
More supplemental notes on the random walk

Joseph Rudnick

Some more notes

Betwen my lectures I was asked questions on topics on which I had not pre-
pared to talk. Almost all the questions were excellent, and I regret that I
was not able to answer them in the course of my three lectures. Two in
particular seemed worth going to the trouble of preparing written responses.
In both cases the notes should be regarded as preliminary and incomplete.
However, they should serve as indications of how one might go about con-
structing complete solutions to the problems posed by the questioners, and
how one can address more elaborate versions of the problems posed to me.

First passage times

I was asked to talk about first passage times. Here are some elementary
notes on the problem. The question is, given a random walker, or a diffusing
particle, at what time does it pass by a point in space? I will consider the
simplest version of that question, in which the object of interest walks in
one dimension and starts a distance d from the point in question. We will
consider a “cloud” of the objects, that start out at the position x = d. The
density of these diffusers will be c(x, t) and their current density is j(x, t),
where Fick’s law tells us that

j(x, t) = −D0c(x, t) (B-1)

The diffusion equation is

∂c(x, t)

∂t
= −∂j(x, t)

∂x

= D0
∂2c(x, t)

∂x2
(B-2)
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To keep track of first passage times, we will assume an absorbing wall at
x = 0, while the starting point of the diffusing particles is x = d. What this
does is eliminate all walkers that pass by the point of interest. We can solve
the diffusion equation with this particular boundary condition by making use
of sine functions. The appropriate combination of those functions that yield
a delta function at x = d when t = 0 and that produces a density satisfying
the diffusion equation (B-2) is

c(x, t) =
2

π

∫ ∞

0

sin qx sin qd e−D0q2tdq (B-3)

It can be verified that the integral on the right hand side of (B-3) yields the
delta function δ(x− d) when t = 0.

t
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Figure 1: The absolute value of the current density past the origin as a
function of time, t for a particular choice of the distance of the starting point
from there.

The diffusion current, j(x, t) is given by

j(x, t) = −D0
∂c(x, t)

∂x

= −2D0

π

∂

∂x

∫ ∞

0

sin qx sin qd e−D0q2tdq

= −2D0

π

∫ ∞

0

q cos qx sin qd e−D0q2tdq (B-4)

We are interested in the current density at x = 0, corresponding to the flux
of diffusers past the point at which we monitor the first passage time.
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Now, we set x = 0 and evaluate the integral on the last line of (B-4).
This leaves us with

j(0, t) = −2D0

π

∫ ∞

0

q sin qde−D0q2tdq

=
2D0

π

d

dd

∫ ∞

0

cos qde−D0q2tdq

=
D0

π

d

dd

∫ ∞

−∞
eiqde−D0q2tdq

= − d

2
√

πD0

t−3/2e−d2/4D0t (B-5)

A straightforward integration over t verifies that the integrated current den-
sity is equal to one, the overall normalization of the diffusion cloud described
by our original density. The absolute values of the last line of (B-5) is the
rate at which diffusers first pass by the point x = 0. The reason for the mi-
nus sign is that walkers are moving from the right to the left as they pass by
that point. Figure 1 shows what this current looks like as a function of time.
One key feature of this current density is that there is a tail in it going as
t−3/2. This means that the first moment of the distribution, which we would
normally evaluate to determine the mean first passage time, is infinite.

How long will a walker avoid a particular re-

gion if the walker is confined to a closed vol-

ume?

Another question I was asked is how long a walker will avoid the neighbor-
hood of a particular point in space if the walker is forced to remain in a
certain volume. I will show you how to solve the problem in the case that
the excluded volume is spherical and the volume to which the walker is re-
stricted is a larger spherical volume, the excluded volume sitting in the exact
center of the confining volume. See Fig. 2. The boundary conditions that
apply at the outer boundary are reflecting, in that walkers that impinge on
that boundary are forced to stay in the region and are not eliminated. On
the other hand, walkers that attempt to enter the region inside the inner
sphere disappear from the distribution. This gives rises to a depletion of the
ensemble of walkers in the case of that we start with a collection of them;
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Figure 2: The walker is confined to the region inside a sphere of radius R
and outside a region of radius r0.

if we focus on the statistics of one walkers, then the absorbing boundary
conditions at r0 give rise to a reduction in the total number of walks that
the object can execute.

To solve this problem, we will imagine starting with a collection of walk-
ers confined to a spherical shell a distance l from the center of the enclosing
sphere, where l > r0. We will work in the continuum limit and take the
governing equation to be the diffusion equation. Because we have built rota-
tional symmetry into the system, there will be no dependence on the spherical
angles θ and φ. The version of the diffusion equation that we need to solve
is

∂c(r, t)

∂t
= D0

1

r2

∂

∂r

(
r2∂c(r, t)

∂r

)
(B-6)

Here, r is the distance from the center of the spheres. As a prelude to the
solution of the problem of interest to us, let’s see what we get when there is
no excluded volume.

Statistics in the absence of an excluded volume

We look for solutions to (B-6) of the form c(r, t) = c(r)e−λt. Then, the
equation that we need to solve is

−λc(r) = D0
1

r2

∂

∂r

(
r2∂c(r, t)

∂r

)
(B-7)
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The solutions to this equation that are regular throughout the interior of the
sphere of radius R are

ck(r) =
sin kr

r
(B-8)

for which
λ = D0k

2 (B-9)

The current density associated with such a solution is

jk(r) = −D0
~∇ck(r)

= D0

(
−k

cos kr

r
+

sin kr

r2

)
(B-10)

Reflecting boundary conditions at the boundary r = R translate into the
following requirement:

jk(R) = D0

(
−k

cos kR

R
+

sin kR

R2

)
= 0 (B-11)

or
kR = tan kR (B-12)

The graphical solution of this equation is indicated in Fig. 3. The boundary
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Figure 3: The graphical solution of Eq. (B-12). The horizontal axis is kR.

conditions also allow the constant solution c0(r) = a constant. This is im-
portant, as this represents the density to which the solution to the diffusion
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equation tends. Let the solutions to (B-12) be kn, with n going from 1 to∞.
The general solution to the diffusion equation will then be

c(r, t) = a0 +
∞∑

n=1

an
sin knr

r
e−D0k2

nt (B-13)

If we start with a set of walkers localized to an infinitesimal spherical shell a
distance l from the origin, then

an ∝
sin knl

l
(B-14)

It can be verified by straightforward analysis (and I leave this as an exercise
for you) that the volume integral of the solutions that are not constant is
equal to zero. That is ∫ R

0

sin knr

r
r2 dr = 0 (B-15)

This means that the total integrated number of walkers is given by the volume
integral of the first term on the right hand side of (B-15), which is conserved.
Furthermore, all other terms decay exponentially. For the record, the slowest
rate of decay is associated with the n = 1 term in the sum on the right hand
side of (B-15), for which

k1 =
4.49341

R
(B-16)

This means that the asymptotic decay to a constant density is exponential,
and the rate of decay is proportional to the inverse square of the size of the
region to which the walker or walkers are confined.

There is an excluded volume

The equation that we solve is again of the form (B-7). Now, however, we
enforce the boundary condition that the solution is zero at r = r0. The
relevant solutions will be of the form

c(r) ≡ dk(r)

=
sin k(r − r0)

r
(B-17)

The reflecting boundary condition at the outer wall is

k cos k(R− r0)

R
− sin k(R− r0)

R2
= 0 (B-18)
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No constant solution for dk(r) is allowed. The net solution to this equation
is

c(r, t) =
∞∑

n=1

an
sin kn(r − r0)

r
e−D0k2

nt (B-19)

where the kn’s are now the solutions to (B-18). Here, the distribution of
walkers decays exponentially to zero, and the rate of decay is asymptotically
controlled by the first term in the sum on the right hand side of (B-19). The
rate of decay goes as R−2, but is also modified by the ratio r0/R.
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