

Neutron Scattering in Magnetism - focus on dynamics

Winter School on Magnetism, Stuttgart 2008

Henrik Moodysson Rønnow Laboratory for Quantum Magnetism EPFL Switzerland

Outline

Theory

 what can we measure

the cross-section

2) Experiment – how do we measure *instruments and methods* Source \mathbf{k}_i Sample Φ $2\theta_S$ Detector $d\Omega$

3) Physics

 – what do we measure examples

- Plane waves: diffraction and magnetic structures
- Conservation: momentum, energy, spin
- Cross-section
- Magnetic scattering
- Correlation function

Neutrons

The ENERGIES of thermal neutrons are similar to the energies of elementary excitations in solids. Both have similar

- molecular vibrations,
- · lattice modes, and
- dynamics of atomic motion.

The WAVELENGTHS of neutrons are similar to atomic spacings. They can determine

- structural sensitivity,
- structural information from 10⁻¹³ to 10⁻⁴ cm, and
- crystal structures and atomic spacings.

Neutrons "see" NUCLEI. They

- are sensitive to light atoms,
- · can exploit isotopic substitution, and
- can use contrast variation to differentiate complex molecular structures.

Neutrons are NEUTRAL particles. They

- · are highly penetrating,
- · can be used as nondestructive probes, and
- · can be used to study samples in severe environments.

Neutrons have a MAGNETIC moment. They can be used to

- study microscopic magnetic structure,
- · study magnetic fluctuations, and
- develop magnetic materials.

Neutrons have SPIN. They can be

- · formed into polarized neutron beams,
- used to study nuclear (atomic) orientation, and
- used for coherent and incoherent scattering.

Neutron Plane Waves

• Plane waves and Bragg's law

$n\lambda = 2d \sin\Theta$

Diffraction – magnetic structures

- Bragg's law:
 nλ = 2d sinΘ
- Reciprocal lattice
 - τ = ha*+kb*+lc* τ = 2k sin Θ
- Powder diffraction example: HoP
 - Structural peaks at 7K
 - Ferromagnet at 5K
 - Non-collinear at 4.2K
- Structure refinement:
 - Standard 'black box' methods
 - Absorption, mutimple scattering, texture etc.
 - Positions, displacements, moments, directions

Consider scattering neutrons on a sample into a detector.

 \Rightarrow We can control and measure these quantities !

Cross-section

Intensity in angular $d\Omega$ and energy dE_f elements:

$$I_{d\Omega \ dE_f} = \left(\frac{d^2\sigma}{d\Omega \ dE_f}\right) \ \Phi \ d\Omega \ dE_f$$

From initial state *i* to final state *f* of neutron **k** and sample λ

$$\left(\frac{d^2\sigma}{d\Omega \ dE_f}\right)_{\lambda_i \to \lambda_f} = \frac{k_f}{k_i} \left(\frac{m_n}{2\pi\hbar^2}\right)^2 |\langle \mathbf{k}_f \lambda_f \ |V| \ \mathbf{k}_i \lambda_i \rangle|^2 \ \delta(E_{\lambda_i} - E_{\lambda_f} + \hbar\omega)$$

Neutrons treated as plane waves: $|\mathbf{ks}_n\rangle = V^{-1/2} \exp(i\mathbf{k} \cdot \mathbf{r}_n) |\mathbf{s}_n\rangle$

Energy conservation \Rightarrow integral rep.: $\delta(\hbar\omega + E_i - E_f) = \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} e^{i(\hbar\omega + E_i - E_f)t/\hbar} dt$ Fourier transform in

- space/momentum
- time/energy

Magnetic scattering

 $|\langle \mathbf{k}_f \lambda_f | V | \mathbf{k}_i \lambda_i \rangle|^2$

Dipole interaction – electron spin and orbit

$$V_{\text{mag}}(\mathbf{r}) = -\frac{\mu_0}{4\pi} 2\gamma \mu_N \mu_B \,\boldsymbol{\sigma}_n \cdot \left(\nabla \times \left(\frac{\mathbf{s} \times \hat{\mathbf{R}}}{|\mathbf{R}|^2} \right) + \frac{1}{\hbar} \frac{\mathbf{p} \times \hat{\mathbf{R}}}{|\mathbf{R}|^2} \right)$$

Non-polarised neutron average over spin states:

$$\begin{pmatrix} \frac{d^2\sigma}{d\Omega \ dE_f} \end{pmatrix}_{\text{mag}} = \frac{(\gamma r_0)^2}{2\pi\hbar} \frac{k_f}{k_l} \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{\mathbf{Q}}_{\alpha} \hat{\mathbf{Q}}_{\beta}) \sum_{\mathbf{l'd'ld}} \frac{1}{4} g_{\mathbf{l'}g} g_{\mathbf{l}} F_{\mathbf{d'}}^* (\mathbf{Q}) F_{\mathbf{d}} (\mathbf{Q}) \quad \text{factor} \\ \text{spin-spin correlation} \\ \times \int_{-\infty}^{\infty} \frac{dt \exp(-i\omega t) \langle \exp\{-i\mathbf{Q} \cdot \mathbf{R}_{\mathbf{l'd'}}(0)\} \exp\{i\mathbf{Q} \cdot \mathbf{R}_{\mathbf{ld}}(t)\}}{\text{Fourier transform}} \langle S_{\mathbf{l'd'}}^{\alpha\beta} (0) S_{\mathbf{ld}}^{\beta}(t) \rangle \text{ function}$$

Polarised neutrons:

$$\begin{pmatrix} \frac{d^2\sigma}{d\Omega \ dE_f} \end{pmatrix}_{s_i \to s_f} = \frac{k_f}{k_i} \sum_{if} P_{\lambda_i} |\langle \lambda_f | \sum_{l} \exp(i\mathbf{Q} \cdot \mathbf{r}_l) U_l^{s_i s_f} |\lambda_i \rangle |^2 \, \delta(E_{\lambda_i} - E_{\lambda_f} + \hbar\omega)$$
$$U_l^{s_i s_f} = \langle s_f | b_l - p_l \, \boldsymbol{\sigma}_n \cdot \mathbf{S}_{l\perp} + B_l \, \boldsymbol{\sigma}_n \cdot \mathbf{I}_l | s_i \rangle$$

Dynamic structure factor

$\begin{aligned} \text{Spin-spin correlation function} \\ S^{\alpha\beta}(\mathbf{Q},\omega) &= \frac{1}{2\pi} \sum_{\mathbf{l'd'ld}} \exp(-i\mathbf{Q} \cdot \{\mathbf{l'} + \mathbf{d'} - \mathbf{l} - \mathbf{d}\}) \int_{-\infty}^{\infty} dt \exp(-i\omega t) \langle S^{\alpha}_{\mathbf{l'd'}}(0) S^{\beta}_{\mathbf{ld}}(t) \rangle \\ \\ \text{Dynamic structure factor} \\ \left(\frac{d^2\sigma}{d\Omega \ dE_f}\right)_{\text{mag}} &= \frac{1}{\hbar} \frac{k_f}{k_i} p^2 \exp(-2W) \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{\mathbf{Q}}_{\alpha} \hat{\mathbf{Q}}_{\beta}) S^{\alpha\beta}(\mathbf{Q},\omega) \end{aligned}$

Fluctuation dissipation theorem \Rightarrow gen. susceptibility

$$S(\mathbf{Q},\omega) = [n(\omega) + 1] \chi''(\mathbf{Q},\omega) = \frac{\chi''(\mathbf{Q},\omega)}{1 - \exp(-\hbar\omega/k_BT)}$$

intrinsic dynamics \Leftrightarrow response to perturbation

Dynamic structure factor: inelastic

$$S(\mathbf{Q},\omega) \propto \int_{-\infty}^{\infty} dt e^{-i\omega(t-t')} \langle S_{\mathbf{r}'}(t) S_{\mathbf{r}}(t') \rangle$$

- periodic: sin($\omega_0 t$) \Rightarrow peak: $\delta(\omega_0 \omega)$
- Static structure factor: elastic $S(\mathbf{Q}, \omega = 0) \propto \int_{-\infty}^{\infty} dt \langle S_{\mathbf{r}'}(t) S_{\mathbf{r}}(t') \rangle \simeq \langle S_{\mathbf{r}'}(t) S_{\mathbf{r}}(\infty) \rangle$
 - Bragg peaks at ω = 0
- Instantaneous structure factor

$$S(\mathbf{Q}) = \int d\omega S(\mathbf{Q}, \omega) \propto \int_{-\infty}^{\infty} dt \delta(t - t') \langle S_{\mathbf{r}'}(t) S_{\mathbf{r}}(t') \rangle = \langle S_{\mathbf{r}'}(t) S_{\mathbf{r}}(t) \rangle$$

– Exponential decay: exp(-t/ τ) \Rightarrow Lorentzian: 1/(1+ $\omega^2 \tau^2$)

Conservation rules \Rightarrow momentum, energy, spin dependence Intensity \Rightarrow Cross-section, magnetic dipole interaction

Correlation function \Rightarrow dynamic structure factor:

Intensity
$$\propto \left(\frac{d^2\sigma}{d\Omega \ dE_f}\right)_{\text{mag}} = \frac{1}{\hbar} \frac{k_f}{k_i} p^2 \exp(-2W) \sum_{\alpha\beta} (\delta_{\alpha\beta} - \hat{\mathbf{Q}}_{\alpha} \hat{\mathbf{Q}}_{\beta}) S^{\alpha\beta}(\mathbf{Q}, \omega)$$

 \uparrow
Experiment \uparrow

Experiment – how do we measure instruments and methods

The neutron energy

• We cannot (controlled) change the neutron energy

Must select neutrons with wanted energy from a (Maxwellian) distribution

(Liouville & the phase space transformer)

- We have no energy sensitive neutron detector... yet! $n + {}^{3}\text{He} \rightarrow {}^{3}\text{H} + {}^{1}\text{H} + 0.764 \text{ MeV} - \text{want meV} \text{ need } 10^{-9} \text{ precision!}$
- Make another selection (analyse) to know energy
- Or, if we know starting time we can use time-of-flight

Useful numbers

- Energy units:
 eU 1 meV =
- k_BT 11.6 K =
- hv = 0.24 THz =
- hc/λ 8.06 cm-1 =
- μ_BH 17.3 T =
- E 1.6x10-22 J

- Neutron Energies:
- E [meV] =
- 2.072 k² [meV Å²] =
- 81.8 / λ^2 [meV Å²]

TAS: three axis spectrometer

- Pulsed sources: MAPS, Merlin, LET... E_i=20meV to 2eV
- Continuous sources: chopper define pulse ∆E~µeV to meV
- Sample: 5-50g

- Counting: few days!
 - Need x10-100 for T-dependence
 - Need x100-1000 for P-dep.

Time-Distance Scales Probed

TAS v.s. TOF \Rightarrow Multi-TAS

TAS

- Focus on <u>one</u> Point
- Flexible
- Polaristion analysis
- Already "optimal"

Multi-TAS

- a line in momentumenergy-space
- More Neutrons recorded than TAS
- More flexible than TOF

TOF

- 2-3D manifold
- Overwiew sees "everything"
- Less flexible

 (π,π)

Still improving (6+ today)

The MAD box

Multi (47) analyser-detector

- Analysers Cu(200) E_f=31 meV
- Detectors ³He, 0.3° each 1°
- IN8, 7 samples in 1 week

(Jimenez-Ruiz, Demmel & 7 students)

Recap.: How do we measure

- Control k_i and k_f
- Three axis spectrometers (TAS)
- Time-of-flight spectrometers (TOF)
- Energies from µeV to eV
- New sources in recent years!
- New spectrometers emerging!
- Many other neutron techniques in magnetism

Other techniques: Dynamics

В

Indirect TOF

- Backscattering:
 - better resolution

- Spin-Echo:
 - 'count' precessions
 - combined with TAS
 - $-\mu eV$ resolution

Powder & single crystal diffraction

• Reflectivity (surfaces, films and multilayers)

• Small angle scattering (large objects: domains, magnetic vortices in superconductors etc.)

Other techniques: Imaging

Coherent neutron phase imaging

- FM domains in FeSi_{3%} disk
- Promise of 3D domain imaging!

schematical map

Phase contrast $a_1^s a_0^r / a_1^r a_0^s$

1

0.8

0.6

0.4

0.2

Spin-waves, Holstein-Primakof transformation ...

Excitations

Transition from ground to excited state

 TOF powder spectrum (Crystal fields in LiErF₄)

Q-dependence – Structure factor

$$S^{\alpha\beta}(\mathbf{Q},\omega) = \frac{1}{2\pi} \sum_{\mathbf{r}'\mathbf{r}} e^{-i\mathbf{Q}\cdot(\mathbf{r}'-\mathbf{r})} \int_{-\infty}^{\infty} dt e^{-i\omega t} \langle S^{\alpha}_{\mathbf{r}'} S^{\beta}_{\mathbf{r}}(t) \rangle$$
$$S(\vec{q}) = \frac{1}{2} (1 - \cos(\vec{q} \cdot \vec{a}))$$

Ba₂Cu(BO₃)₂ Spectrometer IN8+MAD

QI

Localised excitation \Rightarrow Q-indep. Energy spectrum

Dispersive excitations

Spin waves (ferromagnet)

- Ordered ground state $H|g> = E_g|g>$
- Single spin flip not eigenstate: S[±]_r|g>
- Periodic linear combination: $|k\rangle = \Sigma_r e^{ikr} S_r^{\pm}|g\rangle$ (wave)
- Is (approximately) eigenstate: $H|k> = E_k|k>$
- Time evolution: $|k(t)\rangle = e^{iHt}|k\rangle = e^{iE_kt}|k\rangle$ (sliding wave)
- Dispersion:
 relation between
 time- and space modulation period

Spin wave example

1-dimensional, Spin $\frac{1}{2}$, antiferromagnet

 \Rightarrow quantum fluctuations and behaviour !

Spinon excitations

- In 1D a flipped spin 'unbind' to two domain walls
- "Spinons": spin S = $\frac{1}{2}$ domain walls with respect to local AF 'order'
- Need 2 spinons to form S=1 excitation we

H=5T0.8 0.2 $\uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow$ $E(q) = E(k_1) + E(k_2)$ Energy: 0.8 Momentum: $q = k_1 + k_2$ Energy [meV] 9.0 $S = \frac{1}{2} \pm \frac{1}{2}$ Spin:

0.2

2.J

0.2

0.1

 πJ

0.3

Q [rlu]

0.4

0.5

0.6

Many possibilities for each q Continuum of scattering \Rightarrow

TOF example – 2D spin waves

2D Heisenberg antiferromagnet – long range ordered Spin waves in Cu(DCOO)₂·4D₂O f_{25}

2-spin wave scattering

Ordered moment < S > = 60%, Spin wave amplitude $Z\chi$ = 51%, Where is the remaining weight?

Polarised neutrons:

Spin-flip / non-spin-flip channels

 Separate transverse and longitudinal

$$|G\rangle = |Nee| > + \Sigma_k a_k |1-spin waves > +...$$
spin-wave
$$2-spin-waves:$$

$$k = k_1 + k_2$$

$$E = E_1 + E_2$$
transverse
longitudinal
(spin-waves ok for long wavelengths)

Surprise: zone boundary anomaly!

(PFL

S(Q) instantaneous correlations

S(Q) is Fourier transform of 'snap-shot'

$$S(\mathbf{Q}) = \sum_{\mathbf{r}'\mathbf{r}} e^{-i\mathbf{Q}\cdot(\mathbf{r}'-\mathbf{r})} \langle S_{\mathbf{r}'}(t)S_{\mathbf{r}}(t) \rangle$$

Real space exponential decay:

$$\langle S_{\boldsymbol{r}'}(t)S_{\boldsymbol{r}}(t)\rangle \propto e^{-|r-r'|/\xi}$$

Reciprocal space: Lorentzian

$$S(\mathbf{Q}) \propto rac{1}{1+Q^2\xi^2}$$

Correlation length ξ

Wildes et al. ↑

In 2D, S(Q) gives rods along Q \perp

Integrate by having kf || Q \perp

S(Q) instantaneous correlations

- E from micro eV to eV
- T from few mK to 1000K
- H to 15T
- P to 17kbar / 50kbar example: SrCu₂(BO₃)₂

Localised excitations

- Disperive excitations
- Dynamic correlations
- Polarisation analysis
- Dependencies:

Temperature, Magnetic field, Pressure field

• It's a battle: samples, statistics, resolution

• But often 'the final kill' for problems in magnetism

Thank you

LQM

Neutron and X-ray scattering

- Similar in technique, but
 - X-rays much more intense
 - Different scattering lengths:
 - Neutrons simpler for magnetism
 - Neutrons better for energy resolution
- Mostly, only one will work for a given problem

- Source spectrum:
 - Cold: $E_i=2-15 \text{ meV}$
 - Thermal E_i=15-100 meV
 - Epithermal $E_i => 1-2 \text{ eV}$
- Intensity / resolution: Some typical numbers (PG002): resolution (fwhm) E_i, E_f
 - 2 meV 30 µeV
 - 5 meV 0.15 meV
 - 14.7 meV 1.2 meV
- Typical counting ~1-10 min/pt

The spin 1/2 chain

Ground state (Bethe 1931) disordered by quantum fluctuations

Continuum in 1D

2-spin wave scattering

Ordered moment < S > = 60%, Spin wave amplitude $Z\chi$ = 51%, Extra 25% dip at (π ,0) Where is the remaining weight?

