), the au-
thor has reviewed arguments that many aspects of the physics of the cuprate
superconductors can be understood by using their proximity to paramagnetic
Mott insulators. Further, a distinction was made between Mott insulators
with collinear and non-collinear spin correlations, and it was argued that cur-
rent experimental evidence suggests that we need only consider the collinear
class. A phenomenological description of the ground states and excitations
of these classes of Mott insulators was provided, along with a discussion of
their experimental implications. A more technical discussion (intended for
theorists) of such insulators, along with a description of the effective field
theories which describe their low energy properties appears in Ref. [2, 3].
Here, we briefly recall the derivation and properties of the effective field the-
ory of Mott insulators with collinear spin correlations, which is expressed in
terms of a compact U(1) gauge field. The non-collinear class leads naturally
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to a Z2 gauge theory, but we will not consider it here. The reader is referred
to these previous reviews [1, 2, 3] for complete citations to the literature.

2 Compact U(1) gauge theory of Mott insu-

lators

We focus on Mott insulators on a d dimensional bipartite lattice of sites j.
The SU(2) spin operator Sj on site j at imaginary time τ can be written as

Sj(τ) = ηjSn(rj , τ); (1)

here ηj = ±1 on the two sublattices, rj is the spatial co-ordinate of site j,
n is a unit length vector in spin space, and S is the (integer or half-odd-
integer) angular momentum of each spin. The antiferromagnetic exchange
interaction between near neighbor spins implies that n(rj, τ) will be a slowly
varying function of its spacetime arguments. A standard analysis of the
coherent state path integral of over the SU(2) Sj spins shows that the low
energy quantum fluctuations are described by the following partition function

Z =

∫

Dn(r, τ)δ(n2(r, τ) − 1) exp

[

−iS
∑

j

ηj

∫

dτAτ (n(rj , τ))

−
1

2gc

∫

ddrdτ
(

(∂τn)2 + c2(∇rn)2
)

]

, (2)

where c is the spin-wave velocity, and g is a coupling constant which controls
the strength of the quantum fluctuations. Excluding the first Berry phase
term, this is the action of the O(3) non-linear sigma model in d+1 spacetime
dimensions. Here we are primarily interested in the consequences of the Berry
phases: Aτ(n(τ))dτ is defined to be the oriented area of the spherical triangle
defined by n(τ), n(τ + dτ), and an arbitrary reference point n0 (which is
usually chosen to be the north pole).

The theory (2) can be considered to be the “minimal model” of antiferro-
magnets. In dimensions d > 1 it has at least two phases: at small g there is
the conventional magnetically ordered “Néel” phase with 〈n〉 6= 0, while at
large g there is a “quantum disordered” paramagnetic phase which preserves
spin rotation invariance with 〈n〉 = 0. We are especially interested here in
the nature of this paramagnetic state. In this section, we will manipulate

2



Z in this large g regime, and derive an alternative formulation which allows
easier computation of the integral over the Berry phases.

The key to an analysis of the large g regime is a better understanding
of the nature of Aτ . We will see that Aτ behaves in many respects like the
time-component of a compact U(1) gauge field, and indeed, this accounts for
the suggestive notation. All physical results should be independent of the
choice of the reference point n0, and it is easy to see by drawing triangles on
the surface of a sphere that changes in n0 amount to gauge transformations
of Aτ . If we change n0 to n′

0, then the resulting A′
τ is related to Aτ by

A′
τ = Aτ − ∂τφ(τ) (3)

where φ(τ) measures the oriented area of the spherical triangle defined by
n(τ), n0, and n′

0. Furthermore, as we will discuss more completely below,
the area of any spherical triangle is uncertain modulo 4π, and this accounts
for the ‘compactness’ of the U(1) gauge theory.

We proceed with our analysis of Z. First, we discretize the gradient terms
of the O(3) sigma model. We will limit our considerations here to antifer-
romagnets on d dimensional cubic lattices, but similar considerations apply
to other bipartite lattices. We also discretize the imaginary time direction,
and (by a slight abuse of notation) use the same index j to refer to the sites
of a d + 1 dimensional cubic lattice in spacetime. On such a lattice we can
rewrite (2) as

Z =

∫

∏

j

dnjδ(n
2

j − 1) exp

(

1

2g

∑

j,µ

nj · nj+µ̂ − iS
∑

j

ηjAjτ

)

, (4)

where the sum over µ extends over the d + 1 spacetime directions. We have
also dropped unimportant factors of the lattice spacing and the spin-wave
velocity in (4).

As noted above, we are especially interested here in the large g regime
where there are strong fluctuations of the nj . There are strong cancellations
from the Berry phases between different spin configurations in this regime,
and so the second term in Z has to be treated with great care. We will
do this by promoting the field Ajµ to an independent degree of freedom,
while integrating out the nj . Notice that we have now introduced all d + 1
components of the compact U(1) gauge field with the index µ, while only
the µ = τ component appears explicitly in (4). The remaining components

3



appear naturally as suitable degrees of freedom when we integrate the nj

out. Formally, the integration over the nj can be done by introducing new
‘dummy’ variables Ajµ and rewriting (4) by introducing factors of unity on
each link; this leads to

Z =

∫

∏

jµ

dAjµ exp

(

−i2S
∑

j

ηjAjτ

)

∫

∏

j

dnjδ(n
2

j − 1)δ(Ajµ/2 − Ajµ)

× exp

(

1

2g

∑

j,µ

nj · nj+µ̂

)

=

∫

∏

jµ

dAjµ exp

(

−SA(Ajµ) − i2S
∑

j

ηjAjτ

)

. (5)

In the first expression, if the integral over the Ajµ is performed first, we triv-
ially return to (4); however, in the second expression we perform the integral
over the nj variables first, at the cost of introducing an unknown effective
action SA for the Ajµ. In principle, evaluation of SA may be performed order-
by-order in a “high temperature” expansion in 1/g: we match correlators of
the Ajµ flux with those of the Ajµ flux evaluated in the integral over the
nj with positive weights determined only by the 1/g term in (4). Rather
than undertaking this laborious calculation, we can guess essential features
of the effective action SA from some general constraints. First, correlations
in the nj decay exponentially rapidly for large g (with a correlation length
∼ 1/ ln(g)), and so SA should be local. Second, it should be invariant under
the lattice form of the gauge transformation (3)

A′
jµ = Ajµ − ∆µφj/2 (6)

associated with the change in the reference point on the unit sphere from n0

to n′
0, with φj equal to the area of the spherical triangle formed by nj, n0

and n′
0. Finally the area of any triangle on the sphere is uncertain modulo

4π and so the effective action should be invariant under

Ajµ → Ajµ + 2π. (7)

The simplest local action which is invariant under (6) and (7) is that of
compact U(1) quantum electrodynamics and so we have

Z =

∫

∏

jµ

dAjµ exp

(

1

e2

∑

�

cos (∆µAjν − ∆νAjµ) − i2S
∑

j

ηjAjτ

)

, (8)
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for large g; comparison with the large g expansion shows that the coupling
e2 ∼ g2. In (8), ∆µ is the discrete lattice derivative along the µ direction,
and the sum over � extends over all plaquettes of the d+1 dimensional cubic
lattice—both notations are standard in the lattice gauge theory literature.

The first term in the action (8) is, of course, the standard ‘Maxwell’ term
of a compact U(1) gauge field. In this language, the Berry phase has the
interpretation of a

∫

JµAµ coupling to a fixed matter field with ‘current’
Jµ = 2Sδµτ . This corresponds to static matter with charges ±2S on the two
sublattices. It is this matter field which will crucially control the nature of
the ground state.

The remaining analysis of Z depends upon the spatial dimensionality
d. In d = 1, a dual model of (8) is solvable, and the results are in complete
accord with those obtained earlier by Bethe ansatz and bosonization analyses
of spin chains. We will consider the d = 2 case in the section below. There
has been relatively little discussion of the d = 3 case (which exhibits both
confining and deconfining phases of the gauge theory), and this remains an
important avenue for future research.

3 Duality mapping in d = 2

As is standard in duality mappings, we first rewrite the partition function in
2 + 1 spacetime dimensions by replacing the cosine interaction in (8) by a
Villain sum over periodic Gaussians:

Z =
∑

{q̄µ}

∫

∏

jµ

dAjµ exp

(

−
1

2e2

∑

�

(εµνλ∆νAjλ − 2πq̄µ)
2 − i2S

∑

j

ηjAjτ

)

,

(9)
where εµνλ is the total antisymmetric tensor in three dimensions, and the q̄µ

are integers on the links of the dual cubic lattice, which pierce the plaquettes
of the direct lattice. Throughout this subsection we will use the index ̄ to
refer to sites of this dual lattice, while j refers to the direct lattice on sites
on which the spins are located.

We will now perform a series of exact manipulations on (9) which will
lead to a dual interface model [4, 5]. This dual model has only positive
weights—this fact, of course, makes it much more amenable to a standard
statistical analysis. This first step in the duality transformation is to rewrite
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+1

+1 +1

+1

-1-1

Figure 1: Specification of the non-zero values of the fixed field a0
̄µ. The

circles are the sites of the direct lattice, j, while the crosses are the sites of
the dual lattice, ̄; the latter are also offset by half a lattice spacing in the
direction out of the paper (the µ = τ direction). The a0

̄µ are all zero for
µ = τ, x, while the only non-zero values of a0

̄y are shown above. Notice that
the a0 flux obeys (11).

(9) by the Poisson summation formula:

∑

{q̄µ}

exp

(

−
1

2e2

∑

�

(εµνλ∆νAjλ − 2πq̄µ)
2

)

=
∑

{a̄µ}

exp

(

−
e2

2

∑

̄

a2

̄µ − i
∑

�

εµνλa̄µ∆νAjλ

)

,(10)

where a̄µ (like q̄µ) is an integer-valued vector field on the links of the dual
lattice (here, and below, we drop overall normalization factors in front of
the partition function). Next, we write the Berry phase in a form more
amenable to duality transformations. Choose a ‘background’ a̄µ = a0

̄ flux
which satisfies

εµνλ∆νa
0

̄λ = ηjδµτ , (11)

where j is the direct lattice site in the center of the plaquette defined by
the curl on the left-hand-side. Any integer-valued solution of (11) is an
acceptable choice for a0

̄µ, and a convenient choice is shown in Fig 1. Using
(11) to rewrite the Berry phase in (9), applying (10), and shifting a̄µ by the
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3/4 1/2

0
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1/4

1/4

1/23/4

(a)

+1/8 -1/8

+1/8

+1/8

+1/8

+1/8

+1/8-1/8 -1/8

-1/8

-1/8

-1/8
(b)

Figure 2: Specification of the non-zero values of the fixed fields (a) X̄ and
(b) Yjµ introduced in (14). The notational conventions are as in Fig 1. Only
the µ = τ components of Yjµ are non-zero, and these are shown in (b).

integer 2Sa0
̄µ, we obtain a new exact representation of Z in (9):

Z =
∑

{a̄µ}

∫

∏

jµ

dAjµ exp

(

−
e2

2

∑

̄,µ

(a̄µ − 2Sa0

̄µ)
2 − i

∑

�

εµνλa̄µ∆νAjλ

)

.

(12)
The integral over the Ajµ can be performed independently on each link, and
its only consequence is the imposition of the constraint εµνλ∆νa̄λ = 0. We
solve this constraint by writing a̄µ as the gradient of a integer-valued ‘height’
h̄ on the sites of the dual lattice, and so obtain

Z =
∑

{h̄}

exp

(

−
e2

2

∑

̄,µ

(∆µh̄ − 2Sa0

̄µ)2

)

. (13)

This is the promised 2+1 dimensional interface, or height, model in almost
its final form.

The physical properties of (13) become clearer by converting the “frus-
tration” a0

̄µ in (13) into offsets for the allowed height values. This is done by
decomposing a0

̄µ into curl and divergence free parts and writing it in terms
of new fixed fields, X̄ and Yjµ as follows:

a0

̄µ = ∆µX̄ + εµνλ∆νYjλ. (14)

The values of these new fields are shown in Fig 2. Inserting (14) into (13),
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we can now write the height model in its simplest form [4]

Zh =
∑

{H̄}

exp

(

−
e2

2

∑

̄

(∆µH̄)
2

)

, (15)

where
H̄ ≡ h̄ − 2SX̄ (16)

is the new height variable we shall work with. Notice that the Yjµ have
dropped out, while the X̄ act only as fractional offsets (for S not an even
integer) to the integer heights. From (16) we see that for half-odd-integer
S the height is restricted to be an integer on one of the four sublattices,
an integer plus 1/4 on the second, an integer plus 1/2 on the third, and
an integer plus 3/4 on the fourth; the fractional parts of these heights are
as shown in Fig 2a; the steps between neighboring heights are always an
integer plus 1/4, or an integer plus 3/4. For S an odd integer, the heights
are integers on one square sublattice, and half-odd-integers on the second
sublattice. Finally for even integer S the offset has no effect and the height
is an integer on all sites. We discuss these classes of S values in turn in the
following subsections.

3.1 S even integer

In this case the offsets 2SX̄ are all integers, and (15) is just an ordinary three
dimensional height model which has been much studied in the literature.
Unlike the two-dimensional case, three-dimensional height models generically
have no roughening transition, and the interface is always smooth. With all
heights integers, the smooth phase breaks no lattice symmetries. So square
lattice antiferromagnets with S even integer can have a paramagnetic ground
state with a spin gap and no broken symmetries. This is in accord with the
exact ground state for a S = 2 antiferromagnet on the square lattice found
by Affleck et al., the AKLT state [6].

3.2 S half-odd-integer

Now the heights of the interface model can take four possible values, which
are integers plus the offsets on the four square sublattices shown in Fig 2a.
As in Section 3.1, the interface is always smooth i.e. any state of (15) has
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0 1/4 0 1/4

-1/4 -1/2 -1/4

0 1/4

1/2

0 1/4

Figure 3: Mapping between the quantum dimer model and the interface
model Z in (15). Each dimer on the direct lattice is associated with a step
in height of ±3/4 on the link of the dual lattice that crosses it. All other
height steps are ±1/4. Each dimer represents a singlet valence between the
sites, as in Fig 2.

a fixed average interface height
∑

̄〈H̄〉, and any well-defined value for this
average height breaks the uniform shift symmetry of the height model under
which H̄ → H̄ ± 1. After accounting for the height offsets, we will see
below that any smooth interface must also break a lattice symmetry with
the development of bond order: this allows a number of distinct spin gap
ground states of the lattice antiferromagnet.

It is useful, first, to obtain a simple physical interpretation of the interface
model in the language of the S = 1/2 antiferromagnet [7]. From Fig 2a it is
clear that nearest neighbor heights can differ either by 1/4 or 3/4 (modulo
integers). To minimize the action in (15), we should choose the interface
with the largest possible number of steps of ±1/4. However, the interface is
frustrated, and it is not possible to make all steps ±1/4 and at least a quarter
of the steps must be ±3/4. Indeed, there is a precise one-to-one mapping
between interfaces with the minimal number of ±3/4 steps (we regard inter-
faces differing by a uniform integer shift in all heights as equivalent) and the
dimer coverings of the square lattice: the proof of this claim is illustrated in
Fig 3. We identify each dimer with a singlet valence bond between the spins
(the ellipses in Fig 2), and so each interface corresponds to a quantum state
with each spin locked in the a singlet valence bond with a particular near-
est neighbor. Fluctuations of the interface in imaginary time between such
configurations correspond to quantum tunneling events between such dimer
states, and an effective Hamiltonian for this is provided by the quantum
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(a) (b)

Figure 4: Sketch of the two simplest possible states with bond order for
S = 1/2 on the square lattice: (a) the columnar spin-Peierls states, and
(b) plaquette state. The different values of the 〈Si · Sj〉 on the links are
encoded by the different line styles. Both states are 4-fold degenerate; an
8-fold degenerate state, with superposition of the above orders, also appears
as a possible ground state of the generalized interface model.

dimer model [8].
The nature of the possible smooth phases of the interface model are easy

to determine from the above picture and by standard techniques from sta-
tistical theory [4, 7]. Interfaces with average height 〈H̄〉 = 1/8, 3/8, 5/8, 7/8
(modulo integers) correspond to the four-fold degenerate bond-ordered states
in Fig 4a, while those with 〈H̄〉 = 0, 1/4, 1/2, 3/4 (modulo integers) corre-
spond to the four-fold degenerate plaquette bond-ordered states in Fig 4b. All
other values of 〈H̄〉 are associated with eight-fold degenerate bond-ordered
states with a superposition of the orders in Fig 4a and b.

Support for the class of bond-ordered states described above has appeared
in a number of numerical studies of S = 1/2 antiferromagnets in d = 2
which have succeeded in moving from the small g Néel phase to the large
g paramagnet. These include studies on the honeycomb lattice [9], on the
planar pyrochlore lattice [10], on square lattice models with ring-exchange
and easy-plane spin symmetry [12], and square lattice models with SU(N)
symmetry [14].

3.3 S odd integer

This case is similar to that S half-odd-integer, and we will not consider it in
detail. The Berry phases again induce bond order in the spin gap state, but
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this order need only lead to a two-fold degeneracy.

4 Conclusions

The primary topic discussed in this paper has been the effective field the-
ory of paramagnetic Mott insulators with collinear spin correlations. This
field theory is the compact U(1) gauge theory in (8), and applies in all spa-
tial dimensions. We also reviewed duality mappings of (8) which are spe-
cial to d = 2 spatial dimensions, and mapped the theory onto the interface
model (15). Finally, we reiterate that paramagnetic Mott insulators with
non-collinear spin correlations are described by a Z2 gauge theory which has
not been presented here.
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