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Topological quantum computation has recently emerged a®btine most exciting approaches to constructing a
fault-tolerant quantum computer. The proposal relies erettistence of topological states of matter whose quasi-
particle excitations are neither bosons nor fermions, tiparticles known alon-Abelian anyons, meaning that
they obeynon-Abelian braiding statistics. Quantum information is stored in states with multiple dgpasicles,
which have a topological degeneracy. The unitary gate tipesawhich are necessary for quantum computation
are carried out by braiding quasiparticles, and then mewagtiie multi-quasiparticle states. The fault-tolerance
of a topological quantum computer arises from the non-lecabding of the states of the quasiparticles, which
makes them immune to errors caused by local perturbatioagdate, the only such topological states thought
to have been found in nature are fractional quantum Hakstahost prominently the = 5/2 state, although
several other prospective candidates have been propossdtems as disparate as ultra-cold atoms in optical
lattices and thin film superconductors. In this review &ftigve describe current research in this field, focusing
on the general theoretical concepts of non-Abelian siggisis it relates to topological quantum computation, on
understanding non-Abelian quantum Hall states, on prapegperiments to detect non-Abelian anyons, and on
proposed architectures for a topological quantum comp\eraddress both the mathematical underpinnings of
topological quantum computation and the physics of theemtibjsing thes = 5/2 fractional quantum Hall state
as the archetype of a non-Abelian topological state englfdinlt-tolerant quantum computation.
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and Non-Abelian Topological Phases . , .. .
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2. Combinatorial Evaluation of Link Invariants and rection protocols. Remarkably, there has been a conveegenc
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than in topological quantum computation, which seeks to ex-
ploit the emergent properties of many-particle systemsto e
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2. Quantum Hall Wavefunctions from Conformal Field Theor® 3 IS resistant to error.
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is not only evolving alongside topological quantum computa ical system ‘condenses’ into a non-Abelian topologicalggha
tion but is even informed by it. Therefore, this review mustin Section 1ll, we describe the universal low-energy, long-
necessarily be rather sweeping in scope, simply to intreducdistance physics of such phases. We also discuss how they can
the concepts of non-Abelian anyons and topological quanturhe experimentally detected in the quantum Hall regime, and
computation, their inter-connections, and how they maybe r when they might occur in other physical systems. Our focus
alized in physical systems, particularly in several fragéil  is on a sequence of universality classes of non-Abelian-topo
guantum Hall states. (For a popular account, see Collindpgical phases, associated with SU(Z)hern-Simons theory
2006; for a slightly more technical one, see Das Saeha.,  which we describe in section Ill.A. The first interesting mem
2006a.) This exposition will take us on a tour extending fromber of this sequence; = 2, is realized in chiral p-wave
knot theory and topological quantum field theory to confdrma superconductors and in the leading theoretical model fer th
field theory and the quantum Hall effect to quantum computar = 5/2 fractional quantum Hall state. Section I1.B shows
tion and all the way to the physics of gallium arsenide dexice how this universality class can be understood with conven-

The body of this paper is Composed of three parts, Sectiontéonal BCS theory. In section I11.C, we describe how the topo
I, I, and IV. Section Il is rather general, avoids techalic logical properties of the entire sequence of universaldgses
details, and aims to introduce concepts at a qualitativellev (of which k& = 2 is a special case) can be understood using
Section Il should be of interest, and should be accessible, tWitten's celebrated connection between Chern-Simonsyheo
all readers. In Section Ill we describe the theory of topelog @nd the Jones polynomial of knot theory. In section 111.D, we
ical phases in more detail. In Section IV, we describe how #lescribe an alternate formalism for understanding the-topo
topological phase can be used as a platform for fault-totera logical properties of Chern-Simons theory, namely through
guantum Computation_ The second and third parts are probgonformal field theory. The discussion revolves around the

bly of more interest to theorists, experienced researchads ~ application of this formalism to fractional quantum Halitets
those who hope to conduct research in this field. and explains how non-Abelian quantum Hall wavefunctions

Section I11.A.1 begins by discussing the concept of braidingc‘_'jln be cpnstructed with cpnformallfield theory. Appgndix A
statistics in2 + 1-dimensions. We define the idea of a non- 91V€s a highly-condensed introduction to conformal fiele+ th

Abelian anyon, a particle exhibiting non-Abelian braiding ory. In Section I_”‘E' we discuss the Q?P'ess edge excratio
statistics. Section 11.A.2 discusses how non-Abelian aisyo which necegsan_ly accompany chiral (i.e. parfyand t|_me.-
can arise in a many-particle system. We then review the bar_eversaIT-onatlng) topological phases. These excitations

sic ideas of quantum computation, and the problems of erro re L_JserI for i_nterfe_rometry experiments_, as we discuss in
and decoherence in section II.B.1. Those familiar with quan ection ”I'l_:‘ Finally, |n_Sect|0n I.”'G’ We_dlscuss topgloal

tum computation may be able to skip much of this section. WEphases which do not violate parity and time-reversal symme-
explain in section 11.B.2 how non-Abelian statistics nafly tries. These phases emerge in models of electrons, spins, or

leads to the idea of topological quantum computation, and e)posons on lattices which could describe transition metal ox

plain why it is a good approach to error-free quantum compu'—des’ Josephson junction arrays, or ultra-cold atoms iicalpt

tation. In section II.C, we briefly describe the non-Abelian 2ttices.
guantum Hall systems which are the most likely arena for
observing non-Abelian anyons (and, hence, for producing a
topological quantum computer). Section II.C.1 gives a very,
basic review of quantum Hall physics. Experts in quantu

Hall physics may be able to skip much of this section. Sectioq
[I.C.2 introduces non-Abelian quantum Hall states. This se
tion also explains the importance (and summarizes thetssul
of numerical work in this field for determining which quantum

HaI_Ibstates are ]S?L might be)(lj'lpr;-Afbellan. Sectlo_n ”'?ﬁ dhe_ guantum computation and how this limitation of the= 5/2
scr %S sobrreto di et_propot;siblr}_er efrence ex&el;lr:?en WNIGtate can be circumvented. Section IV.B discusses in detail
may be able 1o dIStnguis elian from non-Abelian guan-y, topological computations can be performed in the sim-

tm Hall states. Sgctmnl_ll.c(:j.{f shows howgultl)lés a}nd eSIe- lest non-Abelian theory that is capable of universal togel
mentary gates can be realized in a quantum Hall device. Segey, quantum computation, the so-called “Fibonacci-Ariyon

tion II.C.5 discusses some of the engineering issues assoqheory In IV.C, we show that the SU(R)heories support

ated with the physical systems where quantum Hall phySICﬁniversal topological quantum computation for all integyer

is observed. In section Il.D we discuss some of the Otherexceptk — 1,2, 4. In IV.D, we discuss the physical processes

non-quantum-Hall systems where it has been proposed thghip, il cause errors in a topological quantum computer.
non-Abelian anyons (and hence topological quantum compu-

tation) might occur.

Sections Il and IV are still written to be accessible to the Finally, we briefly conclude in section V. We discuss
broadest possible audiences, but they should be expected qoestions for the immediate future, primarily centeredtoan t
be somewhat harder going than Section Il. Section Il intro-» = 5/2 andv = 12/5 fractional quantum Hall states. We
duces the theory of topological phases in detail. Topoklgic also discuss a broader set of question relating to non-abel
guantum computation can only become a reality if some phystopological phases and fault-tolerant quantum computatio

In Section 1V, we discuss how quasiparticles in topological
hases can be used for quantum computation. We first dis-
uss the case of SU@)which is the leading candidate for
hev = 5/2 fractional quantum Hall state. We show in Sec-
tion IV.A how qubits and gates can be manipulated in a gated
GaAs device supporting this quantum Hall state. We discuss
why quasiparticle braiding alone is not sufficient for umasd
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Il. BASIC CONCEPTS Consequently, the notion of a winding of one particle around
another in two dimensions is well-defined. Then, when two

A. Non-Abelian Anyons particles are interchanged twice in a clockwise mannef; the
trajectory involves a non-trivial winding, and the systeoed

1. Non-Abelian Braiding Statistics not necessarily come back to the same state. This topologica

difference between two and three dimensions, first realized

Quantum statistics is one of the basic pillars of the quanby Leinaas and Myrheim, 1977 and by Wilczek, 1982a, leads
tum mechanical view of the world. It is the property which to a profound difference in the possible quantum mechanical
distinguishes fermions from bosons: the wave function thaproperties, at least as a matter of principle, for quantusa sy
describes a system of many identical particles shouldfgatis tems when particles are confined2e- 1 D (see also Goldin
the proper symmetry under the interchange of any two partietal., 1981 and Wu, 1984). (As an aside, we mention that in
cles. In3 spatial dimension and one time dimensi8n{1 D) 1+ 1 D, quantum statistics is not well-defined since particle
there are only two possible symmetries — the wave functiorinterchange is impossible without one particle going tigtou
of bosons is symmetric under exchange while that of fermionanother, and bosons with hard-core repulsion are equistalen
is anti-symmetric. One cannot overemphasize, of course, thfermions.)
importance of the symmetry of the wavefunction, which is Suppose that we have two identical particles in two dimen-
the root of the Pauli principle, superfluidity, the metafitate, sions. Then when one particle is exchanged in a counter-
Bose-Einstein condensation, and a long list of other phenontlockwise manner with the other, the wavefunction can

ena. change by an arbitrary phase,
The limitation to one of two possible types of quantum ”
iai i i ¥ (ry,r2) — €9 (r1,r2) 1)
symmetry originates from the observation that a process in ’ ’

which two particles are adiabatically interchanged twige i T phase need not be merelyasign because a second

equivalent to a process in which one of the particles is adizoynter-clockwise exchange need not lead back to thelinitia
abatically taken around the other. Since, in three dime@Ssio siate but can result in a non-trivial phase:

wrapping one particle all the way around another is topolog- _

ically equivalent to a process in which none of the particles ¥ (r1,r2) — €299 (rq,13) (2)
move at all, the wave function should be left unchanged byl_
two such interchanges of particles. The only two possibili-
ties are for the wavefunction to change bytasign under a
single interchange, corresponding to the cases of bosahs a ) . )
fermions, respectively. to such particles as anyons with statistics

We can recast this in path integral language. Suppose we (&% (TSN 18 RS SO O SR e o
consider all possible trajectories 3+ 1 dimensions which P ' polog

take N particles from initial positions?;, Rz, ..., Ry at t]r%a]e;torles }’%Vh'(;rt] tE?ri(stFTgiﬁgargg:teinggm ]'g itial m]’%ﬂs
time ¢; to final positionsRy, Ry, ..., Ry at timety. fthe ot 2 "t i]rfone—to—ozne correg ondence ’vvitil't'ﬁé,elévments
particles are distinguishable, then there are no topoddigic of the bfraid roumBx. An eIemerF:t of the braid aroun can
non-trivial trajectories, i.e. all trajectories can be ton- . aid g N : ) 10 group
: . : : : be visualized by thinking of trajectories of particles agdo

ously deformed into the trajectory in which the particles dolines (or strands) in 2+1 dimensional space-time origingti
not move at all (straight lines in the time direction). 'If the at initial positions and terminating at finarlJ ositions hgwn
particles are indistinguishable, then the different cljges .~ _. P ; -rminating P ' .

: . : in Figure 1. The time direction will be represented vertical
fall into topological classes corresponding to the elemeifit . L .

. . on the page, with the initial time at the bottom and the final
the permutation grougiy, with each element of the group time at the top. An element of th¥-particle braid group is
specifying how the initial positions are permuted to obtaim . P 18 -par group

an equivalence class of such trajectories up to smooth-defor

final positions. To define the quantum evolution of such a sys-__ )
mations. To represent an element of a class, we will draw

tem, we must specify how the permutation group acts on th ; : : o . .
' e trajectories on paper with the initial and final points or
states of the system. Fermions and bosons correspond to the

only two one-dimensional irreducible representationshef t the;i?aa;?:tno%ilézeivzt 23;{‘3?;?&2?% tglr:li YJ\{Qﬁ '?Nﬂgar‘]’vgnnge
permutation group oV identical particles. ! ' 9

Two-di ional litatively diff f strand passes over or under another, corresponding tole cloc
wo-dimensional systems are qualitatively ditierent oM, \ise or counter-clockwise exchange. We also require that
any intermediate time slice must inters@€tstrands. Strands
Bannot ‘double back’, which would amount to particle cre-
ation/annihilation at intermediate stages. We do not attog/
because we assume that the particle number is known. (We
will consider particle creation/annihilation later in shpaper
1hi L . , when we discuss field theories of anyons and, from a mathe-
igher dimensional representations of the permutatiorugrdnown as . ] . ] “
‘parastatistics’, can always be decomposed into fermiarisosons with matical perspective, when we discuss the idea of a catégory

an additional quantum number attached to each particle li@ep et al., in section IV belPW-) Thgn, '_[he multiplication pf two ele?
1971, 1974). ments of the braid group is simply the successive execution

he special casés= 0, 7 correspond to bosons and fermions,
respectively. Particles with other values of the ‘statatian-
Igle’ 0 are calledanyons (Wilczek, 1990). We will often refer

deformed to a point without cutting through the other péatic
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which one particle winds around the other an integer num-
ber of times. These topological classes correspond to &ie el
t t ments of the ‘pure’ braid group, which is the subgroup of the
a1 02 braid group containing only elements which bring each parti
] ] cle back to its own initial position, not the initial positiaf
e one of the other particles. The richness of the braid group is
the key fact enabling quantum computation through quasipar
ticle braiding.
t t To define the quantum evolution of a system, we must now
specify how the braid group acts on the states of the system.
7 The simplest possibilities are one-dimensional repregiems
t of the braid group. In these cases, the wavefunction acgjuire
] ] a phase) when one particle is taken around another, analo-
gous to Egs. 1, 2. The special cages= 0,7 are bosons
and fermions, respectively, while particles with otherues
of # areanyons (Wilczek, 1990). These are straightforward
t t many-particle generalizations of the two-particle casesab
ered above. An arbitrary element of the braid group is rep-
resented by the factar™? wherem is the total number of
t times that one particle winds around another in a counter-
1 — l clockwise manner (minus the number of times that a particle

S===—

winds around another in a clockwise manner). These repre-
sentations are Abelian since the order of braiding operatio
] ] in unimportant. However, they can still have a quite richstr
ture since there can be, different particle species with pa-
rameterd,;,, wherea,b = 1,2, ..., ng, specifying the phases
resulting from braiding a particle of typearound a particle of
typeb. Since distinguishable particles can braid non-trivially
i.e. #,, can be non-zero fot # b as well as fora = b,
anyonic ‘statistics’ is, perhaps, better understood asd &f
topological interaction between particles.

of the corresponding trajectories, i.e. the vertical staglof We now turn to non-Abelian braiding statistics, which

the two drawings. (As may be seen from the figure, the ordere associated with higher-dimensional representatibtieo

in which they are multiplied is important because the grougdraid group. Higher-dimensional representations can roccu

is non-Abelian, meaning that multiplication is not commuta When there is a degenerate seystates with particles at fixed

tive.) positionsRy, Rs, ..., R,. Let us define an orthonormal basis
The braid group can be represented algebraically in terms ofa, & = 1,2, ..., g of these degenerate states. Then an ele-

generators;, with 1 < i < N —1. We choose an arbitrary or- ment of the braid group — say , which exchanges particles 1

dering of the particles, 2, ..., N.2 o; is a counter-clockwise and 2 —is represented bygax< g unitary matrixp(o1) acting

exchange of thé" and (i + 1) particles.o; ! is, therefore,a  on these states.

clockwise exchange of thé and(i + 1) particles. Ther;s

satisfy the defining relations (see Fig. 1), Yo = [p(01)] 5 Vs (4)

On the other hand, exchanging particles 2 and 3 leads to:

Yo — [p(02)] 05 Vs ®)
The only difference from the permutation groS§p; is that ) ) ) )
o2 + 1, but this makes an enormous difference. WhileBOth p(01) andp(a2) areg x g dimensional unitary matri-
' £es, which define unitary transformation within the subspac

the permutation group is finite, the number of elements i
the group|Sx| = N, the braid group is infinite, even for °f degenerate ground states.plir;) andp(a:) do not com-

just two particles. Furthermore, there are non-triviatog- ~ MUte: [P(1)].5 WU?)]grvaiéngp(@)]aﬁ[p(al)]ﬁw the parti-

ical classes of trajectories even when the particles atimdis C!€S obeynon-Abelian statistics. Unless they com-
guishable, e.g. in the two-particle case those trajectdrie Mute for any interchange of particles, in which case the par-
ticles’ braiding statistics is Abelian, braiding quasipaes

will cause non-trivial rotations within the degenerate gxan
guasiparticle Hilbert space. Furthermore, it will essahtibe

2 Choosing a different ordering would amount to a relabelififne elements true at low energies that thm'y way to make non-trivial uni-

of the braid group, as given by conjugation by the braid whiahsforms tary.operations on this degenerz?\te space is b_y braipling'-quas
one ordering into the other. particles around each other. This statement is equivadesmt t

FIG. 1 Top: The two elementary braid operations and o2 on
three particles.Middle: Here we showso1 # o102, hence the
braid group is Non-Abelian.Bottom: The braid relation (Eq. 3)

0i0i+10; = 0i+10:0i+1.

0,05 = 0;0; for |Z —]| >2
0;0i1+10; = 0j+1040;4+1 for 1 <i1<n-1 (3)
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statement that no local perturbation can have nonzeroxmatriare so-named for reasons which will become clear in sections
elements within this degenerate space. [11.D and Ill.E), SU(2),, and chiralp-superconductors. There
A system with anyonic particles must generally have mul-are slight differences between these three theoriesinglet
tiple types of anyons. For instance, in a system with AbelianrAbelian phases, but these are unimportant for the present di
anyons with statistic#, a bound state of two such particles cussion. This model has three different types of anyonsg;hwhi
has statisticdf. Even if no such stable bound state exists, wecan be variously called, o, ¢ or 0, %, 1. (Unfortunately, the
may wish to bring two anyons close together while all othernotation is a little confusing because the trivial partide
particles are much further away. Then the two anyons cacalled ‘1’ in the first model but ‘0* in the second, however,
be approximated as a single particle whose quantum nunwe will avoid confusion by using bold-facedto denote the
bers are obtained by combining the quantum numbers, intrivial particle.) The fusion rules for such anyons are
cluding the topological quantum numbers, of the two parti-
cles. As a result, a complete description of the system must oxo =1+, oxyp=o0, ¢Ypxip=1,
also include these ‘higher’ particle species. For instaifce 1xx =z for z=1,0,9 (7)
there ared = w/m anyons in system, then there are also _ ) )
0 = 4x/m,97/m, ..., (m — 1)2x/m. Since the statistics pa- (Translating these rules into the notation of SUJ(aye see
rameter is only well-defined up fr, § = (m — 1)2r/m =  that these fusion rules are very similar to the decompasitio
—7/m for m even andr — 7/m for m odd. The formation ~rules for tensor products of irreducible SU(2) represémtat
of a different type of anyon by bringing together two anyonsbut differ in the important respect thais the maximum spin
is calledfusion. When a statistics /m particle is fused with SO that; x 5 = 0+ 1, as in the SU(2) case, bgtx 1 = 3 and
a statistics—7 /m particle, the result has statistiés= 0. It 1 x 1 = 0.) Note that there are two different fusion channels
is convenient to call this the ‘trivial’ particle. As far aspo-  fortwoos. Asaresult, if there are fous which fuse together
logical properties are concerned, such a boson is just a god® 9ive 1, there is a two-dimensional space of such states. If
as the absence of any particle, so the ‘trivial’ particlelsma We divided the fouws into two pairs, by grouping particles
sometimes simply called the ‘vacuum’. We will often denote 1,2 and3, 4, then a basis for the two-dimensional space is
the trivial particle byl. given by the state in which, 3 fuse tol or 1, 3 fuse toy) (2, 4
With Abelian anyons which are made by forming succes-must fuse to the same particle typelas do in order that all
sively larger composites of /m particles, thefusion ruleis: ~ four particles fuse td). We can call these statds and¥,;
n’r o Km _ (ntk)’m (We will usea x b to denoten fused they are a basis for the four-quasiparticle Hilbert spadé wi

e b.)mHowever, for non-Abelian anyons, the situation is total topological charga. (Similarly, if they all fused to give

. : : , there would be another two-dimensional degenerate space;
more complicated. As with ordinary quantum numbers, ther o . . ) )
. . - . one basis is given by the state in which the first pair fusds to
might not be a unique way of combining topological quantum_ - . ) .
. . . while the second fuses tpand the state in which the opposite
numbers (e.g. two spifi/2 particles could combine to form oceurs.)
either a spird or a spind particle). The different possibili- )

. ) . - Of course, our division of the fours into two pairs was
gzic?treed%?/”ed the differeriision channels. This is usually arbitrary. We could have divided them differently, sayoint

the pairs1,3 and2,4. We would thereby obtain two dif-
ba X Gy = ZN§b¢c (6) ferent basis statesy; and ¥y, in which both pairs fuse to
- 1 or to ¢, respectively. This is just a different basis in the
same two-dimensional space. The matrix parametrizing this
basis change (see also Appendix A) is called Fenatrix:
U, = F,;, ¥y, wherea,b = 1,4. There should really be
6 indices onF if we include indices to specify thé parti-

cle types: [Ffjk] o but we have dropped these other indices

which represents the fact that when a particle of species
fuses with one of specids the result can be a particle of
speciesc if NS, # 0. For Abelian anyons, the fusion mul-
tiplicities N¢, = 1 for only one value of: and N, = 0 for
all ¢ # c. For particles of typé with statisticsdy, = 7k?/m,
i.e. N}, = 6w For non-Abelian anyons, there is at Sincéi = j = k = | = o in our case. The"-matrices
least ones, b such that there are multiple fusion channels are sometimes callegjj symbols since they are analogous to
with N¢, # 0. In the examples which we will be considering the corresponding quantities for SU(2) representatiorsaR
in this paper,N¢, = 0 or 1, but there are theories for which thatin SU(2), there are multiple states in which sgings, js
N¢, > 1for someu, b, c. In this caseq andb can fuse to form ~ couple to form a total spid. For instancej, andj, can add
cin N¢, > 1 different distinct ways. We will use to denote 0 formji, which can then add witj to giveJ. The eigen-
the antiparticle of particle species Whena anda fuse, they ~ states of(ji2)” form a basis of the different states with fixed
can always fuse ta in precisely one way, i.eN!, = 1;in  ji,j2, j3, andJ. Alternatively,j» andjs can add to fornjos,
the non-Abelian case, they may or may not be able to fuse tahich can then add withy to giveJ. The eigenstates Qj23)2
other particle types as well. form a different basis. Thé; symbol gives the basis change
The different fusion channels are one way of accounting fobetween the two. Thé-matrix of a system of anyons plays
the different degenerate multi-particle states. Let usheme  the same role when particles of topological changes: fuse
this works in one simple model of non-Abelian anyons whichto total topological chargé If i and; fuse toa, which then
we discuss in more detail in section Ill. As we discuss in secfuses withk to give topological chargk the different allowed
tion 1ll, this model is associated with ‘Ising anyons’ (whic « define a basis. If andk fuse tob and then fuse withi to



give topological chargé this defines another basis, and the not tell us when and where they might occur in nature. Elec-
F-matrix is the unitary transformation between the two basedrons, protons, atoms, and photons, are all either fermions
States with more than 4 quasiparticles can be understood liyr bosons even when they are confined to move in a two-
successively fusing additional particles, inamannerdesd  dimensional plane. However, if a system of many electrons (o
in Section lll.LA. TheF-matrix can be applied to any set of 4 bosons, atoms, etc.) confined to a two-dimensional plane has
consecutively fused particles. excitations which are localized disturbances of its quemtu
The different states in this degenerate multi-anyon statenechanical ground state, known@sasiparticles, then these
space transform into each other under braiding. However, twquasiparticles can be anyons. When a system has anyonic
particles cannot change their fusion channel simply bydsrai quasiparticle excitations above its ground state, it istiopa-
ing with each other since their total topological charge carlogical phase of matter. (A more precise definition of a topo-
be measured along a far distant loop enclosing the two partiogical phase of matter will be given in Section 111.)

cles. They must braid with a third particle in order to change |Let us see how anyons might arise as an emergent prop-
their fusion channel. Consequently, when two particleg fus erty of a many-particle system. For the sake of concreteness
in a particular channel (rather than a linear superposiion consider the ground state of2a+ 1 dimensional system of
channels), the effect of taking one particle around therotheof electrons, whose coordinates &re, . .., r,). We assume

is just multiplication by a phase. This phase resulting fromthat the ground state is separated from the excited states by
a counter-clockwise exchange of particles of typeandb  an energy gap (i.e, it is incompressible), as is the sitnatio
which fuse to a particle of typeis called R2*. In the Ising  fractional quantum Hall states in 2D electron systems. The
anyon case, as we will derive in section Ill and Appendix A.1,lowest energy electrically-charged excitations are knasn
R77 = ¢~ ™i/8 RIT — ¢3mi/8 RV — _1 R9Y — i. For quasiparticles or quasiholes, depending on the sign of thei
an example of how this works, suppose that we create a paélectric charge. (The term “quasiparticle” is also somesm

of o quasiparticles out of the vacuum. They will necessarilyused in a generic sense to mean both quasiparticle and quasi-
fuse tol. If we take one around another, the state will changehole as in the previous paragraph). These quasipartickes ar
by a phase~""/%. If we take a thirdr quasiparticle and take local disturbances to the wavefunction of the electronsecor

it around one, but not both, of the first two, then the first twosponding to a quantized amount of total charge.

will now fuse tos), as we will show in Sec. lll. If we nowtake  we now introduce into the system’s Hamiltonian a scalar
one of th39 ,f'gSt two around the other, the state will change byyotential composed of many local “traps”, each sufficient to
a phase’™'/%, capture exactly one quasiparticle. These traps may be cre-

In order to fully specify the braiding statistics of a systemated by impurities, by very small gates, or by the potential
of anyons, it is necessary to specify (1) the particle specie created by tips of scanning microscopes. The quasipasticle
(2) the fusion rulesV,, (3) the F-matrices, and (4) th&-  charge screens the potential introduced by the trap and the
matrices. In section 1V, we will introduce the other sets@f p “quasiparticle-tip” combination cannot be observed byaloc
rameters, namely the topological spifts and theS-matrix, = measurements from far away. Let us denote the positions of
which, together with the parameters 1-4 above fully characthese traps to béR;, ..., R;), and assume that these posi-
terize the topological properties of a system of anyons. &Somtions are well spaced from each other compared to the mi-
readers may be familiar with the incarnation of these mathecroscopic length scales. A state with quasiparticles atethe
matical structures in conformalfield theory (CFT), whemth  positions can be viewed as an excited state of the Hamiltonia
occur for reasons which we explain in section I11.D; we byiefl of the system without the trap potential or, alternatively,
review these properties in the CFT contextin Appendix A.  the ground state in the presence of the trap potential. When

Quasiparticles obeying non-Abelian braiding statistics o we refer to the ground state(s) of the system, we will often be
simply non-Abelian anyons, were first considered in the conreferring to multi-quasiparticle states in the latter @xtt The
text of conformal field theory by Moore and Seiberg, 1988,quasiparticles’ coordinatés?;, . .., Ry) are parameters both
1989 and in the context of Chern-Simons theory by Witten,n the Hamiltonian and in the resulting ground state wavefun
1989. They were discussed in the context of discrete gaugéon for the electrons.

theories and linked to the representation theorgjantum We are concerned here with the effect of taking these quasi-
groups by Bais, 1980; Baigtal., 1992, 1993a,b. They were particles around each other. We imagine making the quasi-
discussed in a more general context by Fredenhagan, articles coordinateR = (R, ..., R;,) adiabatically time-

1989 and Frohlich and Gabbiani, 1990. The properties Ofependent. In particular, we consider a trajectory in whiieh
non-Abelian quasiparticles make them appealing for use in &na| configuration of quasiparticles is just a permutatién o
quantum computer. But before discussing this, we will byiefl he initial configuration (i.e. at the end, the positions fus t
revi(_ew how they could occur in nature and then the basic idea&uasiparticles are identical to the intial positions, bone
behind quantum computation. quasiparticles may have interchanged positions with sther
If the ground state wave function is single-valued with extp
to (R4, .., Ry), and if there is only one ground state for any
2. Emergent Anyons given set of R;’s, then the final ground state to which the sys-
tem returns to after the winding is identical to the initialeo
The preceding considerations show that exotic braidingip to a phase. Part of this phase is simply the dynamical phase
statistics is a theoretical possibility ihn+ 1-D, but they do  which depends on the energy of the quasiparticle state and
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the length of time for the process. In the adiabatic limitsit WhereR(s), s € [0, 2] is the closed trajectory of the par-
fth(ﬁi(t))_ There is also a a geometric phase which doegicles and _the path-ordering symbﬁlis defined by the sec-
not depend on how long the process takes. This Berry phasend equality. Again, the matri®/,, may be the product of

is (Berry, 1984), topological and non-topological parts. In a system in which
guasiparticles obey non-Abelian braiding statistics, riba-
o= z'y{dR- ((R)|V 5[ (R)) (8) topologic_al part will be Abel_ian, that is_, proportional_tbet
unit matrix. Only the topological part will be non-Abelian.

. . S The requirements for quasiparticles to follow non-Abelian
where|yy(R)) is the ground state with the quasiparticles at PO statistics are then, first, that thé-quasiparticle ground state

sitionsR,, and where the integral is taken along the trajectory; :
R(t). It is manifestly dependent only on the trajectory taken.> degenerate. In general, the degeneracy will not be exact,

by the particles and not on how long it takes to move alon
this trajectory.

The phaser has a piece that depends on the geometry o
the path traversed (typically proportional to the area @sed
by all of the loops), and a piedethat depends only on the

but it should vanish exponentially as the quasiparticleasep
Yations are increased. Second, that adiabatic interchaihge
uasiparticles applies a unitary transformation on theigdo
tate, whose non-Abelian part is determined only by theltopo
ogy of the braid, while its non-topological part is Abelidh.
topology of the loops created. # # 0, then the quasipar- _the plarticles are not iﬂfinitehly fadr_ abpar_t, _and tne degeryerag
ticles excitations of the system are anyons. In particular, Is only approximate, then the adiabatic interchange must be
) o . done faster than the inverse of the energy splitting (Thszule
we consider the case where only two quasiparticles are inter,

changed clockwise (withoutwrapping around any other quasiand Gefen, 1991) between states in the nearly-degenelate su

particles)d is the statistical angle of the quasiparticles. space (but, of course, still much slower than the energy gap

There were two key conditions to our above discussion OPetween this subspace and the excited states). Third, e on
y way to make unitary operations on the degenerate grourel stat

Fhe Berry pha§e. The single valuedness of the wave fur]Ct'OQpace, so long as the particles are kept far apart, is by-braid
is a technical issue. The non-degeneracy of the ground statl%g_ The simplest (albeit uninteresting) example of degatee

thh?;ve;ere'rlfjsgéuﬁﬁr:ﬁgtsﬁz};?ilgr?lir??fﬂglhotnﬁis!nc;?\(gi'ti&d;t 0 ground states may arise if each of the quasiparticles cearie
pap spin1/2 with a vanishingg—factor. If that were the case, the

not hold. We will generally be considering systems in whlch,System would satisfy the first requirement. Spin orbit cou-

once the pqsmon@Rl, -, Ry) of the quasiparticles are fixed, rPling may conceivably lead to the second requirement being
there remain multiple degenerate.grour?d states (i.e. gquu satisfied. Satisfying the third one, however, is much harder
states in the presence of a potential which captures quasipd, g requires the subtle structure that we describe below.

ticles at positiong Ry, .., Ri)), which are distinguished by a S . .
set of internal quantum numbers. For reasons that will be-. The degeneracy aV-quasiparticle ground states is condi-

come clear later, we will refer to these quantum numbers anned onthe quaS|_part|_cIes being well separated from ore a
“topological”. other. When quasiparticles are allowed to approach one an-

When the ground state is degenerate, the effect of a close%::; ffn?,kobsj-lg}]tgﬁ g?\gcene;i(':yalrst'gr;zdér;ncl(())tg:rtowoiﬂz,
trajectory of theR;’s is not necessarilyust a phase factor. w ! yonic quasiparti 9e

The system starts and ends in ground states, but the initial a their different fusion channels are split in energy. Thipele

final ground states may be different members of this degeno—Ience is analogous to the way the energy of a system of spins

erate space. The constraint imposed by adiabaticity in thigepends on their internal quantum numbers when the spins are
case is that the adiabatic evolution of the state of the syste close together and their coupling becomes significant. The

confined to the subspace of ground states. Thus, it may be e§pl|tt|ng betwee? ?:ffe_rent fuIS|on channels is a means for a
pressed as a unitary transformation within this subspace. T n;ea_sur?_ment of t e_mtr?rna quantlfjm state, a measurement
inner product in (8) must be generalized to a matrix of sucHatis ofimportance in the context of quantum computation.
inner products:

ma, = (Ve (R)|VR|U(R)) (9)  B. Topological Quantum Computation

where[y,(R)), a = 1,2,..., g are theg degenerate ground 1. Basics of Quantum Computation
states. Since these matrices at different palhitéto not com-

mute, we must path-order the integral in order to compute the As the components of computers become smaller and

transformation rule for the statg, — M, 1, Where smaller, we are approaching the limit in which quantum ef-
fects become important. One might ask whether this is a prob-

o ) . lem or an opportunity. The founders of the field of quantum

Map =P exp <Z?{dR m> computation (Manin, 1980, Feynman, 1982, 1986, Deutsch,

oo o 51 - . 1985, and most dramatically, Shor, 1994) answered in falvor o
= Zz"/ dsl/ dsy .. / dsn, [R(sl)-maa1 (R(s1))... thelatter. They showed that a computer which operates €oher
n=0 “0 0 0 ently on quantum states has potentially much greater power
: . than a classical computer (Nielsen and Chuang, 2000).
R(sn) -mq,p (R(sn))| (10) The problem which Feynman had in mind for a quantum
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computer was the simulation of a quantum system (Feynmarem to traverse many trajectories in parallel, and detegmin
1982). He showed that certain many-body quantum Hamilits state by their coherent sum. In some sense this coherent
tonians could be simulatestponentially faster on a quantum sum amounts to a massive quantum parallelism. It should
computer than they could be on a classical computer. Thisot, however, be confused with classical parallel comgutin

is an extremely important potential application of a quamtu where many computers are run in parallel, and no coherent
computer since it would enable us to understand the pr@serti sum takes place.

of complex materials, e.g. solve high-temperature superco  The biggest obstacle to building a practical quantum com-
ductivity. Digital simulations of large scale quantum many puter is posed by errors, which would invariably happen dur-
body Hamiltonians are essentially hopeless on classieat co ing any computation, quantum or classical. For any compu-
puters because of the exponentially-large size of the Hilbe tation to be successful one must devise practical schemes fo
space. A quantum computer, using the physical resource of astror correction which can be effectively implemented (and
exponentially-large Hilbert space, may also enable psgre which must be sufficiently fault-tolerant). Errors are tygily

in the solution of lattice gauge theory and quantum chromocorrected in classical computers through redundanciesbiy
dynamics, thus shedding light on strongly-interactingleaic  keeping multiple copies of information and checking agains
forces. these copies.

In 1994 Peter Shor found an application of a quantum com- With a quantum computer, however, the situation is more
puter which generated widespread interest not just insile b complex. If we measure a quantum state during an interme-
also outside of the physics community (Shor, 1994). He indiate stage of a calculation to see if an error has occurred, w
vented an algorithm by which a quantum computer coulccollapse the wave function and thus destroy quantum super-
find the prime factors of am: digit number in a length of positions and ruin the calculation. Furthermore, erromsdne
time ~ m?*logmloglogm. This is much faster than the not be merely a discrete flip ¢f) to |1), but can be continu-
fastest known algorithm for a classical computer, whiclegak ous: the state|0) 4 b|1) may drift, due to an error, to the state
~ exp(m!/?) time. Since many encryption schemes depend_, al0) + be?|1) with arbitraryé.
on the difficulty of finding the solution to problems similar t Remarkably, in spite of these difficulties, error corregii®
finding the prime factors of a large number, there is an ObVi'possibIe for quantum computers (Calderbank and Shor, 1996;
ous appli.cati.on of a quantum computer which is of great baSi@;ottesman, 1998; Preskill, 2004; Shor, 1995; Steane, 3996a
and applied interest. One can represent information redundantly so that errars ca

The computation model set forth by these pioneers of quarbe identified without measuring the information. For ins&n
tum computing (and refined in DiVincenzo, 2000), is basedf we use three spins to represent each qubit, — |000),
on three steps: initialization, unitary evolution and meas  |1) — |111), and the spin-flip rate is low, then we can iden-
ment. We assume that we have a system at our disposal witlfy errors by checking whether all three spins are the same
Hilbert spaceH. We further assume that we can initialize (here, we represent an up spin byand a down spin by).
the system in some known stat¢y). We unitarily evolve  Suppose that our spins are in in the stalie00) + 5|111). If
the system until it is in some final staté(t)|1)o). This evo-  the first spin has flipped erroneously, then our spins aredn th
lution will occur according to some Hamiltoniaif (¢) such  statea|100) 4 3|011). We can detect this error by checking
thatdU/dt = iH (t) U(t)/h. We require that we have enough whether the first spin is the same as the other two; this does
control over this Hamiltonian so thak(t) can be made to be not require us to measure the state of the qubit. (“We measure
any unitary transformation that we desire. Finally, we need the errors, rather than the information.” (Preskill, 2004)
measure the state of the system at the end of this evolutiofhe first spin is different from the other two, then we justdhee
Such a process is callegiantum computation (Nielsen and  to flip it. We repeat this process with the second and third
Chuang, 2000). The HamiltoniaH (t) is the software pro- spins. So long as we can be sure that two spins have not erro-
gram to be run. The initial state is the input to the calcolati neously flipped (i.e. so long as the basic spin-flip rate ig Jow
and the final measurement is the output. this procedure will correct spin-flip errors. A more elatiera

The need for versatility, i.e., for one computer to effi- encoding is necessary in order to correct phase errorshéut t
ciently solve many different problems, requires the cartstr  key observation is that a phase error in shebasis is a bit flip
tion of the computer out of smaller pieces that can be manipuerror in theo,. basis.

lated and reconfigured individually. Typically the fundame  However, the error correction process may itself be a little
tal piece is taken to be a quantum two state system known asoisy. More errors could then occur during error corregtion
a “qubit” which is the quantum analog of a bit. (Of course, and the whole procedure will fail unless the basic errorisate
one could equally well take general “dits”, for which the fun very small. Estimates of the threshold error rate above lwhic
damental unit is some-state system witll not too large).  error correction is impossible depend on the particulasrerr
While a classical bit, i.e., a classical two-state systean,l’e  correction scheme, but fall in the range—* — 1076 (see,
either “zero” or “one” at any given time, a qubit can be in onee.g. Aharonov and Ben-Or, 1997; Knit al., 1998). This

of the infinitely many superpositiong0) +b|1). Forn qubits,  means that we must be able to perfaref — 106 operations
the state becomes a vector ie’a-dimensional Hilbert space, perfectly before an error occurs. This is an extremely strin
in which the different qubits are generally entangled witle 0 gent constraint and it is presently unclear if local quiziséd
another. guantum computation can ever be made fault-tolerant throug

The quantum phenomenon of superposition allows a sysguantum error correction protocols.
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Random errors are caused by the interaction between thte problems faced in the two categories might be quiterdiffe
guantum computer and the environment. As a result of thient. For quantum information processing, unitary errarshs
interaction, the quantum computer, which is initially in@@  as rotating a qubit by 90.01 degrees instead of 90, are a@ issu
superposition state, becomes entangled with its envirohme of how precisely one can manipulate the system. On the other
This can cause errors as follows. Suppose that the quantuhand, when a qubit is simply storing information, one islike
computer is in the stat®) and the environment is in the to be more concerned about errors caused by interactiohs wit
state|Ep) so that their combined state |8)|Ey). The in-  the environment. This is instead an issue of how well isdlate
teraction between the computer and the environment couldne can make the system. As we will see below, a topologi-
cause this state to evolve&d0)|Ey) + 5|1)| E1), where|E;)  cal quantum computer is protected from problems in both of
is another state of the environment (not necessarily orthoghese categories.
onal to|Ey)). The computer undergoes a transition to the
state|1) with probability |3|>. Furthermore, the computer
and the environment are now entangled, so the reduced deg- . .+ 1olerance from Non-Abelian Anyons
sity matrix for the computer alone describes a mixed state,
e.g. p = diag|al?, |B|?) if (Eo|E1) = 0. Since we can-
not measure the state of the environment accurately, irdorm system whose excitations satisfy non-Abelian braidintjssta

tion is lost, as reflected in the evolution of the density imatr .\ perform quantum computation in a way that is natu-

of the computer from a pure state to a mixed one. In othef_ - .
words, the environment has causdaboherence. Decoher- rally immune to errors. The Hilbert spa¢éused for quantum

computation is the subspace of the total Hilbert space of the

computer does not undergo a transition. Although Whethegystem comprised of the degenerate ground states with a fixed

-~ ; . AP nhumber of quasiparticles at fixed positions. Operationkiwit
or not a transition occurs is ba5|s-de_pen.de.nt (a bit flip M th this subspace are carried out by braiding quasiparticles. A
9z b_aS|s is a phase flip in the, basis), it is a usefull dis- .we discussed above, the subspace of degenerate groursd state
tinction because many systems have a preferred _bas_|s,—for "ty separated from the rest of the spectrum by an energy gap.
fr?ncgahegsrglmg ?{2@ icgl\?églge'sdasl;[g\t/? l(a)lfjtavrc/i'ldgrlmla Hence, if the temperature is much lower than the gap and the
3 E 0 src))pthat N6 transition OGCUrs while,the st$1<}3|_E >’ system is weakly perturbed using frequencies much smaller
evc;ves o[ 1) 1) with (E! |Ey) — 0’ Then an initial are than the gap, the system evolves only within the ground state

1 =1 = al pure subspace. Furthermore, that evolution is severely canstia

state(a|0) +b|1)) | Hp) evolves to a mixed state with density since it is essentially the case (with exceptions which we wi

matrix p = diag(|(_z|2, |b|2.)' The correlations in which our discuss) thathe only way the system can undergo a non-
quantum information resides is now transferred to corigtat . .\ unitary evolution - that is, an evolution that takes it

between the quantum computer and the environment. Th om one ground state to another - is by having its quasipar-

quantum state of a system invariably loses cohe_rence n thﬁcles braided. The reason for this exceptional stability is that
way over a characteristic time scalg,n. It was universally

. . any local perturbation (such as the electron-phonon iotera
assumed until the advent of quantum error correction (Shoﬁion and the hyperfine electron-nuclear interaction, twe ma

1995; Steane, 1996a) that quantum computation is intrinsi-

cally impossible since decoherence-induced uantumserro.or causes for decoherence in non-topological solid sfate s
aly Imp . >d g ased quantum computers (Witzel and Das Sarma, 2006)) has
simply cannot be corrected in any real physical system. How-

) no nontrivial matrix elements within the ground state sub-
ever, when error-correcting codes are used, the entangteme

is transferred from the quantum computer to ancillary qubit space. Thus, the system Is rather immune from decoherence
so that the quantum information remains pure while the engKltaeV’ 2003). U_nltary errors are a!so unl!kgly since .ﬂm}g
ropy is in the ancillary qubits tary tran;formatlons associated with bra|d|rjg qt_JaS|ple_ﬂ|
' are sensitive only to the topology of the quasiparticlesctg-

Of course, even if the coupling to the environment wereries, and not to their geometry or dynamics.
completely eliminated, so that there were no random errors, a model in which non-Abelian quasiparticles are utilized
there could still be systematic errors. These are unitagr®r  for quantum computation starts with the construction of
which occur while we process quantum information. For in-qypits. In sharp contrast to most realizations of a quantum
stance, we may wish to rotate a qubitiydegrees but might - computer, a qubit here is a non-local entity, being comgrise
inadvertently rotate it by 90.01 degrees. of several well-separated quasiparticles, with the tweesta

From a practical standpoint, it is often useful to divide er-of the qubit being two different values for the internal quan
rors into two categories: (i) errors that occur when a qubit i tum numbers of this set of quasiparticles. In the simplest no
being processed (i.e., when computations are being pegbrm Abelian quantum Hall state, which has Landau-level filling
on that qubit) and (i) errors that occur when a qubit is synpl factor v = 5/2, two quasiparticles can be put together to
storing quantum information and is not being processed (i.eform a qubit (see Sections II.C.4 and IV.A). Unfortunately,
when it is acting as a quantum memory). From a fundamenas we will discuss below in Sections IV.A and IV.C, this sys-
tal standpoint, this is a bit of a false dichotomy, since care ¢ tem turns out to be incapable of universal topological quan-
think of quantum information storage (or quantum memory)tum computation using only braiding operations; some un-
as being a computer that applies the identity operation oveprotected operations are necessary in order to perfornetniv
and over to the qubit (i.e., leaves it unchanged). Nonesisele sal quantum computation. The simplest system that is capa-

Topological quantum computation is a scheme for using a
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ble of universal topological quantum computationis diseas  parent problem, however, is evaded by the nature of the com-
in Section IV.B, and utilizes three quasiparticles to forneo putations, which correspond to closed world lines that have
qubit. no loose ends: when the computation involves creation and
As mentioned above, to perform a quantum computationannihilation of a quasiparticle quasi-hole pair, the weih
one must be able to initialize the state of qubits at the beginis a closed curve in space-time. If the measurement occurs
ning, perform arbitrary controlled unitary operations tie t by bringing two particles together to measure their quantum
state, and then measure the state of qubits at the end. We n@harge, it does not matter where precisely they are brought
address each of these in turn. together. Alternatively, when the measurement involves an
Initialization may be performed by preparing the quasiparinterference experiment, the interfering particle mussela
ticles in a specific way. For example, if a quasiparticlg-ant 100p. In other words, a computation corresponds to a set of
quasiparticle pair is created by “pulling” it apart from tec- links rather than open bra|d§, gnd the |n.|t|a.I|zat|on qnd mea-
uum (e.g. pair creation from the vacuum by an electric field) Surement techniquesecessarily involve bringing quasiparti-
the pair will begin in an initial state with the pair necesigar ~ cles togetherin some way, closing up the trajectories arid ma
having conjugate quantum numbers (i.e., the “total” quantu N9 the full process from initialization to measurement eom
number of the pair remains the same as that of the vacuumpletely topological.
This gives us a known initial state to start with. It is also Due to its special characteristics, then, topological guan
possible to use measurement and unitary evolution (both ttum computation intrinsically guarantees fault-tolemnat
be discussed below) as an initialization scheme — if one cathe level of “hardware”, without “software”-based erromrco
measure the quantum numbers of some quasiparticles, one caattion schemes that are so essential for non-topologiead-q
then perform a controlled unitary operation to put them intotum computers. This immunity to errors results from the sta-
any desired initial state. bility of the ground state subspace with respect to extdonal
Once the system is initialized, controlled unitary opera-cal perturbations. In non-topological quantum computées,
tions are then performed by physically dragging quasipartiqubits are local, and the operations on them are local, lead-
cles around one another in some specified way. When quadig to a sensitivity to errors induced by local perturbasion
particles belonging to different qubits braid, the statehaf  In a topological quantum computer the qubits are non-local,
qubits changes. Since the resulting unitary evolution ddpe and the operations — quasiparticle braiding — are non-jocal
only on the topology of the braid that is formed and not onleading to an immunity to local perturbations.
the details of how it is done, it is insensitive to wiggleslie t Such immunity to local perturbation gives topolgical quan-
path, resulting, e.g., from the quasiparticles being soadtby ~ tum memories exceptional protection from errors due to the
phonons or photons. Determining which braid corresponds tinteraction with the environment. However, it is crucial to
which computation is a complicated but eminently solvablenote that topological quantum computers are also exception
task, which will be discussed in more depth in section 1V.B.3 ally immune to unitary errors due to imprecise gate openatio
Once the unitary evolution is completed, there are two way$Jnlike other types of quantum computers, the operatiorts tha
to measure the state of the qubits. The first relies on the factan be performed on a topological quantum computer (braids)
that the degeneracy of multi-quasiparticle states is gplen  naturally take a discrete set of values. As discussed above,
quasiparticles are brought close together (within someanic when one makes a 90 degree rotation of a spin-based qubit, for
scopic length scale). When two quasiparticles are broughgxample, it is possible that one will mistakenly rotate byod0
close together, for instance, a measurement of this energy (degrees thus introducing a small error. In contrast, braies
a measurement of the force between two quasiparticles) mediscrete: either a particle is taken around another, orribis
sures the the topological charge of the pair. A second way tdhere is no way to make a small error by having slight im-
measure the topological charge of a group of quasipartigles precision in the way the quasiparticles are moved. (Taking
by carrying out an Aharanov-Bohm type interference experia particle only part of the way around another particle nathe
ment. We take a “beam” of test quasiparticles, send it thnougthan all of the way does not introduce errors so long as the
a beamsplitter, send one partial wave to the right of thegroutopological class of the link formed by the particle tragats
to be measured and another partial wave to the left of the as described above —is unchanged.)
group and then re-interfere the two waves (see Figure 2 and Given the exceptional stability of the ground states, and
the surrounding discussion). Since the two different beamgheir insensitivity to local perturbations that do not ifwe
make different braids around the test group, they will exper excitations to excited states, one may ask then which palysic
ence different unitary evolution depending on the topalabi  processes do cause errors in such a topological quantum com-
quantum numbers of the test group. Thus, the re-interferenguter. Due to the topological stability of the unitary tréors
of these two beams will reflect the topological quantum num-mations associated with braids, the only error processas th
ber of the group of quasiparticles enclosed. we must be concerned about are processes that might cause
This concludes a rough description of the way a topologi-us to form the wrong link, and hence the wrong computa-
cal quantum computation is to be performed. While the unition. Certainly, one must keep careful track of the posgioh
tary transformation associated with a braid depends only oall of the quasiparticles in the system during the computation
the topology of the braid, one may be concerned that errorand assure that one makes the correct braid to do the correct
could occur if one does not return the quasiparticles to preeomputation. This includes not just the “intended” quasipa
cisely the correct position at the end of the braiding. Tipis a ticles which we need to manipulate for our quantum compu-
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tation, but also any “unintended” quasiparticle which ntigh system where non-Abelian anyons can be found, manipulated
be lurking in our system without our knowledge. Two pos-(e.g. braided), and conveniently read out. Several theoret
sible sources of these unintended quasiparticles are #llgrm ical models and proposals for systems having these proper-
excited quasiparticle-quasihole pairs, and randomlylioed  ties have been introduced in recent years (Fendley and Frad-
quasiparticles trapped by disorder (e.g. impurities, saef kin, 2005; Freedmaset al., 2005a; Kitaev, 2006; Levin and
roughness, etc.). In a typical thermal fluctuation, for egean ~ Wen, 2005b), and in section 11.D below we will mention some
a quasiparticle-quasihole pair is thermally created frbm t of these possibilities briefly. Despite the theoretical kvior
vacuum, braids with existing intended quasiparticles,tted  these directions, the only real physical system where tisere
gets annihilated. Typically, such a pair has opposite gtedt  even indirect experimental evidence that non-Abelian asyo
charges, so its constituents will be attracted back to etiedro  exist are quantum Hall systems in two-dimensional (2D)-elec
and annihilate. However, entropy or temperature may lead thtron gases (2DEGS) in high magnetic fields. Consequently,
guasiparticle and quasihole to split fully apart and wamder  we will devote a considerable part of our discussion to pu-
atively freely through part of the system before coming backative non-Abelian quantum Hall systems which are also of
together and annihilating. This type of process may changgreat interest in their own right.

the state of the qubits encoded in the intended quasipesticl

and hence disrupt the computation. Fortunately, as we will

see in Section IV.B below there is a whole class of such prol. Rapid Review of Quantum Hall Physics

cesses that do not in fact cause error. This class inclutles al

of the most likely such thermal processes to occur: includ- A comprehensive review of the quantum Hall effect is well
ing when a pair is created, encircles a single already exjisti beyond the scope of this article and can be found in the lit-
quasiparticle and then re-annihilates, or when a pair istece ~ erature (Das Sarma and Pinczuk, 1997; Prange and Girvin,
and one of the pair annihilates an already existing quasipad990). This effect, realized for two dimensional electooni
ticle. For errors to be caused, the excited pair must braid a8ystems in a strong magnetic field, is characterized by a gap
least two intended quasiparticles. Nonetheless, the pibssi between the ground state and the excited states (incompress
ity of thermally-excited quasiparticles wandering thrhage  ibility); a vanishing longitudinal resistivity,, = 0, which
system creating unintended braids and thereby causing erriémplies a dissipationless flow of current; and the quan'ozat

is a serious one. For this reason, topological quantum con®f the Hall resistivity precisely to values pf,, = 1%, with
putation must be performed at temperatures well below the’ being an integer (the integer quantum Hall effect), or a-frac
energy gap for quasiparticle-quasihole creation so thegeth tion (the fractional quantum Hall effect). These valueshaf t

errors will be exponentially suppressed. two resistivities imply a vanishing longitudinal condwity
. .. 2
Similarly, localized quasiparticles that are induced bsdi 0., = 0 and a quantized Hall conductivity,, = v 5.
order (e.g. randomly-distributed impurities, surfacegiou To understand the quantized Hall effect, we begin by ignor-

ness, etc.) are another serious obstacle to overcome, sint®y electron-electron Coulomb interactions, then the gyper
they enlarge the dimension of the subspace of degeneragigenstates of the single-electron Hamiltonian in a magnet
ground states in a way that is hard to control. In particularfield, 7, = -L (pz —CA(x ))2 break up into an equally-
these unaccounted-for quasiparticles may couple by timnel spaced set of 'degenerate levels called Landau levels. In sym
to their intended counterparts, thereby introducing dyieam metric gauge,A( ) = 1]3 x x, a basis of single particle
to what is supposed to be a topology-controlled system, angravefunctions in the lowest Landau level (LLL) is given by
possibly ruining the quantum computation. We further notey, (z) = 2" exp(—|z|2/(440?)), wherez = = + iy. If the
that, in quantum Hall systems (as we will discuss in the nexelectrons are confined to a disk of até@ierced by magnetic
section), slight deviations in density or magentic fieldlwil flux B - A, then there ar&Vg = BA/®y = BAe/hc states
also create unintented quasiparticles that must be cérefulin the lowest Landau level (and in each higher Landau level),
avoided. where B is the magnetic fieldp, ¢, ande are, respectively,
Finally, we also note that while non-Abelian quasiparscle Planck’s constant, the speed of light, and the electrongehar
are natural candidates for the realization of topologichlits, and®, = hc/e is the flux quantum. In the absence of dis-
not every system where quasiparticles satisfy non-Abeliamrder, these single-particle states are all precisely uEggte.
statistics is suitable for quantum computation. For this-su When the chemical potential lies between #ffeand(v+ 1)1
ability it is essential that the set of unitary transforroatin-  Landau Ievels the Hall conductance takes the quantizee val
duced by braiding quasiparticles is rich enough to allovafbr Opy = V& wh|Ie 0.: = 0. The two-dimensional electron
operations needed for computation. The necessary and SUfHens,lty,n is related ta via the formulan = veB/(hc). In
cient conditions for universal topological quantum conaput  the presence of a periodic potential and/or disorder (eng. i
tion are discussed in Section IV.C. purities), the Landau levels broaden into bands. Howexer, e
cept at the center of a band, all states are localized when-dis
der is present (see Das Sarma and Pinczuk, 1997; Prange and
C. Non-Abelian Quantum Hall States Girvin, 1990 and refs. therein). When the chemical poténtia
Iies in the region of localized states between the centetrseof

A necessary condition for topological quantum computa-V "and (v + 1)" Landau bands, the Hall conductance again
tion using non-Abelian anyons is the existence of a physicalakes the quantized valug,, = v - ° while oz = 0. The
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density will be near but not necessarily equabta3/(hc).  with v not of the formv = 1/k, Haldane and Halperin (Hal-
This is known as the Integer quantum Hall effect (simcs  dane, 1983; Halperin, 1984; Prange and Girvin, 1990) used a
an integer). hierarchical construction in which quasiparticles of anpr

The neglect of Coulomb interactions is justified when anpler = 1/k state can then themselves condense into a quan-
integer number of Landau levels is filled, so long as the entized state. In this way, quantized Hall states can be con-

ergy splitting between Landau levelsy, = ’Zif is much  structed for any odd-denominator fraction— but only for

larger than the scale of the Coulomb enerﬁy, wheref, —  odd-denominator fractions. These states all have quasipar

. . ., cles with fractional charge and Abelian fractional statsst
Vv he/eB is the magnetic Ien_gth. When_the e_Iectron der'S'tyLater it was noticed by Jain (Heinonen, 1998; Jain, 1989)
is such that a Landau level is only partially filled, Coulomb ' ' ' j

: . i that the most prominent fractional quantum Hall states &re o
interactions may be important.

: . . the formv = p/(2p + 1), which can be explained by not-
h In the abhs_e?]fe dOf d|sordter, atp?rualllty—fllletq :‘antd?:ﬂ;e_\r’eling that a system of electrons in a high magnetic field can be
as a very highly degenerate set of multi-particie sta approximated by a system of auxiliary fermions, called ‘eom
degeneracy is broken by electron-electron interactions. F

) - . posite fermions’ , in a lower magnetic field. If the the elec-
instance, when the number of electronsNs= Ng /3, i.e. trons are at/ — p/(2p + 1), then the lower magnetic field

v = 1/3, the gro_und state is non-degenera;e and there is &een by the ‘composite fermions’ is such that they fill an in-
gap to all excitations. When the electrons interact througqeger number of Landau level$ = p. (See Halperiret al
Coulomb repulsion, the Laughlin state 1993; Lopez and Fradkin, 1991 for a field-theoretic imple-
U= H (zi — Zj)3 o~ ilzil?/4k0® (11) mentations.) S.ince_the. Iatte_r state has a gap, one can hope
Ny that the approximation is valid. The composite fermion pic-

ure of fractional quantum Hall states has proven to be qual-

is an approximation to the ground state (and is the exact_ .. - o .
ground state for a repulsive ultra-short-ranged modetauate C'I;i'gvgIr)]/a?]rllgrsggéguantltanvely correct in the LLL (Mbst

tion, see for instance the article by Haldane in Prange an o )

Girvin, 1990). Such ground states survive even in the pres- Systems with filling fractions > 1, can be mapped to
ence of disorder if it is sufficiently weak compared to the gap?’ < 1 by keeping the fractional part of and using an ap-

to excited states. More delicate states with smaller excitaProPriately modified Coulomb interaction to account for the
tion gaps are, therefore, only seen in extremely clean deyic d!fference between cyclotron orbits |n_th_e LLL and tho_se_ln
as described in subsection 11.C.5. However, some disosder fligher Landau levels (Prange and Girvin, 1990). This in-
necessary to pin the charged quasiparticle excitationstwhi volves the assumption that the inter-Landau level coupsng
are created if the density or magnetic field are slightlyadyi Negligibly small. We note that this may not be a particularly
When these excitations are localized, they do not coneitmt  900d assumption for higher Landau levels, where the compos-
the Hall conductance and a plateau is observed. ite fermion picture less successful.

Quasiparticle excitations above fractional quantum Hall Our confidence in the picture described above forithe
ground states, such as the= 1/3 Laughlin state (11), are 1/k Laughlin states and the hierarchy of odd-denominator
emergent anyons in the sense described in section 1l.A.2. Astates which descend from them derives largely from nu-
explicit calculation of the Berry phase, along the lines gf E merical studies. Experimentally, most of what is known
8 shows that quasiparticle excitations above the= 1/k  about quantum Hall states comes from transport experiments
Laughlin states have charggk and statistical anglé = 7/k  — measurements of the conductance (or resistance) tensor.
(Arovaset al., 1984). The charge is obtained from the non-While such measurements make it reasonably clear when a
topological part of the Berry phase which is proportional toquantum Hall plateau exists at a given filling fraction, tize n
the flux enclosed by a particle’s trajectory times the quasip ture of the plateau (i.e., the details of the low-energy tigo
ticle charge. This is in agreement with a general argumenis extremely hard to discern. Because of this difficulty, nu-
that such quasiparticles must have fractional charge (h-aug merical studies of small systems (exact diagonalizatioms a
lin, 1983). The result for the statistics of the quasipéetic Monte Carlo) have played a very prominent role in provid-
follows from the topological part of the Berry phase; it is in ing further insight. Indeed, even Laughlin’s original work
agreement with strong theoretical arguments which suggegtaughlin, 1983) on the = 1/3 state relied heavily on ac-
that fractionally charged excitations are necessarilylidbe companying numerical work. The approach taken was the fol-
anyons (see Wilczek, 1990 and refs. therein). Definitive exiowing. One assumed that the splitting between Landaudevel
perimental evidence for the existence of fractionally gedr is the largest energy in the problem. The Hamiltonian is pro-
excitations av = 1/3 has been accumulating in the last few jected into the lowest Landau level, where, for a finite num-
years (De Picciottetal., 1997; Goldman and Su, 1995; Sam- ber of electrons and a fixed magnetic flux, the Hilbert space
inadayaretal., 1997). The observation of fractional statistics is finite-dimensional. Typically, the system is given pédi@®
is much more subtle. First steps in that direction have beeboundary conditions (i.e. is on a torus) or else is placed on
recently reported (Caminet al., 2005) but are still debated a sphere; occasionally, one works on the disk, e.g. to study
(Godfreyetal., 2007; Rosenow and Halperin, 2007). edge excitations. The Hamiltonian is then a finite-sized ma-

The Laughlin states, with = 1/k, are the best understood trix which can be diagonalized by a computer so long as the
fractional quantum Hall states, both theoretically andegxp number of electrons is not too large. Originally, Laughtxa e
imentally. To explain more complicated observed fractionsamined only 3 electrons, but modern computers can handle
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sometimes as many as 18 electrons. The resulting grouied stat. Possible Non-Abelian States
wavefunction can be compared to a proposed trial wavefunc-
tion. Throughout the history of the field, this approach has The observation of a quantum Hall state with an even de-
proven to be extremely powerful in identifying the nature of nominator filling fraction (Willettet al., 1987), ther = 5/2
experimentally-observed quantum Hall states when the systate, was the first indication that not all fractional quamt
tem in question is deep within a quantum Hall phase, so thatall states fit the above hierarchy (or equivalently compos-
the associated correlation length is short and the basisighy ite fermion) picture. Independently, it was recognized Fu-
is already apparent in small systems. bini, 1991; Fubini and Lutken, 1991; Moore and Read, 1991
that conformal field theory gives a way to write a variety of

There are several serious challenges in using such numetial wavefunctions for quantum Hall states, as we describe
cal work to interpret experiments. First of all, there isajw  in Section IIl.D below. Using this approach, the so-called
the challenge of extrapolating finite-size results to tfeerio- Moore-Read Pfaffian wavefunction was constructed (Moore
dynamic limit. Secondly, simple overlaps between a progoseand Read, 1991):
trial state and an exact ground state may not be sufficiently
informative. For example, it is possible that an exact gtbun = g, = pf< 1
state will be adiabatically connected to a particular stake, % Zj
i.e., the two wavefunctions represent the same phase of m
ter, but the overlaps may not be very high. For this reasas, it
necessary to also examine quantum numbers and symmetri
of the ground state, as well as the response of the groured stal
to various perturbations, particularly the response taxgka 1 1 1

Pf ( ) =A < ) (13)

) ]-_-[i<j (Zl - Zj>m€72i|zi|2/4402 (12)

a'Fhe Pfaffian is the square root of the determinant of an anti-
@émmetric matrix or, equivalently, the antisymmetrizedhsu
ver pairs:

in boundary conditions and in the flux.

Zj — Rk Z1 — 29223 — 24

Another difficulty is the choice of Hamiltonian to diago- Form even, this is an even-denominator quantum Hall state
nalize. One may think that the Hamiltonian for a quantumin, the lowest Landau level. Moore and Read, 1991 suggested
Hall system is just that of 2D electrons in a magnetic fieldthat its quasiparticle excitations would exhibit non-Abal
interacting via Coulomb forces. However, the small but fi-statistics (Moore and Read, 1991). This wavefunction is the
nite width (perpendicular to the plane of the system) of theexact ground state of &body repulsive interaction; as we
quantum well slightly alters the effective interactionween  discuss below, it is also an approximate ground state foemor
electrons. Similarly, screening (from any nearby condisto realistic interactions. This wavefunction is a represtveaf
or from inter-Landau-level virtual excitations), in-pemag- 3 universality class which has remarkable properties wiieh
netic fields, and even various types of disorder may alter th@iscuss in detail in this paper. In particular, the quasipiar
Hamiltonian in subtle ways. To make matters worse, one magxcitations above this state realize the second scenasio di
not even know all the physical parameters (dimensions, dopcussed in Egs. 9, 10 in section I1.A.2. There ate! states
ing levels, detailed chemical composition, etc.) of any-parwith 2n, quasiholes at fixed positions, thereby establishing the
ticular experimental system very accurately. Finally, dlan-  degeneracy of multi-quasiparticle states which is reqfioe
level mixing is not small because the energy splitting betwe non-Abelian statistics (Nayak and Wilczek, 1996). Further
Landau levels is not much larger than the other energie®in thmore, these quasihole wavefunctions can also be related to
problem. Thus, itis not even clear that it is correct to tatec  conformal field theory (as we discuss in section 111.D), from
the Hilbert space to the finite-dimensional Hilbert spaca of \which it can be deduced that t1#!-dimensional vector
single Landau level. space of states can be understood as the spinor representati

of SO(2n); braiding particlesand;j has the action of a/2

In the case of very robust states, such asthe1/3 state,  rotation in thei — j plane inR?" (Nayak and Wilczek, 1996).
these subtle effects are unimportant; the ground state-is el short, these quasiparticles are essentially Ising asmgwith
sentially the same irrespective of these small deviatiom®sf the difference being an additional Abelian component tirthe
the idealized Hamiltonian. However, in the case of weakesstatistics). Although these properties were uncoveredgusi
states, such as those observed betweea 2 andv = 4  specific wavefunctions which are eigenstates of 3Heody
(some of which we will discuss below), it appears that veryinteraction for which the Pfaffian wavefunction is the exact
small changes in the Hamiltonian can indeed greatly affectt ground state, they are representative of an entire unitgrsa
resulting ground state. Therefore, a very valuable approacclass. The effective field theory for this universality das
has been to guess a likely Hamiltonian, and search a spacd/(2) Chern-Simons theory at levél= 2 together with an
of “nearby” Hamiltonians, slightly varying the parametefs additional Abelian Chern-Simons term (Fradleial., 2001,
the Hamiltonian, to map out the phase diagram of the sys1998). Chern-Simons theory is the archetypal topological
tem. These phase diagrams suggest the exciting technologjuantum field theory (TQFT), and we discuss it extensively
cal possibility that detailed numerics will allow us to engér  in section Ill. As we describe, Chern-Simons theory is re-
samples with just the right small perturbations so as dysplalated to the Jones polynomial of knot theory (Witten, 1989);
certain quantum Hall states more clearly (Margtal., 2007;  consequently, the current through an interferometer it suc
Peterson and Das Sarma, 2007). non-Abelian quantum Hall state would give a direct measure
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of the Jones polynomial for the link produced by the quasiparof a large class of non-Abelian topological states. We will
ticle trajectories (Fradkietal., 1998)! see in section I11.C that this circle of ideas enables us & us

One interesting feature of the Pfaffian wavefunction is thathe theory of knots to understand experiments on non-Abelia
it is the quantum Hall analog ofja+ ip superconductor: the anyons.
antisymmetrized product over pairs is the real-space fdrm o In the paragraphs below, we will discuss numerical results
the BCS wavefunction (Greitetal., 1992). Read and Green, forv = 5/2,12/5, and other candidates in greater detail.

2000 showed t_hat the same topological properties mentioned (a) 5/2 State: Ther = 5/2 fractional quantum Hall state
above are realized byja+ ip-wave superconductor, thereby s 5 yseful case history for how numerics can elucidate ex-
cementing the identification between such a paired state arﬁ’eriments. This incompressible state is easily destroyed b
the I\_/Ioore-ReQd state. lvanov, 2001 computed the braiding,e application of an in-plane magnetic field (Eisensesa.,
matrices by this approach (see also Stetral., 2004; Stone  1990). At first it was assumed that this implied that the 5/2
and Chung, 2006). Consequently, we will often be able to disstate s spin-unpolarized or partially polarized since ithe
cussp + ip-wave superconductors and superfluids in parallehane magnetic field presumably couples only to the electron
with ther = 5/2 quantum Hall state, although the experimen-gin - Careful finite-size numerical work changed this perce
tal probes are significantly different. tion, leading to our current belief that the 5/2 FQH state is
As we discuss below, all of these theoretical developmentgctually in the universality class of the spin-polarizeddvie
garnered greater interest when numerical work (Morf, 1998Read Pfaffian state.
Rezayi and Haldane, 2000) showed that the ground state of | rather pivotal work (Morf, 1998), it was shown that spin-
Systems of up to 18 electrons in thé = 1 Landau level at p0|arized states at = 5/2 have lower energy than Spin-
filling fraction 1/2 is in the universality class of the Moere ynpolarized states. Furthermore, it was shown that varying
Read state. These results revived the conjecture thatkhesto  the Hamiltonian slightly caused a phase transition between
Landau |eve|N = 0) of both SpinS is filled and inert and the a gapped phase that has h|gh Over|ap with the Moore-Read
electrons in theV = 1 Landau level form the analog of the \yavefunction and a compressible phase. The proposal put
Pfaffian state (Greiteet al., 1992). Consequently, it is the forth was that the most important effect of the in-plane field
leading candidate for the experimentally-observee: 5/2  was not on the electron spins, but rather was to slightly alte
state. the shape of the electron wavefunction perpendicular to the
Read and Rezayi, 1999 constructed a series of non-Abeliagample which, in turn, slightly alters the effective eleatr
quantum Hall states at filling fraction= N + k/(Mk +2)  electron interaction, pushing the system over a phase bound
with M odd, which generalize the Moore-Read state in a wayary and destroying the gapped state. Further experimental
which we discuss in section Ill. These states are referrad to work showed that the effect of the in-plane magnetic field is
the Read-Rezayk, parafermion states for reasons discussedo drive the system across a phase transition from a gapped
in section 111.D. Recently, a quantum Hall state was obsgrve quantum Hall phase into an anisotropic compressible phase
experimentally withv = 12/5 (Xia etal., 2004). Itis sus- (Lilly etal., 1999a; Partal., 1999a). Further numerical work
pected (see below) that the= 12/5 state may be (the par- (Rezayi and Haldane, 2000) then mapped out a full phase di-
ticle hole conjugate of) th&; Read-Rezayi state, although it agram showing the transition between gapped and compress-
is also possible that 12/5 belongs to the conventional Abeli ible phases and showing further that the experimental syste
hierarchy as the/5 state does. Such an option is not possiblelie exceedingly close to the phase boundary. The correspon-
atv = 5/2 as a result of the even denominator. dence between numerics and experiment has been made more
In summary, it is well-established that if the observedquantitative by comparisons between the energy gap olataine
v = 5/2 state is in the same universality class as the Moorefrom numerics and the one measured in experiments (Morf
Read Pfaffian state, then its quasiparticle excitationgare  and d’Ambrumenil, 2003; Morét al., 2002). Very recently,
Abelian anyons. Similarly, if thes = 12/5 state is in the this case has been further strengthened by the applicaftion o
universality class of th&s; Read-Rezayi state, its quasiparti- the density-matrix renormalization group method (DMRG) to
cles are non-Abelian anyons. There is no direct experinhentahis problem (Feiguirtal., 2007b).
evidence that thee = 5/2 is in this particular universality One issue worth considering is possible competitors to the
class, but there is evidence from numerics, as we further disMoore-Read Pfaffian state. Experiments have already told us
cuss below. There is even less evidence in the case of thbatthere is a fractional quantum Hall state at 5/2. There-
v = 12/5 state. In subsections 11.C.3 and 11.C.4, we will fore, our job is to determine which of the possible states-s r
discuss proposed experiments which could directly vehié/ t alized there. Serious alternatives to the Moore-Read Bfaffi
non-Abelian character of the = 5/2 state and will briefly  state fall into two categories. On the one hand, there is the
mention their extension to the = 12/5 case. Both of these possibility that the ground state at= 5/2 is not fully spin-
states, as well as others (e.g. Ardonne and Schoutens, 199larized. If it were completely unpolarized, the so-adlle
Simonet al., 2007c), were constructed on the basis of very(3, 3, 1) state (Das Sarma and Pinczuk, 1997; Halperin, 1983)
deep connections between conformal field theory, knot theor would be a possibility. However, Morf’s numerics (Morf,
and low-dimensional topology (Witten, 1989). Using meth-1998) and a recent variational Monte Carlo study (Dimov
ods from these different branches of theoretical physics anetal., 2007) indicate that an unpolarized state is higher in en
mathematics, we will explain the structure of the non-Adseli ergy than a fully-polarized state. This can be understood as
statistics of ther = 5/2 and12/5 states within the context a consequence of a tendency towards spontaneous ferromag-
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netism; however, a partially-polarized alternative (whicay  has an overlap of 97% for 14 electrons (Rezayi and Haldane,
be either Abelian or non-Abelian) to the Pfaffian is not ruled2000).

out (Dimovet al., 2007). Secondly, even if the ground state  To summarize, the overlap is somewhat smaller inftf

atv = 5/2 s fully spin-polarized, the Pfaffian is not the only case than in the/3 case when particle-hole symmetry is not
possibility. It was very recently noticed that the Pfaffitasite  accounted for, but only slightly smaller when it is. This is
is not symmetric under a particle-hole transformation aha s an indication that Landau-level mixing — which will favor ei
gle Landau level (which, in this case, is thée = 1 Landau  ther the Pfaffian or the anti-Pfaffian — is an important efégct
level, with theN' = 0 Landau level filled and assumed inert), » = 5/2, unlike atv = 1/3. Moreover, Landau-level mix-
even though this is an exact symmetry of the Hamiltonian ining is likely to be large because the 5/2 FQH state is typjcall
the limit that the energy splitting between Landau levels isrealized at relatively low magnetic fields, making the Lamda
infinity. Therefore, there is a distinct state, dubbed thé-an level separation energy relatively small.

Pfaffian (Leeet al., 2007b; Levinet al., 2007), which is an  Given that potentially large effects have been neglected,
equally good state in this limit. Quasiparticles in thiststa it is not too surprising that the gap obtained by extrapo-
are also essentially Ising anyons, but they differ fromfaf  |ating numerical results for finite-size systems (Morf and
quasiparticles by Abelian statistical phases. In experisie d’Ambrumenil, 2003; Morfetal., 2002) is substantially larger
Landau-level mixing is not small, so one or the other state ishan the experimentally-measured activation gap. Alse, th
lower in energy. On a finite torus, the symmetric combina-corresponding excitation gap obtained from numerics fer th
tion of the Pfaffian and the anti-Pfaffian will be lower in en- , = 1/3 state is much larger than the measured activation
ergy, but as the thermodynamic limit is approached, the antigap. The discrepancy between the theoretical excitatipn ga
symmetric combination will become equal in energy. This is aand the measured activation gap is a generic problem of all
possible factor which complicates the extrapolation of Bum  FQH states, and may be related to poorly understood disorder
ics to the thermodynamic limit. On a finite sphere, particle-effects and Landau-level mixing.

hole symmetry is not exact; it relates a system wift — 3 Finally, it is important to mention that several very recent
flux quanta with a system with/V + 1 flux quanta. Thus, the (2006-07) numerical works in the literature have raisedesom
anti-Pfaffian would not be apparent unless one looked ata difquestions about the identification of the obserggd FQH
ferent value of the flux. To summarize, the only known alter-state with the Moore-Read Pfaffian (Toke and Jain, 2006; Toke
natives to the Pfaffian state — partially-polarized statekthe et al., 2007; Wojs and Quinn, 2006). Considering the ab-
anti-Pfaffian — have not really been tested by numericseeith sence of a viable alternative (apart from the anti-Pfaffiath a
because the spin-polarization was assumed to be 0% or 100frtially-polarized states, which were not considerechepe
(Morf, 1998) or because Landau-level mixing was neglected authors) it seems unlikely that these doubts will contirue t

i persist, as more thorough numerical work indicates (Moller

dence placing the = 5/2 FQH state in the Moore-Read Pfaf- and Simon, 2007; Peterson and Das Sarma, 2007; Rezayi,
fian universality class with the evidence placing the- 1/3 2007).

FQH state in the corresponding Laughlin universality class (b) 12/5 State: While our current understanding of the 5/2

In the latter case, there have been several spectaculari-expestate is relatively good, the situation for the experimiyta
ments (De Picciottetal., 1997; Goldman and Su, 1995; Sam- observed 12/5 state is more murky, although the possésiliti
inadayaretal., 1997) which have observed quasiparticles withare even more exciting, at least from the perspective of-topo
electrical charge/3, in agreement with the prediction of the logical quantum computation. One (relatively dull) podgip
Laughlin universality class. In the case of the= 5/2 FQH s that thel2/5 state is essentially the same as the observed
state, we do not yet have the corresponding measurements mf= 2/5 state, which is Abelian. However, Read and Rezayi,
the quasiparticle charge, which shoulddye. However, the in their initial work on non-Abelian generalizations of the
observation of charge/3, while consistent with the Laughlin Moore-Read state (Read and Rezayi, 1999) proposed that the
universality class, does not uniquely fix the observed state 12/5 state might be (the particle-hole conjugate of) tigir

this class (see, for example, Simetal., 2007c; Wojs, 2001. parafermion (05U (2) level 3) state. This is quite an exciting
Thus, much of our confidence derives from the amazing (99%ossibility because, unlike the non-Abelian Moore-Reatkst

or better) overlap between the ground state obtained frem exat 5/2, theZ; parafermion state would have braiding statistics
act diagonalization for a finite size 2D system with up to 14that allow universal topological quantum computation.
electrons and the Laughlin wavefunction. In the case of the The initial numerics by Read and Rezayi (Read and Rezayi,
v = 5/2 FQH state, the corresponding overlap (for 18 elec-1999) indicated that the 12/5 state is very close to a phase
trons on the sphere) between the= 5/2 ground state and transition between the Abelian hierarchy state and the non-
the Moore-Read Pfaffian state is reasonably impressive ( Abelian parafermion state. More recent work by the same
80%). This can be improved by modifying the wavefunctionauthors (Rezayi and Read, 2006) has mapped out a detailed
at short distances without leaving the Pfaffian phase (Mollephase diagram showing precisely for what range of paraseter
and Simon, 2007). However, on the torus, as we mentioned system should be in the non-Abelian phase. It was found that
above, the symmetric combination of the Pfaffian and the antithe non-Abelian phase is not very “far” from the results that
Pfaffian is a better candidate wavefunction in a finite-sime s would be expected from most real experimental systems. This
tem than the Pfaffian itself (or the anti-Pfaffian). Indedw, t again suggests that (if the system is not already in the non-
symmetric combination of the Pfaffian and the anti-PfaffianAbelian phase), we may be able to engineer slight changes in

With this caveat in mind, it is instructive to compare the-ev
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an experimental sample that would push the system over the
phase boundary into the non-Abelian phase.
Experimentally, very little is actually known about the 32/ 7
state. Indeed, a well quantized plateau has only ever bean se
in a single published (Xi@t al., 2004) experiment. Further-
more, there is no experimental information about spin polar,j/
ization (the non-Abelian phase should be polarized Wherea,///
the Abelian phase could be either polarized or unpolarized,//
and it is not at all clear why the 12/5 state has been seen, b
its particle-hole conjugate, the 13/5 state, has not (idithie
of infinite Landau level separation, these two states will be
identical in energy). Nonetheless, despite the substantia
certainties, there is a great deal of excitement about thsipo
bility that this state will provide a route to topological aju+

tum computation. FIG. 2 A quantum Hall analog of a Fabry-Perot interferometer
(c) Other Quantum Hall States: The most strongly ob- Quasiparticles can tunnel from one edge to the other atreithe
served fractional quantum Hall states are the compositévo point contacts. To lowest order in the tunneling ampléts, the
fermion states = p/(2p + 1), or are simple generalizations backscattering probability, and hence the conductancistesmined
of them. There is little debate that these states are lilkely tby the interference between these two processes. The atea in
be Abelian. However, there are a number of observed exotige!l can be varied by means of a side gaten order to observe an
states whose origin is not currently agreed upon. An optimis'Nterference pattern.
may look at any state of unknown origin and suggest that it
is a non-Abelian state. Indeed, non-Abelian proposals{pub

: - .. The fundamental quasiparticles (i.e. the ones with the
lished and unpublished) have been made for a great variet . .
states of uncer;tain origiaw including (Jolicoeur, 20%7”&31 dmallest electrical charge) of the Moore-Read Pfaffiarestat

etal., 2002: Simoretal., 2007a,c; Wojstal., 2006) 3/8, 4/11, %thatfge/ ! (ﬁre“er de—ta"' 19?2? '.V'O"Ire .":‘j”d Feiﬂ' 19t9%)'
8/3, and 7/3. Of course, other more conventional Abelian pro e fractional charge does not uniquely identify the state —

posals have been made for each of these states too (Chang &Hg Abelian(3, 3, 1) state has the same quasiparticle charge

: ) : Lz : . — but a different value of the minimal quasiparticle charge a
{],32);-13’ ir?gigﬁr?r? rgbngéli}vgg?gi L;SSZ)arl]:%rFerggﬁlg’f tzhoeost v = 5/2 would certainly rule out the Pfaffian state. Hence, the

states, there is a great deal of research left to be done, bo{lﬁst|g]portantm?ﬁsurlec|;r1ent is the quatilpartmle ?f/htz;glmg’\/h
theoretical and experimental, before any sort of definitive- was done more than year.s agoIn the case o _/
clusion is reached. state (De Picciottetal., 1997; Goldman and Su, 1995; Sam-

In this context, it is worthwhile to mention another class OfmadayalLal., 1997).

. If the quasiparticle charge is shown to bét, then further
quantum Hall systems where non-Abelian anyons could X axperiments which probe the braiding statistics of the ghar
ist, namely bilayer or multilaye2 D systems (Das Sarma and P P 9

Pinczuk, 1997; Greiteet al., 1991; Heet al., 1993, 1991). e/4 quasiparticles will be necessary to pin down the topo-

. — L T N logical structure of the state. One way to do this is to use a
More work is necessary in investigating the possibility ofin L . . .
. : mesoscopic interference device. Consider a Fabry-Perot in
Abelian multilayer quantum Hall states.

terferometer, as depicted in Fig. (2). A Hall bar lying p&aial
to thex—axis is put in a field such that it is at filling fraction
v =5/2. Itis perturbed by two constrictions, as shown in the
figure. The two constrictions introduce two amplitudes for

. . . L .__.inter-edge tunnellingt; ». To lowest order irt; o, the four-
While numerics give useful insight about the topologicalierminaf longitudinal conductance of the Hall bar, is:
nature of observed quantum Hall states, experimental mea-

surements will ultimately play the decisive role. So fathea Gp oo [t > + |ta]® + 2Re{t;t2€i¢>} (14)
little has been directly measured experimentally about the

topological nature of the = 5/2 state and even less is known For an integer Landau filling, the relative phasmay be var-
about other putative non-Abelian quantum Hall states sach aed either by a variation of the magnetic field or by a variatio
v = 12/5. In particular, there is no direct experimental ev- of the area of the “cell” defined by the two edges and the two
idence for the non-Abelian nature of the quasiparticlese Th constrictions, since that phase2is®/®,, with ® = BA be-
existence of a degenerate, or almost degenerate, subdpacerg the flux enclosed in the cell the area of the cell, and
ground states leads to a zero-temperature entropy and hedg the flux quantum. Thus, when the area of the cell is varied
capacity, but those are very hard to measure experimentallpy means of a side gate (label&din the figure), the back-
Furthermore, this degeneracy is just one requirement for no scattered current should oscillate.

Abelian statistics to take place. How then does one demon- For fractional quantum Hall states, the situation is défer
strate experimentally that fractional quantum Hall stapes-  (de C. Chamoeetal., 1997). In an approximation in which the
ticularly ther = 5/2 state, are indeed non-Abelian? electronic density is determined by the requirement ofghar

3. Interference Experiments
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neutrality, a variation of the area of the cell varies the flux of these particles gives the trivial particle since theyenene-
encloses and keeps its bulk Landau filling unaltered. In conated from the vacuum. Now consider what happens when a
trast, a variation of the magnetic field changes the filliragfr  current-carrying quasiparticle tunnels at one of the twimipo
tion in the bulk, and consequently introduces quasipagitl  contacts. If it tunnels at the second one, it braids arouadith
the bulk. Since the statistics of the quasiparticles istivaal,  quasiparticles in the cell (but not thé+ 1™, which is outside
they contribute to the phage The back-scattering probabil- the cell). This changes the fusion channel of fe- 1 local-
ity is then determined not only by the two constrictions andized quasiparticles. In the language introduced in sulmsect
the area of the cell they define, but also by the number ofl.A.1, eache/4 quasiparticle is & particle. An odd number
localized quasiparticles that the cell encloses. By vayyfire N of them can only fuse teo; fused now with theV + 1™,
voltage applied to an anti-dot in the cell (the grey circl€ig.  they can either giva or . Current-carrying quasiparticles,
2), we can independently vary the number of quasipartides iwhen they braid with theéV in the cell, toggle the system be-
the cell. Again, however, as the area of the cell is varieel, thtween these two possibilities. Since the state of the Ipedli
back-scattered current oscillates. guasiparticles has been changed, such a process canmot inte

For non-Abelian quantum Hall states, the situation is mordere with a process in which the current-carrying quasiplart
interesting (Bondersort al., 2006a,b; Chung and Stone, tunnels at the first junction and does not encircle any ofdhe |
2006; Das Sarmatal., 2005; Fradkiretal., 1998; Stern and calized quasiparticles. Therefore, the localized quasgbes
Halperin, 2006). Consider the case of the Moore-Read Pfafmeasure’ which trajectory the current-carrying quasijpées
fian state. For clarity, we assume that there are localiZdd take(Bondersogtal., 2007; Overbosch and Bais, 2001)Nf
quasiparticles only within the cell (either at the anti-dot is even, then we can creat® + 2)/2 pairs and take two of
elsewhere in the cell). If the currentin Fig. (2) comes froimt the resulting quasiparticles outside of the cell. If figuasi-
left, the portion of the current that is back-reflected frdra t particles in the cell all fuse to the trivial particle, thdristis
left constriction does not encircle any of these quasipladi  not necessary, we can just creAf@2 pairs. However, if they
and thus does not interact with them. The part of the currenfuse to a neutral fermiogy, then we will need a pair outside
that is back-scattered from the right constriction, on ttheep  the cell which also fuses t¢ so that the total fuses tb, as
hand, does encircle the cell, and therefore applies a ynitaiit must for pair creation from the vacuum. A current-cargyin
transformation on the subspace of degenerate ground.stategiasiparticle picks up a phase depending on whetheithe
The final state of the ground state subspace that is coupled tpuasiparticles in the cell fuse toor ).

the left back—scattered wavip), is then different from the  The Fapry-Perot interferometer depicted in Fig. 2 allows

state coupled to the right partial wavg|{,). HereU isthe  also for the interference of waves that are back-reflected se

unitary transformation that results from the encirclingiod  eral times. For an integer filling factor, in the limit of st

cell by the wave scattered from the right constriction. The i back-scattering at the constrictions, the sinusoidal depece

terference term in the four-terminal longitudinal condwate,  of the Hall bar's conductance on the area of the cell gives

the final term in Eq. 14, is then multiplied by the matrix ele- way to a resonance-like dependence: the conductance is zero

ment(&o|U|&o): unless a Coulomb peak develops. For the= 5/2 state,
again, the parity of the number of localized quasipartioies

Gp o [t1]? + |t |* + 2Re{tft26i¢<§o|l7\§o>} (15)  ters: when it is odd, the Coulomb blockade peaks are equally

spaced. When it is even, the spacing between the peaks alter-

In section 111, we explain howé, |U|¢) can be calculated by nate between two values (Stern and Halperin, 2006).
several different methods. Here we just give a brief descrip The Moore-Read Pfaffian state, which is possibly realized
tion of the result. atv = 5/2, is the simplest of the non-Abelian states. The

For the Moore-Read Pfaffian state, which is believed to bether states are more complex, but also richer. The geom-
realized atv = 5/2, the expectation valu€,|U|¢,) depends etry of the Fabry-Perot interferometer may be analyzed for
first and foremost on the parity of the numberegfl quasi- these states as well. In general, for all non-Abelian stiies
particles localized in the cell. When that number is odd, theconductance of the Hall bar depends on the internal state of
resulting expectation value is zero. When that number ig,eve the quasiparticles localized between the constrictionse— i
the expectation value is non-zero and may assume one of twibe quasiparticle to which they fuse. However, only for the
possible values, that differ by a minus sign. As a conseqgiencMoore-Read Pfaffian state is the effect quite so dramatic. Fo
when the number of localized quasiparticles is aaulinter-  example, for the th& s parafermion state which may be re-
ference pattern is seen, and the back-scattered current doesalized atv = 12/5, when the number of localized quasipar-
not oscillate with small variations of the area of the celh&d ticles is larger than three, the fusion channel of the qaasip
that number is even, the back-scattered current oscilést@s ticles determines whether the interference is fully visibk
function of the area of the cell. suppressed by a factor efp—2 (with ¢ being the golden ra-

A way to understand this striking result is to observe thattio (v/5 + 1)/2) (Bondersoretal., 2006b; Chung and Stone,
the localized quasiparticles in the cell can be viewed asghei 2006). The number of quasiparticles, on the other hand, af-
created in pairs from the vacuum. Let us suppose that we waiiécts only the phase of the interference pattern. Similar to
to haveN quasiparticles in the cell. IV is odd, then we can the case of = 5/2 here too the position of Coulomb block-
creatg N +1)/2 pairs and take one of the resulting quasiparti-ade peaks on the two parameter plane of area and magnetic
cles outside of the cell, where itis localized. Fusingah- 1 field reflects the non-Abelian nature of the quasipartidles (
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from one edge to the other, provided that its trajectory ggss
in between the two localized quasiparticles. This is a sim-
ple example of how braiding causes non-trivial transforma-
tions of multi-quasiparticle states of non-Abelian quasiip
cles, which we discuss in more detail in section Ill. If we
measure the four-terminal longitudinal conductarge be-
fore and after applying this NOT gate, we will observe differ
ent values according to (16).

For this operation to be a NOT gate, it is important that
just a single quasiparticle (or any odd number) tunnel from
FIG. 3 If a third constriction is added between the other tilve,cell  one edge to the other across the middle constriction. In or-
is broken into two halves. We suppose that there is one caréisie ~ der to regulate the number of quasiparticles which passacro
(or any odd number) in each half. These two quasiparticl®e(ed  the constriction, it may be useful to have a small anti-dot in
1 and2) form a qubit which can be read by measuring the conducthe middle of the constriction with a large charging enemy s
tance _of _the interferomgter if there_ is no backscatteringamiddle 4t only a single quasiparticle can pass through at a tife. |
constriction. When a single quasiparticle tunnels from edge t0 o 46 ot have good control over how many quasiparticles
m: gm)eitr_ atthe middle constrictionoa or NOT gate is applied to tunnel, then it will be_ ess_entially random whether an even or

odd number of quasiparticles tunnel across; half of the time

a NOT gate will be applied and the backscattering probabilit
etal., 2007). (hen_ce the conductance)_ will chang_e_ while the other half of
— the time, the backscattering probability is unchangedhéf t
constriction is pinched down to such an extreme thathe
state is disrupted between the quasiparticles, then whisn it
restored, there will be an equal probability for the qubib&o
We now describe how the constricted Hall bar may be uti-" either state. , _
lized as a quantum bit (Das Sarragal., 2005). To that end, This qubit is topologically prote(_:ted _becaus_ellts state can

o only be affected by a chargg¢4 quasiparticle braiding with it.

an even number af/4 quasiparticles should be trapped in the NS . .
cell between the constrictions, and a new, tunable, canstri _Ifachargee/4 quasiparticle winds around one of the antidots,

tion should be added between the other two so that the cell ignezsg;st 2;:'1%-2 ?/‘:;e gg;mebggggégﬁ %ré):;bllg Iﬁgrﬁ;n i
broken into two cells with an odd number of quasiparticles in y ty Y

each (See Fig. (3)). One way to tune the number of quasipafa-xcItecj charge /4 qua3|partE:IAe/?2|2§)expone.n'ually suppressed
ticles in each half is to have two antidots in the Hall bar. Byat low temperaturesiq, ~ ¢ : The simplest estimate
tuning the voltage on the antidots, we can change the numb |I th_e error ratel” (in units of the gap) is then of activated
of quasiholes on each. Let us assume that we thereby fix the' M-
number of quasiparticles in each half of the cell to be odd. T/A ~ (T/A) o—A/(27) (17)
For concreteness, let us take this odd number to be one (i.e.
let us assume that we are in the idealized situation in whictThe most favorable experimental situation (Xgal., 2004)
there are no quasiparticles in the bulk, and one quasihole otonsidered in (Das Sarnet al., 2005) hasA ~ 500 mK
each antidot). These two quasiholes then form a two-leveindT ~ 5 mK, producing an astronomically low error rate
system, i.e. a qubit. This two-level system can be undegstoo~ 10~'>. This should be taken as an overly optimistic es-
in several ways, which we discuss in detail in section Ill. Intimate. A more definitive answer is surely more compli-
brief, the two states correspond to whether the dgduse to  cated since there are multiple gaps which can be relevant in
1 or ¢ or, in the language of chirglwave superconductivity, a disordered system. Furthermore, at very low temperatures
the presence or absence of a neutral (‘Majorana’) fermion; owe would expect quasiparticle transport to be dominated by
equivalently, as the fusion of two quasiparticles carrying  variable-range hopping of localized quasiparticles nathan
spin-1/2 representation of an SU(2) gauge symmetry in thethermal activation. Indeed, the crossover to this behaviay
spin<0 or spind channels. already be apparent (Pat al., 1999b), in which case, the
The interference between tiie andt, processes depends error suppression will be considerably weaker at the lowest
on the state of the two-level system, so the qubit can be nead iemperatures. Although the error rate, which is determined
a measurement of the four-terminal longitudinal condumtan by the probability for a quasiparticle to wind around thei-ant
) dot, is not the same as the longitudinal resistance, which is
G o [ta]* + |t2]? + 2Re{t]toe"} (16)  the probability for it to go from one edge of the system to the
. other, the two are controlled by similar physical procesges
where thet comes from the dependence(@§|U|¢y) onthe  more sophisticated estimate would require a detailed analy
state of the qubit, as we discuss in section Ill. sis of the quasiparticle transport properties which conta
The purpose of the middle constriction is to allow us to ma-to the error rate. In addition, this error estimate assutnais t
nipulate the qubit. The state may be flipped, i.e,,ar NOT  all of the trapped (unintended) quasiparticles are kept far
gate can be applied, by the passage of a single quasipartidieom the quasiparticles which we use for our qubit so that the
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4. A Fractional Quantum Hall Quantum Computer
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cannot exchange topological quantum numbers with our qubgured excitation gaps. In particular, an empirical refgtio
via tunneling. We comment on the issues involved in moreA = Ay — I, whereA is the measured activation gap and
detailed error estimates in section IV.D. Ay the ideal excitation gap with being the level broadening

The device envisioned above can be generalized to one witarising from impurity and disorder scattering, has oftearbe
many anti-dots and, therefore, many qubits. More compli-discussed in the literature (see, e.g. @al., 1993). Writing
cated gates, such as a CNOT gate can be applied by braidiitige mobility;. = er/m, with 7 the zero field Drude scattering
quasiparticles. It is not clear how to braid quasipartittes time, we can write (an approximation of) the level broadgnin
calized in the bulk — perhaps by transferring them from oneasT’ = h/(27), indicatingl' ~ p~! in this simple picture,
anti-dot to another in a kind of “bucket brigade”. This is an and therefore increasing the mobility should steadily ecka
important problem for any realization of topological quant  the operational excitation gap, as is found experimentéily
computing. However, as we will discuss in section 1V, even ifhas recently been pointed out (Mafal., 2002) that by re-
this were solved, there would still be the problem that braid ducingI’, an FQH gap of 2-3 K may be achievable in the 5/2
ing alone is not sufficient for universal quantum computatio FQH state. Much less is currently known about the 12/5 state,
in ther = 5/2 state (assuming that it is the Moore-Read Pfaf-but recent numerics (Rezayi and Read, 2006) suggest that the
fian state). One must either use some unprotected operationsximal gap in typical samples will be quite a bit lower than
(just two, in fact) or else use the= 12/5, if it turns outto be ~ for 5/2.

theZs parafermion non-Abelian state. It is also possible to consider designing samples that would
inherently have particularly large gaps. First of all, the i
teraction energy (which sets the overall scale of the gap) is

5. Physical Systems and Materials Considerations roughly of thel /r Coulomb form, so it scales as the inverse of
the interparticle spacing. Doubling the density shoulddhe

As seen in the device described in the previous subsectiof@re increase the gaps by roughly 40%. Although there are
topological protection in non-Abelian fractional quanttimll  €fforts underway to increase the density of samples (Willet
states hinges on the energy gay) 6eparating the many-body etal., 2007), there are practical limitations to how high a-den
degenerate ground states from the low-lying excited state$ity one can obtain since, if one tries to over-fill a quantum
This excitation gap also leads to the incompressibilityhef t Well with electrons, the electrons will no longer remairicily
quantum Hall state and the quantization of the Hall resistan two dimensional (i.e., they will start filling higher subltm
Generally speaking, the larger the size of this excitatiap g ©F they will not remain in the well at all). Secondly, as dis-
compared to the temperature, the more robust the topologfussed in section 11.C.2 above, since the non-Abellanstate
cal protection, since thermal excitation of stray quadipas,  appear generally to be very sensitive to the precise pasamet
which goes asxp(—A/(27')), would potentially lead to er- of _the Hamiltonian, another_ possible route to mcreasetdf exc
rors. tation gap would be to design the precise form of the inter-

It must be emphasized that the relevanhere is the tem- electron interaction (which can be modified by well width,
perature of the electrons (or more precisely, the quagipartScreening layers, and particularly spin-orbit couplinga(M
cles) and not that of the GaAs-AlGaAs lattice surroundirey th ra étal., 2007)) so that the Hamiltonian is at a point in the
2D electron layer. Although the surrounding bath tempeeatu Phase diagram with maximal gap. With all approaches for re-
could be lowered to 1 mK or below by using adiabatic de-designing samples, however, it is crucial to keep the deord
magnetization in dilution refrigerators, the 2D electrdrem-  [evellow, which is an exceedingly difficult challenge.
selves thermally decouple from the bath at low temperatures Note that a large excitation gap (and correspondingly low
and it is very difficult to cool the 2D electrons beldiv ~  temperature) suppresses thermally excited quasipartile
20 mK. It will be a great boost to hopes for topological quan-does not preclude stray localized quasiparticles whichdcou
tum computation using non-Abelian fractional quantum Hallbe present even dt = 0. As long as their positions are known
states if the electron temperature can be lowered to 1 mK cand fixed, and as long as they are few enough in number to
even below, and serious efforts are currently underwayin se be sufficiently well separated, these quasiparticles waoold
eral laboratories with this goal. present a problem, as one could avoid moving other quasipar-

Unfortunately, the excitation gaps for the expected noniicles near their positions and one could then tailor athars
Abelian fractional quantum Hall states are typically veryto account for their presence. If the density of stray local-
small (compared, for example, with the= 1/3 fractional ized quasiparticles is sufficiently high, however, this Vdou
quantum Hall state). The early measured gap for the 5/2 stafe0 longer be possible. Fortunately, these stray partides c
was around\ ~ 25 mK (in 1987) (Willettet al., 1987), but be minimized in the same way as one of the above discussed
steady improvement in materials quality, as measured by thgolutions to keeping the energy gap large — improve the mo-
sample mobility, has considerably enhanced this gap. In thEility of the 2D electron sample on which the measurements
highest mobility samples currently (2007) availabtex~ 600  (i.e. the computation operations) are being carried out. Im
mK (Choi et al., 2007). Indeed, there appears to be a clos@rovement in the mobility leads to both the enhancement of
connection between the excitation gapand the mobility ~ the excitation gap and the suppression of unwanted quasipar
(or the sample quality). Although the details of this connec ticle localization by disorder.
tion are not well-understood, it is empirically well-ediabed We should emphasize, however, how extremely high qual-
that enhancing the 2D mobility invariably leads to largeame ity the current samples already are. Current “good” sample
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mobilities are in the range df) — 30 x 10 cm?/(Volt-sec). emergent symmetry at low energy, which is not present in the
To give the reader an idea of how impressive this is, we notenicroscopic Hamiltonian of the system. Consequently,mive
that under such conditions, at low temperatures, the mean fr a Hamiltonian, it is very difficult to determine if its ground
path for an electron may be a macroscopic length of a tenth dftate is in a topological phase. It is certainly no easien tha
a millimeter or more. (Compare this to, say, copper at roonshowing that any other low-energy emergent phenomenon oc-
temperature, which has a mean free path of tens of nanometegars in a particular model. Except for rare exactly solvable
or less). models (e.g. Kitaev, 2006, Levin and Wen, 2005b which we
Nonetheless, further MBE technique and design improvedescribe in section 1Il.G), topological ground states are i
ment may be needed to push low-temperature 2D electroferred on the basis of approximations and inspired guesswor
mobilities to 100 x 10° cm?/(Volt-sec) or above for topo- On the other hand, if topological states exist at all, thely wi
logical quantum computation to be feasible. At lower temper be robust (i.e. their topological nature should be fairlyein-
atures, T < 100 mK, the phonon scattering is very strongly sitive to local perturbations, e.g. electron-phonon iatéon
suppressed (Kawamura and Das Sarma, 1992; Steetaér  or charge fluctuations between traps). For this reason, we be
1990), and therefore, there is essentially no intrinsigtlbom  lieve that if it can be shown that some model Hamiltonian has
how high the 2D electron mobility can be since the extrin-a topological ground state, then a real material which is de-
sic scattering associated with impurities and disorder tan scribed approximately by that model is likely to have a topo-
principle, be eliminated through materials improvememt. | logical ground state as well.
fact, steady materials improvement in modulation-doped 2D One theoretical model which is known to have a non-
GaAs-AlGaAs heterostructures grown by the MBE techniqueAbelian topological ground state ispa+ ip wave supercon-
has enhanced the 2D electron mobility fraot cm?/(Volt-  ductor (i.e., a superconductor where the order parametdr is
sec) in the early 1980’s t80 x 10° cm?/(Volt-sec) in 2004,a  p. + ip, Symmetry). As we describe in section I11.B, vortices
three orders of magnitude improvementin materials quadity in a superconductor gf -+ ip pairing symmetry exhibit non-
roughly twenty years. Indeed, the vitality of the entiredief ~ Abelian braiding statistics. This is really just a reincaion
quantum Hall physics is a result of these amazing advancesf the physics of the Pfaffian state (believed to be realized a
Another factor of 2-3 improvement in the mobility seems pos-the v = 5/2 quantum Hall plateau) in zero magnetic field.
sible (L. Pfeiffer, private communication), and will likebe  Chiral p-wave superconductivity/superfluidity is currently the
needed for the successful experimental observation of norfost transparent route to non-Abelian anyons. As we dis-
Abelian anyonic statistics and topological quantum coraput cuss below, there are multiple physical systems which may
tion. host such a reincarnation. The Kitaev honeycomb model (see
also section 11.G and ) (Kitaev, 2006) is a seemingly differ
ent model which gives rise to the same physics. In it, spins
interact anisotropically in such a way that their Hilberasp
can be mapped onto that of a system of Majorana fermions.

This review devotes a great deal of attention to the non!n various parameter ranges, the ground state is in either an

Abelian anyonic properties of certain fractional quantuailH ﬁr?isg?gzﬁﬁpmgsczlsphis-e's?; aernc?)rr‘]'(ﬁjbc(?g?n one in the same
states (e.g.r = 5/2,12/5, etc. states) in two-dimensional : y @+ 1p sup . .

i ; . Chiral p-wave superconductors, like quantum Hall states,
semiconductor structures, mainly because theoreticakand break parity and time-reversal symmetries. althouah treyv d
perimental studies of such (possibly) non-Abelian frazdio partty y ' 9 Y

. . d : so spontaneously, rather than as a result of a large magnetic
qganhzed Hall states is a mature SUbJe(.:t’ dat!ng back t6’198ﬁeldeowever it)?s also possible to have a topological pgas
with many concrete results and ideas, including a recent prg ;. ’ : .

osal (Das Sarmat al., 2005) for the construction of qubits which does not break these symmetries. Soluble theoretical
gnd a NOT ate?r.t'o olodical quantum com utatic(I)n (de_models of spins on a lattice have been constructed which have
scribed abO\?e in subsfctiog Il Cq4 and, in regter detail inP’ T-invarianttopological ground states. A very simple model
. I N g . of this type with anAbelian topological ground state, called
section V). .BUt there are several other systems Whlch &€ PGhe “toric code’, was proposed in Kitaev, 2003. Even though i
tential candidates for topological quantum computatiord a ' ' '

we briefly discuss these systems in this subsection. Indeet not sufficient for topological guantum computation beau

the earliest proposals for fault-tolerant quantum cormjnnia IT'is Abelian, it is instructive to consider this model besau
with anyons were based on spin systems, not the quantum Harlfn'.Abe“an models can be wewed_as more co_mpl_ex Versions
effect (Kitaev, 2003). of this model. It describes = 1/2 spins on a lattice interact-

First, we emphasize that the most crucial necessary condllijg through the following Hamiltonian (Kitaev, 2003):
tio_n for carrying out t_opolpgical quantum co’mputation is th H— _JIZAi _ JQZFP (18)
existence of appropriate ‘topological matter’, i.e. a pbgk ; -
system in a topological phase. Such a phase of matter has
suitable ground state properties and quasiparticle aaris This model can be defined on an arbitrary lattice. The
manifesting non-Abelian statistics. Unfortunately, tezes- spins are assumed to be on the links of the lattice.
sary and sufficient conditions for the existence of topalai  4i = [l,cn ;)0 WhereN (i) is the set of spins on links
ground states are not known even in theoretical models. We which touch the vertex, andF;, = [],c,0%, wherep is
note that the topological symmetry of the ground state is am plaquette and € p are the spins on the links comprising

D. Other Proposed Non-Abelian Systems
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the plaquette. This model is exactly soluble becausedtlse  metry phases. In the quantum dimer model (Moessner and
andF,s all commute with each other. For afty, J» > 0, the  Sondhi, 2001; Rokhsar and Kivelson, 1988), for instance, an
ground state0) is given byA;|0) = F,|0) = |0) forall i,p. ~ Abelian topological phase must compete with various crys-
Quasiparticle excitations are sitesat which 4;|0) = —|0) talline phases which occupy most of the phase diagram. This
or plaquetteg at which F,|0) = —|0). A pair of excited is presumably one obstacle to finding topological phases in
sites can be created atindi’ by acting on the ground state more realistic models, i.e. models which would give an ap-

with [T, cc o5, where the product is over the links in a chain proximate description of some concrete physical system.

C on the lattice connectingand’. Similarly, a pair of ex- There are several physical systems — apart from fractional
C|_ted plaquettes can be created by acting on the grour_1d staRiantum Hall states — which might be promising hunting
with connecteq [, o2 where the product is over the links  grounds for topological phases, including transition meta
crossed by a chaifi on the dual lattice connecting the centersides and ultra-cold atoms in optical traps. The transiti@tah

of plaquetteg andp’. Both types of excitations are bosons, oxides have the advantage that we already know that they give
but when an excited site is taken around an excited plaquetteise to striking collective phenomena such as highsuper-

the wavefunction acquires a minus sign. Thus, these twatypeconductivity, colossal magnetoresistance, stripes, lagairto-

of bosons areelative semions. electricity. Unfortunately, their physics is very diffi¢ab un-

The toric code model is not very realistic, but it is closely ravel both theoretically and experimentally for this veear
related to some more realistic models such as the quantuson: there are often many different competing phenomena in
dimer model (Chayestal., 1989; Klein, 1982; Moessner and these materials. This is reflected in the models which descri
Sondhi, 2001; Nayak and Shtengel, 2001; Rokhsar and Kiveltransition metal oxides. They tend to have many closely com-
son, 1988). The degrees of freedom in this model are dimengeting phases, so that different approximate treatmends fin
on the links of a lattice, which represent a spin singlet bondather different phase diagrams. There is a second adwantag
between the two spins on either end of a link. The quantunto the transition metal oxides, namely that many sophiita
dimer model was proposed as an effective model for frusexperimental techniques have been developed to study them,
trated antiferromagnets, in which the spins do not order, buincluding transport, thermodynamic measurements, photoe
instead form singlet bonds which resonate among the linksnission, neutron scattering, X-ray scattering, and NMR- Un
of the lattice — the resonating valence bond (RVB) state (Anfortunately, however, these methods are tailored for dietgc
derson, 1973, 1987; Baskarahal., 1987; Kivelsonet al.,  broken-symmetry states or for giving a detailed understand
1987) which, in modern language, we would describe as af metallic behavior, not for uncovering a topological phias
specific realization of a simple Abelian topological stdda{ Nevertheless, this is such a rich family of materials that it
lentsetal., 1999, 2000; Moessner and Sondhi, 2001; Senthivould be surprising if there weren't a topological phase hid
and Fisher, 2000, 2001a). While the quantum dimer model oing there. (Whether we find it is another matter.) There is one
the square lattice does not have a topological phase for amarticular material in this family, SRuO,, for which there
range of parameter values (the RVB state is only the grounts striking evidence that it is a chiratwave superconductor
state at a critical point), the model on a triangular latdoes  at low temperatures]. ~ 1.5 K (Kidwingira et al., 2006;
have a topological phase (Moessner and Sondhi, 2001).  Xia etal., 2006). Half-quantum vortices in a thin film of such

Levin and Wen, 2005a,b constructed a model which is, ira superconductor would exhibit non-Abelian braiding stati
a sense, a non-Abelian generalization of Kitaev’s toricecod tics (since SfRuQ; is not spin-polarized, one must use half
model. It is an exactly soluble model of spins on the linksquantum vortices, not ordinary vortices). However, hatiiu
(two on each link) of the honeycomb lattice with three-spini tum vortices are usually not the lowest energy vortices in a
teractions at each vertex and twelve-spin interactionsrato ~ chiral p-wave superconductor, and a direct experimental ob-
each plaquette, which we describe in section 1Il.G. Thisservation of the half vortices themselves would be a substan
model realizes a non-Abelian phase which supports Fibonac#al milestone on the way to topological quantum computatio
anyons, which permits universal topological quantum compu(Das Sarmatal., 2006b).
tation (and generalizes straightforwardly to other norelen The current status of research is as follows. Three-
topological phases). Other models have been constructefimensional single-crystals and thin films of,RuQ, have
(Fendley and Fradkin, 2005; Freedmelral., 2005a) which  been fabricated and studied. The nature of the super-
are not exactly soluble but have only two-body interactionsconductivity of these samples has been studied by many ex-
and can be argued to support topological phases in some pperimental probes, with the goal of identifying the symme-
rameter regime. However, there is still a considerablelggdf  try of the Cooper-pair. There are many indications that sup-
tween models which are soluble or quasi-soluble and modelsort the identification of the SRuQ; as ap, + ip, Super-
which might be considered realistic for some material. conductor. First, experiments that probe the spins of the

Models such as the Kitaev and Levin-Wen models are deeffooper pair strongly indicate triplet pairing (Mackenziea
within topological phases; there are no other competingsta Maeno, 2003). Such experiments probe the spin susceptibil-
nearby in their phase diagram. However, simple models sucly through measurements of the NMR Knight shift and of
as the Heisenberg model or extensions of the Hubbard modekutron scattering. For singlet spin pairing the suscé#ipyib
are not of this form. The implication is that such mod- vanishes at zero temperature, since the spins keep a zero po-
els are not deep within a topological phase, and topologicdhrization state in order to form Cooper pairs. In contrist,
phases must compete with other phases, such as broken sysusceptibility remains finite for triplet pairing, and tligsin-
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deed the observed behavior. Second, several experimants ttand should also result in quantum hall physics(Mueller 200
probe time reversal symmetry have indicated that it is bmpke Poppetal., 2004; Sgrensegtal., 2005).
as expected frompa+ip super-conductor. These experiments The second route to generating topological phases in cold
include muon spin relaxation (Mackenzie and Maeno, 2003atoms is the idea of using a gas of ultra-cold fermions with
and the polar Kerr effect(Xiat al., 2006). In contrast, mag- a p-wave Feschbach resonance, which could form a spin-
netic imaging experiments designed to probe the edge cupolarized chiral p-wave superfluid (Gurageal., 2005). Pre-
rents that are associated with a super-conductor that $reakminary studies of such p-wave systems have been made ex-
time reversal symmetry did not find the expected signal {(Kirt perimentally (Gaebleet al., 2007) and unfortunately, it ap-
ley etal., 2007). The absence of this signal may be attributeghears that the decay time of the Feshbach bound states may
to the existence of domains pf+ ip interleaved with those be so short that thermalization is impossible. Indeed,nece
of p — ip. Altogether, then, SRuQ, is likely to be a three di-  theoretical work (Levinseatal., 2007) suggests that this may
mensionap+ip super-conductor, that may open the way for abe a generic problem and additional tricks may be necessary
realization of a two-dimensional super-conductor thatikse if a p-wave superfluid is to be produced in this way.
time reversal symmetry. We note that both the = 1 rotating boson system and the
The other very promising direction to look for topological chiral p-wave superfluid would be quite closely related to the
phases, ultra-cold atoms in traps, also has several agyemta putative non-Abelian quantum Hall statezat= 5/2 (as is
The Hamiltonian can often be tuned by, for instance, tuningdSRuQ;). However, there is an important difference between
the lasers which define an optical lattice or by tuning thtoug @ p-wave superfluid of cold fermions and the= 5/2 state.
a Feshbach resonance. For instance, there is a specificschefyo-dimensional superconductors, as well as superfluids in
for realizing the Hubbard model (Jaksch and Zoller, 2005)2ny dimension, have a gapless Goldstone mode. Therefore,
in this way. At present there are relatively few experimen-there is the danger that the motion of vortices may cause the
tal probes of these systems, as compared with transitioal metexcitation of low-energy modes. Superfluids of cold atoms
oxides or even semiconductor devices. However, to look orinay, however, be good test grounds for the detection of lo-
the bright side, some of the available probes give inforomati calized Majorana modes associated with localized vortaes
that cannot be measured in electronic systems. Furthermoréose are expected to have a clear signature in the absorptio
new probes for cold atoms systems are being developed ats@ectrum of RF radiation (Tewagtal., 2007b), in the form of
remarkable rate. a discrete absorption peak whose density and weight are de-

There are two different schemes for generating topologi_termined by the density of the vortices (Grosfetdl., 2007).

cal phases in ultra-cold atomic gases that seem partiyularlone, can aiso realize, using suitable laser <_:onf|gurat|ons, K
promising at the current time. The first is the approach ofaeV's honeycpmb lattice model (Eq. 55) with cold atoms on
using fast rotating dilute bose gases (Willdbal., 1998) to an optical lattice (.D uaret al., .2003)' It has recently been
make quantum Hall systems of bosons (Coagiel., 2001). shown how to braid anyons in such a model (Zhatal.,
Here, the rotation plays the role of an effective magnetldfie 2006). ) - o . L

and the filling fraction is given by the ratio of the number A major difficulty in finding a topological phase in either
of bosons to the number of vortices caused by rotation. Ex@ transition metal oxide or an ultra-cold atomic system th
perimental techniques (Abo-Shaegal., 2001; Bretiret al., topologlcallphases are hard to detect dlrgctly. .If the phase
2004; Schweikhardtal., 2004) have been developed that canPreaks parity and time-reversal symmetries, .elther sponta
give very large rotation rates and filling fractions can beege neously or as a result of an external magnetic field, therether
ated which are as low as= 500 (Schweikharcetal., 2004). 1S us_ually an experimental handle th_rough transport, alsen t
While this is sufficiently low that all of the bosons are ina-si  ractional quantum Hall states or chigawave superconduc-
gle landau level (since there is no Pauli exclusion, nug, 1 calP's: If the state does not break parity and time-reversai; h
still be a lowest Landau level state), it is still predictecoe ~ €Ver: there is no ‘'smoking gun’ experiment, short of cregtin
several orders of magnitude too high to see interesting-topdluasiparticles, braiding them, and measuring the outcome.
logical states. Theoretically, the interesting topolagjstates ~_ Any detailed discussion of the physics of these ‘alterna-
occur forv < 10 (Cooperetal., 2001). In particular, evidence Ve’ topological systems is well beyond the scope of the cur
is very strong that = 1, should it be achieved, would be Fentreview. We refer the readers to the existing recent lite

the bosonic analogue of the Moore-Read state, and (slighti3ture on these systems for details. In section Ill (espgcial
less strongy = 3/2 andv = 2 would be the Read-Rezayi [1.G), however, we discuss some of the soluble mpdels which
states, if the inter-boson interaction is appropriatelysgd ~ SUPPOrt topological phases because many of their mathemat-
(Cooper and Rezayi, 2007; Rezayal., 2005). In order to ac- ical features elucidate the underlying structure of togal
cess this regime, either rotation rates will need to be aszd ~ Phases.

substantially, or densities will have to be decreased aubst

tially. While the latter sounds easier, it then results inoél

the interaction scales being correspondingly lower, amté@e 1ll. TOPOLOGICAL PHASES OF MATTER AND

implies that temperature would have to be lower also, whiciNON-ABELIAN ANYONS

again becomes a challenge. Several other works have pro-

posed using atomic lattice systems where manipulation-of pa Topological quantum computation is predicated on the exis-
rameters of the Hamiltonian induces effective magnetid$iel tence in nature of topological phases of matter. In this@ect
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we will discuss the physics of topological phases from saver A. Topological Phases of Matter

different perspectives, using a variety of theoreticaldo®he

reader who is interested primarily in the application ofdep In Section Il of this paper, we have used ‘topological phase’

logical phases to quantum computation can skim this sectioas essentially being synonymous with any system whose

briefly and still understand section IV. However, a reade¢hwi quasiparticle excitations are anyons. However, a prea$e d

a background in condensed matter physics and quantum fieldition is the following. A system is in a topological phase

theory may find it enlightening to read a more detailed acif, at low temperatures and energies, and long wavelengths,

count of the theory of topological phases and the emergencall observable properties (e.g. correlation functions) iar

of anyons from such phases, with explicit derivations of som variant under smooth deformations (diffeomorphisms) ef th

of the results mentioned in section Il and used in section Vspacetime manifold in which the system lives. Equivalently

These readers may find topological phases interesting in arwll observable properties are independent of the choice of

of themselves, apart from possible applications. spacetime coordinates, which need not be inertial or ne<til
ear. (This is the ‘passive’ sense of a diffeomorphism, while
the first statement uses the active sense of a transfornjation
By “at low temperatures and energies, and long wavelerigths,
we mean that diffeomorphism invariance is only violated by
terms which vanish as max(e=2/%, e~1=I/¢) for some non-

Topological phases, the states of matter which supporl%er.0 energy gaph and_fmlte correlation lengif Thus, topo-

ogical phases have, in general, an energy gap separaéng th

anyons, occurin many particle physmal systems. Theegfor round state(s) from the lowest excited states. Note that an
we will be using field theory techniques to study these state N ; . ey

. . . excitation gap, while necessary, is not sufficient to enthae
A canonical, but by no means unique, example of a field the-

ory for a topological phase is Chern-Simons theory. We will? system S1h a topological phase._ . .
frequently use this theory to illustrate the general poiitch The invariance of all correlation functions under d'.f'
we wish to make about topological phases. In section V, w eomorph|sm§ means that _the only .Iocal _operator Wh.'Ch
will make a few comments about the problem of classifying as .non-vanlshlng correlatlon functions is the |dent|.ty.
topological phases, and how this example, Chern-Simons th or instance, “[‘der an arbitrary qhange of space-time
ory, fits in the general classification. In subsection Illwe coordinatess — 2’ = f(x), the correlations of a scalar oper-
give a more precise definition of a topological phase and con2°" ¢(,x) must Sat',Sfy (Oié(z1)e(@2) ... d20)|05) =

nect this definition with the existence of anyons. We also in-\0il#(#1)@(23) ... &(27,)|0;),  which implies  that
troduce Chern-Simons theory, which we will discuss through (Oil@(21)d(x2) ... 6(24)0;) = 0 unlessg(z) = c for

out section Il as an example of the general structure whicffOme constant. Here, |0;),|0;) are _ground states of the
we discuss in subsection Ill.A. In subsection 111.B, we will system (which may or may not be d|ﬁeren§). This property
discuss a topological phase which is superficially rather di 'S important because any local perturbation, such as the
ferent but, in fact, will prove to be a special case of Cherp-£nVvironment, couples to a local operator. _Hence, thesé loca
Simons theory. This phase can be analyzed in detail using t erturbations are proportional to the identity. Consedjyen

formalism of BCS theory. In subsection I1I.C, we further ana Ej;y canngt ttwa;ve n_(l)_ﬂ-tnw?l matrix elﬁmﬁ%s betvveefr; m{fteh
lyze Chern-Simons theory, giving a more detailed account of Nt ground states. The only way in which they can afiect the

: . : " o tem is by exciting the system to high-energies, at which
its topological properties, especially the braiding of amy. Sys > 4 LA

We describe Witten’s work (Witten, 1989) connecting Chem_df:ﬁeomé)rgq.ltsn; m;/r?\_rlz?mce IS V'O|?tefld' At Iow-ten;peram,r
Simons theory with the knot and link invariants of Jones and"e probability for this is exponentially suppressed.

Kauffman (Jones, 1985: Kauffman, 1987). We show how the The preceding definition of a topological phase may be

latter can be used to derive the properties of anyons in thesated more compactly by simply saying that a system is in

topological phases. In section II1.D, we describe a comple& topological phase if its low-energy effective field theay

mentary approach by which Chern-Simons theory can be urf: toPological quantum field theory (TQFT), i.e. a field the-
derstood: through its connection to conformal field thewvig, ~ OFY Whose correlation functions are invariant under diffieo-
explain how this approach can be particularly fruitful imeo  PhiSms. Remarkably, topological invariance does not imply
nection with fractional quantum Hall states. In IILE, wesdi trvial low-energy physics.

cuss the gapless excitations which must be present at tlee edg

of any chiral topological phase. Their physics is intimatel

connected with the topological properties of the bulk arid, al. Chern-Simons Theory

the same time, is directly probed by transport experiments

in quantum Hall devices. In Ill.F, we apply the knowledge Consider the simplest example of a TQFT, Abelian Chern-
which we have gained about the properties of Chern-SimonSimons theory, which is relevant to the Laughlin states lat fil
theory to the interferometry experiments which we discdsseing fractions of the form = 1/k, with k£ an odd integer. Al-

in 11.C.3. Finally, in lIll.G we discuss a related but diffete  though there are many ways to understand the Laughlin states
class of topological phases which can arise in lattice nodelit is useful for us to take the viewpoint of a low-energy ef-
and may be relevant to transition metal oxides or ‘artificial fective theory. Since quantum Hall systems are gapped, we
solids such as ultra-cold atoms in optical lattices. should be able to describe the system by a field theory with
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very few degrees of freedom. To this end, we consider the-1/2 times the Aharonov-Bohm phase. This is cancelled by a
action factor of two coming from the fact that each particle sees the
i other’s flux.) Thus the contribution to a path integeafcs
Sog = — /d2r dt e"*a,d,a, (19)  just gives an Aharonov-Bohm phase associated with moving
Am a charge around the Chern-Simons flux attached to the other
charges. The phases generated in this way give the quasipar-

herek i int is th ti tric t . Here, . . g L
wherel is an integer and is the antisymmetric tensor. Here ticles of this Chern-Simons theoéy= 7 /k Abelian braiding

ais a U(1) gauge field and indicesv, p take the value8 (for tatistics?

time-direction),1,2 (space-directions). This action represents> o ouUCS: _ _ _

the low-energy degrees of freedom of the system, which are 1herefore, an Abelian Chern-Simons term implements

purely topological. Abel!an anyonic statistics. Ir_1 fact,_lt does nothing elsen A
The Chern-Simons gauge fietdn (19) is an emergent de- Abelian gauge field ir2 + 1 dimensions has only one trans-

gree of freedom which encodes the low-energy physics of é{ers_e_component; the othertwo components can pe eliminated
quantum Hall system. Although in this particular case, it is?Y fixing the gauge. This degree of freedom is fixed by the
simply-related to the electronic charge density, we wibae Chern-Simons constraint (22). Therefore, a Chern-Simons

considering systems in which emergent Chern-Simons gaudgi®uge field has no local degrees of freedom and no dynam-
fields cannot be related in a simple way to the underlying-elec'®S-

tronic degrees of freedom. We now turn to non-Abelian Chern-Simons theory. This
In the presence of an external electromagnetic field and QFT describes non-Abelian anyons. It is analogous to the
quasiparticles, the action takes the form: Abelian Chern-Simons described above, but different meth-

ods are needed for its solution, as we describe in this sectio

2 1 . , The action can be written on an arbitrary manifdid in the
S = Scs — /d rdt %e“ PA,0,a, —i—];}pau (20) form

whereji? is the quasiparticle cur_reryt‘(‘,1p = p?is the quasi- Scsla] = ﬁ/ tr (a ANda+ Zahan a> (24)
particle densityje = (57, j5¥) is the quasiparticle spatial 4 J pm 3
current, and4,, is the external electromagnetic field. We Kk wo (gag ge 4 gf b gl
will assume that the quasiparticles are not dynamical,rput i T oar € pvp T 5 Jabc®u )
stead move along some fixed classically-prescribed ti@ject
ries which determing/!’. The electrical current is: In this expression, the gauge field now takes values in the Lie
algebra of the grougs. f,,. are the structure constants of
Ju = OLJOA, = %EHVP(?UGP (21) the Lie algebra which are simply,, . for the case of SU(2).
v

For the case of SU(2), we thus have a gauge fi€idwhere
the underlined indices run from 1 to 3. A matter field trans-
forming in the spins representation of the SU(2) gauge group
will couple to the combinationj;z,, wherez, are the three
generator matrices of su(2) in the spimepresentation. For
gauge group= and coupling constarit (called the ‘level’),
we will denote such a theory b¥;. In this paper, we will be
primarily concerned with SU(2)Chern-Simons theory.

To see that Chern-Simons theory is a TQFT, first note that
the Chern-Simons action (24) is invariant under all diffeom
phisms of M to itself, f : M — M. The differential form
notation in (24) makes this manifest, but it can be checked
in coordinate form forz# — f#(x). Diffeomorphism in-

Since the action is quadratic, it is completely solvable] an
one can integrate out the fielg, to obtain the response of
the current to the external electromagnetic field. The tegul
such a calculation is precisely the quantized Hall congitgti
0ze = 0andoy, = %GQ/h.

The equation of motion obtained by varying is the
Chern-Simons constraint:

1
“Vxa=;®+_—_B (22)
Y Y

According to this equation, each quasiparticle has Chern

Simons fiuxer/k attached to it (the magnetic field is assumedvariance stems from the absence of the metric tensor in the

f|xed). Consequently, it has electrical (_:harg/ek, accord- Chern-Simons action. Written out in component form, as in
ing to (21). As a result of the Chern-Simons flux, another

L v A . . . (24), indices are, instead, contracted witti*.
guasiparticle moving in this Chern-Simons field picks up an . . . . .
. . X . Before analyzing the physics of this action (24), we will
Aharonov-Bohm phase. The action associated with takin . ’
o . . ake two observations. First, as a result of the presence of
one quasiparticle around another is, according to Eq. 20, o
the form

1 .
§k/ drdtj-a=FkQ /C dr-a (23) 3 The Chern-Simons effective action for a hierarchical siatuivalent to
the action for the composite fermion state at the same fifliaction (Blok
whereQ is the charge of the quasiparticle and the final integral 2nd Wen, 1990; Read, 1990; Wen and Zee, 1992). Itis a simplerge
is iust the Chern-Simons flux enclosed in the path (The facto alization of Eq. 19 which contains several internal gaugelsie;; (with
J . . _p : n = 1,2,...), corresponding (in essence) to the action for the diffieren
of 1/2 on the left-hand side is due to the action of the Chern- gpecies of particles (either the different levels of thedriehy, or the dif-

Simons term itself which, according to the constraint (22) i  ferent composite fermion Landau levels).
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e"¥ | the action changes sign under parity or time-reversahnd a Yang-Mills term, then the Hamiltonian would not van-
transformations. In this paper, we will concentrate, fa th ish, and the theory would have both ground states and excited
most part, on topological phases which are chiral, i.e. thic states with a finite gap. Since the Yang-Mills term is sublead
break parity and time-reversal symmetries. These are thimg compared to the Chern-Simons term (i.e. irrelevant in a
phases which can appear in the fractional quantum Hall efrenormalization group (RG) sense), we can forget about it at
fect, where the large magnetic field breaRsT. However, energies smaller than the gap and consider the Chern-Simons
we shall also discuss non-chiral topological phases in sederm alone.

tion IlI.G, especially in connection which topological [Hes Therefore, when Chern-Simons theory is viewed as an ef-

emerging from lattice models. fective field theory, it can only be valid at energies much
Secondly, the Chern-Simons action is not quite fully invari smaller than the energy gap. As a result, it is unclear, at the

ant under gauge transformations — ga,g~" + gd,.97", moment, whether Chern-Simons theory has anything to say

whereg : M — @G is any function on the manifold taking about the properties of quasiparticles — which are exoitati
values in the grougs. On a closed manifold, it is only in- above the gap — or, indeed, whether those properties are part
variant under “small” gauge tranformations. Suppose tmatt of the universal low-energy physics of the system (i.e. are
manifold M is the 3-sphere§3. Then, gauge transformations controlled by the infrared RG fixed point). Nevertheless, as
are mapsS® — G, which can be classified topologically ac- we will see momentarily, it does and they are.

cording to it homotopyrs(G). For any simple compactgroup  Although the Hamiltonian vanishes, the theory is still not
G, m3(G) = Z, so gauge transformations can be classifiedrivial because one must solve the constraint which follbws
according to their “winding number”. Under a gauge trans-varyingag. For the sake of concreteness, we will specialize to
formation with windingm, the casé&z =SU(2). Then the constraint reads:

Scsla] — Scsla] + 2mkm (25) cij0,af + f**%atas =0 (27)

(Deseret al., 1982). While the action is invariant under Wherei,j = 1,2. The left-hand side of this equation is the

“small” gauge transformations, which are continuously-con field strength of the gauge fieldf, wherea = 1,2,3 is an
nected to the identity and have = 0, it is not invariant  SU(2) index. Since the field strength must vanish, we can al-

under “large” gauge transformations:( 0). However, it ~Ways perform a gauge transformation so thiat= 0 locally.

is sufficient forexp(iS) to be gauge invariant, which will be Therefore this theory has no local degrees of freedom. How-
the case so long as we require that the ldvek an integer. €Vver, for some field configurations satisfying the constrain
The requirement that the levélbe an integer is an example there may be a global topological obstruction which present
of the highly rigid structure of TQFTs. A small perturbation US from making the gauge field zero everywhere. Clearly, this
of the microscopic Hamiltonian cannot continuously changef@n only happen it is topologically non-trivial. .
the value ofi in the effective low energy theory; only a per- _ The simplest non-trivial manifold is the annulus, which
turbation which is large enough to chanigby an integer can IS topologically equivalent to the sphere with two punceure
do this. Following Elitzuretal., 1989 (see also (Wen and Zee, 1998)

The failure of gauge invariance under large gauge tranforfor a similar construction on the torus), let us take coqﬂ:bs
mations is also reflected in the properties of Chern-Simon§> ¢) on the annulus, with; < r < ry, and lett be time.
theory on a surface with boundary, where the Chern-Simon&hen we can write,, = 90,9~", where
action is gauge invariant only up to a surface term. Conse- i (mbit) P A(D)
quently, there must be gapless degrees of freedom at the edge g(r, ¢, 1) = 0O e'x (28)
of the system whose dynamics is dictated by the requireme%herew
of gauge invariance of the combined bulk and edge (Wen
1992), as we discuss in section Il1.E.

To unravel the physics of Chern-Simons theory, it is use
ful to specialize to the case in which the spacetime manifol
M can be decomposed into a product of a spatial surface and )
time, M = ¥ x R. On such a manifold, Chern-Simons theory _ L
is a theory of the ground states of a topologically-ordeysd s 5= 2m /dt tr (A0Y) (29)
tem onX. There are no excited states in Chern-Simons theory o
because the Hamiltonian vanishes. This is seen most simplyhereQ(r,t) = [7" d¢ (w(r1, ¢,t) —w(r2, ¢,t)). Therefore,
in ay = 0 gauge, where the momentum canonically conjugatd? is canonically conjugate td. By a gauge transformation,
t0 a; is — 2= az, and the momentum canonically conjugate toWe can always rotaté and SO that they are along th
as is £ a; so that dlre_ct|0n in su(2), i.e.\ = /\37_” ,_Q = Q37°. Since it is

am defined through the exponential in (28); takes values in
k [0,27]. Therefore, its canonical conjugats;, is quantized
H=_tr (a200a1 — a10paz) — L =0 (26)  to be an integer. From the definition afin (28), we see that
A3 = A3+ 2k. However, by a gauge transformation given by a
Note that this is a special feature of an action with a Chernrotation around thé-axis, we can transforth — —\. Hence,
Simons term alone. If the action had both a Chern-Simonghe independent allowed valuesotre0, 1, ..., k.

(r,¢,t) and\(t) take values in the Lie algebra su(2)

andw(r, ¢, t) is a single-valued function @f. The functionsv

and) are the dynamical variables of Chern-Simons theory on

the annulus. Substituting (28) into the Chern-Simons actio
e see that it now takes the form:
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On the two-punctured sphere, if one puncture is of type One extra transformation in the mapping class group, com-
the other puncture must be of type(If the topological charge  pared to the braid group, iS2a rotation of a puncture/particle
at one puncture is measured along a loop around the puncturelative to the rest of the system (a Dehn twist). If we coesid
—e.g. by a Wilson loop, see subsection I1.C — then the loopparticles with a finite extent, rather than point partickbgn
can be deformed so that it goes around the other puncture, bute must consider the possibility of such rotations. For in-
in the opposite direction. Therefore, the two puncturegsec stance, if the particles are small dipoles, then we can septe
sarily have conjugate topological charges.) For SUW2},a,  their world lines as ribbons. A Dehn twist then correspoids t
so both punctures have the same topological charge. Thera-twist of the ribbon. Thickening a world line into a ribbon is
fore, the restriction to only: + 1 different possible allowed called aframing. A given world line has multiple choices of
boundary conditions for the two-punctured sphere implies framing, corresponding to how many times the ribbon twists.
that there aré: + 1 different quasiparticle types in SU@) A framing is actually essential in Chern-Simons theory be-
Chern-Simons theory. As we will describe in later subseccause flux is attached to charge through the constraint (22)
tions, these allowed quasiparticle types can be identifigld w or (27). By putting the flux and charge at opposite edges of

thej =0, %, ceey g representations of the SUXac-Moody

algebra.

2. TQFTs and Quasiparticle Properties

the ribbon, which is a short-distance regularization oftttes
ory, we can associate a well-defined phase to a particle tra-
jectory. Otherwise, we wouldn’t know how many times the
charge went around the flux.

Any transformation acting on a single particle can only re-
sult in a phase; the corresponding phase is called the twist
parametel©,. Often, one write), = e« whereh,

We will continue with our analysis of Chern-Simons theory is called thespin of the particle> (One must, however,
in sections 111.C and IIl.D. Here, we will make some more be careful to distinguish this from the actual spin of the
general observations abut TQFTs and the topological propparticle, which determines its transformation propertias

erties of quasiparticles. We turn to thepunctured sphere,
Y =S\PUP,U...UP,,i.e. the spher&? with the points
Py, P, ... P, deleted, which is equivalent to — 1 quasipar-
ticles in the plane (the!" puncture becomes the pointat).
This will allow us to study the topological properties of gisa
particle excitations purely from ground state properti&s.

der the three-dimensional rotation group and must be half-
integral.) Howeverh, is well-defined even if the system is
not rotationally-invariant, so it is usually called ttapolog-
ical spin of the particle. For Abelian anyons, it is just the
statistics parameteff,= 2xih,.

The ground state properties on arbitrary surfaces, inctudi

see how braiding emerges in this approach, it is useful tahe n-punctured sphere and the torus, can be built up from
note that diffeomorphisms should have a unitary representanore primitive vector spaces in the following way. An ar-
tion on the ground state Hilbert space (i.e. they should combitrary closed surface can be divided into a collectior8of
mute with the Hamiltonian). Diffeomorphisms which can be punctured spheres which are glued together at their bound-
smoothly deformed to the identity should have a trivial ac-aries. This is called a ‘pants decomposition’ because of the
tion on the Hilbert space of the theory since there are no lotopological equivalence of & punctured sphere to a pair of
cal degrees of freedom. However, ‘large’ diffeomorphismspants. Therefore, thg-punctured sphere plays a fundamen-

could have a non-trivial unitary representation on the ty"eo

Hilbert space. If we take the quotient of the diffeomorphismspace is denoted

tal role in the description of a topological phase. lIts Hitbe
5, if a, b, andc are the particle types at

group by the set of diffeomorphisms which can be smoothliythe three punctures. If theandb punctures are fused, a two-

deformed to the identity, then we obtain th@pping class
group. On then-punctured sphere, the braid groBp_; is a
subgroup of the mapping class grotipherefore, if we study

punctured sphere will result. From the above analysis Steha
one-dimensional vector space if both punctures have tgpolo
ical chargec and a zero-dimensional vector space otherwise.

Chern-Simons theory on thepunctured sphere as we did for The dimension of the Hilbert space of tBgunctured sphere
the 2-punctured sphere above, and determine how the mays given by the fusion multiplicityVs, = dim (V%) which ap-
ping class group acts, we can learn all of the desired informapears in the fusion rulej, x ¢, = > NS ¢.. The Hilbert

tion about quasiparticle braiding. We do this by two diffare
methods in subsections I1l.C and IlI.D.

4 The mapping class group is non-trivial solely as a resulieftunctures. In
particular, any diffeomorphism which moves one or more efgtnctures
around other punctures cannot be deformed to the identiyyersely, if
two diffeomorphisms move the same punctures along trajestavhich
can be deformed into each other, then the diffeomorphisemagelves can
also be deformed into each other. These classes of diffqahisons corre-
spond to the braid group which is, in fact, a normal subgrdtipce take
the quotient of the mapping class group by the Dehn twists f1 of the
punctures — all except the point at infinity — we would be leftwthe braid
groupB,—1.

space on a surface obtained by gluing togetheunctured
spheres is obtained by tensoring together ithe and sum-

5 If ais its own anti-particle, so that twes can fuse td, thenR$® = +O7%,
where the minus sign is acquired for some particle typeghich are not
quite their own antiparticles but only up to some transfdramawhich
squares to-1. This is analogous to the fact that the fundamental repre-
sentation of SU(2) is not real but is pseudoreal. Consetyenspind /2
particles,, and antiparticley*t can form a singletzp“w“, but two spin-

1/2 particles can as welk), ¢, i(oy)*”, whereo, is the antisymmet-
ric Pauli matrix. When some quantities are computed, aradattor of
(ioy)? = —1 results. Thist sign is called the Froebenius-Schur indica-
tor. (See, for instance, Bantay, 1997.)
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ming over the particle types at the punctures where gluing octemperatures, one must also consider transitions to excite

curs. Forinstance, the Hilbert space on4kgunctured sphere
is given by the directsui5; ; = @,V V5 the Hilbert space
on the torus id/7» = ®,V,2 V4. (If one of the particle types

is the vacuum, then the corresponding puncture can simp

be removed; th&-punctured sphere is then actually only

states, but the contributions of these will bee=2/". Fur-

thermore if we were to add a time dependent (source) term to
the action, these properties will remain preserved so leng a
Ithe frequency of this term remains small compared with the

gap.

punctured. Gluing two of them together end to end gives a Aside from then-punctured spheres, the torus is the most
torus. This is one way of seeing that the degeneracy on thimportant manifold for considering topological phases.- Al

torus is the number of particle types.)
The Hilbert space of the-punctured sphere with topolog-

though not directly relevant to experiments, the torus iy ve
important for numerical simulations since periodic bounyda

ical chargen at each puncture can be constructed by sewingonditions are often the simplest choice. As noted aboee, th

together a chain afn — 2) 3-punctured spheres. The resulting
Hilbert space isV,! , = @, Vb Vfgl oo Vapn_s+ Asimple
graphical notation for a set of basis states of this Hilbeaice
is given by &fusion chain (similar to the fusion tree discussed

in appendix A):

a a
bn74 bn73 a

The first two as on the far left fuse td;. The nexta
fuses withb; to give b,. The nexta fuses withb, to give
b3, and so on.
space correspond to the different possible allowgsd The
dimension of this Hilbert space &% N2 = No

aby aby _3
(N (Na)fj ... (Na)y,_,- On the right-hand-side of this
equation, we have suggested that the fusion multiplidigy
can be viewed as a matri¥V, ); associated with quasiparticle
speciesa. Let us denote the largest eigenvalue of the ma
trix N, by d,. Then the Hilbert space af/ quasiparticles of
type a has dimension- d2 =2 for large M. For this reason,
d, is called thequantum dimension of ana quasiparticle. It
is the asymptotic degeneracy per particle of a collectioa of
quasiparticle. For Abelian particled, = 1 since the multi-
particle Hilbert space is one-dimensional (for fixed péetic
positions). Non-Abelian particles havk > 1. Note that

ground state degeneracy on the torus is equal to the number
of quasiparticle species. Suppose one can numericallg solv
Hamiltonian on the torus. If it has a gap between its ground
state(s) and the lowest energy excited states, then itsxgrou
state degeneracy is an important topological property ef th
state — namely the number of of quasiparticle species. A sim-
ple physical understanding of this degeneracy can be atain
in the following way. Suppose that we have a system of elec-
trons in a topological phase. If we consider the system on the
torus, then the electrons must have periodic boundary con-
ditions around either generator of the torus (i.e. around ei
ther handle), but the quasiparticles need not. In the Abelia

The different basis vectors in this Hilbertr = 1/m fractional quantum Hall state, for instance, it is pos-

sible for a quasiparticle to pick up a phasé™/™ in going
around the meridian of the torus, whetrean take any of the
valuesn =0, 1,..., m—1; electrons would still have periodic
boundary conditions since they are made upnofuasiparti-
cles. Indeed, alin of these possibilities occur, so the ground
state ism-fold degenerate.

"~ Let us make this a little more precise. We introduce oper-
ators77 and T, which create a quasiparticle-quasihole pair,
take the quasiparticle around the meridian or longitude, re
spectively, of the torus and annihilate them again. Then
andT; must satisfy:

Ty T, T, = 2T (30)

d, is not, in general, an integer, which is symptomatic of thepecause7;'7, amounts to a contractible quasiparticle-

non-locality of the Hilbert space: it isot the tensor product

of d,-dimensional Hilbert spaces associated locally with each

particle.

This non-locality is responsible for the stability of thie-d
generate ground state Hilbert space. Not only the YangsMill
term, but all possible gauge-invariant terms which we cah ad
to the action (24) are irrelevant. This means that adding auc
term to the action might split the ¢/ ~2-dimensional space
of degenerate states in a finite-size system, but the gplitti
must vanish as the system size and the particle separations

quasihole loop, as doeB, 'T,; by alternating these pro-
esses, we cause these loops to be linked. The quasiparticle
trajectories in spacetime (which can be visualized as &-+thic
ened torus) are equivalentto a simple link between twoesrcl
(the Hopf link): the first quasiparticle-quasihole pair idlpd

apart along the meridiaff(); but before they can be brought
back together:(’l‘l), the second pair is pulled apart along the
longitude (3,). After the first pair is brought back together
and annihilated®; '), the second one is, to@{ '). In other
Words, the phase on the right-hand-side of Eq. 30 is sim@ly th

to infinity. In fact, we can make an even stronger statemengnase obtained when one quasiparticle winds around another

than that. All ground state matrix elements of gauge-irargri
local operators such as the field strength squakgdf++2,
vanish identically because of the Chern-Simons constrain
Therefore, the degeneracy is not lifted at all in pertudati
theory. It can only be lifted by non-perturbative effectg(e
instantons/quantum tunneling), which could cause a spjitt
~ e~ 9L whereg is inversely proportional to the coefficient
of the Yang-Mills term. Therefore, the multi-quasipamticl
states are degenerate to within exponential accuracy. itgfin

This algebra can be represented on a vector space of minimum
dimensionm. Let us call the states in this vector spaeg,
bh=0,1,...,m — 1. Then

T1|n> _ 627rin/m|n
Tr|n) = |(n+ 1) modm) (31)
Thesem states correspond to = 0,1, ..., m — 1 quanta of

flux threaded through the torus. If we were to cut along a
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meridian and open the torus into an annulus, then theses state is:
would have fluxn threaded through the hole in the annulus S1a
and charge:/m at the inner boundary of the annulus (and a do = 5 (34)
compensating charge at the outer boundary). We can instead . 1 ) o
switch to a basis in whicff is diagonal by a discrete Fourier -l(;hfe r_nathelmat_lcal sérulctutre encapt)sulatlrgg tl?else br%'d'”g
italm) — 1 N~m—1 2xindi/m and fusion rules is anodular tensor category (Bakalov an
tran.sform.- If we write|) T Vm 2n=o W/ ), thgn Kirillov, 2001; Kassel, 1995; Kitaev, egoo)és; Turaev, 1994:
|71) is an eigenstgate df; with eigenvalue=>"/". In this  \walker, 1991). A category is composed of objects and mor-
basis,I', is an off-diagonal operator which changes the boundphisms, which are maps between the objects which preserve
ary conditions of quasiparticles around the longitude & th thejr defining structure. The idea is that one can learn more
torus. In non-Abelian states, a more complicated version Ohpoyt the objects by understanding the morphisms between
the same thing occurs, as we discuss for the case of ISingiem. In our case, the objects are particles with labelsaiwhi
anyons at the end of section l11.B. The differentboundary-co  gpecify their species) as well as fixed configurations of sev-
ditions around the meridian correspond to the differenspos g4 particles. The morphisms are particle trajectorigsciv
ble quasiparticle types which could thread the torus (aed  map a set of labeled partices at some initial time to a set of
alently, could be present at the inner boundary of the asnulujapeled particles at some final time. ténsor category has
if the torus were cut open along a meridian). One can SwitChy tensor product structure for multiplying objects; hekés t
to a basis in which the boundary conditions around the longits simply the fact that one can take two well-separated (and
tude are fixed. The desired basis change is analogous 10 thgstorically well-separated) collections of particlesiazon-
discrete Fourier transform given above and is given by $he *  sjger their union to be a new ‘tensor-product’ collectiomc®
matrix’ or ‘modular.5-matrix’ of the theory. Switching the e consider particles in two dimensions, the trajectories a
longitude and meridian is one of the generators of the mapassentially the elements of the braid group, but they irelud
ping class group of the torus; tifematrix expresses how it he additional possibility of twisting. (Allowing twistsiithe
acts on the ground state Hilbert space. The elements of thgrands of a braid yields laraided ribbon category.) We will
S-matrix are closely related to quasiparticle braiding. By f - fyrther allow the trajectories to include the fusion of tvar{p-
lowing a similar construction to the one wiffi, T above,  cjes (so that we now havefasion category). Morphisms can,
one can see thal,; is equal to the amplitude for creating  therefore, be defined by specifyiy,, < R,andF.
andbb pairs, braiding: andb, and annihilating again in pairs.  \why is it necessary to invoke category theory simply to
This is why, in an Abelian state, the elements of henatrix  specify the topological properties of non-Abelian anyons?
are all phases (up to an overall normalization which ensuregid the braid group not be the highest level of abstraction
unitarity), €.9. Sun = =e>™"" /™ in the example above. that we need? The answer is that for a fixed number of par-
In a non-Abelian state, the different entries in the mater c ticlesn, the braid groug3,, completely specifies their topo-
have different magnitudes, so the basis change is a littlemo logical properties (perhaps with the addition of twigts to
complicated than a Fourier transform. Entries can everstiani account for the finite size of the particles). However, wednee
in the non-Abelian case since, afteandb have been braided, representations d#,, for all values ofn which are compatible
a anda may no longer fuse ta. with each other and with fusion (of which pair creation and an
In the case of Ising anyons on the torus (SUY)J2there nihilation is simply the special case of fusion to the vacjium
are three ground states. One basidls,), |om), |¥m),  So we really need a more complex —and much more tightly
corresponding to the different allowed topological charge constrained — structure. This is provided by the concept of a
which would be measured at the inner boundary of the remodular tensor category. THéand R matrices play particu-
sulting annulus if the torus were cut open along its meridianlarly important roles. Thé' matrix can essentially be viewed
An equally good basis is given by eigenstates of topologicaén associativity relation for fusion: we could first fuseith
charge around the longitudgL;), |o;), |¢;). Aswe willseein  j, and then fuse the result withy or we could fusei with
at the end of the next section, the basis change between theime result of fusing with k. The consistency of this property
is given by leads to a constraint on thE-matrices called the pentagon
equation. (An explicit example of the pentagon equation is

3 % 3 worked out in Section IV.B.) Consistency betweErand R
s—| X o -—L (32) !eads toa c_o_nstraint called the hexa_gon e_quation. Modwylari

V2 1 V2 is the condition that theS-matrix be invertible. These self-

2 V22 consistency conditions are sufficiently strong that a smiut

h . | ins inf . bout braidi to them completely defines a topological phése.
The S-matrix not only contains information about braiding, A equivalent aiternative to studying punctured surfases i

k_)Ut also about fusion, according to Verlinc_ie’s formula €Ver ¢, 54 non-dynamical charges which are coupled to the Chern-
linde, 1988) (for a proof, see Moore and Seiberg, 1988, 198945 gauge field. Then the right-hand-side of the comstrai

c Saw Sbw Séw
o= Zish (33)

xr
. . . ~ 5 Modulo details regarding the central chargat the edgee?™i°/8 can be
Consequently, the quantum dimension of a particle of sgecie obtained from the topological spins, but ndtself.
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(27) is modified and a non-trivial gauge field configurationvery different in the weak-coupling limit. However, fermig

is again obtained which is essentially equivalent to that obquasiparticles and vortices are really just different s/pé
tained around a puncture. In the following subsections, wejuasiparticle excitations in a superconductor — i.e. hffie

will discuss the Hilbert spaces of SU{2Chern-Simons the- types of localized disturbances above the ground stateeThe
ory, either on then-punctured sphere or in the presence offore, we will often refer to them both as simply quasipaetsl
non-dynamical sources. These discussions will enable us tand use the terms Bogoliubov-de Gennes or fermionic when
compute the braiding and fusion matrices. The non-trivialeferring to the former. In @ + ip superconductor, the quasi-
quasiparticle of SU(3)is actually Abelian so we do not dis- particles which exhibit non-Abelian statistics are flux/2e
cuss this ‘trivial’ case. The next case, SU{d$ non-Abelian  vortices.

and may be relevant to the= 5/2 fractional quantum Hall

state. It can be understood in several different equivalent

ways, which express its underlying free Majorana fermionl. Vortices and Fermion Zero Modes

structure. Quantum computation with Majorana fermions is

described in Section IV.A. In the next section, we explainth ~ Letus suppose that we have a system of fully spin-polarized
structure from the perspective of a superconductor withip ~ €lectrons in a superconducting statepgt+ ip, pairing sym-
pairing symmetry. Although this description is very elegan metry. The mean field Hamiltonian for such a superconductor
it cannot be generalized to highgr Therefore, in the two IS,

sections after that, we describe two different approacbes t

solving SU(2), Chern-Simons theory for general We reca- H = [dryT(r)hot(r) (35)
pitulate the case of SU(2)n these other languages and also

_describe the case of SUQ)The I_atter has quasi_particles in 4 1 drdr’ {D*(r,r’)d)(r’)w(r) 4 D(r,r’)wT(r)w"(r’)}

its spectrum which are Fibonacci anyons, a particularlybea 2

tiful non-Abelian anyonic structure which allows for unive
sal topological quantum computation. It may also undeliée t
observed = 12/5 fractonal quantum Hall state. More details
of the Fibonacci theory are given in Sections IV.B.

with single-particle termhy = —ﬁVQ — v and complex-
wave pairing function

r+r

D(r,v') = A( ) (i0y — Oy )d(r — 1'). (36)
B. Superconductors with  p + ip pairing symmetry The dynamics ofA is governed by a Landau-Ginzburg-type
Hamiltonian and will be briefly discussed later. The quadrat

In this section, we will discuss the topological propertiesramiltonian (36) may be diagonalized by solving the corre-
of a superconductor with + ip pairing symmetry following sponding Bogoliubov-de Gennes equations (BdG) equations,

the method introduced by Read and Green (Read and Green, u(r)

2000). This is the most elementary way in which a non- E ( v ) =

Abelian topological state can emerge as the ground state of _

a many-body system. This non-Abelian topological state has [ —pu(r) s 1A(r), 0, +10,} u(r)
several possible realizations in various two dimensiogs! s 5 {A*(r), 0, — 0y} u(r) v(r) )’
tems: p + ip superconductors, such as;RuO, (although o _

the non-Abelian quasiparticles are half-quantum vortices "€ Hamiltonian then takes the form:
this case (Das Sarmet al., 2006b));p + ip superfluids of _ T

cold atoms in optical traps (Guramal., 2005; Tewaretal., H=2Eo+ ; ETpls (38)
2007b), and the A-phase (especially the phase(Leggett,

1975; Volovik, 1994)) ofHe films; and the Moore-Read Pfaf- \here FjrE = [dr [up(r)y(r) +vg(r)yi(r)] is the cre-

fian quantum Hall state (Moore and Read, 1991). The last oftion operator formed by the positive energy solutions ef th

these is a quantum Hall incarnation of this state: electatns Bogoliubov-de Gennes equations afgl is the ground state

filling fraction » = 1/2 are equivalent to fermions in zero energy. For the ground state of the Hamiltonian (36) to be

field interacting with an Abelian Chern-Simons gauge field.degenerate in the presence of several vortices (which are th

When the fermions pair and condense ip & ip supercon-  most interesting quasiparticles in this theory) it is etisén

ducting state, the Pfaffian quantum Hall state forms (Greitethat the BdG equations have solutions with eigenvalue zero i

etal., 1992). Such a state can occugat 2+ 1 if the lowest  thjs sjtuation.

Landau level (Of both Spins) is filled and inert, and the first Before Searching for zero eigenva|ues of (38) in the pres-

excited Landau level is half-filled. ence of vortices, however, we focus on a uniform supercon-
Ordinarily, one makes a distinction between the fermionicductor, whereA is a constant. Read and Green (Read and

quasiparticles (or Bogoliubov-De Gennes quasipartiotds) Green, 2000) retain only the potential part/gf which for a

a superconductor and vortices in a superconductor. This igniform superconductor is a constang. With this simplifi-

because, in terms of electron variables, the former are relaation, a BdG eigenstate with momentiérhas energy

tively simple while the latter are rather complicated. Rert

more, the energy and length scales associated with the &vo ar E, = /1?2 + A2|k|? (39)

(37)
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The ground state of (36) is the celebrated BCS wave functiony = v* therefore has energy zero. We will soon be consid-

written here in an un-normalized form,

lg.s.) = H

k

|ue|®
|vie|*

Ui i o
(1 + v—kchTk) [vac) = 2k e %k ~Xk|vac)
uk
(40)
where

L P
> ~2 (” N |Ak|2> @D

ering situations in which there are multiple zero energysol
tions (u;, uf), i = 1,2,.... If we denote the corresponding
operators byy; (see eq. 47 below), then they satisfy:
W= (44)
Eq. (44) is the definition of a Majorana fermion operator.
Let us now consider the BdG equations in the presence of

vortices when the bulk of the superconductor is in ghe 0
phase. As usual, a vortex is characterized by a point of van-

are the BCS coherence factors. The wave function (40) dgshing A, and a2r-winding of the phase of around that
scribes a coherent state of an undetermined number of Coope@int. In principle we should, then, solve the BdG equations

pairs, each in an internal state of angular momentum—1.
Its projection onto a fixed even number of particléss car-
ried out by expanding the exponent in (40) to tt&/2)™" or-

in the presence of such a non-unifodn However, we can,
instead, solve them in the presence of a non-unifermhich
is much simpler. All that we really need is to make the core of

der. When written in first quantized language, this wave functhe superconductor topologically distinct from the bulke: i
tion describes a properly anti-symmetrized wave functibn oa puncture in the superconductivity. Makipg< 0 in the core

N/2 Cooper-pairs, each in an internal state

Vk
§ _ezkr
Uk

k

(42)

g(r)

is just as good as takingy to zero, as far as topological prop-
erties are concerned. Therefore, we associate the core of th
vortex with a region ofx < 0, whereas the bulk is at > 0.
Thus, there is &« = 0 line encircling the vortex core. This
line is an internal edge of the system. We will consider the

In first quantized form the multiparticle BCS wavefunction gynamics of edge excitations in more detail in section |II.E

whosei — j elementigy(r; —r;), an antisymmetrized product
of pair wavefunctions

Pflg(r; — ;)] (43)
Alg(r1 —r2)g(rs —r4)...g(rny—1 —1N)]

Ypos =

with A being an antisymmetrization operator.

The functiong(r) depends crucially on the sign pof since
the smallk behavior ofvy /ux depends on that sign. When
pu > 0, we havey(r) = 1/(x + iy) in the long distance limit

is among them.

The simplest situation to consider is that of azymuthal sym-
metry, with the polar coordinates denotedsbgndd. Imag-
ine the vortex core to be at the origin, so thatr,0) =
|A(r)]e??*T%2. Here( is the phase of the order parameter
along thed = 0 line, a phase which will play an important
role later in our discussion. Assume that ihe- 0 line is the
circler = rq, and write

p(r) = Ah(r), (45)

(Read and Green, 2000). If we assume this form holds for all
distances, the Pfaffian wave function obtained is identiwal \ith 7(r) large and positive for large r, anid(r) < 0 for
the Moore-Read form discussed below in connection with the. - therefore, the electron density will vanish for 7.

Ising model and thee = 5/2 quantum Hall state in section
[11.D (see Egs.??). The slow decay ofj(r) implies a weak
Cooper pairing. (But it does not imply that the state is geple

Such a potential defines an edgerat ry. There are low-
energy eigenstates of the BdG Hamiltonian which are spa-
tially localized nearr 0 and are exponentially decaying

One can verify that electron Green functions all decay expofgr » — oo:

nentially for any non-zerg.) Wheny < 0 the functiong(r)
decays much more rapidly with generically in an exponen-

tial way, such that the Cooper pairs are strongly bound. Fur- E

thermore, there is a topological distinction betweenithe 0

edge 0 ,— [T h(r)dr’ e 2
P(r,0) =e"e " Jo oi0)2

), (46)

andp < 0 phases. The distinction, which is discussed in de-The spinor on the right-hand-side points in a direction ieLps
tail in (Read and Green, 2000), implies that, despite the facdospin space which is tangent to the= r, circle atf. This

that both states are superconducting, the- 0 andp < 0

wavefunction describes a chiral wave propagating arouad th

states must be separated by a phase transition. (In the-anakxdge, with angular momentuthand energyE = Al/rg.
gous quantum Hall state, both states are characterizedeby tigince the flux is an odd multiple dfc/2e, the Bogoliubov
same Hall conductivity but are separated by a phase transituasiparticle (46) must be anti-periodic as it goes arohed t

tion, and are distinguished by their thermal Hall conduetiv

vortex. However, the spinor on the right-hand-side of (46) i

ties(Read and Green, 2000)) Indeed, from (39) we see that tredso anti-periodic. Therefore, the angular momentumust

gap vanishes for a uniforp- ip superconductor witp, = 0.

be an integer{ € Z. Consequently, a flukc/2e vortex has

The low-energy BdG eigenstates at this second-order phasa/¢ = 0 solution, with energyy = 0. (Conversely, if the flux

transition point form a Dirac cone.
For every solutior{u, v) of the BdG equations with energy
E, there is a solutioifv™, u*) of energy—E. A solution with

through the vortex were an even multiplelaf/ 2¢, £ would be
a half-integerf € Z + % and there would be no zero-mode.)
The operator corresponding to this zero mode, which we will
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call v, can be written in the form: refer to the state for whichyTyy = 1 as a “filled fermion”,
and to theyfy = 0 state as an empty fermion. Note however
v = 1L /dr [F(r) e—%ﬂw(r) + F*(r) e%QwT(r) (47)  that the eigenvalue ab+ has no bearing on the occupation
V2 of single-particle states.)
N ] . Of course, the pairing of vortices to form Dirac fermions is
Here,F(r) = e~ Jo hGDdr’g=i0/2, Since eachy is an equal  grpjtrary. A given pairing defines a basis, but one can trans-
superposition of electron and hole, it is overall a charggle orm to a basis associated with another pairing. Consider fo
neutral fermion operator _ vortices with corresponding zero modes 2, vs, v4. The
. When there are se\_/eral well separated vortices at posir.-matrix transforms states from the basis in whighy, and
tionsR;, the gap fupctlon near thé‘ vortex takes the form i34 are diagonal to the basis in which, v, andivey; are
A(r) = |A(r)|exp (i0; +1€2;), with 0; = arg (r —R;) and  giagonal. Sinceéy;v, acts asr, on aniv;y» eigenstate, the

Qi =32, arg((R; — Ry)). There is then one zero energy r_matrix is just the basis change from the basis to ther,
solution per vortex. Each zero energy solutigns localized  pgijs:

near the core of its vortex &;, but the phasg; that replaces
Q in (47) depends on the position of all vortices. Moreover, [Foo0] = 1 ( 11 ) (50)
the dependence of the Majorana operatgran the positions 7 V21 -1
R; is not single valued. ) . .
While for anyE + 0 the operatorﬁfg, I',; are conventional We will refer to this type of non-Abelian anyons by the name

fermionic creation and annihilation operators, th's are not. Ising anyons’; they are the mod_el mtroduged n Sect!on
. the 2 [ILA.1. The reason for the name will be explained in Section
In particular, forE # 0 we have(I'y)* = I';, = 0, but

. . .E.
the zero er_1ergy20perators follow (with a convenient choice o In a compact geometry, there must be an even number of
normalization)y; = 1. The two types of fermion operator

share the property of mutual anti-commutation, .., 4t vortices (since a vortex carrie; half a flux quantum, and the

satisfy {71, 7:} = 261, T _number of flux quanta penetrating a compact surface must be
i R integer). In a non-compact geometry, if the number of vesic

is odd, the edge has a zero energy state of its own, as we show

in Section III.E.

Now, let us examine what happens to the Majorana opera-
tors and to the ground states as vortices move. The positions
f the vortices are parameters in the Hamiltonian (36). When

they vary adiabatically in time, the operatatsvary adiabati-

ally in time. In principle, there are two sources for thisiva
tion - the explicit dependence of on the positions and the
erry phase associated with the motion. The choice of phases
taken at (47) is such that the Berry phase vanishes, and the
entire time dependence is explicit. The non-single-vahesd

of the phases in (47) implies then that a changemin €,
which takes place when one vortex encircles another, daes no

2. Topological Properties of p + ip Superconductors

The existence of theg;’s implies a degeneracy of the ground
state. The counting of the number of degenerate groundstat
should be done with care. A pair of conventional fermionic
creation and annihilation operators span a two dimensiond
Hilbert space, since their square vanishes. This is not tru
for a Majorana operator. Thus, to count the degeneracy
the ground state whe2\V, vortices are present, we construct
“conventional” complex (Dirac) fermionic creation and ann
hilation operators,

Vi = (7 + iYNg1i)/2 (48) leave the state unchanged.
i , 49 As vortices adiabatically traverse trajectories thattstad
i = (% = 1YNo+) /2 (49)  end in the same set of positions (lvanov, 2001; Stdral.,

2 2004), there is a unitary transformatibhwithin the subspace
These operators satisty; = (1/)3) = 0 and thus span a of ground states that takes the initial statét = 0)) to the
two-dimensional subspace of degenerate ground states asé®al one|y(t = T)),
ciated with these operators. Over all, then, the system has
2No degenerate ground states. If the fermion number is fixed [t =T)) =Uly(t = 0)). (51)
to be even or odd, then the degeneracgis—'. Therefore,
the quantum dimension of a vortexds,.: = /2 or, in the
notation introduced in Sec. I!.A.l for Ising anyouds, = V2. vi(t =T) = Uri(t = 0)UT. (52)

For any two vortices andj, we can associate a two state
system. If we work in the basis &f;v; eigenstates, ther;; By reading the time evolution of; from their explicit form
acts asr, with eigenvaluest1, whiley; andv; actass, and  (47) we can determin& up to a phase. Indeed, one expects
oy. (However, it is important to keep in mind that Majorana this Abelian phase to depend not only on the topology of the
fermions~yy, v anti-commute withy;, ~;, unlike operators  trajectory but also on its geometry, especially in the agais
associated with different spins, which commute.) The twoquantum Hall case, where there is an Aharonov-Bohm phase
eigenvaluesy;y; = F1 are the two fusion channels of two accumulated as a result of the charge carried by the quasipar
fermions. If we form the Dirac fermiost = (y;+iv;)/2,then ticle.
the twoiv;; eigenstates hawg’y = 0, 1. Therefore, we will When vortexi encircles vortex + 1, the unitary transfor-
call these fusion channelsandi. (One is then tempted to mation is simple: both; andv;,1 are multiplied by—1, with

Correspondingly, the time evolution of the operatgrss
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all other operators unchanged. This is a consequence of ttehange that probability. Rather, they affect phases inthe s
fact that when the order parameter changes by a phase fagerpositions. Using this point of view it is then possible to
tor 27, fermionic operators change by a phaseExchange show that two ingredients are essential for the non-Abelian
trajectories, in which some of the vortices trade places, arstatistics of the vortices. The first is tlggantum entangle-
more complicated, since the phase changeg;0fssociated ment of the occupation of states near the cores of distant vor-
with a particular trajectory do not only depend on the wigdin tices. The second ingredient is familiar from (Abelian)cfra
numbers, but also on the details of the trajectory and on th&onal statistics: thgeometric phase accumulated by a vortex
precise definition of the cut of the functieing(r) where its  traversing a closed loop.

value jumps byr. ) _ _ Therefore, we conclude that, fpr-wave superconductors,
The simplest example is the interchange of two vorticesihe existence of zero-energy intra-vortex modes leads, tfirs
Inevitably, one of the vortices crosses the branch cut ling; multitude of ground states, and, second, to a particle-hol
of the other vortex. We can place the branch cuts so thalymmetric occupation of the vortex cores in all ground state
a counterclockwise exchange of vorticeand2 transforms  \when represented in occupation-number basis, a groured stat
¢1 — ¢z andc; — —c; while a clockwise exchange trans- s 5 superposition which has equal probability for the vorte

formse; — —cy ande; — ¢ (Ivanov, 2001). _ core being empty or occupied by one fermion. When a vortex
This may be summarized by writing the representation mayayerses a trajectory that encircles another vortex, Hase

trices for the braid group generators (lvanov, 2001; Nayak a it accumulates depends again on the number of fluid particles
Wilczek, 1996): it encircles. Since a fluid particle is, in this case, a Cooper
ploy) = e e~ 371t (53)  pair, the occupation of a vortex core by a fermion, half a,pair
) ) ) leads to an accumulation of a phaserofelative to the case
wheref is the Abelian part of the transformation. The two \\hen the core is empty. And since the ground state is a su-
eigenvaluesy, ;1 = F1 are the two fusion channelsand o rposition with equal weights for the two possibilitiese t
¢ of a pair of vortices. From (53), we see that fienatrices  g|ative phase of introduced by the encircling might in this

satisfy R” = i R{” (i.e., the phase of taking twe particles e transform the system from one ground state to another.
around each other differ bydepending on whether they fuse _ _
Now consider the ground state degeneracy pf-aip su-

toy or 1). Itis difficult to obtain the Abelian part of the phase perconductor on the torus. Let us define, following Oshikawa
ing th thods of thi tion, but ill derive it byesth ' '
using the methods ofthis section, but we witl derive it byet fet al., 2007 (see also Chung and Stone, 2007), the opera-

methods in Sections 111.C and I1I.D. The non-Abelian part o . . i
(53), i.e. the second factor on the right-hand-side, is #mees tors A, Ap which create a pair of Bogoliubov-de Gennes
as arr/2 rotation in the spinor representation of SO(2n) (Seequasmartlcles, tak_e one around_th_e meridian or _Iong|tu‘de 0
Nayak and Wilczek, 1996 for details). The fact that braiding!€ torus. respectively, and annihilate them again. We then
only enactsr /2 rotations is the reason why this type of non- define By, By as operators which create a vortex-antivortex

Abelian anyon does not enable universal topological quantu pair, take the vortex around_ t_he meridia_n or longitude of the
computation, as we discuss further in section IV. torus, respectively, and annihilate themy. increases the flux

According to (53), if a system starts in a ground state) through the hole encircled by .the longitude of the torus by
and vortex;j winds around vortex + 1, the system’s final one half of a flux quantum Wh".‘B? does the same for th?
state isy;7;11 |gs,,). Writing this out in terms of the original other hole. These operators satisfy the commutation oelsti
electron operators, we have [A1,42] = 0and A, By = —ByAy, A2 By = —Bi1 4. We

can construct a multiplet of ground states as follows. Since
(cjeé‘ﬂj n c}je—%ﬂj) (cjﬂeéﬂm n c}He‘%QHl) lgs,), A1 andA; commute and square to we can label states by
(54) the|rA_1 and A, elgenvalue_stl. Let|1,1) be the state with
wherec both eigenvalues equal 1gi.e. A;|1,1) = A5|1,1) = |1,1).
J ThenB|1,1) = |1,-1) andB3|1,1) = | — 1,1). Suppose
0521 creates a particle in the stat€'(¢ — R;41)) localized  we now try to applyB; to By|1,1) = |1, —1). This will cre-
very close to the cores of thigh and(j + 1)th vortex, respec- ate a vortex-antivortex pair; the Majorana zero modes;y,
tively. Eq. (54) seemingly implies that the motion of tfth ~ associated with the vortex and anti-vortex will be in theesta
vortex around thé;j + 1)th vortex affects the occupations of |0) defined by(v, + iv,) |0) = 0. When the vortex is taken
states very close to the cores of the two vortices. This is iraround the longitude of the torus, its Majorana mode will be
contrast, however, to the derivation leading to Eq. (54)ctvh  multiplied by—1: v, — —~,. Now, the vortex-antivortex pair
explicitly assumes that vortices are kept far enough from onwill no longer be in the stat@), but will instead be in the state
another so that tunneling between vortex cores may be disrét) defined by(v, — iy5) |1) = 0. Consequently, the vortex-
garded. antivortex pair can no longer annihilate to the vacuum. When

This seeming contradiction is analyzed in detail in Sternthey fuse, a fermion is left over. Therefo®; B;|1, 1) does
etal., 2004, where it is shown that the unitary transformatiomot give a new ground state (and, by a similar argument, nei-
(54) does not affect the occupation of the core states of thther doesB; B»|1, 1)). Consequently, a+ ip superconductor
j,j + 1 vortices, because all ground states are composed dfas ‘only’ three ground states on the torus. A basis in which
superpositions in which the core states have a probability 0B, is diagonal is given by¢|1,1) + |1, —1))/+/2, with eigen-
one-half to be occupied and one-half to be empty. The univalue+1, and| — 1, 1), with eigenvalud) (since there is zero
tary transformation within the ground state subspace does namplitude forB,| — 1, 1) to be in the ground state subspace).

1 annihilates a particle in the stafé(r — R;) and
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They can be identified with the statgs,,), |,,), and|o,,)  for k > 2 does not have a free fermion or boson descripfion.
in Ising anyon language. Meanwhil®&, is diagonal in the Therefore, in the next two subsections, we discuss thesk fiel
basis(|1,1) +| — 1,1))/v/2, |1, —1). By changing from one theories using more general methods.
basis to the other, we find th®-matrix given in the previous  Even though its Hamiltonian vanishes and it has no local
subsection follows. degrees of freedom, solving Chern-Simons theory is still a
The essential feature of chiralwave superconductors is non-trivial matter. The reason is that it is difficult in a ron
that they have Majorana fermion excitations which have zer@\belian gauge theory to disentangle the physical topohdgic
energy modes at vortices (and gapless excitations at thee eddegrees of freedom from the unphysical local gauge degrees
of the system, see section IIl.E). The Majorana characi@r is of freedom. There are essentially two approaches. Each has
result of the superconductivity, which mixes particle anteh its advantages, and we will describe them both. One is to
states; the zero modes and gapless edge excitations result f work entirely with gauge-invariant quantities and derivkes
the chirality. Majorana fermions arise in a completelyeiff governing them; this is the route which we pursue in this sub-
entway in the Kitaev honeycomb lattice model (Kitaev, 2006) section. The second is to pick a gauge and simply calculate
within this gauge, which we do in the next subsection (111.D)

H=—J, Y ojof—J, > olol—J. Y ojo; Consider SU(2) non-Abelian Chern-Simons theory:
x—links y—links z—links
(55) K 2
where thez-links are the vertical links on the honeycomb lat- Scsla] = In /M tr (a Nda+zanah a) (67)

tice, and ther andy links are at angles-w/3 from the ver-

tical. The spins can bel represented by Majorana fermionge modify the action by the addition of sourcg&2, accord-
b*, b¥, b%, andc, according toof = ibjc;, of = ibjc;,  ingto L — L+ tr(j-a). We take the sources to be a set
o7 = ibc; so long as the constrainfbibic; = 1is satis-  of particles on prescribed classical trajectories. Thearti-
fied. Then, the Hamiltonian is quartic in Majorana fermion cle carries the spirj; representation of SU(2). As we saw in
operators, but the operatabbi, b7b, b7b; commute with  subsection II1.A, there are only+ 1 allowed representations;
the Hamiltonian. Therefore, we can take their eigenvalses ajater in this subsection, we will see that if we give a paeticl
parameters;, = b'bj, with o = z,y, or z appropriate to  a higher spin representation thae= k/2, then the amplitude
the jk link. These parameters can be varied to minimize theyill vanish identically. Thereforej, must be in allowed set of

Hamiltonian, which just describes Majorana fermions hop-j; + 1 possibilities:0, 3, ..., £. The functional integral in the
ping on the honeycomb lattice: presence of these sources can be written in terms of Wilson
. loops,W.,, ;. [a], which are defined as follows. The holonomy
=" thkchk (56) U,,la] is anSU(2) matrix associated with a curve It is
4 I defined as the path-ordered exponential integral of thegaug
field along the path:

wheret;;, = 2J,u , for nearest neighbagr, £ and zero other-
wise. For different values of thé,s, thet;,’s take different
values. The topological properties of the corresponding o ) )
bands are encapsulated by their Chern number (Kitaev, 2006) <x—.. [~ ’ e, “ “

For a certain range of, s, aP, T-violating perturbation gives Z;)Z /0 dsl/o dsz .- '/0 dsn [7(51)'51 L)) T
the Majorana fermions a gap in such a way as to support zero

modes on vortex-like excitations (plaquettes on which dne o F(sn) - a% (y(sp)) T | (58)
thew,;,s is reversed in sign). These excitations are identical in

topological character to the vortices ofaip superconductor  whereP is the path-ordering symbol. The Lie algebra genera-
discussed above. torsT2 are taken in the spifrepresentationy(s), s € [0, 27|
is a parametrization of; the holonomy is clearly independent
of the parametrization. The Wilson loop is the trace of the
C. Chern-Simons Effective Field Theories, the Jones holonomy:
Polynomial, and Non-Abelian Topological Phases

. 7[@] = Peif'Vang.dl

W, ilal = tr (U, ila 59
1. Chern-Simons Theory and Link Invariants v.al4] (Ungla]) (59)

Let us consider the simplest case, in which the source is a

In the previous subsection, we have seen an extremely simy 4sinarticle-quasihole pair of tygewhich is created out of
ple and transparent formulation of the quasiparticle bngid o oround state, propagated for a period of time, and then
properties of a particular non-Abelian topological statech,

as we will see later in this section, is equivalent to SY(2)

Chern-Simons theory. It describes the multi-quasiparticl

Hilbert sp_ace and the action O_f braldlng o_peratlons inteofns 7 It is an open question whether there is an alternative desumi of an
fr.ee fermions. Most non'.Abe“an topological S_tates aresmot  suy(2), topological phase witk > 2 in terms of fermions or bosons which
simple, however. In particular, SURIChern-Simons theory s similar to thep + ip chiral superconductor formulation of SU¢2)
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annihilated, returning the system to the ground state. Tire a
plitude for such a process is given by:

(0l0),,; = / Da sl W, ja] (60)

Here,~ is the spacetime loop formed by the trajectory of the
quasiparticle-quasihole pair. The Wilson loop was intretl
as an order parameter for confinement in a gauge theory be-
cause this amplitude roughly measures the force between the
quasiparticle and the quasihole. If they were to interath wi
a confining forcé/ (r) ~ r, then the logarithm of this ampli-
tude would be proportional to the the area of the loop; if they
were to have a short-ranged interaction, it would be propor-
tional to the perimeter of the loop. However, Chern-Simons
theory is independent of a metric, so the amplitude cannot de
pend on any length scales. It must simply be a constant. For
j = 1/2, we will call this constand. As the notation implies,
it is, in fact, the quantum dimension ofja= 1/2 particle. As
we will see below can be determined in terms of the level
k, and the quantum dimensions of higher spin particles can be
expressed in terms aof

We can also consider the amplitude for two pairs of quasi-
particles to be created out of the ground state, propagated f
some time, and then annihilated, returning the system to the
ground state:

FIG. 4 The functional integrals which give (&x|p(c3) |x) (b)
©l0),, . :/DaeiScs[a] W, ) Wo o) (61) XX @ &xde(e2) ). @ (xlp(e2 ) bo-

This amplitude can take different values depending on hovpraided with quasiparticl, so1 and2 may no longer fuse to

v and+’ are linked as in Fig. 4a vs 4b. If the curves arethe vacuum. In just a moment, we will see an example of a
unlinked the integral must givé?, but when they are linked different four-quasiparticle state.

the value can be nontrivial. In a similar way, we can formailat  \We now interpret the = 0 to t = oo history as the conju-

the amplitudes for an arbitrary number of sources. gate of at = —oo to ¢t = 0 history. In other words, it gives us

It is useful to think about the history in figure 4a as a twoa four quasiparticle bra rather than a four quasiparticte ke
step process: from = —co tot = 0 and fromt = 0 to

t = oo. (The two pairs are created at some time 0 and St a1 _
annihilated at some time> 0.) At ¢t = 0—, the system is in XA = " Da(x,t) Wy, jlal Wﬂﬂ"[a] x

N U ) (x,0)=A(x)
a four-quasmartl(_:le state. (Quasiparticles and quamhate_ [=dt [ e Los
topologically equivalent itz =SU(2), so we will use ‘quasi- e (63)
particle’ to refer to both.) Let us call this state In the statey), quasiparticled and2 fuse to form the trivial
quasiparticle, as do quasiparticte@nd4. Then we can in-
Y[A] = / Da(x,t) W, ;la] W j[a] x terpret the functional integral from= —co to t = o as the
(x,0)=A(x) o matrix element between the bra and the ket:

[0 dt [d*z Los )
‘ €2) (o) = [ Dact e, ) Wl (69
where~y_ and~+’ are the arcs given by(t) and~/(t) for ) ) ) )

t < 0. A(x) is the value of the gauge field on the- 0 spatial Now, observe that)) is obtained fromy) by taking quasi-
slice; the wavefunctionab[A] assigns an amplitude to every Particle2 around quasiparticla i.e. by exchanging quasipar-
spatial gauge field configuration. FG=SU(2) andk > 1,  ticles2and3 twice, |[¢) = p(o3) [x). Hence,

there are actually two different four-quasiparticle staté .

particles1 and?2 fuse to the identity fieldy = 0, then par- (xlp(a3) [x) = /Da erSeslalyy o la] W, j,]a]  (65)
ticles3 and4 must as well; if particleg and2 fuse toj = 1,

then particles and4 must as well. These are the only possi- In this way, we can compute the entries of the braiding ma-
bilities. (Fork = 1, fusion toj = 1 is not possible.) Which tricesp(o;) by computing functional integrals such as the one
one the system is in depends on how the trajectories of then the right-hand-side of (65). Note that we should normal-
four quasiparticles are intertwined. Although quasiget1 ize the statdy) by computing the figure 4b, which gives its
and2 were created as a pair from the vacuum, quasiparticle matrix element with itself.
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Consider, now, the stajgcs) |x), in which particle2 and V1 (¢) is the Jones polynomial associated with the link=
3 are exchanged just once. It is depicted in figure 4c. Simis; U...U~,, evaluated ag = —e™/(¥+2) using the skein re-
larly, the statep(o;l) |1} is depicted in figure 4d. From the lation (73). Note that we assume here that all of the quatsipar

figure, we see that cles transform under the= % representation a$U (2). The
other quasiparticle types can be obtained through the riusio
(xlp(o2) [x) = d (66)  of severalj = 1/2 quasiparticles, as we will discuss below in
(Xlp(o2!) Ix) = d (67)  Section I1.C.2.

since both histories contain just a single unknotted loop.
Meanwhile, 2. Combinatorial Evaluation of Link Invariants and
Quasiparticle Properties
xlIx) = d? (68)

Since the four-quasiparticle Hilbert space
dimensionalp(o2) has two eigenvalues; , A2, so that

i The Jones polynomial (Jones, 198B)(q) is a formal
IS tWO-| aurent series in a variablg which is associated to a link
L =~ U...U~,. Itcan be computed recursively using (73).

_ —1y _ We will illustrate how this is done by showing how to use a
plo) = (a+Aa) + /\1/\2p(0 ) =0 (69) skein relation to compute a related quantity called the Kauf
Taking the expectation value in the staté, we find: man brackef,,(¢) (Kauffman, 1987), which differs from the
Jones polynomial by a normalization:
d— (M +X2)d*>+ X ad =0 (70)
Vilg) = = (~g)"® Ky (q) (75)
so that d
14+ A1 wherew(L) is the writhe of the link. (The Jones polynomial
TN+ (71) s defined for an oriented link. Given an orientation, each

crossing can be assigned a sign; the writhe is the sum

Since the braiding matrix is unitary; and A\, are phases. over all crossings of these signs.) The libkembedded in
The overall phase is unimportant for quantum computationthree-dimensional space (or, rather, three-dimensiqreaaies
so we really need only a single number. In fact, this numbetime in our case) is projected onto the plane. This can be
can be obtained from self-consistency conditions (Freedmadone faithfully if we are careful to mark overcrossings and
etal., 2004). However, the details of the computationgfl>  undercrossings. Such a projection is not unique, but thesam
within is technical and requires a careful discussion offfra  Kauffman bracket is obtained for all possit¥® projections
ing; the result is (Witten, 1989) that; = —6’]3”11/2(’”2). of a knot (we will see an example of this below). An unknot-
Ao = e™/2042) These eigenvalues are simgg’> = \,, ted loop(O is given the valuek(q) = d = —q-—

L ¢! = 2cos7/(k + 2). For notational simplicity, when we

1

22 __
Ri™* = Ao. Consequently, draw a knot, we actually mean the Kauffman bracket associ-

. ated to this knot. Hence, we write
d=2cos| ——= (72)
k+2
=d 76
and O (76)
e ?p(oy) — q1/2p(gi—1) =q—q ! (73)  The disjoint union of. unknotted loops is assigned the value

dr.
whereg = —e™/(k+2) (see Fig. 18). Since this operator equa- The Kauffman bracket for any given knot can be obtained
tion applies regardless of the state to which it is applieel, w recursively by repeated application of the following skegn
can apply it locally to any given part of a knot diagram to re-lation which relates it with the Kauffman brackets for two
late the amplitude to the amplitude for topologically siewpl knots both of which have one fewer crossing according to the
processes, as we will see below (Kauffman, 2001). This is anule:
example of askein relation; in this case, it is the skein rela-
tion which defines the Jones polynomial. In arriving at this \ = ¢'/?
skein relation, we are retracing the connection between Wil \
son loops in Chern-Simons theory and knot invariants which i . , ) )
was made in the remarkable paper (Witten, 1989). In this paVith this rule, we can eliminate all crossings. At this point
per, Witten showed that correlation functions of Wilsondoo W€ @re left with a linear combination of the Kauffman brack-
operators in SU(2) Chern-Simons theory are equal to cor- ets for various disjoint unions of unknotted loops. Adding u

responding evaluations of the Jones polynomial, which is &1€Se contributions of the forafi” with their appropriate co-
topological invariant of knot theory (Jones, 1985): efficients coming from the recursion relation (77), we obtai

the Kauffman bracket for the knot with which we started.
Let us see how this works with a simple example. First,
consider the two arcs which cross twice in figure 5. We will

v
+q 2 (77)
N

/ DaW,, y[a]... W, sl eSesld = Vi (q)  (74)
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assume that these arcs continue in some arbitrary way and @ ()

form closed loops. By applying the Kauffman bracket recurt
sion relation in figure 5, we see that these arcs can be replac
by two arcs which do not cross. In Section I1.C.3, we will use

S = g =]+ gy =]

0 ="+ = S S
FIG. 6 The elements of thE-matrix can be obtained by computing

-1
+q > <:'\_/ + > © < matrix elements between kets in whitland2 have a definite fusion
channel and bras in whichand4 have a definite fusion channel.
\/

+ +g 1+
=+ @) (
The projection operatoildy , I1;, which are calledlones-

= ~— Wenzl projection operators, project a pair of a quasiparticles
O onto the two natural basis states of their qubit. In othedspr

we do not need to introduce new types of lines in order to com-

pute the expectation values of Wilson loops carryjng 0 or

j = 1. We can denote them with pairs of lines projected onto

either of these states. Recall thaf & 1/2 loop had ampli-

uded, which was the quantum dimension ofa= 1/2 par-

FIG.5 The Kauffman bracket is invariant under continuousions
of the arcs and, therefore, independent of the particutzgeption of
a link to the plane.

Fhese methods to .evaluate some matrix elements relevant L%Ie. Using the projection operator (79), we see that-a 1
interference experiments.

N let ider the tWo fusi h Is of . fIoop has amplitude? — 1 (by connecting the top of the line
ow, ? Ius consider the v(\j/ot L_Jls'(\)/\r/'hc atr;net\?vo a pair Ot_segments to the bottom and evaluating the Kauffman bracket)
quasiparticies in some more detail. en the two quastpartinne can continue in this way to construct projection opesato

cIes. fuse to the trivial pgrticle, aﬂsand2 did atiovt_e, wecan ip projectm lines ontoj — m /2. This projection opera-
depict such a state, which we will call), as = times the tor must be orthogonal to the= 0, 1,3/2,2, ..., (m — 1)/2
state yielded by the functional integral (62) with a Wilsarel projection operators acting on subsets ofthénes, and this
which looks like J because two quasiparticles which are cre-congition is sufficient to construct all of the Jones-Wemngkp
ated as a pair out of the ground state must necessarily fuggction operators recursively. Similarly, the quantum eim

to spin0 if they do not braid with any other particles. (The sjons can be computed through a recursion relation. At level
factor1/+/d normalizes the state.) Hence, we can project any; we find that quasiparticles with> k/2 have quantum di-
two quasiparticles onto the= 0 state by evolving them with \3ensions which vanish identically (e.g. for= 1, d = 1 so

a history which looks like: the quantum dimension of A= 1 particle isd> — 1 = 0).
U Consequently, these quasiparticle types do not occur. Only
1, 1 (78) j=0,%,...,% occur.
d The entries in thé'-matrix can be obtained by graphically

computing the matrix element between a state in which, for

On the right-hand-side of this equation, we mean a functionginstance 1 and?2 fuse to the vacuum antland4 fuse to the
integral between two timeg andt,. The functional inte-  vacuum and a state in whidrand4 fuse to the vacuum aril
gral has two Wilson lines in the manner indicated pictoyiall and3 fuse to the vacuum, which is depicted in Figure 6a. (The
On the left-hand-side, we have suggested that evolvinge stamatrix element in this figure must be normalized by the norms
through this history can be viewed as acting on it with theof the top and bottom states to obtain fhemnatrix elements.)
projection operatolly = |0)(0]. To compute the matrix element between a state in which

However, the two quasiparticles could instead be in the statand?2 fuse to the vacuum artland4 fuse to the vacuum and
|1), in which they fuse to form thg = 1 particle. Since these a state in whichl and4 fuse toj = 1 and2 and3 fuse to
states must be orthogonél|1) = 0, we must get identically  j = 1, we must compute the diagram in Figure 6b. Fer 2,
zero if we follow the history (78) with a history which defines we find the samd"-matrix as was found for Ising anyons in

a projection operatdi; onto thej = 1 state: Section I11.B.
v Let us now briefly consider the ground state properties of
I, = 1 (79) the SU(2). theory on the torus. As above, we integrate the
d A~ Chern-Simons Lagrangian oveBamanifold M with bound-

aryY,i.e. M =3 x (—o0, 0] in order to obtain & = 0 state.
It is easy to see that if this operator acts on a state which i$he boundary: is the spatial slice at = 0. For the torus,
given by a functional integral which looks likg, the resultis ¥ = T2, we takeM to be the solid torusM = S* x D?,
zero. where D? is the disk. By foliating the solid torus, we ob-
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tain earlier spatial slices. If there are no quasipartjdlesn  quences of this difference are tita = e~ ™/3 while O/ =

there are no Wilson lines terminating &t However, the e—37i/8: RO _ o—mi/8 \while R%é — _—3mi/8. poo _

functional integral can have Wilson loops in the body of the "~ L . 0 1144 ¥

solid torus as in Figure 7a. These correspond to processe&™/® while R’ = ¢™/8; [F277] , = — {F;’”} . The
a

in the pastt < 0, in which a quasiparticle-quashole pair rest of theF-matrices are the same, as are the fusion multiplic-
was created, taken around the meridian of the torus and afties N¢, and theS-matrix. In other words, the basic structure
nihilated. The Wilson loop can be in any of tie+ 1 al-  of the non-Abelian statistics is the same in the two theories
lowed representations= 0, 1,.. ., &; in this way, we obtain byt there are some minor differences in the U(1) phases which
k + 1 ground state kets on the torus (we will see momenresult from braiding. Both theories have threefold ground
tarily that they are all linearly independent). Wilson I80p state degeneracy on the torus; the Moore-Read Pfaffian state
around the meridian are contractible (Figure 7b), so they cahas ground state degeneradyecause of an extra U(1) factor
be simply evaluated by taking their Kauffman bracket; theycorresponding to the electrical charge degrees of freedom.
multiply the state byi;. Evidently, these Wilson loop oper-  Of course, in thé: = 2 case we have already obtained all of
ators are diagonal in this basis. Bras can be obtained by inhese results by the method of the previous subsection. How-
tegrating the Chern-Simons Lagrangian over 3hmanifold  ever, this approach has two advantages: (1) once Witten's re
M =3 x[0,00) = S?\S' x D?, i.e. the exterior of the sult (74) and Kauffman’s recursion relation (77) are acegpt
torus. Wilson |OOpS in the exterior torus are now contrdetib braiding matrix elements can be obtained by straightf(]dvvar
if they are parallel to a longitude but non-trivial if theyear high school algebra; (2) the method applies to all levels
around the meridian, as in in Figure 7c. Again, we obtainynlike free Majorana fermion methods which apply only to
k + 1 ground state bras in this way. The matrix elements bethe ; = 2 case. There is an added bonus, which is that this
tween these bras and kets (appropriately normalized sath thformalism is closely related to the techniques used to aealy

the matrix product of a bra with its conjugate ket is unity) attice models of topological phases, which we discuss in a
are the entries in th&-matrix, which is precisely the basis |ater subsection.

change between the longitudinal and meridinal bases. A ma-

trix element can be computed by evaluating the correspgndin

picture. Theab entry in theS-matrix is given by evaluating D. Chern-Simons Theory, Conformal Field Theory, and

the Kauffman bracket of the picture in Figure 7d (and divid-Fractional Quantum Hall States

ing by the normalization of the states). This figure makes the

relationship between thgé-matrix and braiding clear. 1. The Relation between Chern-Simons Theory and

Conformal Field Theory

@
Now, we consider Chern-Simons theory in a particular

gauge, namely holomorphic gauge (to be defined below). The

ground state wavefunction(s) of Chern-Simons theory can be

obtained by performing the functional integral from the-dis

tant pasty = —oo, to timet¢ = 0 as in the previous subsec-

tion:

o vlae) = [ Da(x, ) ol == 25 (g0)
a(x,0)=A(x)
For the sake of concreteness, let us consider the tarus,
T2, for which the spacetime manifold i$1 = (—o0,0] x
T? = S' x D?. We assume for simplicity that there are no
Wilson loops (either contained within the solid torus orter
minating at the boundary). lf andy are coordinates on the
FIG. 7 Different degenerate ground states on the torus seadly  torus (the fields will be subject to periodicity requiremsnt
perfo_rming Fhe functional integral wi_th_longitgdinal Wils loops (a) we write z =  + iy. We can then change to coordinates,
carrying spinj = 0,3,...,5. Meridinal Wilson loops are con- 54 "5q syal, treaf anda® as independent variables. Then,
tractible (b); they do not give new ground states. The cpoeding we take the holomorphic gauge? — 0. The fielda® only
appears in the action linearly, so the functional integredro

bras are have Wilson lines in the exterior solid torus (§)matrix
elements are given by evaluating the history obtained byboeimy X - L
a bra and ket with their linked Wilson lines. az may be performed, yielding&function:
/Da e% Jp2yst EWA(“Za"“i“‘%fabcazaiai) =

Finally, we comment on the difference between SY&)d
Ising anyons, which we have previously described as diftgri
only slightly from each other (See also the end of sectiai Il
below). The effective field theory for Ising anyons contains
additional U(1) Chern-Simons gauge field, in addition to a
SU(2), gauge field (Fradkiret al., 2001, 1998). The conse- iea_bca%a% are the spatial components of the field strength.

/ Da; §(f2) et Jozxst Paidzai(gy)

nwherei,j = t,z. Hereffj = partialia? — partialjai +
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There are no other cubic terms in the action omgchas been (Elitzuretal., 1989; Witten, 1989), we have mapped the prob-
eliminated (as is the case in any such gauge in which one dém of computing the ground state wavefunction Zin- 0-
the components of the gauge field vanishes). The constraintimensions) of Chern-Simons theory, which is a topological

imposed by thé-function can be solved by taking theory with a gap, to the problem of computing a correla-
. tion function in the chiral WZW model (it + 1-dimensions),
ai =0,UU~ (82)  which is a critical theory. This is a bit peculiar since one-th

, ) ) ) . _ory is gapped while the other is gapless. However, the gap-
whereU is a single-valued function taking values in the Lie |ggg degrees of freedom of the WZW model for the- 0
group. Substituting this into the right-hand-side of (84  spatial slice are pure gauge degrees of freedom for the cor-
find that the action which appears in the exponentin the funcresponding Chern-Simons theory. (In the very similar situa

tional integral takes the form tion of a surface> with boundary, however, the correspond-
& ing conformally-invariant + 1-D theory describes the actual
S = = etr (,UU0: (,UU1)) dynamical excitations of the edge of the system, as we discus
AT Jpexst in section Ill.E.) Only the topological properties of therel
_ 4ﬁ I ltr (U U 9.0,UU ) + WZW conformal blocks are physically meaningful for us.
T Jp2xst - More complicated topological states with multiple Chern-
tr (Q;UU0,U9:U ) Simons fields and, possiply, Hi_gg_s fields (Frad&ial., 2001,
) i 1999, 1998) correspond in a similar way to other chiral ratio
_ ﬁ i | 9.t (8- Uflan) 4 nal conformal field theories which are obtained by tensoring
4T Jpaysr |0V ? or cosetting WZW models. (RCFTs are those CFTs which
_ N have a finite number of primary fields — see appendix A for
1 1
tr (&»U U= 0;,U0:U ) the definition of a primary field — under some extended chiral

. algebra which envelopes the Virasoro algebra; a Kac-Moody
= Ur 2 tr (8ZU 82U) + algebrain the WZW case; and, possibly, other symmetry gen-
k A . . o erators.) Consequently, it is possible to use the powelful a
M (0,UUT9,UUT\UUT)(83)  gebraic techniques of rational conformal field theory to eom

pute the ground state wavefunctions of a large class of topo-

The Jacobian which comes from tﬁéunction&(ffj) is can- logical states of matter. The qua§iparticles of the topicklg
celled by that associated with the change of integration var State correspond to the primary fields of the chiral RCFT. (it
able from Da to DU. In the final line, the first term has IS @ matter of convenience whether one computes correlation
been integrated by parts while the second term, although fnctions with a primary field or one of its descendants since
appears to be an integral over th® manifold, only depends the_|r topological properties are the same. This is a freedom
on the boundary values @f (Wess and Zumino, 1971; Wit- Which can be exploited, as we describe below.)
ten, 1983). This is the Wess-Zumino-Witten (WZW) action. The conformal blocks of an RCFT have one property which
What we learn from (83) then, is that, in a particular gauge, t is particularly useful for us, namely they are holomorphic
ground state wavefunction @+ 1-D Chern-Simons theory functions of the coordinates. This makes them excellent can
can be viewed as the partition function of a 0-dimensional  didate wavefunctions for quantum Hall states. We identify p
WZW model. mary fields with the quasiparticles of the quantum Hall state
For positive integetk, the WZW model is @D confor- and compute the corresponding conformal block. However,
mal field theory which, in the SU(2) case, has Virasoro centhere is one important issue which must be resolved: a quan-
tral chargec = ¢ = f—& (For a brief review of some of tum Hall wavefunction is normally viewed as a wavefunction
the basics of conformal field theory, see appendix A and reffor electrons (the quasiparticle positions, by contrast usu-
erences therein.) However, in computing properties of thally viewed merely as some collective coordinates spauifyi
Chern-Simons theory from which we have derived it, we will a given excited state). Where are the electrons in our RCFT?
couple only toa, = 9.U - U~!; i.e. only to the holomor- Electrons have trivial braiding properties. When one etect
phic or right-moving sector of the theory. Thus, itis therahi is taken around another, the wavefunction is unchanged, ex-
WZW model which controls the ground state wavefunction(s)cept for a phase change which is an odd integral multiple of
of Chern-Simons theory. 2m. More importantly, when any quasiparticle is taken around
If we were to follow the same strategy to calculate thean electron, the wavefunction is unchanged apart from agphas
Chern-Simons ground state wavefunction with Wilson lineschange which is an integral multiple @fr. Therefore, the
or punctures present, then we would end up with a correlatiorlectron must be a descendant of the identity. In other words
function of operators in the chiral WZW model transforming the RCFT must contain a fermionic operator by which we can
under the corresponding representations of SU(2). (8trict extend the chiral algebra. This new symmetry generatoris es
speaking, it is not a correlation function, butcanformal sentially the electron creation operator — which is, thanefa
block, which is a chiral building block for a correlation func- descendant of the identity under its own action. Not all REFT
tion. While correlation functions are single-valued, aonfial ~ have such an operator in their spectrum, so this is a stramg co
blocks have the non-trivial monodromy properties which westraint on RCFTs which can describe quantum Hall states. If
need, as is discussed in appendix A.) Therefore, followingve are interested, instead, in a quantum Hall state of bgsons
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as could occur with ultra-cold bosonic atoms in a rotating op 2D Electrons in B field

tical trap (Coopeetal., 2001), then the RCFT must contain a Observation of FQHER.  Numerics
bosonic field by which we can extend the chiral algebra. \
An RCFT correlation function ofV, electron operators

therefore corresponds to the Chern-Simons ground state
wavefunction with N, topologically-trivial Wilson lines.
From a purely topological perspective, such a wavefunction

Trial Wave Functions

is just as good as a wavefunction with no Wilson lines, so Edge Theory
the Wilson lines would seem superfluous. However, if the de- W2ZW Model CFT
scendant field which represents the electron operator is cho

sen cleverly, then the wavefunction witfy, Wilson lines may

be a ‘good’ trial wavefunction for electrons in the quantum
Hall regime. Indeed, in some cases, one finds that these trial
wavefunctions are the exact quantum Hall ground states of
simple model Hamiltonians (Ardonne and Schoutens, 1999;
Blok and Wen, 1992; Greitegt al., 1991; Moore and Read, Low Energy Theory
1991; Read and Rezayi, 1999; Simetal., 2007a; Wen and

Wu, 1994). I_n th_e study O.f t_hg quantum_ Hall effect, however,FlG_ 8 How one arrives at a low-energy theory of the quanturth Ha
a wavefunction is ‘good’ if it is energetically favorablerfa  offect At the top, one begins with the experimental obsémeof
realistic Hamiltonian, which is beyond the scope of the un-the quantized Hall effect. At the bottom, we know the low eyer
derlying Chern-Simons theory, which itself only knows abou theory should be of Chern-Simons form. One would like to ble ab
braiding properties. It is unexpected good luck that thed tri to “integrate out” high energy degrees of freedom direatlphtain
wavefunctions obtained from Chern-Simons theory are oftetthe low energy theory, as shown by the dotted line, but msseau
found to be ‘good’ from this energetic perspective, which istake a more circuitous route, as described in the text.
a reflection of how highly constrained quantum Hall wave-
functions are, and how central these braiding propertesar
their physics. We emphasize, however, that a wavefunctioRezayi, 1999; Simort al., 2007c). One may try to justify
obtained in this way wilhot be the exact ground state wave- jt ex post facto by solving for the properties of quasiholes
function for electrons with Coulomb interactions. In someof a system with some unrealistic (e.g. involviBgpody or
cases it might not even have particularly high overlap with t higher interactions) but soluble Hamiltonian. The degeagr
ground state wavefunction, or have good energetics. The ongan be established by counting (Nayak and Wilczek, 1996;
thing which it does capture is the topological structure of aRead, 2006; Read and Rezayi, 1996). The braiding matrices
particular universality class. can be obtained by numerically computing the Berry integyral
for the given wavefunctions (Tserkovnyak and Simon, 2003)
or by using their connection to conformal field theory to de-
2. Quantum Hall Wavefunctions from Conformal Field Theory ~ duce them (Gurarie and Nayak, 1997; Moore and Read, 1991;
Nayak and Wilczek, 1996; Slingerland and Bais, 2001). One
Ideally, the logic which would lead us to a particular RCFT €an then deduce the Chern-Simons effective field theory of

would be as follows, as displayed in Fig. 8. One beginsthe state either from th_e quasipartic_le pro_perties or frben t
with the experimental observation of the quantized Hall ef_assomateq conformal field theory with which both it and the
fect at some filling fractiom (shown at the top). We certainly Wavefunctions are connected.
know that the Hamiltonian for the system is simply that of ~We now show how such wavefunctions can be constructed
2D electrons in a magnetic field, and at the bottom, we knovithrough some examples. In appendix A, we review some of
the form of the low energy theory should be of Chern-Simonghe rudiments of conformal field theory.
form. One would like to be able to “integrate out” high en-  (a) Wavefunctions from CFTs:  Our goal is to construct
ergy degrees of freedom directly to obtain the low-energy th a LLL FQH wavefunctionV(zy, . .., zy) which describes an
ory. Given the low-energy Chern-Simons effective field the-electron fluid in a circular droplet centered at the origib.
ory, one can pass to the associated RCFT, as described abou@ist be a homogeneous antisymmetric analytic function of
With the RCFT in hand, one can construct wavefunctions, aghe z;s, independent of thg;s apart from the Gaussian fac-
we will describe below. Indeed, such a procedure has beeir, which we will frequently ignore (see Sec. 11.C.1). If we
explicitly achieved for Abelian quantum Hall states (Lape consider the FQHE of bosons, we would ndetb instead be
and Fradkin, 1991; Zhangf al., 1989). In some special non- symmetric. The filling fractions of a FQH wavefunctiony
Abelian cases, progress in this direction has been made, (Weis given byr = N/Ng whereN is the number of electrons
1991b, 1999). and Ng is the number of flux quanta penetrating the droplet
For most non-Abelian theories, however, the situation ts no(Prange and Girvin, 1990). In the LLLYs is given by the
so simple. The RCFT is usually obtained through inspirechighest power of occurring inV.
guesswork (Ardonne and Schoutens, 1999; Blok and Wen, We will also frequently need the fact that in an incompress-
1992; Cappelletal., 2001; Moore and Read, 1991; Read andible state of filling fractions, multiplying a wavefuncton by a
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factor][,(z; — w)™ pushes a chargen away from the point guaranteed that,, and . are local with respect to each
w. This can be understood (Laughlin, 1983) as insertiomof other, i.e. taking one field around can only produce a phase
flux quanta at the poinb, which, via Faraday’s law creates an which is a multiple of2r. Consequently, the wavefunction
azimuthal electric field, which, then, via the Hall conduityi ¥ remains analytic in the electron coordinatgesven after

transfers chargem away from the pointo. the fieldsygp, (w1) ... ¥qn(war) have been inserted into the
Our strategy will be to choose a particular chiral RCFT, correlation function.
pick an “electron” fieldy. in this theory (which, by the rea- One important feature of the conformal block on the right-

soning given above, must be a fermionic generator of the exhand-side of (85) is thap,, (w,) and.(z;) are on roughly
tended chiral algebra of the theory), and write a groune:statthe same footing — they are both fields in some conformal field

trial wavefunction¥, for N electrons as theory (or, equivalently, they are both fixed sources caliple
to the Chern-Simons gauge field). However, when intepreted
Wgs = (Ye(21) -+ Ye(2n)) (84)  as a wavefunction on the left-hand-side of (85), the electro

) o coordinatesy; are the variables for which the wavefunction
The field<. must be fermionic since the quantum Hall wave- giyes a probability amplitude while the quasihole coortiisa
function on the left-hand-side must be suitable for elewro , are merely some parameters in this wavefunction. If we
Not all RCFTs have such a field in their spectrum, so this reyyished to normalize the wavefunction differently, we could
quirement constrains our choice. This requirement also eMultiply by an arbitrary function of thev,s. However, the
sures that we will obtain a wavefunction which has no brancrbarticular normalization which is given by the right-haside

cuts; in particular, there will only be one conformal bloak 0 4t (g5) is particularly convenient, as we will see momentar-
the right-hand-side of (84). We must do a little more work in ily. Note that since the quasihole positioms are merely pa-

choosingy. so thatthere are no poles either on the right-handa meters in the wavefunction, the wavefunction need not be
side of (84). As discussed above, the correlation function o analytic in these coordinates.

the right-hand-side of (84) is a ground state wavefunction o
Chern-Simons theory witlV, trivial topological charges at positionsy, are symptoms of the fact that there may be a

f|xgc: F():(c))ilrt'lsoen&tﬁ’eig iéﬁztzgeﬁnique choice of RCET. even a/ector space of conformal blocks corresponding to the right
a given fiIIiné fraction. Therefore, there are diﬁeréntd{a hgg%’;rigea?; (f?xsgd l?hzlﬁgha?ecf(fférgregs\gmg Itif;za?rllja_isri]féole
tional quantum Hall states which can be constructed in thi?endent wavefunct’ions These mult Ileo degenerate stﬁtes a
way. Wh-'Ch frac_t lonal guantum Hall state 1S actually obsetv ﬁecessary for non—AbeIian statistics znd thgy will geszahy
ata pa_rtlculan/ 'S determme_d by comparing the energies of ix when the quasiholes are draggéd around each other.
the various pqs&blg competing ground states. Having a goo'El] However, there is still a logical gap in the above reaéon-
wavefunction is, by itself, no guarantee that this wavefiomc . ’ X

ing. The wavefunctions produced by an RCFT have the cor-

actually describes the physical system. Only a calculaifon rect braiding properties for the corresponding Chern-Sisno

its ener ives real evidence that it is better than othsesipo . e .
9y g SEP ground state wavefunction built into them through their ex-

ble states. licit monodromy properties. As a result of the branch cuts
The reason for introducing this complex machinery sim-P y prop : .
n the conformal blocks as a function of the,s, when one

ply to construct a wavefunction becomes clearer wher ; . :
we consider quasihole wavefunctions, which are Chemquaslhole|staken around another, the wavefuncli®trans-

. . L f ' afyp - —
Simons ground state wavefunctions with trivial topolog- L(:/rg:str:gto d]:;[fereq;t ’ d\ghs;?ergg-ml?aes)ﬁ\ole ét’a2t7é§ : ,Hgowg\?er
ical charges andv,;, non-trivial topological charges. In gen- g 9 q ' ’

eral, there are many possible quasihole operators, camesp when viewed as quantum Hall wavefunctions, their quasipar-

ing to the different primary fields of the theory, so we musttICIe braiding properties are a _coml:_nna_tlon Of. their expllc
really considetV, 1, Nona, - - - Ny NUMbers of quasiholes monodromy and the Berry matrix which is obtained from:

if there arem primary fields. Each different primary field , .
corresponds to a different topologically-distinct type“dé- e"le? = Pexp (j{ dw<‘1’a ‘I’ﬁ>) (86)
fect” in the ground state. (As in the case of electrons, we are
free to choose a descendant field in place of the correspgndiwhere¥®, o = 1,2,..., g are theg different degenerate-
primary field since the two have identical topological prepe duasihole states and P is the path ordering symbol. In this
ties although the wavefunction generated by a descendiint wiequation, thez;s are integrated over in order to compute the
be different from that generated by its primary.) Let us sup4nner product, but thes,s are held fixed, except for the one
pose that we focus attention on a particular type of quasipathich is taken around some loop.
ticle which, in most cases, will be the quasiparticle of mini ~ Strictly speaking, the effect of braiding is to transform a
mal electrical charge. Then we can write a wavefunction withstate according t&* — e M[#7¥7., By changing the nor-
quasiholes at positions , . .., wys as malization of the wavefunction, we can altét~# and M?".
Only the product of the two matrices on the right-hand-side

U(wy. .. wn) = Wgn(w1) ... Ygn(war) Ye(z1) ... Ye(2n)) of this equation is gauge invariant and physically meaning-

(85) ful. When we presume that the braiding properties of this

where),, is the corresponding primary field. Singgy, isa  wavefunction are given by those of the corresponding CFT
primary field andy. is a descendant of the identity, we are and Chern-Simons theory, we take it to be equalté” and

(b) Quasiparticle Braiding:  The branch cuts in quasihole

Vi
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ignoree®¥=s. This can only be correct if,5 vanishes up to  as thev = 1/m Laughlin wavefunction. The astute reader
a geometric phase proportional to the area for a wavefumctiowill notice that the correlator in Eq. 88 actually violatéet
given by a CFT conformal block. In the case of the Laughlinneutrality condition discussed in Appendix A and so it sldoul
states, it can be verified that this is indeed correct by trepeaactually have zero value. One fix for this problem is to insert
ing the the Arovas, Schrieffer, Wilczek calculation (Arsva into the correlator (by hand) a neutralizing vertex oparato
etal., 1984) with the Laughlin state normalized according toinfinity e~V¢(z=>)v™ which then makes Eq. 88 valid (up
the quasihole position dependence given by the correspgndi to a contant factor). Another approach is to insert an oper-
CFT (see below) (Blok and Wen, 1992). This calculation restsator that smears the neutralizing background over theeentir
upon the plasma analogy originally introduced by Laughiini system (Moore and Read, 1991). This approach also conve-
his seminal work (Laughlin, 1983). For other, more complexniently results in the neglected Gaussian factors reapyugar
states, it is more difficult to compute the Berry matrix. Aver We will ignore these neutralizing factors for simplicitycofn
sion of a plasma analogy for the MR Pfaffian state was connow on, we will drop the Gaussian factors from quantum Hall
structed in Gurarie and Nayak, 1997; one could thereby verwavefunctions, with the understanding that they resuitnfro
ify the vanishing of the Berry matrix for a two-quasiholetsta including a smeared neutralizing background.

and, with some further assumptions, for four and higher mul- The quasihole operator must be a primary field; the primary
tiquasihole states. A direct evaluation of the integral86)(  field of minimum charge ig®/v™, Using Eq. A7, Eq. 85

by the Monte-Carlo method (Tserkovnyak and Simon, 20033/ields

established that it vanishes for MR Pfaffian quasiholes. The

effect of Landau level mixing on statistics has also beed-stu ()= ﬁ(wi )l ﬁ AHI (2 — w;) Uy

ied (Simon, 2007). Although there has not been a complete i<j i=1j=1

proof that the CFT-Chern-Simons braiding rules are idatic (89)

to those of the wavefunction, when it is interpreted as ao-ele AS mentioned above, the factpf; (z; — w) “pushes” charge
tron wavefunction (i.e. there has not been a complete procdway from the positionv leaving a hole of charge precisely
that (86) vanishes when the wavefunction is a CFT confor() = +e/m. The first term on the right of Eq. 89 results from
mal block), there is compelling evidence for the MR Pfaffianthe fusion of quasihole operators with each other, and expli
state, and it is almost certainly true for many other stages aitly shows the fractional statistics of the quasiholes. adi
well. We will, therefore, take it as a given that we can simplybatically taking two quasiholes around each other resnls i
read off the braiding properties of the wavefunctions whichfractional phase o2r/m. As promised above, this statistical
we construct below. term appears automatically in the wavefunction given by thi

(c) The Laughlin State: We now consider wavefunctions CFT!
generated by perhaps the simplest CFT, the chiral boson. We (d) Moore-Read Pfaffian State:
suppose that the chiral boson has compactification radius In the Ising CFT (see Appendix A), we might try to use
so thatp = ¢ + 2m\/m. The U(1) Kac-Moody algebra and ¢(2) = ¥(2) as the electron field (Moore and Read, 1991).
enveloping Virasoro algebra can be extended by the symmetrjhe ¢ fields can fuse together in pairs to give the identity
generatoe’*V™ . Since the dimension of this operatorig2, ~ (Sincey x ¢ = 1) so long as there are an even number of
it is fermionic form odd and bosonic for even. The primary ~ fields. However, when we take two fields close to each
fields of this extended chiral algebra are of the faffit/ v,  Other, the OPE tells us that
withn = 0,1,...,m — 1. They are all of the fields which . ) N .
are not descendants and are local with respeet’td™ (and zmhjgj VEP(E) ~ /(= 2) (°0)
to the Kac-Moody and Virasoro generators), as may be segp)

) =which diverges as; — z; and is therefore unacceptable as a
from the operator product expansion (OPE) (see Appendix A)y 4y efynction. To remedy this problem, we tensor the Ising

- - - CFT with the chiral boson CFT. There is now an operator
ip(z)vm ing(0)//m ~ M i(n+m)¢p(0)/v/m )
€ ¢ = te (87) 1 e'v™ by which we can extend the chiral algebra. 1if

When: is taken around the origin, the right-hand-side is un-IS €ven, this symmetry generator is fermionicpifis odd, it

changed. It is convenient to normalize thé1) current as Itf)rbtcc))sggig')r chtt)fc];gr?éléveTvr\:i(Ial (Eglr(feégignsdyl%n;'tga?e?glrgé
s 1 . ; s Albin ™ u 1eld. | | y
j= ﬁ&b, theh the primary field™*/v™ has charge,/m. are of the formein®/vVin | g ¢i2n+1)¢/2Vm  gndq) eind/vm,

We takey, = ¢'*V™ as our electron field (which has charge wheren, — 0,1,...,m — 1. Again, these are determined by
1) and consider the resulting ground state wavefunction aghe requirement of locality with respect to the generatdrs o
cording to Eq. 84. Using Eq. A7 we find the chiral algebra, i.e. that they are single-valued whkerta

m around a symmetry generator, in particular the elecron field
Wos = (e(21) .- Ye(zn)) = [1ic; (20 —25) (88) W %V For instance,

It is now clear why we have chosen this CFT: to halg
given by correlators of a vertex operator of the fostft® an-
alytic (no branch cuts or poles) we must have= m a non- 271/20(0) 2 H1/2,i2(ntm)+1)¢(0)/vm
negative integer, aneb must be odd to obtain an antisymmet-
ric wavefunction (or even for symmetric). We recognizg,

¥(2) el()Vm a(0) ei(2n+1)6(0)/2vm

— ZnO'(O) ei(2(n+m)+1)<zb(0)/\/E (91)
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and similarly for the other primary fields. and the fermion orbital shared by the quasiholes is unoccu-
Using our new symmetry generator as the electron field, w@ied. When an odd electron is added, it ‘occupies’ this or-
obtain the ground state wavefunction according to Eq. 84: bital, although the fermion orbital is neutral and the elect
is charged (we can think of the electrons’ charge as being
oo = (P(21) - Y(2n)) [lic(zi —25)™ screened by the superfluid).
1 When there are many quasiholes, they may fuse together in
= Pf( ) Hi<j(zi —2z;)™ (92) manydifferentways. Thus, even when the quasihole position
7T 2 are fixed there are many degenerate ground states, each cor-
responding to a different conformal block (see appendix A).
This degeneracy is precisely what is required for non-Asveli
statistics. Braiding the quasiholes around each othenymesl
a rotation within this degenerate space.
Fusing2m o fields results i ~! conformal blocks, as
Jastrow factors attached). may be_seen by examining th_e Bratteli diagram of Fig. 22 in
To determine the filling fraction of our newly constructed a_ppendlx A. When two qua5|holes_come together, they may
either fuse to forml or ¢). As above, if they come together to

wavefunction, we need only look at the exponent of the Jas ; ; .
trow factor in Eq. 92. Recall that the filling fraction is de- form1 then taking the two quasiholes around each other gives

termined by the highest power of any(See III.D.1 above). & Phase of-2m/8 + 2m/4m. On the other hand, if they fuse
There aren(N — 1) factors ofz; in the Jastrow factor. The to form« then taking them around each other gives a phase of

Pfaffian has a factor of; in the denominator, so the highest 2m3/8 + 2m/4m. . . o

power of 2, is m(N — 1) — 1. However, in the thermody- These conclusions can be illustrated explicitly in the sase
namic limit. the number of faictors scalésmSV Thus the of two and four quasiholes. For the case of two quasiholes, th
filling fracti(,)n isy = 1/m ' correlation function (93) can be evaluated to give (Mooré an

We now consider quasihole operators. As in the Laughlirﬁead’ 1991; Nayak and Wilczek, 1996) (for an even number
. . : ' _ine/ym of electrons):
case we might consider the primary fields, = e .

Similar arguments as in the Laughlin case show thatthel )
case generates precisely the Laughlin quasihole of charge ¥ (w1, w2) = [](z; — 2)? x

(See, e.g. Di Francesatal., 1997 for the calculation of this
correlation function.) Againyn odd gives an antisymmetric
wavefunction andn even gives a symmetric wavefunction.
Form = 2 (and evenN), Eq. 92 gives precisely the Moore-
Read Pfaffian wavefunction (Eqg. 43 with= 1/~ and two

@ = +e¢/m. However we have other options for our quasi- i<k
hole which have smaller electrical charge. The primary field ; (zj —w1) (2 — wa) + 25 < 25 04
o '?/2V™ has charg€ = +e/2m. We then obtain the wave- P Z — 2k - (99)

function according to Eq. 85
wherewis = w; — we. FoOr simplicity, we specialize to

Vi, ...,wy)=(o(w1)...0(wn)Y(z1)...p(zN)) X the casem = 2; in general, there would be a prefactor
Moo dpm NM N 93 (wlg)ﬁ’%. When the two quasiholes at; and w, are
il;[j(wl ws) AL jl;[l(zz w;) il;[j(Zl #)" (99) brought together at the point, a single flux quantum Laugh-

lin quasiparticle results, since tw® can only fuse to the iden-

Using the fusion rules of the fields (See Eq. 7, as well as ity in this case, as expected from the above arguments:
Fig. 22 and Table Il in Appendix A), we see that it is impossi-

ble to obtainl from an odd number of fields. We conclude 1
that quasiholes,;, can only occur in pairs. Let us then con-  Vqu(w) = H(zj — zk)QH (z; —w) Pf( ) .

sider the simplest case of two quasiholes. If there is an even j<k 23Tk

number of electrons, the fields fuse in pairs to form, and (95)

the remaining two quasiholes must fuse to fotnalso. As o ) _ _
discussed in Eq. A3 the OPE of the twofields will then The situation becomes more interesting when we consider

have a factor ofw; — w,)~'/%. In addition, the fusion of the states with 4 quasiholes. The ground state is 2-fold degener
two vertex operatorsi®/2V7 results in the first term in the ate (see appendix A). If there is an even number of electrons
second line of Eq. 93w, — w2)/(*™). Thus the phase ac- (which fuse to form the identity), we are then concerned with

cumulated by taking the two quasiholes around each other {§1€ (co00) correlator. As discussed in appendix A, two or-
—27/8 4 27 /4m. thogonal conformal blocks can be specified by whether 1 and

On the other hand. with an odd number of electrons in? fuse to form eithet or . The corresponding wavefunctions
the system, the)'s fusé in pairs, but leave one unpaired obtained by evaluating these conformal blocks are (Nayek an
The twoo’s must then fuse to form & which can then fuse Wilczek, 1996):
with the unpaired) to give the identity. (See Eq. A3). In

1
this case, the OPE of the two fields will give a factor of (1,0) _ (wizwag)?
(w; — wo)3/®. Thus the phase accumulated by taking the two IESNORE (Pasyen = vV Yaaes) (96)
quasiholes around each othefis/8 + 27 /4m.
In the language of section IIl.B above, when there is anwherex = wjqwos/wiswe4. (Note that we have taken

even number of electrons in the system, all of these aregairea slightly different anharmonic ratie than in Nayak and



43

Wilczek, 1996 in order to make (96) more compact than EqswhereM must be odd for electrons, means the symmetriza-
(7.17), (7.18) of Nayak and Wilczek, 1996.) In this expres-tion over all permutations, and

sion,
Xr.s = (23741 = 23541) (23741 — 23s542) X
v = = 2k)? X '
(13)(24) 31:[]6(23 Zk) (23r+2 - 235+2)(23r+2 - Z3s+3) e X
P ( (25 — ) (25 = ws) (21 — wa) (20— wa) + (j k)) (ars = Zacea) (Fares = Z3e1) - (100)
Zj T Fk With the electron operator in hand, we can determine the
(97) primary fields of the theory. The primary field of minimum
and electrical charge ig),, = o01¢/3> To see that this field is
local with respect ta). (i.e., there should be no branch cuts
WU (14y(28) = H(zj — 1) x for the electron coordinates), observe that; (w)hr(2) ~
i<k (z — w) ™3¢ and /3 (w)e'*?(2) ~ (2 — w)'/3. Con-
zi —w1)(z; — wa)(zk — wa) (2 — ws) + (j = k structing the full wavefunction (as in Eq. 85 and analogaus t
Pf(( i = w1)(z —wa) P ;k)( 8) )) Eq. 93) the fusion of o&**/3¢ (from 1,;,) with ¢’¢ (from
J

98) 1) again generates a factor pf,(z; — w)'/3. We conclude
that the elementary quasihole has chagge +-ev/3.
Suppose, now, that the system is in the stat®. Braid-
ing 1 around 2 or 3 around 4 simply gives a phase (which is
R{° multiplied by a contribution from the Abelian part of the
theory). However, if we takev, aroundws, then after the (a)
braiding, the system will be in the staié¥) as a result of the
branch cuts in (96). Now, 1 and 2 will instead fuse together
to form ), as expected from the general argument in Eq. A6.
Thus, the braiding yields a rotation in the degenerate spacel
The resulting prediction for the behavior under braiding fo
the Moore-Read Pfaffian state is in agreement with the sutb)
obtained in sections I11.B and I1I.C above.

(e) Z3 Read-Rezayi State (Briefly): We can follow a com-

pletely analogous procedqre with a QFT Wh.ICh is the tensol':IG_ 9 (a) Bratteli diagram for fusion of multiple fields in theZs
product of theZ; parafermion QFT with a chiral bo§on. As Parafermion CFT(b) Bratteli diagram for Fibonacci anyons.
before, the electron operator is a product of a chiral vertex
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operator from the bosonic theory with an operator from the

parafermion theory. The simplest choiceyis = 1 e“?.
We would like this field to be fermionic so that it can be
an electron creation operator by which we can extend th
chiral algebra (i.e., so that the electron wavefunctionas
branch cuts or singularities). (See appendix A for the nota
tion for parafermion fields.) The fusion rules for in theZ;
parafermion CFT arep; x 11 ~ 1 butyy x 11 x 91 ~ 150
that the correlator in Eq. 84 is only nonzera\ifis divisible by
3. From the OPE, we obtaif (z1)11 (22) ~ (21 —22)~2/34)y
so in order to have the wavefunction analytic, we must choos
a vm+2/3 with m > 0 an integer » odd results
in an antisymmetric wavefunction and even results in sym
metric). The filling fraction in the thermodynamic limit is
determined entirely by the vertex operatét?, resulting in
v=1/a®=1/(m+2/3).

The ground state wavefunction fof = 3n electrons takes
the form:

\I/gs(zl, .. .,Zgn) = H (Zz — Zj)m X

i<j

S II  xrs(zsrins s 280tk 23641, - - 23548)

0<r<s<n

(99)

The general braiding behavior for tifg parafermions has
been worked out in Slingerland and Bais, 2001. It is trivial,
however, to work out the dimension of the degenerate space

Ly examining the Bratteli diagram Fig. 9a (See the appendix

for explanation of this diagram). For example, if the number
of electrons is a multiple of 3 then they fuse together to form
the identity. Then, for example, with 6 quasiholes one has 5
paths of length 5 ending at(hence a 5 dimensional degener-
ate space). However, if, for example, the number of elestron
is 1 mod 3, then the electrons fuse in threes to farot there

is oney, left over. Thus, the quasiholes must fuse together to
orm 5 which can fuse with the leftover; to form1. In this
case, for example, with 4 quasiholes there is a 2 dimensional

space. Itis easy to see that (if the number of electronsis-div
ible by 3) the number of blocks with quasiparticles is given
by then — 1°¢ Fibonacci number, notated Fib(n-1) defined by
Fib(1) = Fib(2) = 1 and Fiin) = Fib(n — 1) + Fib(n — 2)
forn > 2.

E. Edge Excitations

When a system in a chiral topological phase has a bound-
ary (as it must in any experiment), there must be gapless ex-
citations at the boundary (Halperin, 1982; Wen, 1992). To
see this, consider the Chern-Simons action on a maniféld
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[State lcrr | v | e ] ban | boundary condition. This boundary condition is not unique,
Laughlin |Boson 1 Gl i/ howeve_r. The topological ord_e_r of the_ bulk sta;e does not
Moore-Readisin i N 0/ @ /mTD) determine the boundary condition. It is determined by the

9 1+1 T 7€ YoV physical properties of the edge. Consider, for instance, th
Z3 RR Zs Paraf) ;s |1 eV |0y OV [ Giternative boundary conditiofug + vai) ,,, = 0 for some

constantv with dimensions of velocity. With this bound-
TABLE | Summary of CFT-wavefunction correspondences dis-ary condition, the quadratic term in the Lagrangian will now
cussed here. In all cases > 0. Odd (even)n represents a Fermi  be tr((aO + vdy) U-1o, U) and the edge theory is the chiral
(Bose) wavefunction. WZW model with non-zero velocity.

. It is beyond the scope of this paper to discuss the chiral
with boundaryo M (Elitzur et al., 1989; Witten, 1989), Eq. \wzw model in any detail (for more details, see Gepner and
24. The change in the action under a gauge transformatiogyjy, 1987; Gepner and Witten, 1986; Knizhnik and Zamolod-
a, — gaug~' +goug~t,is: chikov, 1984 ). However, there are a few key properties which

k we will list now. The chiral WZW model is a conformal field
Scsla] — Scsla] + — / tr(g~'dg A a) (101) theory. Therefore, although there is a gap to all excitation
A Jorm the bulk, there are gapless excitations at the edge of the sys

In order for the action to be invariant, we fix the boundaryteém. The spectrum of the WZW model is organized into rep-
condition so that the second term on the r.h.s. vanishes. Fégsentations of the Virasoro algebra and is further orgahiz

instance, we could take boundary conditifif) — 0, Iinto representations of th@ Kac-Moody algebra. For the
Ny sake of concreteness, let us consider the case of SU(Re

wherexq, x1 are coordinates on the boundary.bf andz- h . . .

is the coordinate perpendicular to the boundarywéf Then .SUEZ)’?W_ZW rlnodel contkalr;s primary f'el%" tra_tlphsformlng

the action is invariant under all transformations whictpeses in the j = 0, /2,1,....k/ representations. These corre-
spond precisely to the allowed quasiparticle species: \ien

this boundary condition, i.e. which satisfjig = 0 on the total topological charge of all of the quasiparticles in gk
boundary. We separate these into gauge and global Symm|s_j, the edge must be in the sector created by acting with the

tries. Functiong) : M — G satisfyingg,,, = 1 are the binj primary field on the vacuum
i . (Th il tisfyP2 1 i o
gauge symmetries of the theory. (They necessarily sa IS§ The G, case is a generalization of the Uflrase, where

0og = 0 sincexy is a coordinate along the boundary.) Mean- ; ; .
while, functionsf : M — G which are independent af, are gh: ¢' and the WZW model reduces to a free chiral bosonic
' theory:

really global symmetries of the theory. The representation
of this global symmetry form the spectrum of edge excita- m
tions of the theory. (The distinction between gauge andajlob S = I
transformations is that a gauge transformation can leawe th
t = 0 state unchanged while changing the state of the sysin Sec. IIl.A, we used: for the coefficient of an Abelian
tem at a later time. Since it is, therefore, not possible for a Chern-Simons term; here, we useto avoid confusion with
given initial condition to uniquely define the state of thesy the corresponding coupling of the SU(2) Chern-Simons term
tem at a later time, all physically-observable quantitiesstn  in situations in which both gauge fields are present.) The pri
be invariant under the gauge transformation. By contrast, anary fields are’™?, withn = 0, 1, ..., m — 1. (The fielde’™?
global symmetry, even if it acts differently at differenesial  is either fermionic or bosonic for, odd or even, respecitvely,
points, cannot leave the= 0 state unchanged while chang- so it is not a primary field, but is, rather, included as a ganer
ing the state of the system at a later timeA global sym-  tor of an extended algebra.) A quantum Hall state will always
metry does not prevent the dynamics from uniquely defininthave such a term in its edge effective field theory; the U(1)
the state of the system at a later time for a given initial con-s the symmetry responsible for charge conservation and the
dition. Therefore, physically-observable quantitiescheet  gapless chiral excitations (103) carry the quantized Hall ¢
be invariant under global transformations. Instead, tlezsp rent.
trum of the theory can be divided into representations of the Therefore, we see that chiral topological phases, such as
symmetry.) fractional quantum Hall states, must have gapless chige ed
With this boundary condition, the natural gauge choice forexcitations. Furthermore, the conformal field theory which
the bulk isag = 0. We can then transform the Chern-Simonsmaodels the low-energy properties of the edgeéssame con-
functional integral into the chiral WZW functional integra formal field theory which generates ground state wavefunc-
following the steps in Egs. 81-83 (Elitzetal., 1989): tions of the corresponding Chern-Simons action. This iarcle
from the fact that the two derivations (Egs. 83 and 102)

d*z (0, +v0,) ¢ 0pb (103)

_k tr (8 U-19 U) i are virtually identical. The underlying reason is that Gher
AT Jom 0 ! Simons theory is a topological field theory. When it is solved
A . . . on a manifold with boundary, it is unimportant whether the

127 )€ tr(0,UU'9,UUTTO\UUTY) (102)  manifold is a fixed-time spatial slice or the world-sheeth t

edge of the system. In either case, Chern-Simons theory re-
Note the off-diagonal form of the quadratic term (analogousduces to the same conformal field theory (which is an example
to thez — z formin Eq. 83), which follows from our choice of of ‘holography’). One important difference, however, isth
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in the latter case, a physical boundary condition is imposegoint, the Majorana fermions become massless. Therefore,

and there are real gapless degrees of freedom. (In the form#re edge excitations are the right-moving chiral part of the

case, the CFT associated with a wavefunction for a fixed-timeritical Ising model. (This is why the vortices ofpat ip su-

spatial slice may have apparent gapless degrees of freedgmerconductor are call Ising anyons.) However, the edge exci

which are an artifact of a gauge choice, as discussed in Setations have non-trivial topological structure for the sanma-

tion 111.D.) son that correlation functions of the spin field are nonidtiv
The WZW models do not, in general, have free field rep-in the Ising model: while the fermions are free, the Isinqspi

resentations. One well-known exception is the equivalencéeld is non-local in terms of the fermions, so its correlato

between the SU(N)x U(1)y chiral WZW model andV free  are non-trivial. The Ising spin field(z) inserts a branch cut

chiral Dirac fermions. A somewhat less well-known excep-running fromz = v, x + it to infinity for the fermiormy. This

tion is the SU(2) chiral WZW model, which has a represen- is precisely what happens when a flux/2¢ vortex is created

tation in terms of 3 free chiral Majorana fermions. Before-di in ap + ip superconductor.

cussing this representation, we first consider the edgeaexci  The primary fields of the free Majorana fermion dreo,

tions of ap + ip superconductor, which supports Ising anyonsand> with respective scaling dimensiofs1/16, and1/2,

which, in turn, differ from SU(2) only by a U(1) factor. as discussed in Section IIl.D. When there is an odd number
Let us solve the Bogoliubov-de Gennes Hamiltonian (38)of flux he/2e vortices in the bulk, the edge is in the0)|0)

with a spatially-varying chemical potential, just as we oid sector. When there is an even number, the edge is in either

Section 111.B. However, instead of a circular vortex, we €on the |0) or ¢/(0)|0) sectors, depending on whether there is an

sider an edge at = 0: even or odd number of fermions in the system. So long as

quasiparticles don’t go from the edge to the bulk or vice agrs
wy) = Ah(y), (104)  however, the system remains in one of these sectors and all

. . excitations are simply free fermion excitations built op taf

with h(y) large and positive for Iargg, gnd h(y) < 0for e ground state in the relevant sector.

y < 0; therefore, the electron density will vanish fpiarge However, when a quasiparticle tunnels from the edge to the

and positive. Such a potential defines an edge-at0. There |k (or through the bulk), the edge goes from one sector to

are low-energy eigenstates of the BdG Hamiltonian which argother — i.e. it is acted on by a primary field. Hence, in the

spatially localized neay = 0: presence of a constriction at which vortices of fermions can
cdge ik — [ h(y)dy’ tunnel from one edge to another, the edge Lagrangian of a
B (x)metre o b0, (105) p + ip superconductor is (Fendleyal., 2007a):

with ¢ = (}) an eigenstate of*. This wavefunction de-
scribes a chiral wave propagating in thedirection localized S = /dT dz (Ltermion(ta) + Ltermion(Vs))
on the edge, with wave vectér= E/A. A more complete
solution of the superconducting Hamiltonian in this sitoiat 4 /dT Ay 0oty + /dT Ao0q0p  (108)
would involve self-consistently solving the BdG equaticsts
that both the density and the g&y) would vanish for large
positivey. The velocity of the chiral edge mode would then
depend on how sharply(y) varies. However, the solutions
given above with fixed constadt are sufficient to show the
existence of the edge mode.

If we define an edge fermion operaipfx):

wherea, b denote the two edges. (We have dropped all irrel-
evant terms, e.g descendant fields.) In other words, althoug
the edge theory is a free theory in the absence of coupling to
the bulk or to another edge through the bulk, it is perturbed b
primary fields when quasiparticles can tunnel to or from the
edge through the bulk. The topological structure of the bulk
TNy ik o constrains the edge through the spectrum of primary fields.
() = e iR > (k™o + doge” " o], As in the discussion of Section I11.D, the edge of the Moore-
k>0 Read Pfaffian quantum Hall state is a chiral Majorana fermion
. _ together with a free chiral bosahfor the charge sector of the
The ferrr]:lo_n operatorsyy, satisfyy_ = vl s0Y(x) = theory. As in the case ofa+ ip superconductor, the primary
> Yre’™ is areal Majorana field)(z) = ¢ (x). The edge  fie|ds of this theory determine how the edge is perturbed by
Hamitonian is: the tunneling of quasiparticles between two edges throgh t

. bulk (Fendleyetal., 2006, 2007a):
Hedge - Z vnk "/)]-Ewk = /d'rdj(x)(_“)nam)w(x)a
k>0
(106) S = / dr { / dz (LedgdVa, Pa) + Ledgd Vv, b))
where the edge velocity = A. The Lagrangian density takes
the form: + A1y cos((6a(0) = ¢5(0))/V/2) + A0 ithathy
Ltermion = 11h(x) (8 + 08, )b(x) (107) + X172 94(0)03(0) cos((da(0) — ¢5(0))/2v2)|  (109)

The 2D Ising model can be mapped onto the problem ofThe most relevant coupling is, /4, so the tunneling of charge
(non-chiral) Majorana fermions on a lattice. At the critica e/4 quasiparticles dominates the transport of charge from
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one edge to the other at the point contact. (The tunnelingvhich is not quite the SU(2)WZW model.

of chargee/2 quasiparticles makes a subleading contribution

while the tunneling of neutral fermions contributes only to

thermal transport.) At low enough temperatures, this BV £ |nterferometry with Anyons

tunneling process causes the point contact to be pinched off

(Fendleyetal., 2006, 2007a), but at temperatures that are not n section Il of this review we described an interference
too low, we can treat the tunneling of4 quasiparticles per- - experiment that is designed to demonstrate the non-Abelian
turbatively and neglect other the other tunneling opegatdf statistics of quasiparticles in the= 5/2 state. We start this
course, the structure of the edge may be more complex thagection by returning to this experiment, and using it as @n-ex
the minimal structure dictated by the bulk which we have an<ise for the application of the calculational methods reeie
alyzed here. This depends on the details of the confining pospove. We then generalize our analysis to arbitrary SU(2)
tential defining the system boundary, but at low enough tempon.Apelian states and also describe other experiments tha
peratures, the picture described here should still apply. | share the same goal.

teresting information about the non-Abelian charactemef t In the experiment that we described in Section II, a Fabry-
Moore-Read Pfaffian state can be obtained from the tempergsg ot interference device is made of a Hall bar perturbed by
ture dependence of the tunneling conductance (Feredily, 5 constrictions (see Fig. 2). The back-scattered cuigent
2006, 2007a) and from current noise (Bena and Nayak, 2006)neasured as a function of the area of the cell enclosed by the

Finally, we return to SU(2) The SU(2) WZW model is  two constrictions and of the magnetic field. We assume that
a triplet of chiral Majorana fermions;;, vy, 3 —i.e. three  the system is av = 5/2 and consider interference experi-
identical copies of the chiral Ising model. This tripletiet ments which can determine if the electrons are in the Moore-
spin-1 primary field (with scaling dimensioh/2). The spin-  Read Pfaffian quantum Hall state.
1/2 primary field is roughly~ 10203 with dimension3 /16 Generally speaking, the amplitude for back-scattering is a
(a more precise expression involves the sum of products sugium over trajectories that wind the célitimes, with/ =
asoioa3, Wherey is the Ising disorder operator dual#).  0,1,2... an integer. The partial wave that winds the cell
This is one of the primary differences between the Ising rhodetimes, winds the: quasiparticles localized inside the céll
and SU(2): o is a dimensiorl /16 field, while the spint/2  times. From the analysis in Section II1.B, if the electrons a
primary field of SU(2) has dimension/16. Another way to  in the Pfaffian state, the unitary transformation that the tu
understand the difference between the two models is that theeling quasiparticle applies on the wave function of thezer
SU(2), WZW model has two extra Majorana fermions. The energy modes is
pair of Majorana fermions can equally well be viewed as a
Dirac fermion or, through bosonization, as a free chiral bo- ' n ¢
son, which has U(1) symmetry. Thus, the Ising model is often (Un) = leiawg H%] (110)
written as SU(2)/U(1) to signify that the the U(1) chiral bo- =1
son has been removed. (This notion can be made precise with
the notion of acoset conformal field theory (Di Francesco Where they;’s are the Majorana modes of the localized bulk
etal., 1997) or by adding a U(1) gauge field to the 2D actionquasiparticlesy, is the Majorana mode of the quasiparticle
and coupling it to a U(1) subgroup of the SU(2) WZW figld that flows around the cell, and, is an Abelian phase that
(Gawedzki and Kupiainen, 1988; Karabatial., 1989). The Will be calculated below.
gauge field has no Maxwell term, so it serves only to elimi- The difference between the even and odd values, dfiat
nate some of the degrees of freedom, namely the U(1) piecewje described in Section Il of the review, is evident from Eq.
As we discussed in subsection II1.C, these differenceslace a (110) when we we look at the lowest ordér- 1. For evem,
manifested in the bulk, where they lead to some difference¥/,, is independent of,. Thus, each tunneling quasiparticle
in the Abelian phases which result from braiding but do notapplies the same unitary transformation on the ground.state
change the basic non-Abelian structure of the state. The flowing current themeasuresthe operatot/,, (more pre-

On the other hand, the edge of the Moore-Read Pfaffiaisely, it measures the interference term, which is an heami
quantum Hall state is a chiral Majorana fermion togethehwit operator. From that term the value ©f, may be extracted).
a free chiral bosory which carries the charged degrees of In contrast, whem: is odd the operatot/,, depends ony,.
freedom. So we restore the chiral boson which we eliminated hus, a different unitary operation is applied by every imeo
in passing from SU(2)to the Ising model, with one important ing quasiparticle. Moreover, the different unitary operat
difference. The compactification radiis(i.e., the theory is do not commute, and share no eigenvectors. Thus, their ex-
invariant under) — ¢ 4 27 R) of the charged boson need not pectation values average to zero, and no interference is to b
be the same as that of the boson which was removed by cosetbserved. This analysis holds in fact for all odd valueé. of
ting. For the special case of bosongat 1, the boson is, in The phasev,, is composed of two parts. First, the quasi-
fact, at the right radius. Therefore, the charge boson can bearticle accumulates an Aharonov-Bohm phaseref @/ hc,
fermionized so that there is a triplet of Majorana fermidns. wheree* = e/4 is the quasiparticle charge for=5/2 and®
this case, the edge theory is the SURJZW model (Fradkin is the flux enclosed. And second, the tunneling quasiparticl
etal., 1998). In the case of electronsat 2+ 1/2, the chiral accumulates a phase as a consequence of its interaction with
boson is not at this radius, so the edge theory is 4(19ing,  then localized quasiparticles. When a chatgée object goes



accumulates igm/4.

aroundn flux tubes of half a flux quantum each, the phase i
Altogether, then, the unitary transformation (110) has tw Q

-~
O
S

eigenvalues. For evem, they are(iz‘)"l/g. For oddn, they
are (+i)" P2 The back-scattered current then assumes
the following form (Stern and Halperin, 2006), + + q‘l
= s nTo T«
Ips = I, cos> mn—= cosm(¢p + — + — 111
b mZ:O 2 (¢ 4 92 ) ( ) — (q +q_1) d2+ 2d

wheref = n for n even. andi = n + 1 for n odd. Them" FIG. 10 Using the recursion relation (77), we can evaluate

term of this sum is the contribution from a process that Ioopé’dp("%) Ix)-
aroundm times, which vanishes ii andm are both odd.

We can restate this analysis using the CFT description of | .
the Moore-Read Pfaffian state. Charge quasiparticles are While for event we get an extra phase 6f/4. Altogether,

) . . . this reproduces the expression (111).
ip/V8 : . .
associated W'th the_ operatore operators. The fusion Now let us consider the same calculation using the rela-
of n such quasiparticles is then to

tion between Chern-Simons theory and the Jones polynomial.
For simplicity, we will just compute the current due to a sin-

n/VE 1 gle backscattering and neglect multiple tunneling proegss
eMmOIVE xS (112)  which can be computed in a similar way. The elementary
o quasiparticles havg = 1/2. These are the quasiparticles

which will tunnel at the point contacts, either encirclirigpt
where either of the first two is possible for everand the last  bulk quasiparticles or not. (Other quasiparticles willeyiar
is the outcome of the fusion for odd In order to determine sub-leading contribution to the current because theiréinn
the effect of braiding an incoming quasiparticle aroundithe ing amplitudes are smaller and less relevant in the RG sense.
bulk ones, we consider the possible fusion channels of onEirst, consider the case in which there is a single- 1/2
quasiparticle with (112). The fusion of the bosonic factorsquasiparticle in the bulk. The back-scattered current ihief
(i.e. the electrical charge) is: form:

2 — z) /8 Ips = I + iRe{e™ (x|p(03) [x) } (116)
(113)
Thus, when the incoming quasiparticle, at coordinateen-
circles the bulk times, it accumulates a phaseafx (n/8) x
¢ = ntr /4 purely as a result of the U(1) part of the theory.
Now consider the neutral sector. The fusion of theper-
ator depends on the state of the bulk. When the bulk is ha
total topological charga, the fusion is trivial, and does not
involve any accumulation of phases. When the bulk has tot
topological charge, the fusion is:

eind(z1)/VB  id(22)/VB _, oiln+1)é(1)/VE(

The matrix element on the right-hand-side is given by théeva
uation of the link in Figure 4a (Bondersenal., 2006a; Frad-
kin etal., 1998) (up to a normalization of the bra and ket; see
Sec. ll.C). Itis the matrix element between a stateis the
tate in whichl and2 fuse to the trivial particle as d® and
and the state(03) |x). The former is the state in which
atpe tunneling quasparticle (q@)does not encircle the bulk
quasiparticle (gp.2); the latter is the state in which it does.
The matrix element between these two states determines the
interference.

Using the recursion relation (77) as shown in Figure 10, we
obtain:

o(z2) X ¥(z1) = o(21) X (21 — z2)_1/2 (114)

and an extra phase af’ is accumulated when the incoming
guasiparticle winds the bulk quasiparticlemes. When the 9
bulk has total topological charge i.e. whenn is odd, the <x|p(02) 1)
non-Abelian fusion rule applies (see Eq. A3), and

(g+q ") d*+2d
= —d*+2d (117)

_1/8 12 Fork = 2, d = /2, so this vanishes. Consequently, the
o(z1) X 0(22) — (21 — 22) L+ (21 — 22) /“9(21) interference term in (116) also vanishes, as we found above
(115) by other methods. The case of an arbitrary odd number of
Since the probability for the two fusion outcomes is edyal quasiparticles in the island is similar.
for any odd/ we get two interference patterns that are mu- Now consider the case in which there are an even number
tually shifted byr, and hence mutually cancel one another,of quasiparticles in the island. For the sake of simplicitg,
consider the case in which there are two quasiparticlesan th
bulk, i.e. a qubit. The pair can either fusejte= 0 or j = 1.
In the former case, itis clear that no phase is acquired,igee F
8 This follows fromN1_ = NY, = 1. 11a. In the latter case, the recursion rule (77) gives 44 a
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as depicted in figure 11. This difference allows us to read ouby both the bulk and the edge. However, the edge theory also

the value of a topologically-protected qubit (Das Saetal.,
2005).
What happens if the qubitis in a superposition ef 0 and

enables one to determine the temperature and voltage depen-
dences ofly, I3, ... in (111), (116) (Ardonne and Kim, 2007;
Bishara and Nayak, 2007; Fidkowski, 2007). As is discussed

j = 1? The interference measurement causes the tunnelirig these papers, at finite temperature, interference wilbeo
guasiparticles to become entangled with the bulk quasipartvisible if the two point contacts are further apart than tert

cle (Bondersortal., 2007; Freedmagtal., 2006; Overbosch
and Bais, 2001). When the integrated current is large enou
that many quasiparticles have tunneled and equilibratdteat
currentleads, thg = 0 andj = 1 possibilities will have deco-

hered. The measurement will see one of the two possibilitie

with corresponding probabilities.

(30

@ (b)

FIG. 11 We can obtain the result of taking a= 1/2 quasiparticle
around a qubit from the two diagrams in this figure. In (a) thlkigis
in the state), while in (b) it is in statel. These figures are similar to
the left-hand-side of Fig. 10, but with the loop on the rigtplaced
by a loop with (a)j = 0or (b)j = 1.

U
N

The experiment that we analyzed abovefoe 5/2 may
be analyzed also for other non-Abelian states.
putation using knot invariants can be immediately adapte
to other SU(2) states by simply replacing = /2 with
d = 2 cosw/(k + 2). We should calculate the value of the

Hopf link as in figures 10 and 11, with one of the loops corre-,

sponding to the tunneling quasiparticle and the other l@op ¢

particles. The result can be written in the more general for
(Bondersoretal., 2006b):

Ips (a) =Iy+1; |Mab| COS(ﬂ + Gab) (118)
whereM,; is defined in terms of th&-matrix:
SapS11
My, = 119
"7 5151 (119)

and My, = | M| e?=>. The expression (118) gives the cur-
rent to due taz quasiparticles if the quasiparticles in the bulk
fuse tob. If the contribution ofj = 1/2 quasiparticles domi-
nates, as in the = 5/2 case, then we should set= % in this
expression. For the levél= 3 case, taking = % |Map| =1
for b = 0, 2 while [ M| = ¢=2 for b = 3,1, where is the
golden meang = (1 ++/5)/2. (In Z3 parafermion language,
b =0, 2 correspond to the fields, 1, , whileb = },1 corre-
spond to the fields, ,,¢.)

Finally, we can analyze the operation of an interferometeinteger quantum Hall regime (&t al., 2003)).

9

The com

mal length scald., WhereL;1 = kT (1vﬁ + lvﬁ) if the
cl}larged and neutral mode velocities arev,,. Another im-
portant feature is that the interference term (when it is-non
vanishing) is oscillatory in the source-drain voltage whfie
?0 term has a simple power law dependence.

The assumption that the edge and the bulk are well sepa-
rated is crucial to that above calculations of interferetcg
in practice this may not be the case. When there is bulk-
edge tunneling one might imagine that a quasiparticle mov-
ing along the edge may tunnel into the bulk for a moment and
thereby evade encircling some of the localized quasipestic
thus smearing out any interference pattern. The first thieore
cal steps to analysing this situation have been taken infOve
bosch and Wen, 2007; Roseneival., 2007) where tunnling
to a single impurity is considered. Surprisingly it is found
that the interfernece pattern is full strength both in thersj
tunneling limit as well as in the weak tunneling limit.

While the experiment we described for the= 5/2 state
does not require a precise determinatiomgfas it is only
its parity that determines the amplitude of the interfeeenc
pattern, it does require that the numbedoes not fluctu-

te within the duration of the experiment. Generally, fluc-

tuations inn would be suppressed by low temperature, large
charging energy and diminished tunnel coupling between the
bulk and the edge. However, when their suppression is not

responding to the total topological charge of the bulk q-uasiStrong enough, andfluctuates over a range much larger than

1 within the time of the measurement, two signatures of the

Mhon-Abelian statistics of the guasiparticles would stilhdve,

at least as long as the characteristic time scale of thege-fluc
ations is much longer than the time between back—scattering
events. First, any change inwould translate to a change in
the back-scattered current, or the two-terminal condeetan
of the device. Hence, fluctuationsnwould introduce cur-
rent noise of the telegraph type, with a unique frequency de-
pendence (Grosfeldt al., 2006). Second, fluctuations in
would suppress all terms in Eq. (111) other than those where
m = 4k with k£ an integer. Thus, the back—scattered current
will have a periodicity of one flux quatun,, and the visi-
bility of the flux oscillations, for weak back—scatteringyud
be s I |

A similar relation holds also for another type of interfer-
ence experiment, in which the interferometer is of the Mach-
Zehnder type, rather than the Fabry-Perot type. (A Mach-
Zehnder interferometer has already been constructed in the
If we are

using the edge theory (109). The preceding discussion esete describe the Mach-Zehnder interferometer in a language
tially assumed that the current is carried by non-intengcti close to that we used for the Fabry-Perot one, we would note
anyonic quasiparticles. However, the edge is gapless anthe following important differences: first, no multiple lkac

in general, does not even have well-defined quasiparticlescattering events are allowed. And second, since the area en
Therefore, a computation using the edge theory is more conelosed by the interfering partial waves now encompasses the
plete. The expected results are recovered since they ae detinner edge, the quantum state of the encircled ahaages
mined by the topological structure of the state, which isstia with each tunneling quasiparticle. Thus, it is not surprising
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that the outcome of an interference experiment in a Machare the natural degrees of freedom in a topological phase be-
Zehnder geometry will be very close to that of a Fabry-Perotause the topological charge of a particle or collectionaof p
experiment with strong fluctuations in The telegraph noise ticles can only be determined, in general, by taking a tesst pa
in the Fabry-Perot case(Grosfedtial., 2006) becomes shot ticle around the particle or collection in question. Theref
noise in the Mach-Zehnder case. Remarkably(Feldetah, the most direct way in which a system can settle into a topo-
2006) the effective charge extracted from that noise cagie logical phase is if the microscopic degrees of freedom orga-
signature of the non-Abelian statistics: as the flux is \irie nize themselves so that the low-energy degrees of freedem ar
the charge changes frogyi4 to about3e. loops or, as we will see below, string nets (in which we allow
Other than interference experiments, there are several proertices into which three lines can run). As we will describe
posals for experiments that probe certain aspects of theore fully below, the Hilbert space of a non-chiral topologi
physics of non-Abelian states. The degeneracy of the grounckl phase can be described very roughly as a ‘Fock space for
state in the presence of vortices may be probed(Grosfeld arldops’ (Freedmaetal., 2004). Wilson loop operators are es-
Stern, 2006) by the consequences of its removal: when the fillsentially creation/annihilation operators for loops. Hilbert
ing factor isv = 5/2 + e with ¢ < 1, quasiparticles are intro- space is spanned by basis states which can be built up by act-
duced into the bulk of the system, with a density proportionaing with Wilson loop operators on the state with no loops, i.e
to e. For a clean enough sample, and a low enough densityy1 U ... Uv,) = Wiy,] ... W[n]|0) is (vaguely) analgous
the quasiparticles form a lattice. In that lattice, the Maj@a  to |ky,..., ko) = aLn ...aL |0). An important difference is
zero modes of the different quasiparticles couple by tungel  that the states in the topological theory must satisfy saxme e
and the degeneracy of the ground states is removed. The sulpa constraints in order to correctly represent the algera
space of multiply-degenerate ground states is then replace  the operatord§V [4]. If we write an arbitrary state¥) in the
aband of excitations. The neutrality of the Majorana mosdes ibasis given abovel|y; U ... U y,] = (¥|y; U ... U~,),
removed too, and the excitations carry a charge that is propothen the ground state(s) of the theory are linearly independ
tional to their energy. This charge makes these modes weakly |y, U . .. U v, ] satisfying some constraints.
coupled to an externally applied electric field, and proside In fact, we have already seen an example of this in section
unigue mechanism for a dissipation of energy, with a characH.D: Kitaev's toric code model (18). We now represent the
teristic dependence on the wave vector and frequency of theolution in a way which makes the emergence of loops clear.
electric field. Since the tunnel coupling between neighimpri  We color every link of the lattice on which the spin points up.
quasiparticles depends exponentially on their separdtiim  Then, the first term in (18) requires that there be an even num-
mechanism will be exponentially sensitive to the distanice ober of colored links emerging from each site on the lattice. |
the filling factor from 5/2 (Grosfeld and Stern, 2006). other words, the colored links form loops which never termi-
nate. On the square lattice, loops can cross, but they cannot
cross on the honeycomb lattice; for this reason, we willrofte
G. Lattice Models with P, T-Invariant Topological Phases find it more convenient to work on the honeycomb lattice. The
second term in the Hamiltonian requires that the groune stat
Our discussion of topological phases has revolved aroung@tisfy three further properties: the amplitude for twofapn
fractional quantum Hall states because these are the oaly onUrations is the same if one configuration can be transformed
known to occur in nature (although two dimensiofsle-A  INto another simply by (1) deforming some loop without cut-
(Leggett, 1975; Volovik, 1994) and SRuO, may join this list ting it, (2) removing a Ioop.whlch runs around a s!ngle plaque
(Kidwingira etal., 2006; Xiaetal., 2006)). However, there is tt€ 0f the lattice, or (3) cutting open two loops which apmioa

nothing inherent n the definition of a topological phaseahhi  €ach other within a lattice spacing and rejoining them into a
consigns it to the regime of high magnetic fields and low tem-Single loop (or vice-versa), which is calleurgery. A vertex
peratures. Indeed, highly idealized models of frustratad-m at which the first term in the Hamiltonian is not satisfied is an
nets also show such phases, as we have discussed in sectfffitation, as is a plaquette at which the second term is not

II.D. Of course, it is an open question whether these modelsatisfied. The first type of excitation acquires-awhen it is

have anything to do with any real electronic materials oirthe [@kén around the second. . .
analogs with cold atoms in optical lattices, i.e. whether th The toric code is associated with the low-energy physics

idealized models can be adiabatically connected to mote rea®f the deconfined phase af; gauge theory (Fradkin and
istic models. In this section, we do not attempt to answe thi Shenker, 1975; Kogut, 1979); see also Senthil and Fisher,
question but focus, instead, on understanding how these mod?00 for an application to strongly-correlated electros-sy
els of topological phases can be solved. As we will see, theifeMs)-  This low-energy physics can be described by an
solubility lies in their incorporation of the basic topologl ~ AP€lian BF-theory (Hansscetal., 2004):
structure of the corresponding phases. A

One way in which a topological phase can emerge from S = p en€ 0, ax
some microscopic model of interacting electrons, spins, or = Sos (a+1e) — Sos (a— Le) (120)
cold atoms is if the low-lying degrees of freedom of the mi-
croscopic model can be mapped to the degrees of freedom ef, is usually denoted,, and¢#**9,a, = %E‘“’Afux, hence
the topological phase in question. As we have seen in sectiothe name. Note that this theory is non-chiral. Under a com-
[1.C, these degrees of freedom are Wilson loops (59). Loopdined parity and time-reversal transformatiepmust change
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sign, and the action is invariant. This is important sin@nit  nient regularization of loops in the continuum, essentiaé-
ables the fluctuating loops described above to represent themuse whed is large, the lattice fills up with loops which then
Wilson loops of the gauge field,,. In a chiral theory, it is have no freedom to fluctuate (Freednedal., 2004). Instead,
not clear how to do this sinag andas do not commute with  trivalent graphs on the lattice prove to be a better way of pro
each other. They cannot both be diagonalized; we must arbéeeding (and, in the case of SU{3nd other gauge groups,
trarily choose one direction in which Wilson loops are diago trivalent graphs are essential (Kuperberg, 1996; Turaev an
nal operators. It is not clear how this will emerge from someViro, 1992)). The most convenient lattice is the honeycomb
microscopic model, where we would expect that loops wouldattice, since each vertex is trivalent. A trivalent graplsim-

not have a preferred direction, as we saw above in the toriply a subset of the links of the honeycomb lattice such that no
code. Therefore, we focus on non-chiral phases, in paaticul vertex has only a single link from the subset emanating from

the SU(2), analog of (120) (Cattanestal., 1995): it. Zero, two, or three links can emanate from a vertex, cor-
. 3 responding to vertices which are not visited by the trivalen

S = Siglat+e)—Sigla—e) graph, vertices through which a curve passes, and vertices a
_ k /tr enf+ 16 Ae A e) (121) v_vhich three curves meet. We will _penalize energetically ver

4T 3 tices from which a single colored link emanates. The ground

state will not contain such vertices, which will be quasipar
ticle excitations. Therefore, the ground st&tf’] assigns a
complex amplitude to a trivalent graph

Such a structure arises in a manner analogous to the loop
structure of the toric code: if we had spins on the links of
the honeycomb lattice, then an appropriate choice of intera

We will call this theorydoubled SU(2), Chern-Simons theory
(Freedmaretal., 2004).

We would like a microscopic lattice model whose low-
energy Hilbert space is composed of wavefunctids, U
... U~,] which assign a complex amplitude to a given con-
figuration of loops. The model must differ from the toric code ' ; ] ) X
in the constraints which it imposes on these wavefunctiond!o" at each vertex will require that colored links (on Wh.'Ch
The corresponding constraints for (121) are essentiatly thth€ SPin points up) form a trivalent graph. We note that links
rules for Wilson loops which we discussed in subsectioclil. €1 be given a further labeling, although we will not dis-
(Freedmaretal., 2004). For instance, ground state wavefunc-USS t_h's more comp_llcateq situation '? any de,Ea'l' Each col
tions shouldhot give the same the amplitude for two config- ©r€d link can be assignedjain the setg, 1,..., 5. Uncol-
urations if one configuration can be transformed into amothe®®d links are assigned = 0. Rather than spiri;2 spins
simply by removing a loop which runs around a single pIaque-On each link, we ShOU|d. take'spkr/—2 on each link, with
tte of the lattice. Instead, the amplitude for the formerfigon > = —k/2 corresponding tgj = 0, S; = —k/2 +1
uration should be larger by a factor @f= 2 cosw/(k + 2), corresponding tg = 1/2, etc. (or perhaps, we may want
which is the value of a single unknotted Wilson loop. Mean-t© consider models with rather different microscopic degre
while, the appropriate surgery relation is not the joinirfg o qf freedom). In this case, we would .further require _that the
two nearby loops into a single one, but instead is the condil-Inks afo“”‘?‘ ea(;h ver_tex sh_oulq sat_|sf)]; the_ brahchlng rules
tion that wher + 1 lines come close together, the amplitudes®f SY(2): 1 = G2| = Js < MiN (1 + ja, 5 = j1 — ja). The
for configurations in which they are cut open and rejoined incaS€ Which we have described in the previous paragrapf, with
different ways satisfy some linear relation. This relaiipes- Ut the additionaj label could be applied to the level= 1

sentially the requirement that thie= (k + 1)/2 Jones-WenzI ca_lshe, V‘Ilith ((:joll_orked links ca_lrrying =1/2 o_r”tcc)j_levelkf: ?F]
projector should vanish within any loop configuration, as weWith colored links carrying = 1, as we wi Iscuss further
elow. A trivalent graph represents a loop configuratiome t

might expect since a Wilson loop carrying the corres ondin% ; S ! .
g P B ying P anner depicted in Figure 12a. One nice feature is that the

SU(2) representation should vanish. L .
The basic operators in the theory are Wilson lodpg;], Jones-Wenzl projections are enforced on every link from the

of the gauge field:? in (121) in the fundamentafj(= 1/2) start, so no corresponding surgery constraint is needed.
representation of SU(2). A Wilson loop in a highgerepre- If we would like a lattice model to be in the doubled SU(2)
sentation can be constructed by simply takijgcopies of a  universality class, which has quasiparticle excitatiomsciv
j = 1/2 Wilson |00p and using the appropria‘[e Jones-Wenzpgre Fibonacci anyons, then its Hamiltonian should |mpoee th
projector to eliminate the other representations whichiltes following: all low-energy states should have vanishing am-
in the fusion of2j copies ofj = 1/2. If the wavefunction plitude on configurations which are are not trivalent graphs
satisfies the constraint mentioned above, then it will \anis as defined above; and the amplitude for a configuration with
identically if acted on by & > &/2 Wilson loop. a contractible loop should be larger than the amplitude for a
These conditions are of a topological nature, so they ar€onfiguration without this loop by a factor df= 2 cos T =
most natural in the continuum. In constructing a lattice glod ¢ = (1 + v/5)/2 for a closed, contractible loop. These condi-
from which they emerge, we have a certain amount of freetions can be imposed by terms in the Hamiltonian which are
dom in deciding how these conditions are realized at thieéatt more complicated versions of the vertex and plaquette terms
scale. Depending on our choice of short-distance regalariz of (18). It is furthermore necessary for the ground stateswav
tion, the model may be more of less easily solved. In soméunction(s) to assign the same amplitude to any two triialen
cases, an inconvenient choice of short-distance regataoiz =~ graphs which can be continuously deformed into each other.
may actually drive the system out of the desired topologicaHowever, as mentioned above, surgery is not necessary. The
phase. Loops on the lattice prove not to be the most convedamiltonian takes the form (Levin and Wen, 2005b) (see also
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iy j’_s_, as depicted in Figure 12b; the coefficients in the superpo
sition are sums of products of elements of fitenatrix. The
plaguette term commutes with the vertex terms since adding a
loop to a plaquette cannot violate the triangle inequalige(
Figure 12a). Clearly vertex terms commute with each other,
as do distant plaquette terms. Plaquette terms on adjacent
plaguettes also commute because they just add loops to the
link which they share. (This is related to the pentagon iden-
tity, which expresses the associativity of fusion.) Theref

the model is exactly soluble since all terms can be simulta-
neously diagonalized. Vertices with a single adjacentrealo

(ie. monovalent vertices) are non-Abelian anyonic exicitest
‘ carrying;j = 1 under the SU(2) gauge group @t in (121).
% i, = Z F es A state at which the plaquette term in (122) is not satisfied is
TN b . a non-Abelian anyonic excitation carrying= 1 under the
! J I SU(2) gauge group af; (or, equivalentlyaf; flux).

FIG. 12 (a)j/2 parallel lines projected onto representatipiare . . .
represented by the labglon a link. (b) The plaquette terms add a One interesting feature of the ground state wavefunction

rep.- loop. This can be transformed back into a trivalent graph on¥ [I'] 0f (122), and of related models with loop representations
the lattice using thé"-matrix as shown. (Fendley and Fradkin, 2005; FidkowsKial., 2006; Freedman

etal., 2004) is their relation to the Boltzmann weights of sta-

tistical mechanical models. For instance, the norm squafred
Turaev and Viro, 1992): ground state of of (122), satisfieg[I']|?> = e ", where3H

is the Hamiltonian of thg = ¢ + 2 state Potts model. More

/2 precisely, it is the low-temperature expansion of¢he ¢+ 2
H=-1Y Ai—J» Y FY (122)  state Potts model extrapolated to infinite temperaguee 0.
p j=0 The square of the ground state of the toric code (18) is the

low-temperature expansion of the Boltzmann weight of the
q = 2 state Potts model extrapolated to infinite temperature
, ) ) L B = 0. On the other hand, the squares of the ground states
asaj =1 colorgd link, whiles, = —%_ is |nterpretgd as a [W[y1 U...Un]J? of loop models (Freedmaet al., 2004),

J = O uncolored link. The vertex terms3|mppse the triangle in-5re equal to the partition functions of O(n) loop gas models o
equality, |j, — ja| > js < min (J1+J2,5 —j1 —j2), Onthe  gpatistical mechanics, with — d2. These relations allow one
three;'s on the links neighboring each vertex. For Fibonacciy, se known results from statistical mechanics to compute
anyons (see Sec. IV.B), which can only hgve= 0,1, this  ¢qyal-time ground state correlation functions in a topisiaig
means that if links withy = 1 are colored, then the colored g.4nq state, although the interesting ones are usuallgefo

links must form a trivalent graph, i.e. no vertex can haveyonl ai6rs which are non-local in the original quantum-mechainic
a single up-spin adjacent to it. (There is no further require degrees of freedom of the model.

ment, unlike in the general case, in which there are addition
labels on the trivalent graph.)

The plaquette terms in the Hamiltonian are complicated in |t js also worth noting that a quasi-one-dimensional analog
form but their action can be understood in the following sim-nas been studied in detail (Bonesteel and Yang, 2007; Feigui

ple way: we imagine adding to a plaquette a leoparrying  etal., 2007a). It is gapless for a single chain and has an inter-
representatiory and require that the amplitude for the new esting phase diagram for ladders.

configuration¥[I" U ~] be larger than the amplitude for the

old configuration by a factor af;. For Fibonacci anyons, the

only non-trivial representation is = 1, we require that the  Finally, we note that the model of Levin and Wen is, admit-
wavefunction change by a factor @t ¢ when such aloopis tedly, artificial-looking. However, a model in the same uni-
added. If the plaquette is empty, then ‘adding a loop’ is sim-versality class might emerge from simpler models (Fidkawsk
ple. We simply have a new trivalent graph with one extra loopet al., 2006). Since (122) has a gap, it will be stable against
If the plaquette is not empty, however, then we need to speGgmall perturbations. In the case of the toric code, it is kmow
ify how to ‘add’ the additional loop to the occupied links. We that even fairly large perturbations do not destabilizestiage
draw the new loop in the interior of the plaquette so thatisru  (Trebstetal., 2007).

alongside the links of the plaquette, some of which are occu-

pied. Then, we use thE-matrix, as depicted in Figure 12b,

to recouple the links of the plaquette (Levin and Wen, 2005b) This brings to a close our survey of the physics of topolog-
(see also Turaev and Viro, 1992). This transforms the plaquécal phases. In section IV, we will consider their applioati
tte so that it is now in a superposition of states with differe to quantum computing.

Here and below, we specialize ko= 3. The degrees of free-
dom on each link are = 1/2 spins;s, = +% is interpreted
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IV. QUANTUM COMPUTING WITH ANYONS to the two-qubit Hilbert space.
By coupling two qubits in this way, a CNOT gate can be
A. v =5/2 Qubits and Gates constructed. Let us suppose that we have 4 quasiparticles.

Then, the first pair can fuse to eithkeor 1), as can the second

Atopological quantum computer is constructed using a syspair. Naively, this ist states but, in fact, it is really two states
tem in a non-Abelian topological phase. A computation iswith total topological charg& and two states with total topo-
performed by creating quasiparticles, braiding them, asd-m logical charge). These two subspaces cannot mix by braid-
suring their final state. In section I.C.4, we saw how a qubiting the four quasiparticles. However, by braiding our gsibit
could be constructed with the = 5/2 state and a NOT gate with additional quasiparticles, we can mix these four state
applied. In this section, we discuss some ideas about how @n our single qubit NOT gate, we did this by using quasipar-
quantum computer could be built by extending these ideas. ticles from the edge.) Therefore, following Georgiev, 2006

The basic feature of the Ising TQFT and its close relativewe consider a system with 6 quasiparticles. Quasiparticles
SU(2),, which we exploit for storing quantum information is and2 will be qubit 1; when they fuse td or +, qubit 1 is in
the existence of two fusion channels for a pairajuasipar-  state|0) or |1). Quasiparticle$ and6 will be qubit 2; when
ticles,o x o ~ 1 4+ ¢. When the fusion outcome i5, we  they fuse tol or ¢, qubit 2 is in statg0) or |1). Quasiparti-
say that the qubit is in the staf@; when it isy, the statél).  cles 3 and 4 soak up the extraif necessary to maintain total
When there ar@n quasiparticles, there is2¥~!-dimensional  topological chargd for the entire six-quasiparticle system.
space of states. (This is how many states there are with totéh the four state$0, 0), |1,0), |0, 1), and|1, 1), the quasipar-
topological charga; there is an equal number with total topo- ticle pairs fuse td., 1,1, to), ¢, 1, t0 1,1, v, and to, 1, 1),
logical charge).) We would like to use thig”~!-dimensional  respectively.
space to store quantum information; the most straightfadwa  In this basisp(o1), p(03), p(o5) are diagonal, whilg(cs)
way to do so is to view it as — 1 qubits. andp(o4) are off-diagonal (e.go(o2) is (123) rewritten in the

Generalizing the construction of section I1.C.4 to manytwo qubit/six quasiparticle basis). By direct calculati@ng.
pairs of anti-dots, we can envision (Freedneral., 2006) by usingp(o;) = ¢77:7+1), it can be shown (Georgiev, 2006)
an(n — 1)-qubit system which is a Hall bar witb. antidots  that:
at which quasiholes are pinned, as in Figure 13.

1000
-1 1 0100

5 - 124

@ @ @ @ @ plos 040301050405 ") 0001 (124)
0010

’ ’ ’ ‘ ’ ’ which is simply a controlled NOT operation.

One can presumably continue in this way, with one extra
pair of quasiparticles, which is used to soak up an extif
necessary. However, this is not a particularly convenieayt w
of proceeding since various gates will be different for efiff
ent numbers of particles: the CNOT gate above exploited the
extra quasiparticle pair which is shared equally between th
two qubits acted on by the gate, but this will not work in the
i ) i i . same way for more than two qubits. Instead, it would be eas-

The NOT gate discussed in section I1.C.4 did not requirger 15 encode each qubit in four quasiparticles. If each mtiar
us to move the quasiparticles comprising the qubit, only adq gjasiparticles has total topological chaigéhen it can be
ditional quasiparticles which we brought in from the edge., gjther of two states since a given pair within a quartet can
However, to implement other gates, we will need to moveyse 1g eithert or . In other words, each quasiparticle pair
the quasiparticles on the anti-dots. In this figure, we hav@ymes with its own spare pair of quasiparticles to soak up its
also depicted additional anti-dots which can be used to MOV if necessary.

qu_asiparticles frO”F one a”“"?‘f’t to another (e.g. as a ‘duck Unfortunately, the SU(2) phase of matter is not capable
brigade’), see, for instance, Simon, 2000. If we exchange tw ¢ | niversal quantum computation, i.e. the transformation
quasiparticles from the same qubit, then we apply the phas&enerated by braiding operations are not sufficient to imple

ggteU = em/® diag R7?, R77) (the phase in front of the Ma- ment all possible unitary transformations (Freedneaml.,
trix comes from the U(1) part of the theory). However, if the 54055 1y The reason for this shortcoming is that in this the

two quasiparticles are from different qubits, then we apipéy . hraiding of two particles has the effect of a 90 degree ro

FIG. 13 A system witm quasihole pairs (held at pairs of anti-dots,
depicted as shaded circles) supportgubits. Additional antidots
(hatched) can be used to move the quasiparticles.

transformation tation (Nayak and Wilczek, 1996) in the multi-quasipa#dicl
1 0 0 —i Hilbert space. Composing such 90 degree rotations will
_ clearly not allow one to construct arbitrary unitary opemas
U= 1101 =0 i (123)  (the set of 90 degree rotations form a finite closed set).
V2 0 —i 1 0 However, we do not need to supplement braiding with much

—-i 0 0 1 in order to obtain a universal gate set. All that is needed
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is a single-qubitr /8 phase gate and a two-qubit measure-B. Fibonacci Anyons: a Simple Example which is

ment. One way to implement these extra gates is to use soméniversal for Quantum Computation

non-topological operations (Bravyi, 2006). First, comsithe

single-qubit phase gate. Suppose quasiparticl2s3, 4 com- One of the simplest models of non-Abelian statistics is
prise the qubit. The stateg) and|1) correspond td and2  known as the Fibonacci anyon model, or “Golden theory”
fusing to1 or ¢ (3 and4 must fuse to the same asand2,  (Bonesteegtal., 2005; Freedmegtal., 2002a; Hormoztal.,
since the total topological charge is required tolhe If we ~ 2007; Preskill, 2004). In this model, there are only two figld
bring quasiparticle$ and2 close together then their splitting the identity (1) as well as single nontrivial field usually called
will become appreciable. We expect it to depend on the sepa= which represents the non-Abelian quasiparticle. (Notegthe
rationr asAE(r) ~ e~"2/¢, wherer is the distance between is no field representing the underlying electron in this simp
the quasiparticles andis some constant with dimensions of fied theory). There is a single nontrivial fusion rule in this
velocity. If we wait a timeT,, before pulling the quasiparti- model
cles apart again, then we will apply the phase gate (Freedman
etal., 2006)Up = diag(1, ¢"A7(") Tv). If the timeT and dis- TxT=1+7 (126)
tancer are chosen so thaklE(r) T, = 7/4, then up to an  which results in the Bratteli diagram given in Fig. 9b. This

overall phase, we would apply the phase gate: model is particularly simple in that any cluster of quasipar
cles can fuse only ta or .
U e~ T8 195 Thej = 0 andj = 1 quasiparticles in SU(2)satisfy the fu-
/8= 0 eri/8 (125) sion rules of Fibonacci anyons. Therefore, if we simply omit

thej = 1/2 andj = 3/2 quasiparticles from SU(2) we will

We note that, in principle, by measuring the energy when théave Flbonaccianyons. This is perfectly consistent siatfe h
two quasiparticles are brought together, the state of tiit qu integralj will never arise from the fusions of integrgs; the
can be measured. model with only integer spins can be called SQ(@8), some-
The other gate which we need for universal quantum comtimes, ‘the even part of SU(2) As aresult of the connection
putation is the non-destructive measurement of the topal-to  t0 SU(2);, sometimesl is called g-spin “0” andr is called
logical charge of any four quasiparticles. This can be donél-SPin “1” (see (Hormozetal., 2007)).Zs parafermions are
with an interference measurement. Suppose we have tw@duivalent to a coset theory SU¢A)(1). This can be real-
qubits which are associated with quasipartide®, 3,4 and  ized with an SU(2) WZW modelin which the U(1) subgroup
quasiparticless, 6,7, 8 and we measure the total topologi- IS coupled to a gauge field (Gawedzki and Kupiainen, 1988;
cal charge 0,4, 5,6. The interference measurement is of Karabalietal., 1989). Consequentlf,; parafermions have
the type described in subsection 11.C.3: edge currentseiunn €ssentially the same fusion rules as Sy(2here are some
across the bulk at two points on either side of the set of fouPhase differences between the two theories which show up in
quasiparticles. Depending on whether the four quasipestic the 2 andF-matrices. In theZ; parafermion theory, the field
have total topological chargeor 1, the two possible trajec- € Whlch results from fusmgl with 1, satisfies the Fibonacci
tories interfere with a phasel. We can thereby measure the fusion rule Eq. 126, i.e¢ x ¢ =1 +c. . _
total parity of two qubits. (For more details, see Freedman AS With theZ; parafermion model described above, the di-
etal., 2006.) mension of the Hilbert space with quasiparticles (i.e., the
" Neither of these gates can be applied exactly, which mear@imber of paths through the Bratteli diagram 9b terminating
that we are surrendering some of the protection which we havt 1) is given by the Fibonacci number Kib— 1), hence the
worked so hard to obtain and need some software error coR@me Fibonacci anyons. And similarly the number terminat-
rection. However, it is not necessary for th¢8 phase gate or N9 atr is Fib(n). Therefore, the quantum dimension of the
the two qubit measurement to be extremely accurate in order particle is the golden meand, = ¢ = (1 + /5)/2 (from
for error correction to work. The former needs to be accuratévhich the theory receives the name “golden” theory). The Fi-
to within 14% and the latter to withir88% (Bravyi, 2006).  bonacci model is the simplest known non-Abelian model that
Thus, the requisite quantum error correction protocolsiate  is capable of universal quantum computation (Freedetanh,
particularly stringent. 2002a). (In the next section, the proof will be described for
An alternate solution, at least in principle, involves ofpan SU(2), butthe Fibonaccitheory, whichiis its even part, is also
ing the topology of the manifold on which the quasiparticlesuniversal.) Itis thus useful to study this model in some ileta
live (Bravyi and Kitaev, 2001). This can be realized in a de-Many of the principles that are described here will geneeali
vice by performing interference measurements in the paesen t0 other non-Abelian models. We note that a detailed discus-

of moving quasiparticles (Freedmatal., 2006). sion of computing with the Fibonacci model is also given in
However, a more elegant approach is to work with a nonHormozietal., 2007.
Abelian topological state which supports universal topaal (a) Structure of the Hilbert Space:  An important feature

guantum computation through quasiparticle braiding aléme of non-Abelian systems is the detailed structure of the ¢itlb

the next subsection, we give an example of such a state arghace. A given state in the space will be described by a “fusio
how quantum computation can be performed with it. In sub-path”, or “fusion tree” (See appendix A). For example, using
section IV.C, we sketch the proof that a large class of suclthe fusion rule (126), or examining the Bratteli diagram we
states is universal. see that when twe particles are present, they may fuse into
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FIG. 14 The three possible states of three Fibonacci pastishown
in several common notations. The “quantum number” of arvidei
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A, we can write a change of basis using fhematrix as

(o, (®,0)i)k) = 225 [F{ i [((e,0)5,0)x)

wherei, j, k take the values of the fieldsor . (This is just a
rewriting of a special case of Fig. 23). Clearly from Eq. 127,
F777 is trivially unity. However, the two-by-two matrix7 ™"

is nontrivial
N

(128)

Iy Fir
FTl FTT

1 —
J(bﬁ _Vifll ) (129)

ual particle is7. In the parenthesis and ellipse notation (middle), Using thisF matrix, one can translate between bases that de-

each particle is shown as a black dot, and each pair of pasistbr
ellipse around a group of particles is labeled at the lowgirtrivith
the total quantum number associated with the fusion of thaim
Analogously in the fusion tree notation (right) we grouptjudes as
described by the branching of the tree, and each line isédbeith
the quantum number corresponding to the fusion of all thégbes
in the branches above it. For example on the top line the twi-pa
cles on the left fuse to forr which then fuses with the remaining
particle on the right to formr. As discussed below in section IV.B.c,
three Fibonacci particles can be used to represent a quimttiFee
possible states are labeled (far left) as the logj@gal |[1) and|N)
(noncomputational) of the qubit.

two possible orthogonal degenerate states — one in whigh th

fuse to form1 and one in which they fuse to form A con-

venient notation (Bonesteet al., 2005) for these two states

is |(e,®)1) and|(e,e),). Here, each represents a particle.
already in thel state (i.e., in|(e, ®)1)) it must fuse to form
7. We denote the resulting state @&, e)1,¢).) = |0). But
if the third is added to two in the state, it may fuse to form
eitherr or 1, giving the two state$((e,e),,e),) = |1) and
[((e,@)-,®)1) = |N) respectively. (The notation8), |1) and

|N) will be discussed further below). Thus we have a three

dimensional Hilbert space for three particles shown usavg s
eral notations in Fig. 14.

In the previous example, and in Fig. 14 we have always
chosen to fuse particles together starting at the left and g
ing to the right. It is, of course, also possible to fuse parti

cles in the opposite order, fusing the two particles on thhtri
first, and then fusing with the particle furthest on the la#t!

We can correspondingly denote the three resulting states

|(.7 (.’ .)1)7')' |(.7 (.’ .)T)T>' andl(.7 (.’ .)T)1>' The sSpace

of states that is spanned by fusion of non-Abelian partices

independent of the fusion order. However, different fusion
ders results in a different basis set for that space. Thisgda
of basis is precisely that given by tliematrix. For Fibonacci
anyons it is easy to see that

(e, (2, 0)r)1) = [((e,®)7, 0)1)

since in either fusion order there is only a single statelihat

(127)

scribe arbitrary fusion orders of many particles.

For the Fibonacci theory (Preskill, 2004), it turns out to be
easy to calculate th&-matrix using a consistency condition
known as the pentagon equation (Fuchs, 1992; Gashélk,
1996; Moore and Seiberg, 1988, 1989). This condition simply
says that one should be able to make changes of basis for four
particles in several possible ways and get the same result in
the end. As an example, let us consider

(e, (o, (e,0)1)r)1) = [((e,®)1,(e,®)1)1)
= |((.’.)17.)T7.)1>

where both equalities, as in Eq. 127 can be deduced from the

(130)

Qusion rules alone. For example, in the first equality, given

(on the left hand side) that the overall quantum numbadr is
and the rightmost two particles are in a statehen (on the
right hand side) when we fuse the leftmost two particles they

Smust fuse tdl such that the overall quantum number remains

1. On the other hand, we can also use Henatrix (Eq. 128)
to write

(e, (o, (e,0)1):)1) =
Fii(e,((e,0)1,0):)1) + Fir|(e,((e,0)7,0):)1) =
Fii|((o, (e, 0)1)-,0)1) + Fir|((o, (e,0);)-,0)1) =
> (F1aFy + FirFrj)[((e,0)5,0)7,0)1)

®)1
®)1

OComparing to Eq. 130, yield$y,(F11 + F--) = 0 and

Fy1 11 + F1.Fr1 = 1. This, and other similar consistency
identities, along with the requirement thiatbe unitary, com-

%etely fix the Fibonaccl'-matrix to be precisely that given in

g. 129 (up to a gauge freedom in the definition of the phase
of the basis states).

(b) Braiding Fibonacci Anyons:  As discussed in the in-
troduction, for non-Abelian systems, adiabatically biradid
particles around each other results in a unitary operation o
the degenerate Hilbert space. Here we attempt to determine
which unitary operation results from which braid. We start
by considering what happens to two Fibonacci particles when
they are braided around each other. It is known (Fuchs,
1992) that the topological spi®., of a Fibonacci fieldr is

total topological charga (the overall quantum number of a ©, = ™4+ = ¢*™/5 (Note thatA, is also the dimension
group of particles is independent of the basis). However, thof thee field of theZs theory, see Appendix A.) With this in-
other two states of the three particle space transform iwentr formation, we can use the OPE (see Appendix A)as in section
ially under change of fusion order. As described in appendixll.D above, to determine the phase accumulated when two
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particles. The braid group is generatedyando,. (See Fig.

f 15) As discussed above, the Hilbert space of three particles
1 is three-dimensional as shown in Fig. 14. We can use Egs.
: o1 09 132 and 133 trivially to determine that the unitary opematio
1 ] ] corresponding to the braig, is given by
1
tirlne |0) e~4mi/5s 0 10)
1y | — 0 —e2mi/5 0 1)
® @ .
@J k @J k |N> 0 0 ‘_6—2W1/5 |N>
p(o1)
_____ time____ (134
where we have used the shorthand notation (See Fig. 14)
@ N~~~ for the three particle states. Evaluating the effectoef
T T /\Vr’\— is less trivial. Here, we must first make a basis change
* - — ] jl: (using F) in order to determine how the two rightmost
92 01 01 Oz O3 Oy particles fuse. Then we can make the rotation usitg

and finally undo the basis change. Symbolically, we can

. 1A . o
three particlesBottom: Using these two braid operations and their write p(02_) = FRF where R _r(_)tates the tWO_ right
inverses, an arbitrary braid on three strands can be buile Braid most particles. To be mo_re explicit, let us consider \_Nhat
shown here is written as,o1 0105 o5 1. happens to the stat®). First, we use Eq. 128 to write

|0) = Fi1|(e,(e,@)1);) + Fr1](e, (e, e),),). Rotating the

two right particles then gives *™/5Fy;|(e, (e, 0)1);) —
particles wrap around each other. If the twdields fuse to- ¢ >*/°Fr1|(e,(e,®),);), and then we transform back
gether to formi, then taking the two fields around each othert0 the original basis using the inverse of Eq. 128 to yield
clockwise results in a phasest/5 = 2r(—2A,) whereas  (02)[0) = ([F~']11e™*™/° Fiy —[F~1,e>™/5 F 1) 0) +
if the two fields fuse to forn, taking the two fields around ([F~ 'l /2P — [F ' e ?m/AF)|1) =
each other results in a phasér/5 = 2r(~A,). Note that —¢ */°/¢[0) — ie="*/10/\/§[1).  Similar results can
a Fibonacci theory with the Opposite Ch|ra||ty can exist toobe derived for the other two basis states to give the matrix

(an “antiholomorphic theory”), in which case one accumu- ( _emifS ) —ie=im/10) /5 0 \
ploz) =

FIG. 15 Top: The two elementary braid operations andos on

lates the opposite phase. A particularly interesting nioinat

(or “achiral”) theory also exists which is equivalent to arco —ie "0/ —-1/¢ 0 _
bination of two chiral Fibonacci theories with oppositerelt \ 0 0 ‘ —e2mi/5
ities. In section 111.G, we discussed lattice spin modeksvih (135)

and Wen, 2005b) which give rise to a non-chiral (or “achiyal” Since the braid operatios ando, (and their inverses) gen-
theory which is equivalent to a combination of two chiral Fi- erate all possible braids on three strands (See Fig. 15)awe ¢
bonacci theories with opposite chiralities. We will notaliss  use Eqgs. 134 and 135 to determine the unitary operation re-
these theories further here. sulting from any braid on three strands, with the unitaryrepe
Once we have determined the phase accumulated for a fuditions being built up from the elementary matrig€s; ) and
wrapping of two particles, we then know that clockwise ex-p(o2) in the same way that the complicated braids are built
change of two particles (half of a full wrapping) gives a phas from the braid generators; andos. For example, the braid
of +47/5 if the fields fuse tol or +-27/5 if the fields fuse  o201010; "oy ‘o shown in Fig. 15 corresponds to the uni-
to 7. Once again we must resort to consistency conditions téary matrix p(o1)p(oy H)p(o5 1) p(o1)p(a1)p(oz) (note that
determine these signs. In this case, we invoke the so-calldtie order is reversed since the operations that occur at ear-
“hexagon”-identities (Fuchs, 1992; Moore and Seiberg8198 lier times are written to the left in conventional braid raia,
1989) which in essence assure that the rotation operatiens abut on the right when multiplying matrices together).
consistent with thé’-matrix, i.e., that we can rotate before or (¢ computing with Fibonacci Anyons: Now that we
after changing bases and we get the same result. (Indeed, opgow many of the properties of Fibonacci anyons, we would
way of proving thatA, = 2/5 is by using this consistency |ike to show how to compute with them. First, we need to
condition). We thus determine that thematrix is given by construct our qubits. An obvious choice might be to use two
. , particles for a qubit and declare the two stali@se),) and
R(e,0)1) =e*™/% |(o,0)1) (132) (e, e),) to be the two orthogonal states of the qubit. While
R |(0,0);) = —e 27/5 |(e 0),) (133) this is a reasonably natural looking qubit, it turns out root t
be convenient for computations. The reason for this is that
i.e.,RL_=e *m/5andRT_= —e?"/5, Using theR-matrix,  we will want to do single qubit operations (simple rotatipns
as well as the basis changifgmatrix, we can determine the by braiding. However, it is not possible to change the over-
unitary operation that results from performing any braid onall quantum number of a group of particles by braiding within
any number of particles. As an example, let us consider threthat group. Thus, by simply braiding the two particles abun
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each other, we can never chande, e);) to |(e,e),). To  qubit Hilbert space. However, finding such braids is now a
remedy this problem, it is convenient to use three quasipamuch more formidable task. The full Hilbert space for six Fi-
ticles to represent a qubit as suggested by Freedeshah, bonacci particles (constituting two qubits) is now 13 dimen
2002a (many other schemes for encoding qubits are also posional, and searching for a desired result in such a high di-
sible (Freedmaet al., 2002a; Hormozét al., 2007)). Thus, mensional space is extremely hard even for a powerful elassi
we represent the two states of the qubit ag@hend|1) states  cal computer. Therefore, the problem needs to be tackled by
shown in Fig. 14. The additional statd") is a “noncompu- divide-and-conquer approaches, building up two-qubiegat
tational” state. In other words, we arrange so that at the besut of simple braids on three particles (Bonestell., 2005;
ginning and end of our computations, there is no amplitude irHormozietal., 2007). A simple example of such a construc-
this state. Any amplitude that ends up in this state is knasvn ation is sketched in Fig. 16. First, in Fig. 16.a, we consider
“leakage error”. We note, however, that the braiding magic braids on three strands that moves (“weaves” (Sirabal.,
p(o1) andp(o2) are block diagonal and therefore never mix 2006)) only a single particle (the blue particle in the figure
the noncomputational statd’) with the computational space through two stationary particles (the green particles). We
|0) and |1) (This is just another way to say that the overall search for such a braid whose action on the Hilbert space is
guantum number of the three particles must remain unchangestjuivalent to exchanging the two green particles twicec&in
under any amount of braiding). Therefore, braiding thedhre this is now just a three particle problem, finding such a braid
particles gives us a way to do single qubit operations with ndo arbitrary accuracy, is computationally tractable. Néat
leakage. the two qubit problem, we label one qubit the control (blue
In section IV.C, we will describe a proof that the set of in Fig. 16.b) and another qubit the target (green). We take a
braids has a “dense image” in the set of unitary operations foPair of particles from the control qubit (the control painda
the Fibonacci theory. This means that there exists a bratd th Weave them as a group through two of the particles in the tar-
corresponds to a unitary operation arbitrarily close todey ~9€t using the same braid we just found for the three particle
sired operation. The closer one wants to approximate the déroblem. Now, if the qguantum number of the control pait is
sired unitary operation, the longer the braid typicallyawet (1€, control qubitis in statg)) then any amount of braiding
be, although only logarithmically so (i.e, the necessagjcor Of this pair will necessarily give just an Abelian phase ¢sin
length grows only as the log of the allowed error distancgMOVving1 around is like moving nothing around). However,
to the target operation). The problem of actually finding theif the quantum number of the control pairis(i.e, the con-
braids that correspond to desired unitary operationsest 0l qubitis in statef1)) then we can think of this pair as be-
parently complicated, turns out to be straightforward (@pn "d equivalent to a single particle, and we will cause the
teeletal., 2005; Hormozetal., 2007). One simple approach Same _nontr|V|aI rotation as in Fig.16.a above (Crucialtys t
is to implement a brute force search on a (classical) computdS designed to not allow any leakage error!). Thus, we have
to examine all possible braids (on three strands) up to somgPnstructed a “controlled rotation” gate, where the stathe
certain length, looking for a braid that happen to generate srget qubitis changed only if the control qubit is in steite
unitary operation very close to some desired result. Whiet Where the rotation that occurs is equivalent to exchangiog t
approach works very well for searching short braids (BonesParticles of the target qubit as shown in Fig. 16.b. The tesul
teel et al., 2005; Hormozet al., 2007), the job of searching N9 two-qubit controlled gate, along with single qubit rota
all braids grows exponentially in the length of the braidkma tions, makes a universal set for quantum computation (Brem-
ing this scheme unfeasible if one requires high accuraay lonneretal., 2002). More conventional two-qubit gates, such as
braids. Fortunately, there is an iterative algorithm byosay ~ the controlled NOT gates (CNOT), have also been designed
and Kitaev (see Nielsen and Chuang, 2000) which allows onéSing braids (Bonesteetal., 2005; Hormozetal., 2007).
to puttogether many short braids to efficiently construor| (d) Other theories:  The Fibonacci theory is a particularly
braid arbitrarily close to any desired target unitary ofiera  interesting theory to study, not only because of its sinitglic
While this algorithm does not generally find the shortesitbra but also because of its close relationship (see the dismuasi
for performing some operation (within some allowed error),the beginning of section IV.B) with th&; parafermion theory
it does find a braid which is only polylogarithmically long in — a theory thought to actually describe (Rezayi and Read,
the allowed error distance to the desired operation. Furthe 2006) the observed quantum Hall statevat= 12/5 (Xia
more, the (classical) algorithm for finding such a braid iyon et al., 2004). It is not hard to show that a given braid will
algebraically hard in the length of the braid. perform the same quantum computation in either theory (Hor-

Having solved the single qubit problem, let us now imag-mozietal., 2007) (up to an irrelevant overall Abelian phase).
ine we have multiple qubits, each encoded with three partiTherefore, the Fibonacci theory and the associated bgidin
cles. To perform universal quantum computation, in addi-may be physically relevant for fractional quantum Hall tepo
tion to being able to perform single qubit operations, wetmuslogical quantum computation in high-mobility 2D semicon-
also be able to perform two-qubit entangling gates (Bremnegluctor structures.
etal., 2002; Nielsen and Chuang, 2000). Such two-qubit gates However, there are many other non-Abelian theories, which
will necessarily involve braiding together (physicallynftan-  are not related to Fibonacci anyons. Nonetheless, forariit
gling™) the particles from two different qubits. The resul non-Abelian theories, many of the themes we have discussed
of Freedmaretal., 2002a generally guarantees that braids exin this section continue to apply. In all cases, the Hilbpsace
ist corresponding to any desired unitary operation on a twoean be understood via fusion rules andfamatrix; rotations
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guantum computation or, in starker terms, for which topelog

A / _— ical states is the entire gate set required to efficientlyutate
\/\//‘ v \’,'\ /‘ \ ‘/’\/,'\ J'\ J'\,'\ \/,\, 7\ o~ an arbitrary quantum circuit to arbitrary accuracy simpigtt
v depicted in Figure 17 (see also Kauffman and Lomonaco Jr.,
ololo'olol0 0 %0 %00 00 %0 0 %0 jo %0000 %0, ~ o) 2004, 2007).
R The discussion in this section is more mathematical than

the rest of the paper and can skipped by less mathematically-
inclined readers.

=
\fvl i VL\ f \ J\j/\ j\ j\f\ ‘/\WL\ J/ ~ \

FIG. 16 Construction of a two qubit gate from a certain thraeiple \

problem. ime flows from left to right in this picture. In theptave ) . .

construct a braid on three strands moving only the blueglastinich ~ FIG. 17 The entire gate set needed in a state supportingrseive

has the same effect as interchanging the two green strasisy this ~ duantum computation.

same braid (bottom), then constructs a controlled rotajain. If the

state of the upper (control) qubit|i®), i.e., the control pair is in state

1 then the braid has no effect on the Hilbert space (up to a phase |n other words, the general braid is composed of copies of a

same effect as winding two of the particles in the lower quBigure tually, as we will see, “positive braids” will prove to be suf

from Bonesteeétal., 2005 ficient, so there is no necessity to ever use the inverse oper-
ation.) Fibonacci anyons, which we discussed in subsection

, . IV.B, are an example which have this property. In this subsec
of two particles can be understood as a rotatfoeperator oy we will see why.

that produces a phase dependent on the quantum number ofzqy the sake of concreteness, let us assume that we use a
the two particles; and one can always encode qubits in thgjngle species of quasiparticle, which we will call When
quantum number of some group of particles. If we want to b&nere aren o’s at fixed positionsz, ..., z,, there is an
able to do single qubit operations by braiding particlesimit exponentially-large{ (d,,)"-dimensional) ground state sub-
a qubit (in a theory that allows universal quantum computaspace of Hilbert space. Let us call this vector spéceBraid-
tion) we always need to encode a qubit with at least three pafpg the o's produces a representatipp characteristic of the
ticles (sometimes rr_10re). To perform_twp—qubnopergthesw topological phase in questiop,, : B, — U(V,) from the
always need to braid particles constituting one qubit vigh t  praig group om: strands into the unitary transformations of
particles constituting another qubit. Itis always the ds& 1, e do not care about the overall phase of the wavefunc-
for any unitary operation that can be achieved by braiding +jon since only the projective reduction in PI) has physi-
particles around each other with an arbitrary braid cantaso ¢4 significance. (PU(,) is the set of unitary transformations
achieved by weaving a single particle around 1 others that 4 v " with two transformations identified if they differ only
remain stationary (Simoetal., 2006) (Note thatwe implicitly 5 hhase.) We would like to be able to enact an arbitrary uni-
used this fact in constructing Fig. 15.a). So long as theestattary transformation, sp(53,,) should be dense in PU), i.e.
is among the ones known to have braid group representationg.nse up to phase. By ‘dense’ in R}, we mean that the
with dense images in the unitary group, as described in Seggtersection of all closed sets containipid,,) should simply
tion IV.C l.)elow,. it will be able to support universal quantum o PU,). Equivalently, it means that an arbitrary unitary
computation. Finally, we note that it seems to always be trug.5nsformation can be approximated, up to a phase, by a trans
that the practical construction of complicated braids foftm 5 mation inp(13,,) to within any desired accuracy. This is the
qubit operations needs to be subdivided into more manageabl ;dition which our topological phase must satisfy.
smaller problems for the problem to be tractable. For a modestly large numbek(7) of os, it was shown

(Freedmaret al., 2002a,b) that the braid group representa-

tions associated witlU(2) Chern-Simons theory at level
C. Universal Topological Quantum Computation k # 1,2,4 are dense iU (V,, ;) (and hence ilPU (V,, 1)).

With only a small number of low-level and small anyon num-

As we have seen in subsection IV.A, even if the= 5/2 ber exceptions, the same articles show density for almbst al

state is non-Abelian, it is not non-Abelian enough to func-SU(N)y.
tion as a universal quantum computer simply by braiding These Jones-Witten (JW) representations satisfy a key “two
anyons. However, in subsection IV.B, we described Fibonaceeigenvalue property” (TEVP), discussed below, derivediis t
anyons which, we claimed, were capable of supporting uniSU (N) setting from the Hecke relations, and corresponding
versal topological quantum computation. In this subsectio to the HOMFLY polynomial (see, for instance, Kauffman,
we sketch a proof of this claim within the context of the more2001 and refs. therein). The analysis was extended with sim-
general question: which topological states are universal f ilar conclusions in (Larseatal., 2005) to the case where the
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Lie groupG is of type BCD and braid generators have threeDefinition IV.1. LetG be a compact Lie group arid a faith-
eigenvalues, corresponding to the BMW algebra and the twéul, irreducible, unitary representation. The p&i¥, V') has
variable Kauffman polynomial. For JW-representationseft thetwo eigenvalue property (TEVP) if there exists a conju-
exceptional group at levdl, the number of eigenvalues of gacy clasdg] of G such that:
braid generators can be composite integers (such as@-for
and this has so far blocked attempts to prove density foethes
JW-representations. 2. For anyg € [g], g acts onV with exactly two distinct
In order to perform quantum computation with anyons, eigenvalues whose ratio is netl.
there are many details needed to align the topological pic-
ture with the usual quantum-circuit model from computer sci
ence. First, qubits must be located in the state spac&ince
V., has no natural tensor factoring (it can have prime dimen
sion) this alignment (Freedmatal., 2002a) is necessarily a
bit inefficien®; some directions iV, are discarded from the

computational space and so we must always guard against u . . . .
P P ys 9 g em is solved by a series of technical lemmas in (Freedman

intended “leakage” into the discarded directions. A pdssib i o :
research project is how to adapt computation to “Fibonacciet al., 2002a). Using TEVP, it is shown first that the further

space (see subsection 1V.B) rather than attempting to find pfestriction to th_e |_den'_[|ty compo_nerﬁio IS _|sot|plc_and then
nary structure withir¥,,. A somewhat forced binary structure irreducible. Th.'s |mpll|e§ thatf, is rgd_uctwe, SO Its derlye_d
was explained in subsection IV.B in connection with encod-grOUp[HO’ HO] is semi-simple and, it IS grgueq, still satisfies
ing qubits into SU(2), as it was done for levelin subsection € TEVP. Afinal (and harmless) variation éhis to pass to
IV.A. (A puzzle for readers: Suppose we write integers out aghe universal coveH’ := [H,, Hy]. The pulled back repre-
“Fibonacci numerals™ 0 cannot follow 0, but 0 or 1 can fol- sentatior®’ still has the TEVP and we are finally in a situation,
low 1. How do you do addition and multiplication?) However, namely irreducible representations of semi-simple Ligigso

we will not dwell on these issues but instead go directly to th of bounded dimension, where we can hope to apply the clas-
essential mathematical point: How, in practice, does ole tesification of such representations (McKay and Patera, 1981)
which braid group representations are dense and which ate show that our mysterioud’ is none other thasU (V;,).

not, i.e. which ones are sufficient for universal topologica If this is so, then it will follow that the preceding shenaang

quantum computation and which ones need to be augmented _, 7, — [H,, Hy] — [Ho, Hy] did nothing (beyond the

1. [g] generates a dense sef(h

Let H be the closed image of some Jones representation
p: B, — U(V,). We would like to use figure 18 to assert that
the fundamental representationléfV,,) restricted toH, call

it 6, has the TEVP. All braid generatass are conjugate and,

in nontrivial cases, the eigenvalue ratioig # —1. However,

e do not yet know if the restriction is irreducible. This pro

by additional non-topological gate operations? ~first arrow, which may have eliminated some components of
We begin by noting that the fundamental skein relation of 7 on which the determinant is a nontrivial root of unity).
Jones’ theory is: In general, milking the answer (to the question of which

Jones representations are projectively dense) out of #se cl

sification requires some tricky combinatorics and rankelev
(Freedmaret al., 2002b) duality. Here we will be content
. q’%) with doing the easiest nontrivial case. Consider six Filoona

ol

anyonsr with total charge= 1. The associatelfy = C° =

2 qubits&® non-computational as shown:
T
+ @
® C

FIG. 19 The charge on the dotted circle can be % providing the
qubit.

N q/\ -
T
FIG. 18 Jones skein relation. (See (73) @ _
dim=5

(see (73) and the associated relation for the Kauffman letack
(77)) Thisis a quadratic relation in each braid generafand

by inspection any representationafwill have only two dis-
tinct eigenvalueg® and—q2. It turns out to be exceedingly
rare to have a representation of a compact Lie grtduphere

H is densely generated by elementswith this eigenvalue
restriction. This facilitates the identification of the cpatt
closureH = imag€ p) among the various compact subgroups
of U(Vy,).

4

C

In coordinatesy takes the braid generators (projectively) to
these operators:

-1

9 . . o1 —— —1 , q=¢€ 5
Actually, current schemes use approximately half the etz number

of qubits. One findgdog, (dimV;,) computational qubits iv;,, for o = q
(log,m3) ! ~ 0.48, ¢ = 115, q
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computation. Fortunately, as we mentioned in section 2I.B.
there is a large class of such processes that actually do not

quQl —qﬁ result in errors. We will discuss the two most important of
0/ L these.
gl Catl Perhaps the simplest such process that does not cause er-
o2 — quz‘l _qq+[13] rors is when a quasiparticle-quasihole pair is thermally (o
ay/[3] L virtually) excited from the vacuum, one of the two excited
e ) particles wanders around a single quasiparticle in ouegyst
L q then returns to reannihilate its partner. (See Figure 26.@)

the sake of argument, let us imagine that our initial compu-
where[3] = ¢+ ¢~ ' + 1, ando;, fori = 3,4,5, are similar.  tational system is a pair of quasiparticles in state\t some
See Funar, 1999 for details. time t; (marked by anx in the figure), we imagine that a
The closed image of is H C U(5), so our irreducible rep-  quasiparticle-quasihole pair becomes excited from the vac
resentatio’ of H', coming fromU(5)'s fundamental, is ex- uum. Since the pair comes from the vacuum, it necessarily
actly 5 dimensional (we don't yet know the dimensiondf).  has overall quantum numbe(i.e., fusing these particles back
From McKay and Patera, 1981, there are four 5-dimensionabgether gives the vacuui). Thus the overall quantum num-
irreducible representations, which we list by rank: ber of all four particles ig. (In the above notation, we could
1. rank = 1:(SU(2), 4m) plraw_a circle around all four particles and Ia_bej)i.t. We then
imagine that one of our newly created quasiparticles wander

2. rank = 2:(Sp(4), m2) around one of the quasiparticles of our computational ayste
' as shown in the figure. Using matrices or braiding matri-
3. rank=4:(SU(5),m), i = 1,4 cess we could compute the full state of the system after this

Suppose: € SU(2) has eigenvalues and in . Then braidbing_oaerﬁa;ion. Imp_oTtan_tIy, howevecrj, the overallofuan
underdry, it will have o'7, i + j = 4 (i,j > 0) as eigen- numbey ot a ourparpc ©s IS preserved. ,
values, which are too many (unle%s: “1). In case (2), _Now at some later time, the two created particles rean-
Rihilate each other and are returned to the vacuum as shown
by the secondk in Figure 20.a. Itis crucial to point out that
in order for two particles to annihilate, they must have the

since 5 is odd, every element has at least one real eige
value, with the others coming in reciprocal pairs. Agaiesth

is no solution. Thus, the TEVP shows we are in case (3), ; )
i.e. thatH’' = SU(5). It follows from degree theory that fdentity quantum numbet (i.e., they must fuse ta). The
[Ho, Hy] = SU(5) and from this we get the desired conclu- annihilation can therefore be thought of as a measurement of

e the quantum number of these two particles. The full state of
sion: SU(5) € H C U(5H). S
(5) C H C U(5) the system, then collapses to a state where the annihilating
particles have quantum numhkerHowever, the overall quan-
tum number of all four particles must remain in the state

We have not yet explained in what sense the topological im
plementations of quantum computations are efficient. Suffic

it to say that there are (nearly) quadratic time algorithins d . ;
y ( v)4a 9 Further, in order for the overall state of the four partidies

to Kitaev and Solvay (Nielsen and Chuang, 2000) for find-IO ~and the t ilati ticles to hethe t th
ing the braids that approximate a given quantum circuit. In €7 and the two anniniiating particies to fethe two other

practice, brute force, load balanced searches for brajus re ((;]rlgma_l) {)hart;ples mtl;]sttcvave qu_anltum nymbtt_erlThus, ats q
resenting fundamental gates, should yield accuracies @n trp10Wn In the ligure, the two oniginal quasiparticies must en
order of10~? (within the “error threshold”). Note that these up in _thelr ongmal sta_tg once 'ghe crea.ted particles are re-
are systematic, unitary errors resulting from the fact that anmhﬂatgd_. Similarly, if the original pqrpcles had seatin a
are enacting a unitary transformation which is a littleetigint ~ SUPETPOsition of states, that superposition would be prege

from what an algorithm may ask for. Random errors, due t fter the annihilation of the two excited particles. (Ndtatt

decoherence, are caused by uncontrolled physical pr(x;essém arbitrary phase might occeur, although this .phlase Is inde-
as we discuss in the next subsection. pendent of the quantum numbgand therefore is irrelevant

in the context of quantum computations).
Another very important process that does not cause errors
D. Errors is shown in Figure 20.b. In this process, one of the members
of a thermally excited quasiparticle-quasihole pair aiaié
As we discussed in section 11.B.2, small inaccuracies in thavith one of the particles in our computational system, legvi
trajectories along which we move our quasiparticles are nopehind its partner as a replacement. Again, since both te cr
a source of error. The topological class of the quasipagicl ated pair and the annihilating particles have the same quan-
trajectories (including undesired quasiparicles) musinge  tum numbers as the vacuum, it is easy to see (using similar
in order for an error to occur. Therefore, to avoid errors,arguments as above) that the final state of the two remaining
one must keep careful track of all of the quasiparticles inparticles must be the same as that of the original two pestjcl
the system and move them so that the intended braid is pethus not causing any errors so long as the new particle is used
formed. As mentioned in the introduction section I1.B.2agt ~ as a replacement for the annihilated quasiparticle.
thermally excited quasiparticles could form unintendexdds The fact that the two processes described above do not
with the quasiparticles of our system and cause errors in theause errors is actually essential to the notion of topokdgi
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guantum computation. Since the created quasiparticled nee

not move very far in either process, these processes camn occu

very frequently, and can even occur virtually since theyldou

have low total action. Thus it is crucial that these likelp{pr

cesses do not cause errors. The simplest processes that can

actually cause error would require a thermally (or virtypgll

created quasiparticle-quasihole pair to braid nontiiyiaith

at least two quasiparticles of our computational systemcei (a) (b)
it is assumed that all of the quasiparticles that are paruof o @j ©j
system are kept very far from each other, the action for a pro- ¢, m
cess that wraps a (virtually) created quasiparticle ardwod

different particles of our system can be arbitrarily larged f ) /691

. A |
hence these virtual processes can be suppressed. Similarly

1
time —
it can be made unlikely that thermally excited quasipagticl i ‘)

will wrap around two separate particles of our system before | D)
re-annihilating. Indeed, since in two dimensions a random u 1 u 1

walk returns to its origin many times, a wandering quasipar- 1

ticle may have many chances to re-annihilate before it wraps - )
around two of the particles of our computational system and @] @]

causes errors. Nonetheless, in principle, this processésia

ous consideration and has the potential to cause errore if toFIG 20 Two processes involving excited quasiparticlesifude
many quasiparticle-quasihole pairs are excited. pairs that do not cause errors in a topological quantum ctetipn.

The probability for these error-causing processes is haive (a) In the process shown on the left, a quasiparticle-qokesipair
~ e~A/CT) (thermally-excited quasiparticles) er e=2L/v s excited at timet; (marked by anx), one of these particles wraps
(virtual quasiparticles), wher& is the temperatureA is  around a quasiparticle of our computational system, and ¢tbenes
quasiparticle energy gap, is the distance between the quasi- back to its partner and re-annihilates at a later iéVhen the pair
particles comprising a qubit, ands a characteristic velocity. is created it necessarily has the identity quantum nuribef the
However, transport in real systems is, in fact, more compli-vacuum, and when it annihilates, it also necessarily hasviguum
cated. Since there are different types of quasipartictes, t guantum number. As a result (as discussed in the text) thetaua
gap measured from the resistance may not be the smallest gAj§moer of the computational system is not changed by thiss

; . L o In the process shown on the right, a quasiparticle-tyodesipair
in the system. For instance, neutral fermionic excitations is excited at time, (marked by anx), one of these particles annihi-

the Pfaffian state/SU(2)nay have a small gap, thereby lead- |5tes an existing quasiparticle of our computational sysiea later

ing to a splitting between the two states of a qubit if the twotime ¢,, and leaves behind its partner to replace the the annitilate

quasiparticles are too close together. Secondly, in theepi@®  quasiparticle of the computational system. Again, whenptie is

of disorder, the gap will vary throughout the system. Pro-created, it necessarily has the identity quantum nurhlthe vac-

cesses which take advantage of regions with small gaps maym. Similarly the annihilating pair has the quantum nuntfehe

dominate the error rate. Furthermore, in a disordered syste vacuum. As a result, the two particles remaining in the erve hiae

variable-range hopping, rather than thermally-activateds- ~ same guantum numbers as the two initial quantum numberseof th

port is the most important process. Localized quasipasicl computational system.

are an additional complication. If they are truly fixed, then

they can be corrected by software, but if they drift during th

course of a calculation, they are a potential problem. Intsho collaborative effort is afoot to revolutionize computatiby

quasiparticle transport, even ordinary electrical tramsgs  a particularly rich use of quantum mechanics. The preced-

very complicated in semiconductor quantum Hall systems. Ang information revolution, which was based on the MOS-

complete theory does not exist. Such a theory is essential f&ET, rested on the 1-electron physics of semiconductors. Th

an accurate prediction of the error rate for topologicalrgua revolution which we advocate will require the understand-

tum Computation in non-Abelian quantum Hall states in Semi-ing and manipu|ation of Strong]y_interacting e|ectr0ntey‘$_

conductor devices and is an important future Challenge fOModern condensed matter physics has powerfu| tools to ana-

solid state theory. lyze such systems: renormalization group (RG), CFT, Bethe
Ansatz, dualities, and numerics. Even without the quantum
computing connection, many of the most interesting proklem

V. FUTURE CHALLENGES FOR THEORY AND in phySiCS lie in this direction. Prominent here is the pﬂﬂbl
EXPERIMENT of creating, manipulating, and classifying topologicaltss
of matter.

Quantum mechanics represented a huge revolution in There is a second “richness” in the connection between
thought. It was such a stretch of the imagination that manyjuantum mechanics and computation. The kind of com-
great minds and much experimental information were reputation which will emerge is altogether new. While the
quired to put it into place. Now, eighty years later, anotherMOSFET-based silicon revolution facilitated the sameharit
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metic as done on the abacus, the quantum computer will contion of the form

pute in superposition. We have some knowledge about what

this will allow us to do. Select mathematical problems (fac- (Ju(@)Ju(=q)) = C €uuran (136)
toring, finding units in number fields, searching) have effiti
solutions in the quantum model. Many others may succum
to quantum heuristics (e.g. adiabatic computation (Fetrdili,
2000)) but we will not know until we can play with real quan-
tum computers. Some physical problems, such as maximizin
T, within a class of superconductors, should be advanced b
guantum computers, even though, viewed as math problem
they lie even outside class NP (i.e. they eey hard). A con-
jectural view of relative computational complexity is show
in Fig. 21.

thereC is a topological invariant. If the topological phase
does not break® and T or if there is no conserved current
in the low-energy effective field theory, then there will et

uch a dramatic signature. However, even in the quantum Hall

ontext, in which we have a leg up thanks to the Hall conduc-

nce, itis still a subtle matter to determine which topatag
phase the system is in.

As we have described, we used theoretical input to focus
our attention on thes = 5/2 andv = 12/5 states. With-
out such input, the available phase space is simply too large
and the signatures of a topological phase are too subtle. One
benefit of having a particular theoretical model of a topélog
cal phase is that experiments can be done to verify other (i.e
non-topological) aspects of the model. By corroboratirg th
model in this way, we can gain indirect evidence about the
nature of the topological phase. In the case ofithe 5/2
state, the Pfaffian model wavefunction (Greiggml., 1992;
Moore and Read, 1991) for this state is fully spin-polarized
Therefore, measuring the spin polarizationat 5/2 would
confirm this aspect of the model, thereby strengthening our
belief in the the model as a whole — including its topologi-
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S?Jtﬁ!%g salesman m;‘t‘r'i‘;'gg”g primality cal features (see Tra®tal., 2007 for such a measurement at
factoring testing v = 1/2). In the case of SRuOy, thep + ip BCS model
predicts a non-zero Kerr rotation (Xt al., 2006). This is
FIG. 21 A conjectural view of relative computational conyite not a topological invariant, but when it is non-zero and tie s

perconducting order parameter is known to be a spin-triplet
we can infer a non-zero spin quantum Hall effect (which is a

But, before we can enter this quantum computing paradisd@ppological invariant but is much more difficult to measure)
there are fundamental issues of physics to be tackled. Tte firThus, non-topological measurements can teach us a grdat dea
problem is to find a non-Abelian topological phase in naturewhen we have a particular model in mind.
The same resistance to local perturbation that makes tgpolo  In frustrated magnets, one often cuts down on the com-
cal phases astonishing (and, we hope, useful) also makes thegplex many-dimensional parameter space in the following:way
somewhat covert. An optimist might hope that they are abunene focusses on systems in which there is no conventional
dant and that we are merely untutored and have trouble notideng-range order. Although it is possible for a system to be
ing them. At present, our search is guided primarily by a pro-in a topological phase and simultaneously show conventiona
cess of elimination: we have focussed our attention on thosleng-range order (quantum Hall ferromagnets are an exam-
systems in which the alternatives don’t occur — either quant ple), the absence of conventional long-range order is often
Hall states for which there is no presumptive Abelian candi-used as circumstantial evidence that the ground state is ‘ex
date or frustrated magnets which don’t order into a convenetic’ (Coldeaetal., 2003; Shimizeetal., 2003). This is a rea-
tional broken-symmetry state. What we need to do is observeonable place to start, butin the absence of a theoretiadimo
some topological property of the system, e.g. create quaspredicting a specific topological state, it is unclear weethe
particle excitations above the ground state, braid therd, anground state is expected to be topological or merely ‘ekotic
observe how the state of the system changes as a result. iimsome other way (see below for a further discussion of this
order to do this, we need to be able to (1) create a specifiegoint).
number of quasiparticles at known positions, (2) move them While theoretical models and indirect probes can help to
in a controlled way, and (3) observe their state. All of thesedentify strong candidates, only the direct measuremeiat of
are difficult, but not impossible. topological property can demonstrate that a system is in a

It is instructive to see how these difficulties are manifdste topological phase. If, as in the quantum Hall effect, a sys-
in the case of quantum Hall states and other possible topologtem has been shown to be in a topological phase through
cal states. The existence of a topological phase in the gqomant the measurement of one property (e.g. the Hall conduc-
Hall regime is signaled by the quantization of the Hall con-tance), then there is still the problem of identifying which
ductance. This is a special feature of those chiral topoldgi topological phase. This requires the complete deternainati
phases in which there is a conserved curtgnfe.g. an elec- of all of its topological properties (in principle, the qiras
trical charge current or spin current). Topological ingage  particle species, their topological spins, fusion rulgs.and
and P, T-violation permit a non-vanishing correlation func- F-matrices). Finding non-trivial quasiparticles is the ffirs



62

step. In the quantum Hall regime, quasiparticles carry-electhis is an unimportant distinction. This experiment was per
trical charge (generally fractional). Through capacitivea- formed on an underdoped cuprate superconductor by Wynn
surements of quasiparticle electric charges (Goldman and Setal., 2001. The result was negative, implying that theretisn’
1995) or from shot noise measurements (De Picciet@.,  a topological phase in the low-doping part of the phase di-
1997; Saminadayaet al., 1997), one can measure the mini- agram of that material, but the experimental technique may
mal electric charges and infer the allowed quasiparticde-el still prove to be a valuable way to test some other candidate
tric charges. The observation of chakge quasiparticles by material in the future. It would be interesting and usefidée
either of these methods would be an important step in charsign analogous experiments which could exploit the possibl
acterizing thev = 5/2 state. Detecting charged quasipar- proximity of topological phases to other long-range ordere
ticles capacitatively or through noise measurements seces states besides superconductors.

tates gated samples: anti-dots and/or point contacts. ein th Even if non-trivial quasiparticles have been found, there i
case of delicate states suchias 5/2, this is a challenge; we  still the problem of determining their braiding propertiés
don’t want the gates to reduce the quality of the device anghe quantum Hall case, we have described in Secs. 11.C.3,
excessively degrade the robustness of the states. Even if th|.F how this can be done using quasiparticle tunneling and
proves not to be surmountable, it only solves the problem ofnterferometry experiments. This requires even more-intri
measuring charged quasiparticles; it does not directly bl cate gating. However, even these difficult experimentstaze t
with non-trivial neutral quasiparticles (such as thoseoliie  most concrete that we have, and they work only because these
believe exist at = 5/2). states are chiral and have gapless edge excitations — anek th
fore, have non-trivial DC transport properties — and beeaus
charged anyons contribute directly to these transportgyrop
ties. Neutral quasiparticles are an even bigger challeRge.

Again, a particular theoretical model of the state can be ex
tremely helpful. In the case of the toric code, an excited pla
guette orZ, vortex (see Secs. I1.D 111.G) is a neutral spinless .
excitation and, therefore, difficult to probe. However, whe haps they can be probed through thermal transport or even, if
such a phase arises in models of superconductor-Mott insuléhey carry spin, thro_ugh Spin transport: o
tor transitionsZ, vortices can be isolated by going back and ASWe have seen in Sec. I1.C.3, abelian and non-Abelian in-
forth through a direct second-order phase transition betwe terference effects are qualitatively different. Indeée, fatter
a topological phase and a superconducting phase (Senthil afy actually be easier to observe in practice. Itis strikiveg
Fisher, 2001a). Consider a superconductor in an annular guasiparticle interferometry, which sounds likeagplication
ometry with a single half-flux quantum vortex through the of topological phaseg, is bemg_studled as a basic p_robeeof th
hole in the annulus. Now suppose that some parameter catate. The naive logical order is re\(ersgd: to see if a system
be tuned so that the system undergoes a second-order phagdn @ topological phase, we are (ironically) saying “shape
transition into an insulating state which is a topologidehge ~ the system into a simple computer and if it computes as ex-
of the toric code ofZ, variety. Then the single vortex ground Pected, then it must have been in the suspected phase.” This
state of the superconductor will evolve into a state wittba 1S a_charmmg inversion, but it shoyld not close the door @en th
vortex in the hole of the annulus. The magnetic flux will es-Subject of probes. Itis, however, important to pause ane not
cape, but the, vortex will remain. (Eventually, it will either ~ thatwe now know the operational principles and methodology
quantum tunnel out of the system or, at finite temperature, bET carrying out quasiparticle braiding in a concrete pbgbi
thermally excited out of the system. It is important to per-System. Itis, therefore, possible that non-Abelian anyuifis
form the experiment on shorter time scales.) If the system i€ observed in the quantum Hall regime in the near future.
then taken back into the superconducting state, Zheor- Th|s_|s truly remarkable. It would not close the book on non-
tex will evolve back into a superconducting vortex; the flux APelian anyons, but open a new chapter and encourage us to
must be regenerated, although its direction is arbitrarl. A 100k for non-Abelian anyons elsewhere even while trying to
though Senthil and Fisher considered the caseZaftapolog- ~ Puild a quantum computer with a quantum Hall state.
ical phase, other topological phases with direct secodésor ~ One important feature of non-Abelian anyons is that they
phase transitions into superconducting states will hawvma s generally have multiple fusion channels. These differant f
ilar signature. On the other hand, in a non-topological phas sion channels can be distinguished interferometricadlylia-
there will be nothing left in the insulating phase after thexfl cussed in Secs. 11.C.3, lll.F. This is not the only possijili
has escaped. Therefore, when the system is taken back ink@ ultra-cold neutral atom systems, they can be optically de
the superconducting phase, a vortex will not reappear. Fhe etected (Grosfelgtal., 2007; Tewargtal., 2007b) in the case
fect described above is not a feature of the topologicalghasof states with Ising anyons. Perhaps, in a solid, it will be-po
alone, but depends on the existence of a second-order quagible to measure the force between two anyons. Since the two
tum phase transition between this topological state and a sifiusion channels will have different energies when the asyon
perconducting state. However, in the happy circumstarate th are close together, there will be different forces betwbaemt
such a transition does exist between two such phases of sorfleépending on how the anyons fuse. If an atomic force micro-
material, this experiment can definitively identify a topgd ~ Scope can ‘grab’an anyon in order measure this force, psrhap
ically non-trivial neutral excitation. In practice, thessgm it can also be used to drag one around and perform a braid.
is not tuned through a quantum phase transition but instead Thus, we see that new ideas would be extremely helpful
through a finite-temperature one; however, so long as the tenin the search for non-Abelian topological phases. It may be
perature is much smaller than the energy gap fés aortex,  the case that each physical system, e.g. FQHE, cold atoms,
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SrLRuO; films, etc. .., may be suited to its own types of mea-ful in the way that the closely-related problem of classifyi
surements, such as the ones described above and in Serational conformal field theories has proved useful in under
[I.C.3, lll.F, but general considerations, such as topimlalg standing classical and quantum critical points.

entropy (Kitaev and Preskill, 2006; Levin and Wen, 2006), We refer here, as we have throughout this article, to topo-
may inform and unify these investigations. Another diffi- |ogical phases as we have defined them in Sec. Il (and which
culty is that, as mentioned above, we are currently seagchinwe briefly recapitulate below). There are many other possi-
for non-Abelian topological phases in those systems in whic ple ‘exotic’ phases which share some characteristics aj-top
there is an absence of alternatives. It would be far better tgical phases, such as the emergence of gauge fields in their
have positivea priori reasons to look at particular systems.  |ow-energy theories (Wen, 2004), but do not satisfy all @ th
This state of affairs points to the dire need for general-prin criteria. These do not appear to be useful for quantum com-
ciples, perhaps of a mathematical nature, which will tell usputation.
when a system is likely to have a topological phase. Equiv- Finally, the three-dimensional frontier must be mentianed
alently, can we define the necessary conditions for the exMost theory (and experiment) pertains to 2D or quasi-2D sys-
istence of a topological phase with non-Abelian quasipartitems. In 3+1-dimensions, even the underlying mathematical
cle statistics? For contrast, consider the case of magmetis structure of TQFTs is quite open. Little is known beyond
Although there is a great deal which we don’t know aboutfinite group gauge theories. For example, we do not know
magnetism, we do know that we need solids containing ion§ quantum information can (in the thermodynamic limit) be
with partially filled d or f shells. Depending on the effec- permanently stored at finite temperature in any 3-dimersion
tive Coulomb interaction within these orbitals and thelifd ~ system. (By Dennigt al., 2002, this is possible in 4+1-
fractions, we understand how various mechanisms such as edimensions, not possible in 2+1-dimensions, and is an open
change and superexchange can lead to effective spin-spin iquestion in 3+1-dimensions.) The case of 2+1-dimensions
teractions which, in turn, can lead to ferromagnetismfanti has been the playground of anyons for 30 years. Will loop-
romagnetism, spin-density-waves, etc.. We need a comparéke “particles” in 3+1-dimensions be as rich a story 30 ywear
ble understanding of topological phases. One directioighvh  from now?
we have described in Sec. 1I1.G, is to analyze models in which perhaps it is fitting to end this review with a succinct state-
the interactions encode some combinatorial relations) 8sc  ment of the definition of a topological phase: the grouncestat
those associated with string nets or loop gases (Fendl8¥, 20 in the presence of multiple quasiparticles or in a non-tivi
Fendley and Fradkin, 2005; Fidkows#tial., 2006; Freedman topology has a stable degeneracy which is immune to weak
etal., 2005a; Levin and Wen, 2005b). However, we only havebut finite) local perturbations. Note that the existence of
a few examples of microscopic interactions which give risean excitation gap is not needed as a part of this definition
to these intermediate scale structures. We sorely need moggthough, as should be obvious by this point, the stability
general guidelines which would enable us to look at a giverbf the ground state degeneracy to local perturbations almos
Hamiltonian and determine if itis likely to have anon-Alagli  always necessitates the existence of an excitation gap. We
topological phase; a more detailed analysis or experimentanake three comments about this definition before conclud-
study could then be carried out. This is a particularly im-ing: (1) incompressible FQH states satisfy our definitiod an
portant direction for future research because, althougiir@a they are, so far, the only experimentally-established ltugpo
has given us the quantum Hall regime as a promising huntingal phases. (2) The existence of a topological phase does
ground for topological phases, the energy scales are very lo not, by itself, enable topological quantum computation e on
A topological phase in a transition metal oxide might have aneeds quasiparticles with non-Abelian braiding statistnd
much larger gap and, therefore, be much more robust. for universal topological quantum computation, these quasi-
An important problem on the mathematical side is a com-articles’ topological properties must belong to a clasgtvh
plete classification of topological phases. In this reviaw, includes SU(2), with k = 3,5,6,7,8,9,..., as we have dis-
have focussed on a few examples of topological phases: thosgissed extensively in this article. (3) Possible non-Ateli
associated with SU(2)Chern-Simons theory, especially the quantum Hall states, such as= 5/2 and12/5 are the first
k = 2,3 cases. These are part of a more general class agmong several possible candidates, includingR80,, which
sociated with an arbitrary semi-simple Lie groGpat level  has recently been shown to be a chjralave superconductor
k. Another class is associated with discrete groups, such didwingiraetal., 2006; Xiaetal., 2006), ang-wave paired
phases whose effective field theories are lattice gauge thegold atom superfluids.
ries with discrete gauge group. New topological phases can Note added in proof: A measurement of the charge of a
be obtained from both of these by coset constructions and/ajuasi-particle in a = 5/2 fractional quantum Hall state has
tensoring together different effective field theories. ldoar, been recently reported by Dolev et al. in arXiv:0802.0980 (t
a complete classification is not known. With a complete clasappearin Nature). In that measurement, current tunnetsacr
sification in hand, if we were to observe a topological phase constriction between two opposite edge states of a Hall bar
in nature, we could identify it by comparing it against thet li  and the quasi-particle charge is extracted from the custestt
of topological phases. Since we have observed relativaly fe noise. Dolev et al. have found the charge to be consistent
topological phases in nature, we have not needed a completgth ¢/4, and inconsistent with /2. A quasi-patrticle charge
classification. If, however, many more are lurking, waiting of ¢/4 is consistent with paired states:at= 5/2, including
to be observed, then a complete classification could be uséoth the Moore-Read state, the anti-Pfaffian state, and also
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Abelian paired states. Thus, the observation of chayge = We write the OPE for two arbitrary fields, and¢; as
guasiparticles is necessary but not sufficient to show tiat t
v = 5/2 state is non-Abelian. lim i (2)¢;(w) = 32, CE (z—w) 275 ¢y (w) (AL)

Note added in proof:

Dolev et al. (arXiv:0802.0930; Nature, in press) have where the structure constar(tgfj are only nonzero as indi-
recently measured the low-frequency current noise (‘shofated by the fusion table. (For our purposes, we can assume
noise’) at a point contact in the = 5/2 state. They find the that all fields¢;, are primary fields. So called “descendant”
noise to be consistent with chargg4 quasiparticles, and in-  fields, which are certain types of “raising operators” agqbli
consistent withe /2. A quasi-particle charge af/4 is consis- 0 the primary fields, can also occur on the right hand side,
tent with paired states at= 5/2, including both the Moore- W|t_h the_ dimension _of the des_cendant b_elng greater than that
Read (Pfaffian) state, the anti-Pfaffian state, and alsoiawel Of its primary by an integer. Since we will be concerned only
paired states. with leading singularities in the OPE, we will ignore descen
dants. For all the CFTs that we consider the coefficient of

In  another recent experiment, Raduet al. : . : . .
(arXiv:0803.3530) measured the dependence on voltagi'® Primary on the right hand side will not vanish, although

and temperature of the tunneling current at a point contacf!!S ¢an happen.) Note that the OPE wairiside a correlator.
inthe v = 5/2 state. They find that the current is well fit FOr example, in thé&; parafermion CFT (see Table II), since

by the formI = T®F(e*V/kpT) wheree* = ¢/4, and the 71 X Y1 =6 for arbitrary fields; we have

exponenty and scaling functiorF'(z) are at least consistent i , A2
with the anti-Pfaffian state, although it is premature taerul z%wl(zl) -9 (aa) o1 ()i (w)) (A2)
out other states. ~ (z— w)2/5—1/15—2/3< $1(21) ... dar(zar)e(w))
In arecent preprint (arXiv:0803.0737), Petersbal. have . . . .
performed finite-system exact diagonalization studiesctvhi N @ddition to the OPE, there is also an important “neutral-

find the correct ground state degeneracy on the torus-at ity” condition: a correlator is zero unless all of the fieldmc
5/2 and also observe the expected degeneracy between PfdfiSe together to form the identity field For example, in the
fian and anti-Pfaffian states. The key new ingredient in theifzs Parafermion field theoryyyin) # 0 sinceyy x ¢ = 1,
calculation is the inclusion of the effects of the finiteettiess ~ PUt(¥191) = 0 sinceyy x ¢y = ¢ # 1.

of the 2D layer which also appears to enhance the overlap be- lsing CFT: ¢  1/2)
tween the non-Abelian states and the exact numerical finite- Chiral Bose Vertex:d = 1) :

system wavefunction at = 5/2. [ Ta][x] ¢ | Ll a][x]e] o |
The first two papers provide the first direct experimental [aqo[ 2 B i(atB)d vl 1/2] [
evidence in su i i ile Ha /2| < | < ”
pport of the 5/2 state being non-Abelian while o|[1/16]| |o||lo|1+
the third paper strengthens the case from numerics. 7 Parafermion CFT:( = 4/5)
LUa] [xllofw oo [ 02 [ €]
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national Science Foundation, and Alcatel-Lucent Bell Labs TABLE Il Conformal data for three CFTs. Given is the list of-pr

mary fields in the CFT with their conformal dimensidn) as well as

the fusion table. In addition, every CFT has an identity fihdith
APPENDIX A: Conformal Field Theory (CFT) for dimensionA = 0 which fuses trivially with any fieldX x ¢; = ¢;
Pedestrians for any ¢;). Note that fusion tables are symmetric so only the lower
part is given. In the Ising CFT the field is frequently notated as
e. This fusion table indicates the nonzero elements of thefusa-
trix Ng,. For example in theéZs CFT, sinces; X o2 = 1 + ¢,
N}, oy = NS, 0, = 1andN§, ., = 0 for all ¢ not equal tal or e.

We consider chiral CFTs in 2 dimensions. “Chiral” means
that all of our fields will be functions of = x + iy only
and not functions of. (For a good introduction to CFT see
(Belavinetal., 1984; Di Francescetal., 1997)). (b) Conformal Blocks:  Let us look at what happens when

(a) OPE: To describe a CFT we give its “conformal data”, & fusion has more than one possible result. For example, in
' " the Ising CFTg x o = 1 + 1. Using the OPE, we have

including a set of primary fields, each with a conformal di-
mensionA, a table of fusion rules of these fields and a central 1
chargec (which we will not need here, but is fundamental to  lim o(wi)o(ws)~ er(
defining each CFT). Data for three CFTs are given in Table II.

The operator product expansion (OPE) describes what hapvhere we have neglected the constaﬁfjs If we consider
pens to two fields when their positions approach each othetoo), the neutrality condition picks out only the first term in

wy —ws)>/% ¢ (A3)
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Eqg. A3 where the twar's fuse to form1. Similarly, (cov) 1
results in the second term of Eq. A3 where the ti@fuse to N\ /K S
form «) which then fuses with the additionalto makel.

g g ag
Fields may also fuse to form the identity in 1/ \/ \1/ \

more than one way. For exam_ple, in the co_rrelatorFlG_zz Bratteli diagram for fusion of multiple fields in the Ising
(o(w1)o(we)o(ws)o(ws)) of the lIsing CFT, the iden- gt

tity is obtained via two possible fusion paths — resulting
in two different so-called “conformal blocks”. On the one - -
hand, one can fuse(w;) ando(w2) to form 1 and similarly i b i

fuseo(ws) ando(wy) to form 1. Alternately, one can fuse ' !

o(wy) ando(ws) to form ¢ and fuses(ws) ando(w,) to .
form + then fuse the two resulting fields together to form % = SOk,
1. The correlator generally gives a linear combination of the Om q

possible resulting conformal blocks. We should thus think

of S.UCh a .Correlator as "V"‘Q in a vector space rather thar|1_-|G_ 23 The basis states obtained by fusing fields togethesruks
having asmgle value. (If Wellnstead choose to f“‘“’th.?" on the order of fusion (although the space spanned by thasesst
and2 with 4, we would obtain two blocks which are linear s independent of the order). THe&-matrix converts between the

combinations of the ones found by fusing 1 with 2 and 3 withpossible bases.
4. The resulting vectors space, however, is independeheof t
order of fusion). Crucially, transporting the coordinates
around each other makes a rotation within this vector space.in different orders results in a different basis for thatcpa
To be more clear about the notion of conformal blocks, letA convenient way to notate fusion of fields is a particular or-
us look at the explicit form of the Ising CFT correlator der is using fusion tree diagrams as shown in Fig. 23. Both
diagrams in this figure show the fusion of three initial fields
Jim (o(0)a(2)o(1)o(w)) = ay Fy +a- F- (M) ¢, 6, ¢. The diagram on the left shows and¢; fusing
together first to formp,, which then fuses witkp; to forme,,,.
Fi(z) ~ (wz(1—2)) Y8 /1+ V1 -2 (A5)  One could equally well have chosen to fuse togethemdq;

) o together first before fusing the result with, as shown on the
wherea, anda_ are arbitrary coefficients. (Eqs. A4-AS are jgh of Fig. 23. The mathematical relation between these tw
results of calculations not given here (Di F{a;ce%, bases is given in the equation shown in Fig. 23 in terms of
1997)). Whenz — 0 we haveF, ~ »~'/% whereas o so.calledr-matrix (for “fusion”), which is an important

F_ ~ z/%. Comparing to Eq. A3 we conclude thal, is property of any given CFT or TQFT. An example of using the
the result of fusing’(0) x o(2) — 1 wheread"_ istheresult  p_matrix is given in section IV.B.

of fusingo(0) x o(z) — . As z is taken in a clockwise
circle around the point = 1, the inner square-root changes
sign, switchingF’, and F_. Thus, this “braiding” (or “mon-
odromy”) operation transforms

(d) The Chiral Boson: A particularly important CFT is
obtained from a free Bose field theory in 1+1 dimension by
keeping only the left moving modes (Di Francesebal.,
1997). The free chiral Bose field(z), which is a sum of

() — e2mi/8 ((IJ é) 59 (A6) leftmoving creation and annihilation operators, has aatasr

“ “ tor (¢(2)¢p(2')) = —log(z — 2’). We then define the normal
Having a multiple valued correlator (I.e., multiple confaal  ordered “chiral vertex operator” e?¢() : , which is a con-
blocks) is a result of having such branch cuts. Braiding thormal field. Note that we will typically not write the normal
coordinates«’s) around each other results in the correlatorordering indicators : :". Since is a free field, Wick’s theo-
changing values within its allowable vector space. rem can be used to obtain (Di Francestal., 1997)

A useful technique for counting conformal blocks is the
“Bratteli diagram.” In Fig. 22 we give the Bratteli diagram
for the fusion of multiples fields in the Ising CFT. Starting — Hi<j (21 — ;)™ (A7)
with 1 at the lower left, at each step moving from the left to
the right, we fuse with one morefield. At the first step, the (Strictly speaking thi identity holds only if the neutrgliton-
arrow points fron to o sincel x o = o. Atthe nextstepr  dition >, a; = 0 is satisfied, otherwise the correlator van-
fuses witho to produce either or 1 and so forth. Each con- ishes).
formal block is associated with a path through the diagram.

Thus to determine the number of blocks(twoo) we count
the number of paths of four steps in the diagram startingeat thReferences

lower left and ending at.
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