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Topological quantum computation has recently emerged as one of the most exciting approaches to constructing a
fault-tolerant quantum computer. The proposal relies on the existence of topological states of matter whose quasi-
particle excitations are neither bosons nor fermions, but are particles known asNon-Abelian anyons, meaning that
they obeynon-Abelian braiding statistics. Quantum information is stored in states with multiple quasiparticles,
which have a topological degeneracy. The unitary gate operations which are necessary for quantum computation
are carried out by braiding quasiparticles, and then measuring the multi-quasiparticle states. The fault-tolerance
of a topological quantum computer arises from the non-localencoding of the states of the quasiparticles, which
makes them immune to errors caused by local perturbations. To date, the only such topological states thought
to have been found in nature are fractional quantum Hall states, most prominently theν = 5/2 state, although
several other prospective candidates have been proposed insystems as disparate as ultra-cold atoms in optical
lattices and thin film superconductors. In this review article, we describe current research in this field, focusing
on the general theoretical concepts of non-Abelian statistics as it relates to topological quantum computation, on
understanding non-Abelian quantum Hall states, on proposed experiments to detect non-Abelian anyons, and on
proposed architectures for a topological quantum computer. We address both the mathematical underpinnings of
topological quantum computation and the physics of the subject using theν = 5/2 fractional quantum Hall state
as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
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I. INTRODUCTION

In recent years, physicists’ understanding of the quantum
properties of matter has undergone a major revolution pre-
cipitated by surprising experimental discoveries and profound
theoretical revelations. Landmarks include the discoveries of
the fractional quantum Hall effect and high-temperature su-
perconductivity and the advent of topological quantum field
theories. At the same time, new potential applications for
quantum matter burst on the scene, punctuated by the discov-
eries of Shor’s factorization algorithm and quantum error cor-
rection protocols. Remarkably, there has been a convergence
between these developments. Nowhere is this more dramatic
than in topological quantum computation, which seeks to ex-
ploit the emergent properties of many-particle systems to en-
code and manipulate quantum information in a manner which
is resistant to error.

It is rare for a new scientific paradigm, with its attendant
concepts and mathematical formalism, to develop in parallel
with potential applications, with all of their detailed technical
issues. However, the physics of topological phases of matter
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is not only evolving alongside topological quantum computa-
tion but is even informed by it. Therefore, this review must
necessarily be rather sweeping in scope, simply to introduce
the concepts of non-Abelian anyons and topological quantum
computation, their inter-connections, and how they may be re-
alized in physical systems, particularly in several fractional
quantum Hall states. (For a popular account, see Collins,
2006; for a slightly more technical one, see Das Sarmaet al.,
2006a.) This exposition will take us on a tour extending from
knot theory and topological quantum field theory to conformal
field theory and the quantum Hall effect to quantum computa-
tion and all the way to the physics of gallium arsenide devices.

The body of this paper is composed of three parts, Sections
II, III, and IV. Section II is rather general, avoids technical
details, and aims to introduce concepts at a qualitative level.
Section II should be of interest, and should be accessible, to
all readers. In Section III we describe the theory of topolog-
ical phases in more detail. In Section IV, we describe how a
topological phase can be used as a platform for fault-tolerant
quantum computation. The second and third parts are proba-
bly of more interest to theorists, experienced researchers, and
those who hope to conduct research in this field.

Section II.A.1 begins by discussing the concept of braiding
statistics in2 + 1-dimensions. We define the idea of a non-
Abelian anyon, a particle exhibiting non-Abelian braiding
statistics. Section II.A.2 discusses how non-Abelian anyons
can arise in a many-particle system. We then review the ba-
sic ideas of quantum computation, and the problems of errors
and decoherence in section II.B.1. Those familiar with quan-
tum computation may be able to skip much of this section. We
explain in section II.B.2 how non-Abelian statistics naturally
leads to the idea of topological quantum computation, and ex-
plain why it is a good approach to error-free quantum compu-
tation. In section II.C, we briefly describe the non-Abelian
quantum Hall systems which are the most likely arena for
observing non-Abelian anyons (and, hence, for producing a
topological quantum computer). Section II.C.1 gives a very
basic review of quantum Hall physics. Experts in quantum
Hall physics may be able to skip much of this section. Section
II.C.2 introduces non-Abelian quantum Hall states. This sec-
tion also explains the importance (and summarizes the results)
of numerical work in this field for determining which quantum
Hall states are (or might be) non-Abelian. Section II.C.3 de-
scribes some of the proposed interference experiments which
may be able to distinguish Abelian from non-Abelian quan-
tum Hall states. Section II.C.4 shows how qubits and ele-
mentary gates can be realized in a quantum Hall device. Sec-
tion II.C.5 discusses some of the engineering issues associ-
ated with the physical systems where quantum Hall physics
is observed. In section II.D we discuss some of the other,
non-quantum-Hall systems where it has been proposed that
non-Abelian anyons (and hence topological quantum compu-
tation) might occur.

Sections III and IV are still written to be accessible to the
broadest possible audiences, but they should be expected to
be somewhat harder going than Section II. Section III intro-
duces the theory of topological phases in detail. Topological
quantum computation can only become a reality if some phys-

ical system ‘condenses’ into a non-Abelian topological phase.
In Section III, we describe the universal low-energy, long-
distance physics of such phases. We also discuss how they can
be experimentally detected in the quantum Hall regime, and
when they might occur in other physical systems. Our focus
is on a sequence of universality classes of non-Abelian topo-
logical phases, associated with SU(2)k Chern-Simons theory
which we describe in section III.A. The first interesting mem-
ber of this sequence,k = 2, is realized in chiral p-wave
superconductors and in the leading theoretical model for the
ν = 5/2 fractional quantum Hall state. Section III.B shows
how this universality class can be understood with conven-
tional BCS theory. In section III.C, we describe how the topo-
logical properties of the entire sequence of universality classes
(of which k = 2 is a special case) can be understood using
Witten’s celebrated connection between Chern-Simons theory
and the Jones polynomial of knot theory. In section III.D, we
describe an alternate formalism for understanding the topo-
logical properties of Chern-Simons theory, namely through
conformal field theory. The discussion revolves around the
application of this formalism to fractional quantum Hall states
and explains how non-Abelian quantum Hall wavefunctions
can be constructed with conformal field theory. Appendix A
gives a highly-condensed introduction to conformal field the-
ory. In Section III.E, we discuss the gapless edge excitations
which necessarily accompany chiral (i.e. parity,P and time-
reversalT -violating) topological phases. These excitations
are useful for interferometry experiments, as we discuss in
Section III.F. Finally, in Section III.G, we discuss topological
phases which do not violate parity and time-reversal symme-
tries. These phases emerge in models of electrons, spins, or
bosons on lattices which could describe transition metal ox-
ides, Josephson junction arrays, or ultra-cold atoms in optical
lattices.

In Section IV, we discuss how quasiparticles in topological
phases can be used for quantum computation. We first dis-
cuss the case of SU(2)2, which is the leading candidate for
theν = 5/2 fractional quantum Hall state. We show in Sec-
tion IV.A how qubits and gates can be manipulated in a gated
GaAs device supporting this quantum Hall state. We discuss
why quasiparticle braiding alone is not sufficient for universal
quantum computation and how this limitation of theν = 5/2
state can be circumvented. Section IV.B discusses in detail
how topological computations can be performed in the sim-
plest non-Abelian theory that is capable of universal topolog-
ical quantum computation, the so-called “Fibonacci-Anyon”
theory. In IV.C, we show that the SU(2)k theories support
universal topological quantum computation for all integers k
exceptk = 1, 2, 4. In IV.D, we discuss the physical processes
which will cause errors in a topological quantum computer.

Finally, we briefly conclude in section V. We discuss
questions for the immediate future, primarily centered on the
ν = 5/2 andν = 12/5 fractional quantum Hall states. We
also discuss a broader set of question relating to non-Abelian
topological phases and fault-tolerant quantum computation.



3

II. BASIC CONCEPTS

A. Non-Abelian Anyons

1. Non-Abelian Braiding Statistics

Quantum statistics is one of the basic pillars of the quan-
tum mechanical view of the world. It is the property which
distinguishes fermions from bosons: the wave function that
describes a system of many identical particles should satisfy
the proper symmetry under the interchange of any two parti-
cles. In3 spatial dimension and one time dimension (3+1 D)
there are only two possible symmetries — the wave function
of bosons is symmetric under exchange while that of fermions
is anti-symmetric. One cannot overemphasize, of course, the
importance of the symmetry of the wavefunction, which is
the root of the Pauli principle, superfluidity, the metallicstate,
Bose-Einstein condensation, and a long list of other phenom-
ena.

The limitation to one of two possible types of quantum
symmetry originates from the observation that a process in
which two particles are adiabatically interchanged twice is
equivalent to a process in which one of the particles is adi-
abatically taken around the other. Since, in three dimensions,
wrapping one particle all the way around another is topolog-
ically equivalent to a process in which none of the particles
move at all, the wave function should be left unchanged by
two such interchanges of particles. The only two possibili-
ties are for the wavefunction to change by a± sign under a
single interchange, corresponding to the cases of bosons and
fermions, respectively.

We can recast this in path integral language. Suppose we
consider all possible trajectories in3 + 1 dimensions which
takeN particles from initial positionsR1, R2, . . ., RN at
time ti to final positionsR1, R2, . . ., RN at timetf . If the
particles are distinguishable, then there are no topologically
non-trivial trajectories, i.e. all trajectories can be continu-
ously deformed into the trajectory in which the particles do
not move at all (straight lines in the time direction). If the
particles are indistinguishable, then the different trajectories
fall into topological classes corresponding to the elements of
the permutation groupSN , with each element of the group
specifying how the initial positions are permuted to obtainthe
final positions. To define the quantum evolution of such a sys-
tem, we must specify how the permutation group acts on the
states of the system. Fermions and bosons correspond to the
only two one-dimensional irreducible representations of the
permutation group ofN identical particles.1

Two-dimensional systems are qualitatively different from
three (and higher dimensions) in this respect. A particle loop
that encircles another particle in two dimensions cannot be
deformed to a point without cutting through the other particle.

1 Higher dimensional representations of the permutation group, known as
‘parastatistics’, can always be decomposed into fermions or bosons with
an additional quantum number attached to each particle (Doplicher et al.,
1971, 1974).

Consequently, the notion of a winding of one particle around
another in two dimensions is well-defined. Then, when two
particles are interchanged twice in a clockwise manner, their
trajectory involves a non-trivial winding, and the system does
not necessarily come back to the same state. This topological
difference between two and three dimensions, first realized
by Leinaas and Myrheim, 1977 and by Wilczek, 1982a, leads
to a profound difference in the possible quantum mechanical
properties, at least as a matter of principle, for quantum sys-
tems when particles are confined to2 + 1 D (see also Goldin
et al., 1981 and Wu, 1984). (As an aside, we mention that in
1 + 1 D, quantum statistics is not well-defined since particle
interchange is impossible without one particle going through
another, and bosons with hard-core repulsion are equivalent to
fermions.)

Suppose that we have two identical particles in two dimen-
sions. Then when one particle is exchanged in a counter-
clockwise manner with the other, the wavefunction can
change by an arbitrary phase,

ψ (r1, r2) → eiθψ (r1, r2) (1)

The phase need not be merely a± sign because a second
counter-clockwise exchange need not lead back to the initial
state but can result in a non-trivial phase:

ψ (r1, r2) → e2iθψ (r1, r2) (2)

The special casesθ = 0, π correspond to bosons and fermions,
respectively. Particles with other values of the ‘statistical an-
gle’ θ are calledanyons (Wilczek, 1990). We will often refer
to such particles as anyons with statisticsθ.

Let us now consider the general case ofN particles, where
a more complex structure arises. The topological classes of
trajectories which take these particles from initial positions
R1, R2, . . ., RN at timeti to final positionsR1, R2, . . ., RN
at timetf are in one-to-one correspondence with the elements
of the braid groupBN . An element of the braid group can
be visualized by thinking of trajectories of particles as world-
lines (or strands) in 2+1 dimensional space-time originating
at initial positions and terminating at final positions, as shown
in Figure 1. The time direction will be represented vertically
on the page, with the initial time at the bottom and the final
time at the top. An element of theN -particle braid group is
an equivalence class of such trajectories up to smooth defor-
mations. To represent an element of a class, we will draw
the trajectories on paper with the initial and final points or-
dered along lines at the initial and final times. When drawing
the trajectories, we must be careful to distinguish when one
strand passes over or under another, corresponding to a clock-
wise or counter-clockwise exchange. We also require that
any intermediate time slice must intersectN strands. Strands
cannot ‘double back’, which would amount to particle cre-
ation/annihilation at intermediate stages. We do not allowthis
because we assume that the particle number is known. (We
will consider particle creation/annihilation later in this paper
when we discuss field theories of anyons and, from a mathe-
matical perspective, when we discuss the idea of a “category”
in section IV below.) Then, the multiplication of two ele-
ments of the braid group is simply the successive execution
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FIG. 1 Top: The two elementary braid operationsσ1 andσ2 on
three particles.Middle: Here we showσ2σ1 6= σ1σ2, hence the
braid group is Non-Abelian.Bottom: The braid relation (Eq. 3)
σiσi+1σi = σi+1σiσi+1.

of the corresponding trajectories, i.e. the vertical stacking of
the two drawings. (As may be seen from the figure, the order
in which they are multiplied is important because the group
is non-Abelian, meaning that multiplication is not commuta-
tive.)

The braid group can be represented algebraically in terms of
generatorsσi, with 1 ≤ i ≤ N−1. We choose an arbitrary or-
dering of the particles1, 2, . . . , N .2 σi is a counter-clockwise
exchange of theith and(i+ 1)th particles.σ−1

i is, therefore, a
clockwise exchange of theith and(i+ 1)th particles. Theσis
satisfy the defining relations (see Fig. 1),

σiσj = σjσi for |i− j| ≥ 2
σiσi+1σi = σi+1σi σi+1 for 1 ≤ i ≤ n− 1 (3)

The only difference from the permutation groupSN is that
σ2
i 6= 1, but this makes an enormous difference. While

the permutation group is finite, the number of elements in
the group|SN | = N !, the braid group is infinite, even for
just two particles. Furthermore, there are non-trivial topolog-
ical classes of trajectories even when the particles are distin-
guishable, e.g. in the two-particle case those trajectories in

2 Choosing a different ordering would amount to a relabeling of the elements
of the braid group, as given by conjugation by the braid whichtransforms
one ordering into the other.

which one particle winds around the other an integer num-
ber of times. These topological classes correspond to the ele-
ments of the ‘pure’ braid group, which is the subgroup of the
braid group containing only elements which bring each parti-
cle back to its own initial position, not the initial position of
one of the other particles. The richness of the braid group is
the key fact enabling quantum computation through quasipar-
ticle braiding.

To define the quantum evolution of a system, we must now
specify how the braid group acts on the states of the system.
The simplest possibilities are one-dimensional representations
of the braid group. In these cases, the wavefunction acquires
a phaseθ when one particle is taken around another, analo-
gous to Eqs. 1, 2. The special casesθ = 0, π are bosons
and fermions, respectively, while particles with other values
of θ areanyons (Wilczek, 1990). These are straightforward
many-particle generalizations of the two-particle case consid-
ered above. An arbitrary element of the braid group is rep-
resented by the factoreimθ wherem is the total number of
times that one particle winds around another in a counter-
clockwise manner (minus the number of times that a particle
winds around another in a clockwise manner). These repre-
sentations are Abelian since the order of braiding operations
in unimportant. However, they can still have a quite rich struc-
ture since there can bens different particle species with pa-
rametersθab, wherea, b = 1, 2, . . . , ns, specifying the phases
resulting from braiding a particle of typea around a particle of
typeb. Since distinguishable particles can braid non-trivially,
i.e. θab can be non-zero fora 6= b as well as fora = b,
anyonic ‘statistics’ is, perhaps, better understood as a kind of
topological interaction between particles.

We now turn to non-Abelian braiding statistics, which
are associated with higher-dimensional representations of the
braid group. Higher-dimensional representations can occur
when there is a degenerate set ofg states with particles at fixed
positionsR1,R2, . . .,Rn. Let us define an orthonormal basis
ψα, α = 1, 2, . . . , g of these degenerate states. Then an ele-
ment of the braid group – sayσ1, which exchanges particles 1
and 2 – is represented by ag × g unitary matrixρ(σ1) acting
on these states.

ψα → [ρ(σ1)]αβ ψβ (4)

On the other hand, exchanging particles 2 and 3 leads to:

ψα → [ρ(σ2)]αβ ψβ (5)

Both ρ(σ1) andρ(σ2) areg × g dimensional unitary matri-
ces, which define unitary transformation within the subspace
of degenerate ground states. Ifρ(σ1) andρ(σ1) do not com-
mute, [ρ(σ1)]αβ [ρ(σ2)]βγ 6= [ρ(σ2)]αβ [ρ(σ1)]βγ , the parti-
cles obeynon-Abelian braiding statistics. Unless they com-
mute for any interchange of particles, in which case the par-
ticles’ braiding statistics is Abelian, braiding quasiparticles
will cause non-trivial rotations within the degenerate many-
quasiparticle Hilbert space. Furthermore, it will essentially be
true at low energies that theonly way to make non-trivial uni-
tary operations on this degenerate space is by braiding quasi-
particles around each other. This statement is equivalent to a
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statement that no local perturbation can have nonzero matrix
elements within this degenerate space.

A system with anyonic particles must generally have mul-
tiple types of anyons. For instance, in a system with Abelian
anyons with statisticsθ, a bound state of two such particles
has statistics4θ. Even if no such stable bound state exists, we
may wish to bring two anyons close together while all other
particles are much further away. Then the two anyons can
be approximated as a single particle whose quantum num-
bers are obtained by combining the quantum numbers, in-
cluding the topological quantum numbers, of the two parti-
cles. As a result, a complete description of the system must
also include these ‘higher’ particle species. For instance, if
there areθ = π/m anyons in system, then there are also
θ = 4π/m, 9π/m, . . . , (m− 1)2π/m. Since the statistics pa-
rameter is only well-defined up to2π, θ = (m− 1)2π/m =
−π/m for m even andπ − π/m for m odd. The formation
of a different type of anyon by bringing together two anyons
is calledfusion. When a statisticsπ/m particle is fused with
a statistics−π/m particle, the result has statisticsθ = 0. It
is convenient to call this the ‘trivial’ particle. As far as topo-
logical properties are concerned, such a boson is just as good
as the absence of any particle, so the ‘trivial’ particle is also
sometimes simply called the ‘vacuum’. We will often denote
the trivial particle by1.

With Abelian anyons which are made by forming succes-
sively larger composites ofπ/m particles, thefusion rule is:
n2π
m × k2π

m = (n+k)2π
m . (We will usea× b to denotea fused

with b.) However, for non-Abelian anyons, the situation is
more complicated. As with ordinary quantum numbers, there
might not be a unique way of combining topological quantum
numbers (e.g. two spin-1/2 particles could combine to form
either a spin-0 or a spin-1 particle). The different possibili-
ties are called the differentfusion channels. This is usually
denoted by

φa × φb =
∑

c

N c
abφc (6)

which represents the fact that when a particle of speciesa
fuses with one of speciesb, the result can be a particle of
speciesc if N c

ab 6= 0. For Abelian anyons, the fusion mul-
tiplicities N c

ab = 1 for only one value ofc andN c′

ab = 0 for
all c′ 6= c. For particles of typek with statisticsθk = πk2/m,
i.e. Nk′′

kk′ = δk+k′,k′′ . For non-Abelian anyons, there is at
least onea, b such that there are multiple fusion channelsc
with N c

ab 6= 0. In the examples which we will be considering
in this paper,N c

ab = 0 or 1, but there are theories for which
N c
ab > 1 for somea, b, c. In this case,a andb can fuse to form

c in N c
ab > 1 different distinct ways. We will usēa to denote

the antiparticle of particle speciesa. Whena andā fuse, they
can always fuse to1 in precisely one way, i.e.N1

aā = 1; in
the non-Abelian case, they may or may not be able to fuse to
other particle types as well.

The different fusion channels are one way of accounting for
the different degenerate multi-particle states. Let us seehow
this works in one simple model of non-Abelian anyons which
we discuss in more detail in section III. As we discuss in sec-
tion III, this model is associated with ‘Ising anyons’ (which

are so-named for reasons which will become clear in sections
III.D and III.E), SU(2)2, and chiralp-superconductors. There
are slight differences between these three theories, relating to
Abelian phases, but these are unimportant for the present dis-
cussion. This model has three different types of anyons, which
can be variously called1, σ, ψ or 0, 1

2 , 1. (Unfortunately, the
notation is a little confusing because the trivial particleis
called ‘1’ in the first model but ‘0‘ in the second, however,
we will avoid confusion by using bold-faced1 to denote the
trivial particle.) The fusion rules for such anyons are

σ × σ = 1 + ψ, σ × ψ = σ, ψ × ψ = 1,
1× x = x for x = 1, σ, ψ (7)

(Translating these rules into the notation of SU(2)2, we see
that these fusion rules are very similar to the decomposition
rules for tensor products of irreducible SU(2) representations,
but differ in the important respect that1 is the maximum spin
so that12 × 1

2 = 0+1, as in the SU(2) case, but1
2 ×1 = 1

2 and
1 × 1 = 0.) Note that there are two different fusion channels
for twoσs. As a result, if there are fourσs which fuse together
to give1, there is a two-dimensional space of such states. If
we divided the fourσs into two pairs, by grouping particles
1, 2 and 3, 4, then a basis for the two-dimensional space is
given by the state in which1, 3 fuse to1 or 1, 3 fuse toψ (2, 4
must fuse to the same particle type as1, 3 do in order that all
four particles fuse to1). We can call these statesΨ1 andΨψ;
they are a basis for the four-quasiparticle Hilbert space with
total topological charge1. (Similarly, if they all fused to give
ψ, there would be another two-dimensional degenerate space;
one basis is given by the state in which the first pair fuses to1

while the second fuses toψ and the state in which the opposite
occurs.)

Of course, our division of the fourσs into two pairs was
arbitrary. We could have divided them differently, say, into
the pairs1, 3 and 2, 4. We would thereby obtain two dif-
ferent basis states,̃Ψ1 and Ψ̃ψ, in which both pairs fuse to
1 or to ψ, respectively. This is just a different basis in the
same two-dimensional space. The matrix parametrizing this
basis change (see also Appendix A) is called theF -matrix:
Ψ̃a = FabΨb, wherea, b = 1, ψ. There should really be
6 indices onF if we include indices to specify the4 parti-

cle types:
[

F ijkl

]

ab
, but we have dropped these other indices

since i = j = k = l = σ in our case. TheF -matrices
are sometimes called6j symbols since they are analogous to
the corresponding quantities for SU(2) representations. Recall
that in SU(2), there are multiple states in which spinsj1, j2, j3
couple to form a total spinJ. For instance,j1 andj2 can add
to form j12, which can then add withj3 to giveJ. The eigen-
states of(j12)

2 form a basis of the different states with fixed
j1, j2, j3, andJ. Alternatively,j2 andj3 can add to formj23,
which can then add withj1 to giveJ. The eigenstates of(j23)

2

form a different basis. The6j symbol gives the basis change
between the two. TheF -matrix of a system of anyons plays
the same role when particles of topological chargesi, j, k fuse
to total topological chargel. If i andj fuse toa, which then
fuses withk to give topological chargel, the different allowed
a define a basis. Ifj andk fuse tob and then fuse withi to
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give topological chargel, this defines another basis, and the
F -matrix is the unitary transformation between the two bases.
States with more than 4 quasiparticles can be understood by
successively fusing additional particles, in a manner described
in Section III.A. TheF -matrix can be applied to any set of 4
consecutively fused particles.

The different states in this degenerate multi-anyon state
space transform into each other under braiding. However, two
particles cannot change their fusion channel simply by braid-
ing with each other since their total topological charge can
be measured along a far distant loop enclosing the two parti-
cles. They must braid with a third particle in order to change
their fusion channel. Consequently, when two particles fuse
in a particular channel (rather than a linear superpositionof
channels), the effect of taking one particle around the other
is just multiplication by a phase. This phase resulting from
a counter-clockwise exchange of particles of typesa and b
which fuse to a particle of typec is calledRabc . In the Ising
anyon case, as we will derive in section III and Appendix A.1,
Rσσ1 = e−πi/8, Rσσψ = e3πi/8, Rψψ1 = −1, Rσψσ = i. For
an example of how this works, suppose that we create a pair
of σ quasiparticles out of the vacuum. They will necessarily
fuse to1. If we take one around another, the state will change
by a phasee−πi/8. If we take a thirdσ quasiparticle and take
it around one, but not both, of the first two, then the first two
will now fuse toψ, as we will show in Sec. III. If we now take
one of the first two around the other, the state will change by
a phasee3πi/8.

In order to fully specify the braiding statistics of a system
of anyons, it is necessary to specify (1) the particle species,
(2) the fusion rulesN c

ab, (3) theF -matrices, and (4) theR-
matrices. In section IV, we will introduce the other sets of pa-
rameters, namely the topological spinsΘa and theS-matrix,
which, together with the parameters 1-4 above fully charac-
terize the topological properties of a system of anyons. Some
readers may be familiar with the incarnation of these mathe-
matical structures in conformal field theory (CFT), where they
occur for reasons which we explain in section III.D; we briefly
review these properties in the CFT context in Appendix A.

Quasiparticles obeying non-Abelian braiding statistics or,
simply non-Abelian anyons, were first considered in the con-
text of conformal field theory by Moore and Seiberg, 1988,
1989 and in the context of Chern-Simons theory by Witten,
1989. They were discussed in the context of discrete gauge
theories and linked to the representation theory ofquantum
groups by Bais, 1980; Baiset al., 1992, 1993a,b. They were
discussed in a more general context by Fredenhagenet al.,
1989 and Fröhlich and Gabbiani, 1990. The properties of
non-Abelian quasiparticles make them appealing for use in a
quantum computer. But before discussing this, we will briefly
review how they could occur in nature and then the basic ideas
behind quantum computation.

2. Emergent Anyons

The preceding considerations show that exotic braiding
statistics is a theoretical possibility in2 + 1-D, but they do

not tell us when and where they might occur in nature. Elec-
trons, protons, atoms, and photons, are all either fermions
or bosons even when they are confined to move in a two-
dimensional plane. However, if a system of many electrons (or
bosons, atoms, etc.) confined to a two-dimensional plane has
excitations which are localized disturbances of its quantum-
mechanical ground state, known asquasiparticles, then these
quasiparticles can be anyons. When a system has anyonic
quasiparticle excitations above its ground state, it is in atopo-
logical phase of matter. (A more precise definition of a topo-
logical phase of matter will be given in Section III.)

Let us see how anyons might arise as an emergent prop-
erty of a many-particle system. For the sake of concreteness,
consider the ground state of a2 + 1 dimensional system of
of electrons, whose coordinates are(r1, . . . , rn). We assume
that the ground state is separated from the excited states by
an energy gap (i.e, it is incompressible), as is the situation in
fractional quantum Hall states in 2D electron systems. The
lowest energy electrically-charged excitations are knownas
quasiparticles or quasiholes, depending on the sign of their
electric charge. (The term “quasiparticle” is also sometimes
used in a generic sense to mean both quasiparticle and quasi-
hole as in the previous paragraph). These quasiparticles are
local disturbances to the wavefunction of the electrons corre-
sponding to a quantized amount of total charge.

We now introduce into the system’s Hamiltonian a scalar
potential composed of many local “traps”, each sufficient to
capture exactly one quasiparticle. These traps may be cre-
ated by impurities, by very small gates, or by the potential
created by tips of scanning microscopes. The quasiparticle’s
charge screens the potential introduced by the trap and the
“quasiparticle-tip” combination cannot be observed by local
measurements from far away. Let us denote the positions of
these traps to be(R1, . . . , Rk), and assume that these posi-
tions are well spaced from each other compared to the mi-
croscopic length scales. A state with quasiparticles at these
positions can be viewed as an excited state of the Hamiltonian
of the system without the trap potential or, alternatively,as
the ground state in the presence of the trap potential. When
we refer to the ground state(s) of the system, we will often be
referring to multi-quasiparticle states in the latter context. The
quasiparticles’ coordinates(R1, . . . , Rk) are parameters both
in the Hamiltonian and in the resulting ground state wavefunc-
tion for the electrons.

We are concerned here with the effect of taking these quasi-
particles around each other. We imagine making the quasi-
particles coordinatesR = (R1, . . . , Rk) adiabatically time-
dependent. In particular, we consider a trajectory in whichthe
final configuration of quasiparticles is just a permutation of
the initial configuration (i.e. at the end, the positions of the
quasiparticles are identical to the intial positions, but some
quasiparticles may have interchanged positions with others.)
If the ground state wave function is single-valued with respect
to (R1, .., Rk), and if there is only one ground state for any
given set of Ri’s, then the final ground state to which the sys-
tem returns to after the winding is identical to the initial one,
up to a phase. Part of this phase is simply the dynamical phase
which depends on the energy of the quasiparticle state and
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the length of time for the process. In the adiabatic limit, itis
∫
dtE(~R(t)). There is also a a geometric phase which does

not depend on how long the process takes. This Berry phase
is (Berry, 1984),

α = i

∮

dR · 〈ψ(R)|∇~R|ψ(R)〉 (8)

where|ψ(R)〉 is the ground state with the quasiparticles at po-
sitionsR, and where the integral is taken along the trajectory
R(t). It is manifestly dependent only on the trajectory taken
by the particles and not on how long it takes to move along
this trajectory.

The phaseα has a piece that depends on the geometry of
the path traversed (typically proportional to the area enclosed
by all of the loops), and a pieceθ that depends only on the
topology of the loops created. Ifθ 6= 0, then the quasipar-
ticles excitations of the system are anyons. In particular,if
we consider the case where only two quasiparticles are inter-
changed clockwise (without wrapping around any other quasi-
particles),θ is the statistical angle of the quasiparticles.

There were two key conditions to our above discussion of
the Berry phase. The single valuedness of the wave function
is a technical issue. The non-degeneracy of the ground state,
however, is an important physical condition. In fact, most of
this paper deals with the situation in which this condition does
not hold. We will generally be considering systems in which,
once the positions(R1, .., Rk) of the quasiparticles are fixed,
there remain multiple degenerate ground states (i.e. ground
states in the presence of a potential which captures quasipar-
ticles at positions(R1, .., Rk)), which are distinguished by a
set of internal quantum numbers. For reasons that will be-
come clear later, we will refer to these quantum numbers as
“topological”.

When the ground state is degenerate, the effect of a closed
trajectory of theRi’s is not necessarilyjust a phase factor.
The system starts and ends in ground states, but the initial and
final ground states may be different members of this degen-
erate space. The constraint imposed by adiabaticity in this
case is that the adiabatic evolution of the state of the system is
confined to the subspace of ground states. Thus, it may be ex-
pressed as a unitary transformation within this subspace. The
inner product in (8) must be generalized to a matrix of such
inner products:

mab = 〈ψa(R)|~∇R|ψb(R)〉 (9)

where|ψa(R)〉, a = 1, 2, . . . , g are theg degenerate ground
states. Since these matrices at different points~R do not com-
mute, we must path-order the integral in order to compute the
transformation rule for the state,ψa →Mab ψb where

Mab = P exp

(

i

∮

dR · m
)

=

∞∑

n=0

in
∫ 2π

0

ds1

∫ s1

0

ds2 . . .

∫ sn−1

0

dsn

[

Ṙ(s1)·maa1
(R(s1)) . . .

Ṙ(sn) ·manb (R(sn))
]

(10)

WhereR(s), s ∈ [0, 2π] is the closed trajectory of the par-
ticles and the path-ordering symbolP is defined by the sec-
ond equality. Again, the matrixMab may be the product of
topological and non-topological parts. In a system in which
quasiparticles obey non-Abelian braiding statistics, thenon-
topological part will be Abelian, that is, proportional to the
unit matrix. Only the topological part will be non-Abelian.

The requirements for quasiparticles to follow non-Abelian
statistics are then, first, that theN -quasiparticle ground state
is degenerate. In general, the degeneracy will not be exact,
but it should vanish exponentially as the quasiparticle sepa-
rations are increased. Second, that adiabatic interchangeof
quasiparticles applies a unitary transformation on the ground
state, whose non-Abelian part is determined only by the topol-
ogy of the braid, while its non-topological part is Abelian.If
the particles are not infinitely far apart, and the degeneracy
is only approximate, then the adiabatic interchange must be
done faster than the inverse of the energy splitting (Thouless
and Gefen, 1991) between states in the nearly-degenerate sub-
space (but, of course, still much slower than the energy gap
between this subspace and the excited states). Third, the only
way to make unitary operations on the degenerate ground state
space, so long as the particles are kept far apart, is by braid-
ing. The simplest (albeit uninteresting) example of degenerate
ground states may arise if each of the quasiparticles carried a
spin1/2 with a vanishingg–factor. If that were the case, the
system would satisfy the first requirement. Spin orbit cou-
pling may conceivably lead to the second requirement being
satisfied. Satisfying the third one, however, is much harder,
and requires the subtle structure that we describe below.

The degeneracy ofN -quasiparticle ground states is condi-
tioned on the quasiparticles being well separated from one an-
other. When quasiparticles are allowed to approach one an-
other too closely, the degeneracy is lifted. In other words,
when non-Abelian anyonic quasiparticles are close together,
their different fusion channels are split in energy. This depen-
dence is analogous to the way the energy of a system of spins
depends on their internal quantum numbers when the spins are
close together and their coupling becomes significant. The
splitting between different fusion channels is a means for a
measurement of the internal quantum state, a measurement
that is of importance in the context of quantum computation.

B. Topological Quantum Computation

1. Basics of Quantum Computation

As the components of computers become smaller and
smaller, we are approaching the limit in which quantum ef-
fects become important. One might ask whether this is a prob-
lem or an opportunity. The founders of the field of quantum
computation (Manin, 1980, Feynman, 1982, 1986, Deutsch,
1985, and most dramatically, Shor, 1994) answered in favor of
the latter. They showed that a computer which operates coher-
ently on quantum states has potentially much greater power
than a classical computer (Nielsen and Chuang, 2000).

The problem which Feynman had in mind for a quantum
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computer was the simulation of a quantum system (Feynman,
1982). He showed that certain many-body quantum Hamil-
tonians could be simulatedexponentially faster on a quantum
computer than they could be on a classical computer. This
is an extremely important potential application of a quantum
computer since it would enable us to understand the properties
of complex materials, e.g. solve high-temperature supercon-
ductivity. Digital simulations of large scale quantum many-
body Hamiltonians are essentially hopeless on classical com-
puters because of the exponentially-large size of the Hilbert
space. A quantum computer, using the physical resource of an
exponentially-large Hilbert space, may also enable progress
in the solution of lattice gauge theory and quantum chromo-
dynamics, thus shedding light on strongly-interacting nuclear
forces.

In 1994 Peter Shor found an application of a quantum com-
puter which generated widespread interest not just inside but
also outside of the physics community (Shor, 1994). He in-
vented an algorithm by which a quantum computer could
find the prime factors of anm digit number in a length of
time ∼ m2 logm log logm. This is much faster than the
fastest known algorithm for a classical computer, which takes
∼ exp(m1/3) time. Since many encryption schemes depend
on the difficulty of finding the solution to problems similar to
finding the prime factors of a large number, there is an obvi-
ous application of a quantum computer which is of great basic
and applied interest.

The computation model set forth by these pioneers of quan-
tum computing (and refined in DiVincenzo, 2000), is based
on three steps: initialization, unitary evolution and measure-
ment. We assume that we have a system at our disposal with
Hilbert spaceH. We further assume that we can initialize
the system in some known state|ψ0〉. We unitarily evolve
the system until it is in some final stateU(t)|ψ0〉. This evo-
lution will occur according to some HamiltonianH(t) such
thatdU/dt = iH(t)U(t)/~. We require that we have enough
control over this Hamiltonian so thatU(t) can be made to be
any unitary transformation that we desire. Finally, we needto
measure the state of the system at the end of this evolution.
Such a process is calledquantum computation (Nielsen and
Chuang, 2000). The HamiltonianH(t) is the software pro-
gram to be run. The initial state is the input to the calculation,
and the final measurement is the output.

The need for versatility, i.e., for one computer to effi-
ciently solve many different problems, requires the construc-
tion of the computer out of smaller pieces that can be manipu-
lated and reconfigured individually. Typically the fundamen-
tal piece is taken to be a quantum two state system known as
a “qubit” which is the quantum analog of a bit. (Of course,
one could equally well take general “dits”, for which the fun-
damental unit is somed-state system withd not too large).
While a classical bit, i.e., a classical two-state system, can be
either “zero” or “one” at any given time, a qubit can be in one
of the infinitely many superpositionsa|0〉+b|1〉. Forn qubits,
the state becomes a vector in a2n–dimensional Hilbert space,
in which the different qubits are generally entangled with one
another.

The quantum phenomenon of superposition allows a sys-

tem to traverse many trajectories in parallel, and determine
its state by their coherent sum. In some sense this coherent
sum amounts to a massive quantum parallelism. It should
not, however, be confused with classical parallel computing,
where many computers are run in parallel, and no coherent
sum takes place.

The biggest obstacle to building a practical quantum com-
puter is posed by errors, which would invariably happen dur-
ing any computation, quantum or classical. For any compu-
tation to be successful one must devise practical schemes for
error correction which can be effectively implemented (and
which must be sufficiently fault-tolerant). Errors are typically
corrected in classical computers through redundancies, i.e., by
keeping multiple copies of information and checking against
these copies.

With a quantum computer, however, the situation is more
complex. If we measure a quantum state during an interme-
diate stage of a calculation to see if an error has occurred, we
collapse the wave function and thus destroy quantum super-
positions and ruin the calculation. Furthermore, errors need
not be merely a discrete flip of|0〉 to |1〉, but can be continu-
ous: the statea|0〉+b|1〉 may drift, due to an error, to the state
→ a|0〉 + beiθ|1〉 with arbitraryθ.

Remarkably, in spite of these difficulties, error correction is
possible for quantum computers (Calderbank and Shor, 1996;
Gottesman, 1998; Preskill, 2004; Shor, 1995; Steane, 1996a).
One can represent information redundantly so that errors can
be identified without measuring the information. For instance,
if we use three spins to represent each qubit,|0〉 → |000〉,
|1〉 → |111〉, and the spin-flip rate is low, then we can iden-
tify errors by checking whether all three spins are the same
(here, we represent an up spin by0 and a down spin by1).
Suppose that our spins are in in the stateα|000〉 + β|111〉. If
the first spin has flipped erroneously, then our spins are in the
stateα|100〉 + β|011〉. We can detect this error by checking
whether the first spin is the same as the other two; this does
not require us to measure the state of the qubit. (“We measure
the errors, rather than the information.” (Preskill, 2004)) If
the first spin is different from the other two, then we just need
to flip it. We repeat this process with the second and third
spins. So long as we can be sure that two spins have not erro-
neously flipped (i.e. so long as the basic spin-flip rate is low),
this procedure will correct spin-flip errors. A more elaborate
encoding is necessary in order to correct phase errors, but the
key observation is that a phase error in theσz basis is a bit flip
error in theσx basis.

However, the error correction process may itself be a little
noisy. More errors could then occur during error correction,
and the whole procedure will fail unless the basic error rateis
very small. Estimates of the threshold error rate above which
error correction is impossible depend on the particular error
correction scheme, but fall in the range10−4 − 10−6 (see,
e.g. Aharonov and Ben-Or, 1997; Knillet al., 1998). This
means that we must be able to perform104 − 106 operations
perfectly before an error occurs. This is an extremely strin-
gent constraint and it is presently unclear if local qubit-based
quantum computation can ever be made fault-tolerant through
quantum error correction protocols.
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Random errors are caused by the interaction between the
quantum computer and the environment. As a result of this
interaction, the quantum computer, which is initially in a pure
superposition state, becomes entangled with its environment.
This can cause errors as follows. Suppose that the quantum
computer is in the state|0〉 and the environment is in the
state|E0〉 so that their combined state is|0〉|E0〉. The in-
teraction between the computer and the environment could
cause this state to evolve toα|0〉|E0〉+ β|1〉|E1〉, where|E1〉
is another state of the environment (not necessarily orthog-
onal to |E0〉). The computer undergoes a transition to the
state|1〉 with probability |β|2. Furthermore, the computer
and the environment are now entangled, so the reduced den-
sity matrix for the computer alone describes a mixed state,
e.g. ρ = diag(|α|2, |β|2) if 〈E0|E1〉 = 0. Since we can-
not measure the state of the environment accurately, informa-
tion is lost, as reflected in the evolution of the density matrix
of the computer from a pure state to a mixed one. In other
words, the environment has causeddecoherence. Decoher-
ence can destroy quantum information even if the state of the
computer does not undergo a transition. Although whether
or not a transition occurs is basis-dependent (a bit flip in the
σz basis is a phase flip in theσx basis), it is a useful dis-
tinction because many systems have a preferred basis, for in-
stance the ground state|0〉 and excited state|1〉 of an ion in a
trap. Suppose the state|0〉 evolves as above, but withα = 1,
β = 0 so that no transition occurs, while the state|1〉|E0〉
evolves to|1〉|E′

1〉 with 〈E′
1|E1〉 = 0. Then an initial pure

state(a|0〉 + b|1〉) |E0〉 evolves to a mixed state with density
matrix ρ = diag(|a|2, |b|2). The correlations in which our
quantum information resides is now transferred to correlation
between the quantum computer and the environment. The
quantum state of a system invariably loses coherence in this
way over a characteristic time scaleTcoh. It was universally
assumed until the advent of quantum error correction (Shor,
1995; Steane, 1996a) that quantum computation is intrinsi-
cally impossible since decoherence-induced quantum errors
simply cannot be corrected in any real physical system. How-
ever, when error-correcting codes are used, the entanglement
is transferred from the quantum computer to ancillary qubits
so that the quantum information remains pure while the en-
tropy is in the ancillary qubits.

Of course, even if the coupling to the environment were
completely eliminated, so that there were no random errors,
there could still be systematic errors. These are unitary errors
which occur while we process quantum information. For in-
stance, we may wish to rotate a qubit by90 degrees but might
inadvertently rotate it by 90.01 degrees.

From a practical standpoint, it is often useful to divide er-
rors into two categories: (i) errors that occur when a qubit is
being processed (i.e., when computations are being performed
on that qubit) and (ii) errors that occur when a qubit is simply
storing quantum information and is not being processed (i.e.,
when it is acting as a quantum memory). From a fundamen-
tal standpoint, this is a bit of a false dichotomy, since one can
think of quantum information storage (or quantum memory)
as being a computer that applies the identity operation over
and over to the qubit (i.e., leaves it unchanged). Nonetheless,

the problems faced in the two categories might be quite differ-
ent. For quantum information processing, unitary errors, such
as rotating a qubit by 90.01 degrees instead of 90, are an issue
of how precisely one can manipulate the system. On the other
hand, when a qubit is simply storing information, one is likely
to be more concerned about errors caused by interactions with
the environment. This is instead an issue of how well isolated
one can make the system. As we will see below, a topologi-
cal quantum computer is protected from problems in both of
these categories.

2. Fault-Tolerance from Non-Abelian Anyons

Topological quantum computation is a scheme for using a
system whose excitations satisfy non-Abelian braiding statis-
tics to perform quantum computation in a way that is natu-
rally immune to errors. The Hilbert spaceH used for quantum
computation is the subspace of the total Hilbert space of the
system comprised of the degenerate ground states with a fixed
number of quasiparticles at fixed positions. Operations within
this subspace are carried out by braiding quasiparticles. As
we discussed above, the subspace of degenerate ground states
is separated from the rest of the spectrum by an energy gap.
Hence, if the temperature is much lower than the gap and the
system is weakly perturbed using frequencies much smaller
than the gap, the system evolves only within the ground state
subspace. Furthermore, that evolution is severely constrained,
since it is essentially the case (with exceptions which we will
discuss) thatthe only way the system can undergo a non-
trivial unitary evolution - that is, an evolution that takes it
from one ground state to another - is by having its quasipar-
ticles braided. The reason for this exceptional stability is that
any local perturbation (such as the electron-phonon interac-
tion and the hyperfine electron-nuclear interaction, two ma-
jor causes for decoherence in non-topological solid state spin-
based quantum computers (Witzel and Das Sarma, 2006)) has
no nontrivial matrix elements within the ground state sub-
space. Thus, the system is rather immune from decoherence
(Kitaev, 2003). Unitary errors are also unlikely since the uni-
tary transformations associated with braiding quasiparticles
are sensitive only to the topology of the quasiparticle trajecto-
ries, and not to their geometry or dynamics.

A model in which non-Abelian quasiparticles are utilized
for quantum computation starts with the construction of
qubits. In sharp contrast to most realizations of a quantum
computer, a qubit here is a non-local entity, being comprised
of several well-separated quasiparticles, with the two states
of the qubit being two different values for the internal quan-
tum numbers of this set of quasiparticles. In the simplest non-
Abelian quantum Hall state, which has Landau-level filling
factor ν = 5/2, two quasiparticles can be put together to
form a qubit (see Sections II.C.4 and IV.A). Unfortunately,
as we will discuss below in Sections IV.A and IV.C, this sys-
tem turns out to be incapable of universal topological quan-
tum computation using only braiding operations; some un-
protected operations are necessary in order to perform univer-
sal quantum computation. The simplest system that is capa-
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ble of universal topological quantum computation is discussed
in Section IV.B, and utilizes three quasiparticles to form one
qubit.

As mentioned above, to perform a quantum computation,
one must be able to initialize the state of qubits at the begin-
ning, perform arbitrary controlled unitary operations on the
state, and then measure the state of qubits at the end. We now
address each of these in turn.

Initialization may be performed by preparing the quasipar-
ticles in a specific way. For example, if a quasiparticle-anti-
quasiparticle pair is created by “pulling” it apart from thevac-
uum (e.g. pair creation from the vacuum by an electric field),
the pair will begin in an initial state with the pair necessarily
having conjugate quantum numbers (i.e., the “total” quantum
number of the pair remains the same as that of the vacuum).
This gives us a known initial state to start with. It is also
possible to use measurement and unitary evolution (both to
be discussed below) as an initialization scheme — if one can
measure the quantum numbers of some quasiparticles, one can
then perform a controlled unitary operation to put them into
any desired initial state.

Once the system is initialized, controlled unitary opera-
tions are then performed by physically dragging quasiparti-
cles around one another in some specified way. When quasi-
particles belonging to different qubits braid, the state ofthe
qubits changes. Since the resulting unitary evolution depends
only on the topology of the braid that is formed and not on
the details of how it is done, it is insensitive to wiggles in the
path, resulting, e.g., from the quasiparticles being scattered by
phonons or photons. Determining which braid corresponds to
which computation is a complicated but eminently solvable
task, which will be discussed in more depth in section IV.B.3.

Once the unitary evolution is completed, there are two ways
to measure the state of the qubits. The first relies on the fact
that the degeneracy of multi-quasiparticle states is splitwhen
quasiparticles are brought close together (within some micro-
scopic length scale). When two quasiparticles are brought
close together, for instance, a measurement of this energy (or
a measurement of the force between two quasiparticles) mea-
sures the the topological charge of the pair. A second way to
measure the topological charge of a group of quasiparticlesis
by carrying out an Aharanov-Bohm type interference experi-
ment. We take a “beam” of test quasiparticles, send it through
a beamsplitter, send one partial wave to the right of the group
to be measured and another partial wave to the left of the
group and then re-interfere the two waves (see Figure 2 and
the surrounding discussion). Since the two different beams
make different braids around the test group, they will experi-
ence different unitary evolution depending on the topological
quantum numbers of the test group. Thus, the re-interference
of these two beams will reflect the topological quantum num-
ber of the group of quasiparticles enclosed.

This concludes a rough description of the way a topologi-
cal quantum computation is to be performed. While the uni-
tary transformation associated with a braid depends only on
the topology of the braid, one may be concerned that errors
could occur if one does not return the quasiparticles to pre-
cisely the correct position at the end of the braiding. This ap-

parent problem, however, is evaded by the nature of the com-
putations, which correspond to closed world lines that have
no loose ends: when the computation involves creation and
annihilation of a quasiparticle quasi-hole pair, the world-line
is a closed curve in space-time. If the measurement occurs
by bringing two particles together to measure their quantum
charge, it does not matter where precisely they are brought
together. Alternatively, when the measurement involves an
interference experiment, the interfering particle must close a
loop. In other words, a computation corresponds to a set of
links rather than open braids, and the initialization and mea-
surement techniquesnecessarily involve bringing quasiparti-
cles together in some way, closing up the trajectories and mak-
ing the full process from initialization to measurement com-
pletely topological.

Due to its special characteristics, then, topological quan-
tum computation intrinsically guarantees fault-tolerance, at
the level of “hardware”, without “software”-based error cor-
rection schemes that are so essential for non-topological quan-
tum computers. This immunity to errors results from the sta-
bility of the ground state subspace with respect to externallo-
cal perturbations. In non-topological quantum computers,the
qubits are local, and the operations on them are local, lead-
ing to a sensitivity to errors induced by local perturbations.
In a topological quantum computer the qubits are non-local,
and the operations — quasiparticle braiding — are non-local,
leading to an immunity to local perturbations.

Such immunity to local perturbation gives topolgical quan-
tum memories exceptional protection from errors due to the
interaction with the environment. However, it is crucial to
note that topological quantum computers are also exception-
ally immune to unitary errors due to imprecise gate operation.
Unlike other types of quantum computers, the operations that
can be performed on a topological quantum computer (braids)
naturally take a discrete set of values. As discussed above,
when one makes a 90 degree rotation of a spin-based qubit, for
example, it is possible that one will mistakenly rotate by 90.01
degrees thus introducing a small error. In contrast, braidsare
discrete: either a particle is taken around another, or it isnot.
There is no way to make a small error by having slight im-
precision in the way the quasiparticles are moved. (Taking
a particle only part of the way around another particle rather
than all of the way does not introduce errors so long as the
topological class of the link formed by the particle trajectories
– as described above – is unchanged.)

Given the exceptional stability of the ground states, and
their insensitivity to local perturbations that do not involve
excitations to excited states, one may ask then which physical
processes do cause errors in such a topological quantum com-
puter. Due to the topological stability of the unitary transfor-
mations associated with braids, the only error processes that
we must be concerned about are processes that might cause
us to form the wrong link, and hence the wrong computa-
tion. Certainly, one must keep careful track of the positions of
all of the quasiparticles in the system during the computation
and assure that one makes the correct braid to do the correct
computation. This includes not just the “intended” quasipar-
ticles which we need to manipulate for our quantum compu-
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tation, but also any “unintended” quasiparticle which might
be lurking in our system without our knowledge. Two pos-
sible sources of these unintended quasiparticles are thermally
excited quasiparticle-quasihole pairs, and randomly localized
quasiparticles trapped by disorder (e.g. impurities, surface
roughness, etc.). In a typical thermal fluctuation, for example,
a quasiparticle-quasihole pair is thermally created from the
vacuum, braids with existing intended quasiparticles, andthen
gets annihilated. Typically, such a pair has opposite electrical
charges, so its constituents will be attracted back to each other
and annihilate. However, entropy or temperature may lead the
quasiparticle and quasihole to split fully apart and wanderrel-
atively freely through part of the system before coming back
together and annihilating. This type of process may change
the state of the qubits encoded in the intended quasiparticles,
and hence disrupt the computation. Fortunately, as we will
see in Section IV.B below there is a whole class of such pro-
cesses that do not in fact cause error. This class includes all
of the most likely such thermal processes to occur: includ-
ing when a pair is created, encircles a single already existing
quasiparticle and then re-annihilates, or when a pair is created
and one of the pair annihilates an already existing quasipar-
ticle. For errors to be caused, the excited pair must braid at
least two intended quasiparticles. Nonetheless, the possibil-
ity of thermally-excited quasiparticles wandering through the
system creating unintended braids and thereby causing error
is a serious one. For this reason, topological quantum com-
putation must be performed at temperatures well below the
energy gap for quasiparticle-quasihole creation so that these
errors will be exponentially suppressed.

Similarly, localized quasiparticles that are induced by dis-
order (e.g. randomly-distributed impurities, surface rough-
ness, etc.) are another serious obstacle to overcome, since
they enlarge the dimension of the subspace of degenerate
ground states in a way that is hard to control. In particular,
these unaccounted-for quasiparticles may couple by tunneling
to their intended counterparts, thereby introducing dynamics
to what is supposed to be a topology-controlled system, and
possibly ruining the quantum computation. We further note
that, in quantum Hall systems (as we will discuss in the next
section), slight deviations in density or magentic field will
also create unintented quasiparticles that must be carefully
avoided.

Finally, we also note that while non-Abelian quasiparticles
are natural candidates for the realization of topological qubits,
not every system where quasiparticles satisfy non-Abelian
statistics is suitable for quantum computation. For this suit-
ability it is essential that the set of unitary transformations in-
duced by braiding quasiparticles is rich enough to allow forall
operations needed for computation. The necessary and suffi-
cient conditions for universal topological quantum computa-
tion are discussed in Section IV.C.

C. Non-Abelian Quantum Hall States

A necessary condition for topological quantum computa-
tion using non-Abelian anyons is the existence of a physical

system where non-Abelian anyons can be found, manipulated
(e.g. braided), and conveniently read out. Several theoret-
ical models and proposals for systems having these proper-
ties have been introduced in recent years (Fendley and Frad-
kin, 2005; Freedmanet al., 2005a; Kitaev, 2006; Levin and
Wen, 2005b), and in section II.D below we will mention some
of these possibilities briefly. Despite the theoretical work in
these directions, the only real physical system where thereis
even indirect experimental evidence that non-Abelian anyons
exist are quantum Hall systems in two-dimensional (2D) elec-
tron gases (2DEGs) in high magnetic fields. Consequently,
we will devote a considerable part of our discussion to pu-
tative non-Abelian quantum Hall systems which are also of
great interest in their own right.

1. Rapid Review of Quantum Hall Physics

A comprehensive review of the quantum Hall effect is well
beyond the scope of this article and can be found in the lit-
erature (Das Sarma and Pinczuk, 1997; Prange and Girvin,
1990). This effect, realized for two dimensional electronic
systems in a strong magnetic field, is characterized by a gap
between the ground state and the excited states (incompress-
ibility); a vanishing longitudinal resistivityρxx = 0, which
implies a dissipationless flow of current; and the quantization
of the Hall resistivity precisely to values ofρxy = 1

ν
h
e2 , with

ν being an integer (the integer quantum Hall effect), or a frac-
tion (the fractional quantum Hall effect). These values of the
two resistivities imply a vanishing longitudinal conductivity
σxx = 0 and a quantized Hall conductivityσxy = ν e

2

h .
To understand the quantized Hall effect, we begin by ignor-

ing electron-electron Coulomb interactions, then the energy
eigenstates of the single-electron Hamiltonian in a magnetic
field, H0 = 1

2m

(
pi − e

cA(xi)
)2

break up into an equally-
spaced set of degenerate levels called Landau levels. In sym-
metric gauge,A(x) = 1

2B × x, a basis of single particle
wavefunctions in the lowest Landau level (LLL) is given by
ϕm(z) = zm exp(−|z|2/(4ℓ02)), wherez = x + iy. If the
electrons are confined to a disk of areaA pierced by magnetic
flux B · A, then there areNΦ = BA/Φ0 = BAe/hc states
in the lowest Landau level (and in each higher Landau level),
whereB is the magnetic field;h, c, ande are, respectively,
Planck’s constant, the speed of light, and the electron charge;
andΦ0 = hc/e is the flux quantum. In the absence of dis-
order, these single-particle states are all precisely degenerate.
When the chemical potential lies between theν th and(ν+1)th

Landau levels, the Hall conductance takes the quantized value
σxy = ν e2

h while σxx = 0. The two-dimensional electron
density,n, is related toν via the formulan = νeB/(hc). In
the presence of a periodic potential and/or disorder (e.g. im-
purities), the Landau levels broaden into bands. However, ex-
cept at the center of a band, all states are localized when disor-
der is present (see Das Sarma and Pinczuk, 1997; Prange and
Girvin, 1990 and refs. therein). When the chemical potential
lies in the region of localized states between the centers ofthe
ν th and(ν + 1)th Landau bands, the Hall conductance again
takes the quantized valueσxy = ν e2

h while σxx = 0. The
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density will be near but not necessarily equal toνeB/(hc).
This is known as the Integer quantum Hall effect (sinceν is
an integer).

The neglect of Coulomb interactions is justified when an
integer number of Landau levels is filled, so long as the en-
ergy splitting between Landau levels,~ωc = ~eB

mc is much

larger than the scale of the Coulomb energy,e2

ℓ0
, whereℓ0 =

√

hc/eB is the magnetic length. When the electron density
is such that a Landau level is only partially filled, Coulomb
interactions may be important.

In the absence of disorder, a partially-filled Landau level
has a very highly degenerate set of multi-particle states. This
degeneracy is broken by electron-electron interactions. For
instance, when the number of electrons isN = NΦ/3, i.e.
ν = 1/3, the ground state is non-degenerate and there is a
gap to all excitations. When the electrons interact through
Coulomb repulsion, the Laughlin state

Ψ =
∏

i>j

(zi − zj)
3
e−

P

i|zi|2/4ℓ02

(11)

is an approximation to the ground state (and is the exact
ground state for a repulsive ultra-short-ranged model interac-
tion, see for instance the article by Haldane in Prange and
Girvin, 1990). Such ground states survive even in the pres-
ence of disorder if it is sufficiently weak compared to the gap
to excited states. More delicate states with smaller excita-
tion gaps are, therefore, only seen in extremely clean devices,
as described in subsection II.C.5. However, some disorder is
necessary to pin the charged quasiparticle excitations which
are created if the density or magnetic field are slightly varied.
When these excitations are localized, they do not contribute to
the Hall conductance and a plateau is observed.

Quasiparticle excitations above fractional quantum Hall
ground states, such as theν = 1/3 Laughlin state (11), are
emergent anyons in the sense described in section II.A.2. An
explicit calculation of the Berry phase, along the lines of Eq.
8 shows that quasiparticle excitations above theν = 1/k
Laughlin states have chargee/k and statistical angleθ = π/k
(Arovaset al., 1984). The charge is obtained from the non-
topological part of the Berry phase which is proportional to
the flux enclosed by a particle’s trajectory times the quasipar-
ticle charge. This is in agreement with a general argument
that such quasiparticles must have fractional charge (Laugh-
lin, 1983). The result for the statistics of the quasiparticles
follows from the topological part of the Berry phase; it is in
agreement with strong theoretical arguments which suggest
that fractionally charged excitations are necessarily Abelian
anyons (see Wilczek, 1990 and refs. therein). Definitive ex-
perimental evidence for the existence of fractionally charged
excitations atν = 1/3 has been accumulating in the last few
years (De Picciottoetal., 1997; Goldman and Su, 1995; Sam-
inadayaret al., 1997). The observation of fractional statistics
is much more subtle. First steps in that direction have been
recently reported (Caminoet al., 2005) but are still debated
(Godfreyet al., 2007; Rosenow and Halperin, 2007).

The Laughlin states, withν = 1/k, are the best understood
fractional quantum Hall states, both theoretically and exper-
imentally. To explain more complicated observed fractions,

with ν not of the formν = 1/k, Haldane and Halperin (Hal-
dane, 1983; Halperin, 1984; Prange and Girvin, 1990) used a
hierarchical construction in which quasiparticles of a princi-
ple ν = 1/k state can then themselves condense into a quan-
tized state. In this way, quantized Hall states can be con-
structed for any odd-denominator fractionν – but only for
odd-denominator fractions. These states all have quasiparti-
cles with fractional charge and Abelian fractional statistics.
Later, it was noticed by Jain (Heinonen, 1998; Jain, 1989)
that the most prominent fractional quantum Hall states are of
the formν = p/(2p + 1), which can be explained by not-
ing that a system of electrons in a high magnetic field can be
approximated by a system of auxiliary fermions, called ‘com-
posite fermions’ , in a lower magnetic field. If the the elec-
trons are atν = p/(2p + 1), then the lower magnetic field
seen by the ‘composite fermions’ is such that they fill an in-
teger number of Landau levelsν′ = p. (See Halperinet al.,
1993; López and Fradkin, 1991 for a field-theoretic imple-
mentations.) Since the latter state has a gap, one can hope
that the approximation is valid. The composite fermion pic-
ture of fractional quantum Hall states has proven to be qual-
itatively and semi-quantitatively correct in the LLL (Murthy
and Shankar, 2003).

Systems with filling fractionν > 1, can be mapped to
ν′ ≤ 1 by keeping the fractional part ofν and using an ap-
propriately modified Coulomb interaction to account for the
difference between cyclotron orbits in the LLL and those in
higher Landau levels (Prange and Girvin, 1990). This in-
volves the assumption that the inter-Landau level couplingis
negligibly small. We note that this may not be a particularly
good assumption for higher Landau levels, where the compos-
ite fermion picture less successful.

Our confidence in the picture described above for theν =
1/k Laughlin states and the hierarchy of odd-denominator
states which descend from them derives largely from nu-
merical studies. Experimentally, most of what is known
about quantum Hall states comes from transport experiments
— measurements of the conductance (or resistance) tensor.
While such measurements make it reasonably clear when a
quantum Hall plateau exists at a given filling fraction, the na-
ture of the plateau (i.e., the details of the low-energy theory)
is extremely hard to discern. Because of this difficulty, nu-
merical studies of small systems (exact diagonalizations and
Monte Carlo) have played a very prominent role in provid-
ing further insight. Indeed, even Laughlin’s original work
(Laughlin, 1983) on theν = 1/3 state relied heavily on ac-
companying numerical work. The approach taken was the fol-
lowing. One assumed that the splitting between Landau levels
is the largest energy in the problem. The Hamiltonian is pro-
jected into the lowest Landau level, where, for a finite num-
ber of electrons and a fixed magnetic flux, the Hilbert space
is finite-dimensional. Typically, the system is given periodic
boundary conditions (i.e. is on a torus) or else is placed on
a sphere; occasionally, one works on the disk, e.g. to study
edge excitations. The Hamiltonian is then a finite-sized ma-
trix which can be diagonalized by a computer so long as the
number of electrons is not too large. Originally, Laughlin ex-
amined only 3 electrons, but modern computers can handle
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sometimes as many as 18 electrons. The resulting ground state
wavefunction can be compared to a proposed trial wavefunc-
tion. Throughout the history of the field, this approach has
proven to be extremely powerful in identifying the nature of
experimentally-observed quantum Hall states when the sys-
tem in question is deep within a quantum Hall phase, so that
the associated correlation length is short and the basic physics
is already apparent in small systems.

There are several serious challenges in using such numeri-
cal work to interpret experiments. First of all, there is always
the challenge of extrapolating finite-size results to the thermo-
dynamic limit. Secondly, simple overlaps between a proposed
trial state and an exact ground state may not be sufficiently
informative. For example, it is possible that an exact ground
state will be adiabatically connected to a particular trialstate,
i.e., the two wavefunctions represent the same phase of mat-
ter, but the overlaps may not be very high. For this reason, itis
necessary to also examine quantum numbers and symmetries
of the ground state, as well as the response of the ground state
to various perturbations, particularly the response to changes
in boundary conditions and in the flux.

Another difficulty is the choice of Hamiltonian to diago-
nalize. One may think that the Hamiltonian for a quantum
Hall system is just that of 2D electrons in a magnetic field
interacting via Coulomb forces. However, the small but fi-
nite width (perpendicular to the plane of the system) of the
quantum well slightly alters the effective interaction between
electrons. Similarly, screening (from any nearby conductors,
or from inter-Landau-level virtual excitations), in-plane mag-
netic fields, and even various types of disorder may alter the
Hamiltonian in subtle ways. To make matters worse, one may
not even know all the physical parameters (dimensions, dop-
ing levels, detailed chemical composition, etc.) of any par-
ticular experimental system very accurately. Finally, Landau-
level mixing is not small because the energy splitting between
Landau levels is not much larger than the other energies in the
problem. Thus, it is not even clear that it is correct to truncate
the Hilbert space to the finite-dimensional Hilbert space ofa
single Landau level.

In the case of very robust states, such as theν = 1/3 state,
these subtle effects are unimportant; the ground state is es-
sentially the same irrespective of these small deviations from
the idealized Hamiltonian. However, in the case of weaker
states, such as those observed betweenν = 2 and ν = 4
(some of which we will discuss below), it appears that very
small changes in the Hamiltonian can indeed greatly affect the
resulting ground state. Therefore, a very valuable approach
has been to guess a likely Hamiltonian, and search a space
of “nearby” Hamiltonians, slightly varying the parametersof
the Hamiltonian, to map out the phase diagram of the sys-
tem. These phase diagrams suggest the exciting technologi-
cal possibility that detailed numerics will allow us to engineer
samples with just the right small perturbations so as display
certain quantum Hall states more clearly (Manfraetal., 2007;
Peterson and Das Sarma, 2007).

2. Possible Non-Abelian States

The observation of a quantum Hall state with an even de-
nominator filling fraction (Willettet al., 1987), theν = 5/2
state, was the first indication that not all fractional quantum
Hall states fit the above hierarchy (or equivalently compos-
ite fermion) picture. Independently, it was recognized Fu-
bini, 1991; Fubini and Lutken, 1991; Moore and Read, 1991
that conformal field theory gives a way to write a variety of
trial wavefunctions for quantum Hall states, as we describe
in Section III.D below. Using this approach, the so-called
Moore-Read Pfaffian wavefunction was constructed (Moore
and Read, 1991):

ΨPf = Pf

(
1

zi − zj

)
∏

i<j(zi − zj)
me−

P

i|zi|2/4ℓ02

(12)

The Pfaffian is the square root of the determinant of an anti-
symmetric matrix or, equivalently, the antisymmetrized sum
over pairs:

Pf

(
1

zj − zk

)

= A
(

1

z1 − z2

1

z3 − z4
. . .

)

(13)

Form even, this is an even-denominator quantum Hall state
in the lowest Landau level. Moore and Read, 1991 suggested
that its quasiparticle excitations would exhibit non-Abelian
statistics (Moore and Read, 1991). This wavefunction is the
exact ground state of a3-body repulsive interaction; as we
discuss below, it is also an approximate ground state for more
realistic interactions. This wavefunction is a representative of
a universality class which has remarkable properties whichwe
discuss in detail in this paper. In particular, the quasiparticle
excitations above this state realize the second scenario dis-
cussed in Eqs. 9, 10 in section II.A.2. There are2n−1 states
with 2n quasiholes at fixed positions, thereby establishing the
degeneracy of multi-quasiparticle states which is required for
non-Abelian statistics (Nayak and Wilczek, 1996). Further-
more, these quasihole wavefunctions can also be related to
conformal field theory (as we discuss in section III.D), from
which it can be deduced that the2n−1-dimensional vector
space of states can be understood as the spinor representation
of SO(2n); braiding particlesi andj has the action of aπ/2
rotation in thei− j plane inR2n (Nayak and Wilczek, 1996).
In short, these quasiparticles are essentially Ising anyons (with
the difference being an additional Abelian component to their
statistics). Although these properties were uncovered using
specific wavefunctions which are eigenstates of the3-body
interaction for which the Pfaffian wavefunction is the exact
ground state, they are representative of an entire universality
class. The effective field theory for this universality class is
SU(2) Chern-Simons theory at levelk = 2 together with an
additional Abelian Chern-Simons term (Fradkinet al., 2001,
1998). Chern-Simons theory is the archetypal topological
quantum field theory (TQFT), and we discuss it extensively
in section III. As we describe, Chern-Simons theory is re-
lated to the Jones polynomial of knot theory (Witten, 1989);
consequently, the current through an interferometer in such a
non-Abelian quantum Hall state would give a direct measure
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of the Jones polynomial for the link produced by the quasipar-
ticle trajectories (Fradkinet al., 1998)!

One interesting feature of the Pfaffian wavefunction is that
it is the quantum Hall analog of ap+ ip superconductor: the
antisymmetrized product over pairs is the real-space form of
the BCS wavefunction (Greiteretal., 1992). Read and Green,
2000 showed that the same topological properties mentioned
above are realized by ap + ip-wave superconductor, thereby
cementing the identification between such a paired state and
the Moore-Read state. Ivanov, 2001 computed the braiding
matrices by this approach (see also Sternet al., 2004; Stone
and Chung, 2006). Consequently, we will often be able to dis-
cussp + ip-wave superconductors and superfluids in parallel
with theν = 5/2 quantum Hall state, although the experimen-
tal probes are significantly different.

As we discuss below, all of these theoretical developments
garnered greater interest when numerical work (Morf, 1998;
Rezayi and Haldane, 2000) showed that the ground state of
systems of up to 18 electrons in theN = 1 Landau level at
filling fraction 1/2 is in the universality class of the Moore-
Read state. These results revived the conjecture that the lowest
Landau level (N = 0) of both spins is filled and inert and the
electrons in theN = 1 Landau level form the analog of the
Pfaffian state (Greiteret al., 1992). Consequently, it is the
leading candidate for the experimentally-observedν = 5/2
state.

Read and Rezayi, 1999 constructed a series of non-Abelian
quantum Hall states at filling fractionν = N + k/(Mk + 2)
with M odd, which generalize the Moore-Read state in a way
which we discuss in section III. These states are referred toas
the Read-RezayiZk parafermion states for reasons discussed
in section III.D. Recently, a quantum Hall state was observed
experimentally withν = 12/5 (Xia et al., 2004). It is sus-
pected (see below) that theν = 12/5 state may be (the par-
ticle hole conjugate of) theZ3 Read-Rezayi state, although it
is also possible that 12/5 belongs to the conventional Abelian
hierarchy as the2/5 state does. Such an option is not possible
atν = 5/2 as a result of the even denominator.

In summary, it is well-established that if the observed
ν = 5/2 state is in the same universality class as the Moore-
Read Pfaffian state, then its quasiparticle excitations arenon-
Abelian anyons. Similarly, if theν = 12/5 state is in the
universality class of theZ3 Read-Rezayi state, its quasiparti-
cles are non-Abelian anyons. There is no direct experimental
evidence that theν = 5/2 is in this particular universality
class, but there is evidence from numerics, as we further dis-
cuss below. There is even less evidence in the case of the
ν = 12/5 state. In subsections II.C.3 and II.C.4, we will
discuss proposed experiments which could directly verify the
non-Abelian character of theν = 5/2 state and will briefly
mention their extension to theν = 12/5 case. Both of these
states, as well as others (e.g. Ardonne and Schoutens, 1999;
Simonet al., 2007c), were constructed on the basis of very
deep connections between conformal field theory, knot theory,
and low-dimensional topology (Witten, 1989). Using meth-
ods from these different branches of theoretical physics and
mathematics, we will explain the structure of the non-Abelian
statistics of theν = 5/2 and12/5 states within the context

of a large class of non-Abelian topological states. We will
see in section III.C that this circle of ideas enables us to use
the theory of knots to understand experiments on non-Abelian
anyons.

In the paragraphs below, we will discuss numerical results
for ν = 5/2, 12/5, and other candidates in greater detail.

(a) 5/2 State: Theν = 5/2 fractional quantum Hall state
is a useful case history for how numerics can elucidate ex-
periments. This incompressible state is easily destroyed by
the application of an in-plane magnetic field (Eisensteinetal.,
1990). At first it was assumed that this implied that the 5/2
state is spin-unpolarized or partially polarized since thein-
plane magnetic field presumably couples only to the electron
spin. Careful finite-size numerical work changed this percep-
tion, leading to our current belief that the 5/2 FQH state is
actually in the universality class of the spin-polarized Moore-
Read Pfaffian state.

In rather pivotal work (Morf, 1998), it was shown that spin-
polarized states atν = 5/2 have lower energy than spin-
unpolarized states. Furthermore, it was shown that varying
the Hamiltonian slightly caused a phase transition between
a gapped phase that has high overlap with the Moore-Read
wavefunction and a compressible phase. The proposal put
forth was that the most important effect of the in-plane field
was not on the electron spins, but rather was to slightly alter
the shape of the electron wavefunction perpendicular to the
sample which, in turn, slightly alters the effective electron-
electron interaction, pushing the system over a phase bound-
ary and destroying the gapped state. Further experimental
work showed that the effect of the in-plane magnetic field is
to drive the system across a phase transition from a gapped
quantum Hall phase into an anisotropic compressible phase
(Lilly etal., 1999a; Panetal., 1999a). Further numerical work
(Rezayi and Haldane, 2000) then mapped out a full phase di-
agram showing the transition between gapped and compress-
ible phases and showing further that the experimental systems
lie exceedingly close to the phase boundary. The correspon-
dence between numerics and experiment has been made more
quantitative by comparisons between the energy gap obtained
from numerics and the one measured in experiments (Morf
and d’Ambrumenil, 2003; Morfet al., 2002). Very recently,
this case has been further strengthened by the application of
the density-matrix renormalization group method (DMRG) to
this problem (Feiguinet al., 2007b).

One issue worth considering is possible competitors to the
Moore-Read Pfaffian state. Experiments have already told us
that there is a fractional quantum Hall state atν = 5/2. There-
fore, our job is to determine which of the possible states is re-
alized there. Serious alternatives to the Moore-Read Pfaffian
state fall into two categories. On the one hand, there is the
possibility that the ground state atν = 5/2 is not fully spin-
polarized. If it were completely unpolarized, the so-called
(3, 3, 1) state (Das Sarma and Pinczuk, 1997; Halperin, 1983)
would be a possibility. However, Morf’s numerics (Morf,
1998) and a recent variational Monte Carlo study (Dimov
et al., 2007) indicate that an unpolarized state is higher in en-
ergy than a fully-polarized state. This can be understood as
a consequence of a tendency towards spontaneous ferromag-
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netism; however, a partially-polarized alternative (which may
be either Abelian or non-Abelian) to the Pfaffian is not ruled
out (Dimov et al., 2007). Secondly, even if the ground state
at ν = 5/2 is fully spin-polarized, the Pfaffian is not the only
possibility. It was very recently noticed that the Pfaffian state
is not symmetric under a particle-hole transformation of a sin-
gle Landau level (which, in this case, is theN = 1 Landau
level, with theN = 0 Landau level filled and assumed inert),
even though this is an exact symmetry of the Hamiltonian in
the limit that the energy splitting between Landau levels is
infinity. Therefore, there is a distinct state, dubbed the anti-
Pfaffian (Leeet al., 2007b; Levinet al., 2007), which is an
equally good state in this limit. Quasiparticles in this state
are also essentially Ising anyons, but they differ from Pfaffian
quasiparticles by Abelian statistical phases. In experiments,
Landau-level mixing is not small, so one or the other state is
lower in energy. On a finite torus, the symmetric combina-
tion of the Pfaffian and the anti-Pfaffian will be lower in en-
ergy, but as the thermodynamic limit is approached, the anti-
symmetric combination will become equal in energy. This is a
possible factor which complicates the extrapolation of numer-
ics to the thermodynamic limit. On a finite sphere, particle-
hole symmetry is not exact; it relates a system with2N − 3
flux quanta with a system with2N + 1 flux quanta. Thus, the
anti-Pfaffian would not be apparent unless one looked at a dif-
ferent value of the flux. To summarize, the only known alter-
natives to the Pfaffian state – partially-polarized states and the
anti-Pfaffian – have not really been tested by numerics, either
because the spin-polarization was assumed to be 0% or 100%
(Morf, 1998) or because Landau-level mixing was neglected.

With this caveat in mind, it is instructive to compare the evi-
dence placing theν = 5/2 FQH state in the Moore-Read Pfaf-
fian universality class with the evidence placing theν = 1/3
FQH state in the corresponding Laughlin universality class.
In the latter case, there have been several spectacular experi-
ments (De Picciottoetal., 1997; Goldman and Su, 1995; Sam-
inadayaretal., 1997) which have observed quasiparticles with
electrical chargee/3, in agreement with the prediction of the
Laughlin universality class. In the case of theν = 5/2 FQH
state, we do not yet have the corresponding measurements of
the quasiparticle charge, which should bee/4. However, the
observation of chargee/3, while consistent with the Laughlin
universality class, does not uniquely fix the observed statein
this class (see, for example, Simonet al., 2007c; Wójs, 2001.
Thus, much of our confidence derives from the amazing (99%
or better) overlap between the ground state obtained from ex-
act diagonalization for a finite size 2D system with up to 14
electrons and the Laughlin wavefunction. In the case of the
ν = 5/2 FQH state, the corresponding overlap (for 18 elec-
trons on the sphere) between theν = 5/2 ground state and
the Moore-Read Pfaffian state is reasonably impressive (∼
80%). This can be improved by modifying the wavefunction
at short distances without leaving the Pfaffian phase (Moller
and Simon, 2007). However, on the torus, as we mentioned
above, the symmetric combination of the Pfaffian and the anti-
Pfaffian is a better candidate wavefunction in a finite-size sys-
tem than the Pfaffian itself (or the anti-Pfaffian). Indeed, the
symmetric combination of the Pfaffian and the anti-Pfaffian

has an overlap of 97% for 14 electrons (Rezayi and Haldane,
2000).

To summarize, the overlap is somewhat smaller in the5/2
case than in the1/3 case when particle-hole symmetry is not
accounted for, but only slightly smaller when it is. This is
an indication that Landau-level mixing – which will favor ei-
ther the Pfaffian or the anti-Pfaffian – is an important effectat
ν = 5/2, unlike atν = 1/3. Moreover, Landau-level mix-
ing is likely to be large because the 5/2 FQH state is typically
realized at relatively low magnetic fields, making the Landau
level separation energy relatively small.

Given that potentially large effects have been neglected,
it is not too surprising that the gap obtained by extrapo-
lating numerical results for finite-size systems (Morf and
d’Ambrumenil, 2003; Morfetal., 2002) is substantially larger
than the experimentally-measured activation gap. Also, the
corresponding excitation gap obtained from numerics for the
ν = 1/3 state is much larger than the measured activation
gap. The discrepancy between the theoretical excitation gap
and the measured activation gap is a generic problem of all
FQH states, and may be related to poorly understood disorder
effects and Landau-level mixing.

Finally, it is important to mention that several very recent
(2006-07) numerical works in the literature have raised some
questions about the identification of the observed5/2 FQH
state with the Moore-Read Pfaffian (Toke and Jain, 2006; Toke
et al., 2007; Wojs and Quinn, 2006). Considering the ab-
sence of a viable alternative (apart from the anti-Pfaffian and
partially-polarized states, which were not considered by these
authors) it seems unlikely that these doubts will continue to
persist, as more thorough numerical work indicates (Moller
and Simon, 2007; Peterson and Das Sarma, 2007; Rezayi,
2007).

(b) 12/5 State: While our current understanding of the 5/2
state is relatively good, the situation for the experimentally
observed 12/5 state is more murky, although the possibilities
are even more exciting, at least from the perspective of topo-
logical quantum computation. One (relatively dull) possibility
is that the12/5 state is essentially the same as the observed
ν = 2/5 state, which is Abelian. However, Read and Rezayi,
in their initial work on non-Abelian generalizations of the
Moore-Read state (Read and Rezayi, 1999) proposed that the
12/5 state might be (the particle-hole conjugate of) theirZ3

parafermion (orSU(2) level 3) state. This is quite an exciting
possibility because, unlike the non-Abelian Moore-Read state
at 5/2, theZ3 parafermion state would have braiding statistics
that allow universal topological quantum computation.

The initial numerics by Read and Rezayi (Read and Rezayi,
1999) indicated that the 12/5 state is very close to a phase
transition between the Abelian hierarchy state and the non-
Abelian parafermion state. More recent work by the same
authors (Rezayi and Read, 2006) has mapped out a detailed
phase diagram showing precisely for what range of parameters
a system should be in the non-Abelian phase. It was found that
the non-Abelian phase is not very “far” from the results that
would be expected from most real experimental systems. This
again suggests that (if the system is not already in the non-
Abelian phase), we may be able to engineer slight changes in



16

an experimental sample that would push the system over the
phase boundary into the non-Abelian phase.

Experimentally, very little is actually known about the 12/5
state. Indeed, a well quantized plateau has only ever been seen
in a single published (Xiaet al., 2004) experiment. Further-
more, there is no experimental information about spin polar-
ization (the non-Abelian phase should be polarized whereas
the Abelian phase could be either polarized or unpolarized),
and it is not at all clear why the 12/5 state has been seen, but
its particle-hole conjugate, the 13/5 state, has not (in thelimit
of infinite Landau level separation, these two states will be
identical in energy). Nonetheless, despite the substantial un-
certainties, there is a great deal of excitement about the possi-
bility that this state will provide a route to topological quan-
tum computation.

(c) Other Quantum Hall States: The most strongly ob-
served fractional quantum Hall states are the composite
fermion statesν = p/(2p+ 1), or are simple generalizations
of them. There is little debate that these states are likely to
be Abelian. However, there are a number of observed exotic
states whose origin is not currently agreed upon. An optimist
may look at any state of unknown origin and suggest that it
is a non-Abelian state. Indeed, non-Abelian proposals (pub-
lished and unpublished) have been made for a great variety
states of uncertain origin including (Jolicoeur, 2007; Scarola
etal., 2002; Simonetal., 2007a,c; Wojsetal., 2006) 3/8, 4/11,
8/3, and 7/3. Of course, other more conventional Abelian pro-
posals have been made for each of these states too (Chang and
Jain, 2004; Goerbiget al., 2004; López and Fradkin, 2004;
Wojs and Quinn, 2002; Wojset al., 2004). For each of these
states, there is a great deal of research left to be done, both
theoretical and experimental, before any sort of definitivecon-
clusion is reached.

In this context, it is worthwhile to mention another class of
quantum Hall systems where non-Abelian anyons could ex-
ist, namely bilayer or multilayer2D systems (Das Sarma and
Pinczuk, 1997; Greiteret al., 1991; Heet al., 1993, 1991).
More work is necessary in investigating the possibility of non-
Abelian multilayer quantum Hall states.

3. Interference Experiments

While numerics give useful insight about the topological
nature of observed quantum Hall states, experimental mea-
surements will ultimately play the decisive role. So far, rather
little has been directly measured experimentally about the
topological nature of theν = 5/2 state and even less is known
about other putative non-Abelian quantum Hall states such as
ν = 12/5. In particular, there is no direct experimental ev-
idence for the non-Abelian nature of the quasiparticles. The
existence of a degenerate, or almost degenerate, subspace of
ground states leads to a zero-temperature entropy and heat
capacity, but those are very hard to measure experimentally.
Furthermore, this degeneracy is just one requirement for non-
Abelian statistics to take place. How then does one demon-
strate experimentally that fractional quantum Hall states, par-
ticularly theν = 5/2 state, are indeed non-Abelian?

S
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FIG. 2 A quantum Hall analog of a Fabry-Perot interferometer.
Quasiparticles can tunnel from one edge to the other at either of
two point contacts. To lowest order in the tunneling amplitudes, the
backscattering probability, and hence the conductance, isdetermined
by the interference between these two processes. The area inthe
cell can be varied by means of a side gateS in order to observe an
interference pattern.

The fundamental quasiparticles (i.e. the ones with the
smallest electrical charge) of the Moore-Read Pfaffian state
have chargee/4 (Greiteretal., 1992; Moore and Read, 1991).
The fractional charge does not uniquely identify the state –
the Abelian(3, 3, 1) state has the same quasiparticle charge
– but a different value of the minimal quasiparticle charge at
ν = 5/2 would certainly rule out the Pfaffian state. Hence, the
first important measurement is the quasiparticle charge, which
was done more than 10 years ago in the case of theν = 1/3
state (De Picciottoet al., 1997; Goldman and Su, 1995; Sam-
inadayaret al., 1997).

If the quasiparticle charge is shown to bee/4, then further
experiments which probe the braiding statistics of the charge
e/4 quasiparticles will be necessary to pin down the topo-
logical structure of the state. One way to do this is to use a
mesoscopic interference device. Consider a Fabry-Perot in-
terferometer, as depicted in Fig. (2). A Hall bar lying parallel
to thex–axis is put in a field such that it is at filling fraction
ν = 5/2. It is perturbed by two constrictions, as shown in the
figure. The two constrictions introduce two amplitudes for
inter-edge tunnelling,t1,2. To lowest order int1,2, the four-
terminal longitudinal conductance of the Hall bar, is:

GL ∝ |t1|2 + |t2|2 + 2Re
{
t∗1t2e

iφ
}

(14)

For an integer Landau filling, the relative phaseφ may be var-
ied either by a variation of the magnetic field or by a variation
of the area of the “cell” defined by the two edges and the two
constrictions, since that phase is2πΦ/Φ0, with Φ = BA be-
ing the flux enclosed in the cell,A the area of the cell, and
Φ0 the flux quantum. Thus, when the area of the cell is varied
by means of a side gate (labeledS in the figure), the back-
scattered current should oscillate.

For fractional quantum Hall states, the situation is different
(de C. Chamonetal., 1997). In an approximation in which the
electronic density is determined by the requirement of charge
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neutrality, a variation of the area of the cell varies the fluxit
encloses and keeps its bulk Landau filling unaltered. In con-
trast, a variation of the magnetic field changes the filling frac-
tion in the bulk, and consequently introduces quasiparticles in
the bulk. Since the statistics of the quasiparticles is fractional,
they contribute to the phaseφ. The back-scattering probabil-
ity is then determined not only by the two constrictions and
the area of the cell they define, but also by the number of
localized quasiparticles that the cell encloses. By varying the
voltage applied to an anti-dot in the cell (the grey circle inFig.
2), we can independently vary the number of quasiparticles in
the cell. Again, however, as the area of the cell is varied, the
back-scattered current oscillates.

For non-Abelian quantum Hall states, the situation is more
interesting (Bondersonet al., 2006a,b; Chung and Stone,
2006; Das Sarmaet al., 2005; Fradkinet al., 1998; Stern and
Halperin, 2006). Consider the case of the Moore-Read Pfaf-
fian state. For clarity, we assume that there are localizede/4
quasiparticles only within the cell (either at the anti-dotor
elsewhere in the cell). If the current in Fig. (2) comes from the
left, the portion of the current that is back-reflected from the
left constriction does not encircle any of these quasiparticles,
and thus does not interact with them. The part of the current
that is back-scattered from the right constriction, on the other
hand, does encircle the cell, and therefore applies a unitary
transformation on the subspace of degenerate ground states.
The final state of the ground state subspace that is coupled to
the left back–scattered wave,|ξ0〉, is then different from the
state coupled to the right partial wave,Û |ξ0〉. HereÛ is the
unitary transformation that results from the encircling ofthe
cell by the wave scattered from the right constriction. The in-
terference term in the four-terminal longitudinal conductance,
the final term in Eq. 14, is then multiplied by the matrix ele-
ment〈ξ0|Û |ξ0〉:

GL ∝ |t1|2 + |t1|2 + 2Re
{

t∗1t2e
iφ
〈
ξ0
∣
∣Û
∣
∣ξ0
〉}

(15)

In section III, we explain how〈ξ0|Û |ξ0〉 can be calculated by
several different methods. Here we just give a brief descrip-
tion of the result.

For the Moore-Read Pfaffian state, which is believed to be
realized atν = 5/2, the expectation value〈ξ0|Û |ξ0〉 depends
first and foremost on the parity of the number ofe/4 quasi-
particles localized in the cell. When that number is odd, the
resulting expectation value is zero. When that number is even,
the expectation value is non-zero and may assume one of two
possible values, that differ by a minus sign. As a consequence,
when the number of localized quasiparticles is odd,no inter-
ference pattern is seen, and the back-scattered current does
not oscillate with small variations of the area of the cell. When
that number is even, the back-scattered current oscillatesas a
function of the area of the cell.

A way to understand this striking result is to observe that
the localized quasiparticles in the cell can be viewed as being
created in pairs from the vacuum. Let us suppose that we want
to haveN quasiparticles in the cell. IfN is odd, then we can
create(N+1)/2 pairs and take one of the resulting quasiparti-
cles outside of the cell, where it is localized. Fusing allN +1

of these particles gives the trivial particle since they were cre-
ated from the vacuum. Now consider what happens when a
current-carrying quasiparticle tunnels at one of the two point
contacts. If it tunnels at the second one, it braids around theN
quasiparticles in the cell (but not theN +1th, which is outside
the cell). This changes the fusion channel of theN + 1 local-
ized quasiparticles. In the language introduced in subsection
II.A.1, eache/4 quasiparticle is aσ particle. An odd number
N of them can only fuse toσ; fused now with theN + 1th,
they can either give1 or ψ. Current-carrying quasiparticles,
when they braid with theN in the cell, toggle the system be-
tween these two possibilities. Since the state of the localized
quasiparticles has been changed, such a process cannot inter-
fere with a process in which the current-carrying quasiparticle
tunnels at the first junction and does not encircle any of the lo-
calized quasiparticles. Therefore, the localized quasiparticles
‘measure’ which trajectory the current-carrying quasiparticles
take(Bondersonetal., 2007; Overbosch and Bais, 2001). IfN
is even, then we can create(N + 2)/2 pairs and take two of
the resulting quasiparticles outside of the cell. If theN quasi-
particles in the cell all fuse to the trivial particle, then this is
not necessary, we can just createN/2 pairs. However, if they
fuse to a neutral fermionψ, then we will need a pair outside
the cell which also fuses toψ so that the total fuses to1, as
it must for pair creation from the vacuum. A current-carrying
quasiparticle picks up a phase depending on whether theN
quasiparticles in the cell fuse to1 orψ.

The Fabry-Perot interferometer depicted in Fig. 2 allows
also for the interference of waves that are back-reflected sev-
eral times. For an integer filling factor, in the limit of strong
back-scattering at the constrictions, the sinusoidal dependence
of the Hall bar’s conductance on the area of the cell gives
way to a resonance-like dependence: the conductance is zero
unless a Coulomb peak develops. For theν = 5/2 state,
again, the parity of the number of localized quasiparticlesmat-
ters: when it is odd, the Coulomb blockade peaks are equally
spaced. When it is even, the spacing between the peaks alter-
nate between two values (Stern and Halperin, 2006).

The Moore-Read Pfaffian state, which is possibly realized
at ν = 5/2, is the simplest of the non-Abelian states. The
other states are more complex, but also richer. The geom-
etry of the Fabry-Perot interferometer may be analyzed for
these states as well. In general, for all non-Abelian statesthe
conductance of the Hall bar depends on the internal state of
the quasiparticles localized between the constrictions – i.e.
the quasiparticle to which they fuse. However, only for the
Moore-Read Pfaffian state is the effect quite so dramatic. For
example, for the theZ3 parafermion state which may be re-
alized atν = 12/5, when the number of localized quasipar-
ticles is larger than three, the fusion channel of the quasipar-
ticles determines whether the interference is fully visible or
suppressed by a factor of−ϕ−2 (with ϕ being the golden ra-
tio (

√
5 + 1)/2) (Bondersonet al., 2006b; Chung and Stone,

2006). The number of quasiparticles, on the other hand, af-
fects only the phase of the interference pattern. Similar to
the case ofν = 5/2 here too the position of Coulomb block-
ade peaks on the two parameter plane of area and magnetic
field reflects the non-Abelian nature of the quasiparticles (Ilan
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FIG. 3 If a third constriction is added between the other two,the cell
is broken into two halves. We suppose that there is one quasiparticle
(or any odd number) in each half. These two quasiparticles (labeled
1 and2) form a qubit which can be read by measuring the conduc-
tance of the interferometer if there is no backscattering atthe middle
constriction. When a single quasiparticle tunnels from oneedge to
the other at the middle constriction, aσx or NOT gate is applied to
the qubit.

et al., 2007).

4. A Fractional Quantum Hall Quantum Computer

We now describe how the constricted Hall bar may be uti-
lized as a quantum bit (Das Sarmaet al., 2005). To that end,
an even number ofe/4 quasiparticles should be trapped in the
cell between the constrictions, and a new, tunable, constric-
tion should be added between the other two so that the cell is
broken into two cells with an odd number of quasiparticles in
each (See Fig. (3)). One way to tune the number of quasipar-
ticles in each half is to have two antidots in the Hall bar. By
tuning the voltage on the antidots, we can change the number
of quasiholes on each. Let us assume that we thereby fix the
number of quasiparticles in each half of the cell to be odd.
For concreteness, let us take this odd number to be one (i.e.
let us assume that we are in the idealized situation in which
there are no quasiparticles in the bulk, and one quasihole on
each antidot). These two quasiholes then form a two-level
system, i.e. a qubit. This two-level system can be understood
in several ways, which we discuss in detail in section III. In
brief, the two states correspond to whether the twoσs fuse to
1 orψ or, in the language of chiralp-wave superconductivity,
the presence or absence of a neutral (‘Majorana’) fermion; or,
equivalently, as the fusion of two quasiparticles carryingthe
spin-1/2 representation of an SU(2) gauge symmetry in the
spin-0 or spin-1 channels.

The interference between thet1 andt2 processes depends
on the state of the two-level system, so the qubit can be read by
a measurement of the four-terminal longitudinal conductance

GL ∝ |t1|2 + |t2|2 ± 2Re
{
t∗1t2e

iφ
}

(16)

where the± comes from the dependence of〈ξ0|Û |ξ0〉 on the
state of the qubit, as we discuss in section III.

The purpose of the middle constriction is to allow us to ma-
nipulate the qubit. The state may be flipped, i.e. aσx or NOT
gate can be applied, by the passage of a single quasiparticle

from one edge to the other, provided that its trajectory passes
in between the two localized quasiparticles. This is a sim-
ple example of how braiding causes non-trivial transforma-
tions of multi-quasiparticle states of non-Abelian quasiparti-
cles, which we discuss in more detail in section III. If we
measure the four-terminal longitudinal conductanceGL be-
fore and after applying this NOT gate, we will observe differ-
ent values according to (16).

For this operation to be a NOT gate, it is important that
just a single quasiparticle (or any odd number) tunnel from
one edge to the other across the middle constriction. In or-
der to regulate the number of quasiparticles which pass across
the constriction, it may be useful to have a small anti-dot in
the middle of the constriction with a large charging energy so
that only a single quasiparticle can pass through at a time. If
we do not have good control over how many quasiparticles
tunnel, then it will be essentially random whether an even or
odd number of quasiparticles tunnel across; half of the time,
a NOT gate will be applied and the backscattering probability
(hence the conductance) will change while the other half of
the time, the backscattering probability is unchanged. If the
constriction is pinched down to such an extreme that the5/2
state is disrupted between the quasiparticles, then when itis
restored, there will be an equal probability for the qubit tobe
in either state.

This qubit is topologically protected because its state can
only be affected by a chargee/4 quasiparticle braiding with it.
If a chargee/4 quasiparticle winds around one of the antidots,
it effects a NOT gate on the qubit. The probability for such
an event can be very small because the density of thermally-
excited chargee/4 quasiparticles is exponentially suppressed
at low temperatures,nqp ∼ e−∆/(2T ). The simplest estimate
of the error rateΓ (in units of the gap) is then of activated
form:

Γ/∆ ∼ (T/∆) e−∆/(2T ) (17)

The most favorable experimental situation (Xiaet al., 2004)
considered in (Das Sarmaet al., 2005) has∆ ≈ 500 mK
andT ∼ 5 mK, producing an astronomically low error rate
∼ 10−15. This should be taken as an overly optimistic es-
timate. A more definitive answer is surely more compli-
cated since there are multiple gaps which can be relevant in
a disordered system. Furthermore, at very low temperatures,
we would expect quasiparticle transport to be dominated by
variable-range hopping of localized quasiparticles rather than
thermal activation. Indeed, the crossover to this behaviormay
already be apparent (Panet al., 1999b), in which case, the
error suppression will be considerably weaker at the lowest
temperatures. Although the error rate, which is determined
by the probability for a quasiparticle to wind around the anti-
dot, is not the same as the longitudinal resistance, which is
the probability for it to go from one edge of the system to the
other, the two are controlled by similar physical processes. A
more sophisticated estimate would require a detailed analy-
sis of the quasiparticle transport properties which contribute
to the error rate. In addition, this error estimate assumes that
all of the trapped (unintended) quasiparticles are kept very far
from the quasiparticles which we use for our qubit so that they
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cannot exchange topological quantum numbers with our qubit
via tunneling. We comment on the issues involved in more
detailed error estimates in section IV.D.

The device envisioned above can be generalized to one with
many anti-dots and, therefore, many qubits. More compli-
cated gates, such as a CNOT gate can be applied by braiding
quasiparticles. It is not clear how to braid quasiparticleslo-
calized in the bulk – perhaps by transferring them from one
anti-dot to another in a kind of “bucket brigade”. This is an
important problem for any realization of topological quantum
computing. However, as we will discuss in section IV, even if
this were solved, there would still be the problem that braid-
ing alone is not sufficient for universal quantum computation
in theν = 5/2 state (assuming that it is the Moore-Read Pfaf-
fian state). One must either use some unprotected operations
(just two, in fact) or else use theν = 12/5, if it turns out to be
theZ3 parafermion non-Abelian state.

5. Physical Systems and Materials Considerations

As seen in the device described in the previous subsection,
topological protection in non-Abelian fractional quantumHall
states hinges on the energy gap (∆) separating the many-body
degenerate ground states from the low-lying excited states.
This excitation gap also leads to the incompressibility of the
quantum Hall state and the quantization of the Hall resistance.
Generally speaking, the larger the size of this excitation gap
compared to the temperature, the more robust the topologi-
cal protection, since thermal excitation of stray quasiparticles,
which goes asexp(−∆/(2T )), would potentially lead to er-
rors.

It must be emphasized that the relevantT here is the tem-
perature of the electrons (or more precisely, the quasiparti-
cles) and not that of the GaAs-AlGaAs lattice surrounding the
2D electron layer. Although the surrounding bath temperature
could be lowered to 1 mK or below by using adiabatic de-
magnetization in dilution refrigerators, the 2D electronsthem-
selves thermally decouple from the bath at low temperatures
and it is very difficult to cool the 2D electrons belowT ≈
20 mK. It will be a great boost to hopes for topological quan-
tum computation using non-Abelian fractional quantum Hall
states if the electron temperature can be lowered to 1 mK or
even below, and serious efforts are currently underway in sev-
eral laboratories with this goal.

Unfortunately, the excitation gaps for the expected non-
Abelian fractional quantum Hall states are typically very
small (compared, for example, with theν = 1/3 fractional
quantum Hall state). The early measured gap for the 5/2 state
was around∆ ∼ 25 mK (in 1987) (Willettet al., 1987), but
steady improvement in materials quality, as measured by the
sample mobility, has considerably enhanced this gap. In the
highest mobility samples currently (2007) available,∆ ≈ 600
mK (Choi et al., 2007). Indeed, there appears to be a close
connection between the excitation gap∆ and the mobility
(or the sample quality). Although the details of this connec-
tion are not well-understood, it is empirically well-established
that enhancing the 2D mobility invariably leads to larger mea-

sured excitation gaps. In particular, an empirical relation,
∆ = ∆0 − Γ, where∆ is the measured activation gap and
∆0 the ideal excitation gap withΓ being the level broadening
arising from impurity and disorder scattering, has often been
discussed in the literature (see, e.g. Duet al., 1993). Writing
the mobilityµ = eτ/m, with τ the zero field Drude scattering
time, we can write (an approximation of) the level broadening
asΓ = ~/(2τ), indicatingΓ ∼ µ−1 in this simple picture,
and therefore increasing the mobility should steadily enhance
the operational excitation gap, as is found experimentally. It
has recently been pointed out (Morfet al., 2002) that by re-
ducingΓ, an FQH gap of 2-3 K may be achievable in the 5/2
FQH state. Much less is currently known about the 12/5 state,
but recent numerics (Rezayi and Read, 2006) suggest that the
maximal gap in typical samples will be quite a bit lower than
for 5/2.

It is also possible to consider designing samples that would
inherently have particularly large gaps. First of all, the in-
teraction energy (which sets the overall scale of the gap) is
roughly of the1/r Coulomb form, so it scales as the inverse of
the interparticle spacing. Doubling the density should there-
fore increase the gaps by roughly 40%. Although there are
efforts underway to increase the density of samples (Willett
et al., 2007), there are practical limitations to how high a den-
sity one can obtain since, if one tries to over-fill a quantum
well with electrons, the electrons will no longer remain strictly
two dimensional (i.e., they will start filling higher subbands,
or they will not remain in the well at all). Secondly, as dis-
cussed in section II.C.2 above, since the non-Abelian states
appear generally to be very sensitive to the precise parameters
of the Hamiltonian, another possible route to increased exci-
tation gap would be to design the precise form of the inter-
electron interaction (which can be modified by well width,
screening layers, and particularly spin-orbit coupling (Man-
fra et al., 2007)) so that the Hamiltonian is at a point in the
phase diagram with maximal gap. With all approaches for re-
designing samples, however, it is crucial to keep the disorder
level low, which is an exceedingly difficult challenge.

Note that a large excitation gap (and correspondingly low
temperature) suppresses thermally excited quasiparticles but
does not preclude stray localized quasiparticles which could
be present even atT = 0. As long as their positions are known
and fixed, and as long as they are few enough in number to
be sufficiently well separated, these quasiparticles wouldnot
present a problem, as one could avoid moving other quasipar-
ticles near their positions and one could then tailor algorithms
to account for their presence. If the density of stray local-
ized quasiparticles is sufficiently high, however, this would
no longer be possible. Fortunately, these stray particles can
be minimized in the same way as one of the above discussed
solutions to keeping the energy gap large – improve the mo-
bility of the 2D electron sample on which the measurements
(i.e. the computation operations) are being carried out. Im-
provement in the mobility leads to both the enhancement of
the excitation gap and the suppression of unwanted quasipar-
ticle localization by disorder.

We should emphasize, however, how extremely high qual-
ity the current samples already are. Current “good” sample



20

mobilities are in the range of10 − 30 × 106 cm2/(Volt-sec).
To give the reader an idea of how impressive this is, we note
that under such conditions, at low temperatures, the mean free
path for an electron may be a macroscopic length of a tenth of
a millimeter or more. (Compare this to, say, copper at room
temperature, which has a mean free path of tens of nanometers
or less).

Nonetheless, further MBE technique and design improve-
ment may be needed to push low-temperature 2D electron
mobilities to 100 × 106 cm2/(Volt-sec) or above for topo-
logical quantum computation to be feasible. At lower temper-
atures,T < 100 mK, the phonon scattering is very strongly
suppressed (Kawamura and Das Sarma, 1992; Stormeret al.,
1990), and therefore, there is essentially no intrinsic limit to
how high the 2D electron mobility can be since the extrin-
sic scattering associated with impurities and disorder can, in
principle, be eliminated through materials improvement. In
fact, steady materials improvement in modulation-doped 2D
GaAs-AlGaAs heterostructures grown by the MBE technique
has enhanced the 2D electron mobility from104 cm2/(Volt-
sec) in the early 1980’s to30×106 cm2/(Volt-sec) in 2004, a
three orders of magnitude improvement in materials qualityin
roughly twenty years. Indeed, the vitality of the entire field of
quantum Hall physics is a result of these amazing advances.
Another factor of 2-3 improvement in the mobility seems pos-
sible (L. Pfeiffer, private communication), and will likely be
needed for the successful experimental observation of non-
Abelian anyonic statistics and topological quantum computa-
tion.

D. Other Proposed Non-Abelian Systems

This review devotes a great deal of attention to the non-
Abelian anyonic properties of certain fractional quantum Hall
states (e.g.ν = 5/2, 12/5, etc. states) in two-dimensional
semiconductor structures, mainly because theoretical andex-
perimental studies of such (possibly) non-Abelian fractional
quantized Hall states is a mature subject, dating back to 1986,
with many concrete results and ideas, including a recent pro-
posal (Das Sarmaet al., 2005) for the construction of qubits
and a NOT gate for topological quantum computation (de-
scribed above in subsection II.C.4 and, in greater detail in
section IV). But there are several other systems which are po-
tential candidates for topological quantum computation, and
we briefly discuss these systems in this subsection. Indeed,
the earliest proposals for fault-tolerant quantum computation
with anyons were based on spin systems, not the quantum Hall
effect (Kitaev, 2003).

First, we emphasize that the most crucial necessary condi-
tion for carrying out topological quantum computation is the
existence of appropriate ‘topological matter’, i.e. a physical
system in a topological phase. Such a phase of matter has
suitable ground state properties and quasiparticle excitations
manifesting non-Abelian statistics. Unfortunately, the neces-
sary and sufficient conditions for the existence of topological
ground states are not known even in theoretical models. We
note that the topological symmetry of the ground state is an

emergent symmetry at low energy, which is not present in the
microscopic Hamiltonian of the system. Consequently, given
a Hamiltonian, it is very difficult to determine if its ground
state is in a topological phase. It is certainly no easier than
showing that any other low-energy emergent phenomenon oc-
curs in a particular model. Except for rare exactly solvable
models (e.g. Kitaev, 2006, Levin and Wen, 2005b which we
describe in section III.G), topological ground states are in-
ferred on the basis of approximations and inspired guesswork.
On the other hand, if topological states exist at all, they will
be robust (i.e. their topological nature should be fairly insen-
sitive to local perturbations, e.g. electron-phonon interaction
or charge fluctuations between traps). For this reason, we be-
lieve that if it can be shown that some model Hamiltonian has
a topological ground state, then a real material which is de-
scribed approximately by that model is likely to have a topo-
logical ground state as well.

One theoretical model which is known to have a non-
Abelian topological ground state is ap + ip wave supercon-
ductor (i.e., a superconductor where the order parameter isof
px + ipy symmetry). As we describe in section III.B, vortices
in a superconductor ofp + ip pairing symmetry exhibit non-
Abelian braiding statistics. This is really just a reincarnation
of the physics of the Pfaffian state (believed to be realized at
the ν = 5/2 quantum Hall plateau) in zero magnetic field.
Chiralp-wave superconductivity/superfluidity is currently the
most transparent route to non-Abelian anyons. As we dis-
cuss below, there are multiple physical systems which may
host such a reincarnation. The Kitaev honeycomb model (see
also section III.G and ) (Kitaev, 2006) is a seemingly differ-
ent model which gives rise to the same physics. In it, spins
interact anisotropically in such a way that their Hilbert space
can be mapped onto that of a system of Majorana fermions.
In various parameter ranges, the ground state is in either an
Abelian topological phase, or a non-Abelian one in the same
universality class as ap+ ip superconductor.

Chiral p-wave superconductors, like quantum Hall states,
break parity and time-reversal symmetries, although they do
so spontaneously, rather than as a result of a large magnetic
field. However, it is also possible to have a topological phase
which does not break these symmetries. Soluble theoretical
models of spins on a lattice have been constructed which have
P, T -invariant topological ground states. A very simple model
of this type with anAbelian topological ground state, called
the ‘toric code’, was proposed in Kitaev, 2003. Even though it
is not sufficient for topological quantum computation because
it is Abelian, it is instructive to consider this model because
non-Abelian models can be viewed as more complex versions
of this model. It describess = 1/2 spins on a lattice interact-
ing through the following Hamiltonian (Kitaev, 2003):

H = −J1

∑

i

Ai − J2

∑

p

Fp (18)

This model can be defined on an arbitrary lattice. The
spins are assumed to be on the links of the lattice.
Ai ≡ ∏

α∈N (i)σ
α
z , whereN (i) is the set of spins on links

α which touch the vertexi, andFp ≡ ∏

α∈pσ
α
x , wherep is

a plaquette andα ∈ p are the spins on the links comprising
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the plaquette. This model is exactly soluble because theAis
andFps all commute with each other. For anyJ1, J2 > 0, the
ground state|0〉 is given byAi|0〉 = Fp|0〉 = |0〉 for all i, p.
Quasiparticle excitations are sitesi at whichAi|0〉 = −|0〉
or plaquettesp at whichFp|0〉 = −|0〉. A pair of excited
sites can be created ati andi′ by acting on the ground state
with

∏

α∈C σ
α
x , where the product is over the links in a chain

C on the lattice connectingi andi′. Similarly, a pair of ex-
cited plaquettes can be created by acting on the ground state
with connected

∏

α∈C̃ σ
α
z where the product is over the links

crossed by a chaiñC on the dual lattice connecting the centers
of plaquettesp andp′. Both types of excitations are bosons,
but when an excited site is taken around an excited plaquette,
the wavefunction acquires a minus sign. Thus, these two types
of bosons arerelative semions.

The toric code model is not very realistic, but it is closely
related to some more realistic models such as the quantum
dimer model (Chayeset al., 1989; Klein, 1982; Moessner and
Sondhi, 2001; Nayak and Shtengel, 2001; Rokhsar and Kivel-
son, 1988). The degrees of freedom in this model are dimers
on the links of a lattice, which represent a spin singlet bond
between the two spins on either end of a link. The quantum
dimer model was proposed as an effective model for frus-
trated antiferromagnets, in which the spins do not order, but
instead form singlet bonds which resonate among the links
of the lattice – the resonating valence bond (RVB) state (An-
derson, 1973, 1987; Baskaranet al., 1987; Kivelsonet al.,
1987) which, in modern language, we would describe as a
specific realization of a simple Abelian topological state (Ba-
lentset al., 1999, 2000; Moessner and Sondhi, 2001; Senthil
and Fisher, 2000, 2001a). While the quantum dimer model on
the square lattice does not have a topological phase for any
range of parameter values (the RVB state is only the ground
state at a critical point), the model on a triangular latticedoes
have a topological phase (Moessner and Sondhi, 2001).

Levin and Wen, 2005a,b constructed a model which is, in
a sense, a non-Abelian generalization of Kitaev’s toric code
model. It is an exactly soluble model of spins on the links
(two on each link) of the honeycomb lattice with three-spin in-
teractions at each vertex and twelve-spin interactions around
each plaquette, which we describe in section III.G. This
model realizes a non-Abelian phase which supports Fibonacci
anyons, which permits universal topological quantum compu-
tation (and generalizes straightforwardly to other non-Abelian
topological phases). Other models have been constructed
(Fendley and Fradkin, 2005; Freedmanet al., 2005a) which
are not exactly soluble but have only two-body interactions
and can be argued to support topological phases in some pa-
rameter regime. However, there is still a considerable gulfbe-
tween models which are soluble or quasi-soluble and models
which might be considered realistic for some material.

Models such as the Kitaev and Levin-Wen models are deep
within topological phases; there are no other competing states
nearby in their phase diagram. However, simple models such
as the Heisenberg model or extensions of the Hubbard model
are not of this form. The implication is that such mod-
els are not deep within a topological phase, and topological
phases must compete with other phases, such as broken sym-

metry phases. In the quantum dimer model (Moessner and
Sondhi, 2001; Rokhsar and Kivelson, 1988), for instance, an
Abelian topological phase must compete with various crys-
talline phases which occupy most of the phase diagram. This
is presumably one obstacle to finding topological phases in
more realistic models, i.e. models which would give an ap-
proximate description of some concrete physical system.

There are several physical systems – apart from fractional
quantum Hall states – which might be promising hunting
grounds for topological phases, including transition metal ox-
ides and ultra-cold atoms in optical traps. The transition metal
oxides have the advantage that we already know that they give
rise to striking collective phenomena such as high-Tc super-
conductivity, colossal magnetoresistance, stripes, and thermo-
electricity. Unfortunately, their physics is very difficult to un-
ravel both theoretically and experimentally for this very rea-
son: there are often many different competing phenomena in
these materials. This is reflected in the models which describe
transition metal oxides. They tend to have many closely com-
peting phases, so that different approximate treatments find
rather different phase diagrams. There is a second advantage
to the transition metal oxides, namely that many sophisticated
experimental techniques have been developed to study them,
including transport, thermodynamic measurements, photoe-
mission, neutron scattering, X-ray scattering, and NMR. Un-
fortunately, however, these methods are tailored for detecting
broken-symmetry states or for giving a detailed understanding
of metallic behavior, not for uncovering a topological phase.
Nevertheless, this is such a rich family of materials that it
would be surprising if there weren’t a topological phase hid-
ing there. (Whether we find it is another matter.) There is one
particular material in this family, Sr2RuO4, for which there
is striking evidence that it is a chiralp-wave superconductor
at low temperatures,Tc ≈ 1.5 K (Kidwingira et al., 2006;
Xia et al., 2006). Half-quantum vortices in a thin film of such
a superconductor would exhibit non-Abelian braiding statis-
tics (since Sr2RuO4 is not spin-polarized, one must use half
quantum vortices, not ordinary vortices). However, half quan-
tum vortices are usually not the lowest energy vortices in a
chiral p-wave superconductor, and a direct experimental ob-
servation of the half vortices themselves would be a substan-
tial milestone on the way to topological quantum computation
(Das Sarmaet al., 2006b).

The current status of research is as follows. Three-
dimensional single-crystals and thin films of Sr2RuO4 have
been fabricated and studied. The nature of the super-
conductivity of these samples has been studied by many ex-
perimental probes, with the goal of identifying the symme-
try of the Cooper-pair. There are many indications that sup-
port the identification of the Sr2RuO4 as apx + ipy super-
conductor. First, experiments that probe the spins of the
Cooper pair strongly indicate triplet pairing (Mackenzie and
Maeno, 2003). Such experiments probe the spin susceptibil-
ity through measurements of the NMR Knight shift and of
neutron scattering. For singlet spin pairing the susceptibility
vanishes at zero temperature, since the spins keep a zero po-
larization state in order to form Cooper pairs. In contrast,the
susceptibility remains finite for triplet pairing, and thisis in-
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deed the observed behavior. Second, several experiments that
probe time reversal symmetry have indicated that it is broken,
as expected from ap±ip super-conductor. These experiments
include muon spin relaxation (Mackenzie and Maeno, 2003)
and the polar Kerr effect(Xiaet al., 2006). In contrast, mag-
netic imaging experiments designed to probe the edge cur-
rents that are associated with a super-conductor that breaks
time reversal symmetry did not find the expected signal (Kirt-
ley et al., 2007). The absence of this signal may be attributed
to the existence of domains ofp + ip interleaved with those
of p− ip. Altogether, then, Sr2RuO4 is likely to be a three di-
mensionalp+ip super-conductor, that may open the way for a
realization of a two-dimensional super-conductor that breaks
time reversal symmetry.

The other very promising direction to look for topological
phases, ultra-cold atoms in traps, also has several advantages.
The Hamiltonian can often be tuned by, for instance, tuning
the lasers which define an optical lattice or by tuning through
a Feshbach resonance. For instance, there is a specific scheme
for realizing the Hubbard model (Jaksch and Zoller, 2005)
in this way. At present there are relatively few experimen-
tal probes of these systems, as compared with transition metal
oxides or even semiconductor devices. However, to look on
the bright side, some of the available probes give information
that cannot be measured in electronic systems. Furthermore,
new probes for cold atoms systems are being developed at a
remarkable rate.

There are two different schemes for generating topologi-
cal phases in ultra-cold atomic gases that seem particularly
promising at the current time. The first is the approach of
using fast rotating dilute bose gases (Wilkinet al., 1998) to
make quantum Hall systems of bosons (Cooperet al., 2001).
Here, the rotation plays the role of an effective magnetic field,
and the filling fraction is given by the ratio of the number
of bosons to the number of vortices caused by rotation. Ex-
perimental techniques (Abo-Shaeeret al., 2001; Bretinet al.,
2004; Schweikhardetal., 2004) have been developed that can
give very large rotation rates and filling fractions can be gener-
ated which are as low asν = 500 (Schweikhardet al., 2004).
While this is sufficiently low that all of the bosons are in a sin-
gle landau level (since there is no Pauli exclusion, nu¿ 1 can
still be a lowest Landau level state), it is still predicted to be
several orders of magnitude too high to see interesting topo-
logical states. Theoretically, the interesting topological states
occur forν < 10 (Cooperetal., 2001). In particular, evidence
is very strong thatν = 1, should it be achieved, would be
the bosonic analogue of the Moore-Read state, and (slightly
less strong)ν = 3/2 andν = 2 would be the Read-Rezayi
states, if the inter-boson interaction is appropriately adjusted
(Cooper and Rezayi, 2007; Rezayietal., 2005). In order to ac-
cess this regime, either rotation rates will need to be increased
substantially, or densities will have to be decreased substan-
tially. While the latter sounds easier, it then results in all of
the interaction scales being correspondingly lower, and hence
implies that temperature would have to be lower also, which
again becomes a challenge. Several other works have pro-
posed using atomic lattice systems where manipulation of pa-
rameters of the Hamiltonian induces effective magnetic fields

and should also result in quantum hall physics(Mueller, 2004;
Poppet al., 2004; Sørensenet al., 2005).

The second route to generating topological phases in cold
atoms is the idea of using a gas of ultra-cold fermions with
a p-wave Feschbach resonance, which could form a spin-
polarized chiral p-wave superfluid (Gurarieet al., 2005). Pre-
liminary studies of such p-wave systems have been made ex-
perimentally (Gaebleret al., 2007) and unfortunately, it ap-
pears that the decay time of the Feshbach bound states may
be so short that thermalization is impossible. Indeed, recent
theoretical work (Levinsenetal., 2007) suggests that this may
be a generic problem and additional tricks may be necessary
if a p-wave superfluid is to be produced in this way.

We note that both theν = 1 rotating boson system and the
chiralp-wave superfluid would be quite closely related to the
putative non-Abelian quantum Hall state atν = 5/2 (as is
Sr2RuO4). However, there is an important difference between
a p-wave superfluid of cold fermions and theν = 5/2 state.
Two-dimensional superconductors, as well as superfluids in
any dimension, have a gapless Goldstone mode. Therefore,
there is the danger that the motion of vortices may cause the
excitation of low-energy modes. Superfluids of cold atoms
may, however, be good test grounds for the detection of lo-
calized Majorana modes associated with localized vortices, as
those are expected to have a clear signature in the absorption
spectrum of RF radiation (Tewarietal., 2007b), in the form of
a discrete absorption peak whose density and weight are de-
termined by the density of the vortices (Grosfeldetal., 2007).
One can also realize, using suitable laser configurations, Ki-
taev’s honeycomb lattice model (Eq. 55) with cold atoms on
an optical lattice (Duanet al., 2003). It has recently been
shown how to braid anyons in such a model (Zhanget al.,
2006).

A major difficulty in finding a topological phase in either
a transition metal oxide or an ultra-cold atomic system is that
topological phases are hard to detect directly. If the phase
breaks parity and time-reversal symmetries, either sponta-
neously or as a result of an external magnetic field, then there
is usually an experimental handle through transport, as in the
fractional quantum Hall states or chiralp-wave superconduc-
tors. If the state does not break parity and time-reversal, how-
ever, there is no ‘smoking gun’ experiment, short of creating
quasiparticles, braiding them, and measuring the outcome.

Any detailed discussion of the physics of these ‘alterna-
tive’ topological systems is well beyond the scope of the cur-
rent review. We refer the readers to the existing recent liter-
ature on these systems for details. In section III (especially
III.G), however, we discuss some of the soluble models which
support topological phases because many of their mathemat-
ical features elucidate the underlying structure of topological
phases.

III. TOPOLOGICAL PHASES OF MATTER AND
NON-ABELIAN ANYONS

Topological quantum computation is predicated on the exis-
tence in nature of topological phases of matter. In this section,
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we will discuss the physics of topological phases from several
different perspectives, using a variety of theoretical tools. The
reader who is interested primarily in the application of topo-
logical phases to quantum computation can skim this section
briefly and still understand section IV. However, a reader with
a background in condensed matter physics and quantum field
theory may find it enlightening to read a more detailed ac-
count of the theory of topological phases and the emergence
of anyons from such phases, with explicit derivations of some
of the results mentioned in section II and used in section IV.
These readers may find topological phases interesting in and
of themselves, apart from possible applications.

Topological phases, the states of matter which support
anyons, occur in many-particle physical systems. Therefore,
we will be using field theory techniques to study these states.
A canonical, but by no means unique, example of a field the-
ory for a topological phase is Chern-Simons theory. We will
frequently use this theory to illustrate the general pointswhich
we wish to make about topological phases. In section V, we
will make a few comments about the problem of classifying
topological phases, and how this example, Chern-Simons the-
ory, fits in the general classification. In subsection III.A,we
give a more precise definition of a topological phase and con-
nect this definition with the existence of anyons. We also in-
troduce Chern-Simons theory, which we will discuss through-
out section III as an example of the general structure which
we discuss in subsection III.A. In subsection III.B, we will
discuss a topological phase which is superficially rather dif-
ferent but, in fact, will prove to be a special case of Chern-
Simons theory. This phase can be analyzed in detail using the
formalism of BCS theory. In subsection III.C, we further ana-
lyze Chern-Simons theory, giving a more detailed account of
its topological properties, especially the braiding of anyons.
We describe Witten’s work (Witten, 1989) connecting Chern-
Simons theory with the knot and link invariants of Jones and
Kauffman (Jones, 1985; Kauffman, 1987). We show how the
latter can be used to derive the properties of anyons in these
topological phases. In section III.D, we describe a comple-
mentary approach by which Chern-Simons theory can be un-
derstood: through its connection to conformal field theory.We
explain how this approach can be particularly fruitful in con-
nection with fractional quantum Hall states. In III.E, we dis-
cuss the gapless excitations which must be present at the edge
of any chiral topological phase. Their physics is intimately
connected with the topological properties of the bulk and, at
the same time, is directly probed by transport experiments
in quantum Hall devices. In III.F, we apply the knowledge
which we have gained about the properties of Chern-Simons
theory to the interferometry experiments which we discussed
in II.C.3. Finally, in III.G we discuss a related but different
class of topological phases which can arise in lattice models
and may be relevant to transition metal oxides or ‘artificial’
solids such as ultra-cold atoms in optical lattices.

A. Topological Phases of Matter

In Section II of this paper, we have used ‘topological phase’
as essentially being synonymous with any system whose
quasiparticle excitations are anyons. However, a precise def-
inition is the following. A system is in a topological phase
if, at low temperatures and energies, and long wavelengths,
all observable properties (e.g. correlation functions) are in-
variant under smooth deformations (diffeomorphisms) of the
spacetime manifold in which the system lives. Equivalently,
all observable properties are independent of the choice of
spacetime coordinates, which need not be inertial or rectilin-
ear. (This is the ‘passive’ sense of a diffeomorphism, while
the first statement uses the active sense of a transformation.)
By “at low temperatures and energies, and long wavelengths,”
we mean that diffeomorphism invariance is only violated by
terms which vanish as∼ max

(
e−∆/T , e−|x|/ξ) for some non-

zero energy gap∆ and finite correlation lengthξ. Thus, topo-
logical phases have, in general, an energy gap separating the
ground state(s) from the lowest excited states. Note that an
excitation gap, while necessary, is not sufficient to ensurethat
a system is in a topological phase.

The invariance of all correlation functions under dif-
feomorphisms means that the only local operator which
has non-vanishing correlation functions is the identity.
For instance, under an arbitrary change of space-time
coordinatesx→ x′ = f(x), the correlations of a scalar oper-
ator φ(x) must satisfy 〈0i|φ(x1)φ(x2) . . . φ(xn)|0j〉 =
〈0i|φ(x′1)φ(x′2) . . . φ(x′n)|0j〉, which implies that
〈0i|φ(x1)φ(x2) . . . φ(xn)|0j〉 = 0 unlessφ(x) ≡ c for
some constantc. Here, |0i〉, |0j〉 are ground states of the
system (which may or may not be different). This property
is important because any local perturbation, such as the
environment, couples to a local operator. Hence, these local
perturbations are proportional to the identity. Consequently,
they cannot have non-trivial matrix elements between differ-
ent ground states. The only way in which they can affect the
system is by exciting the system to high-energies, at which
diffeomorphism invariance is violated. At low-temperatures,
the probability for this is exponentially suppressed.

The preceding definition of a topological phase may be
stated more compactly by simply saying that a system is in
a topological phase if its low-energy effective field theoryis
a topological quantum field theory (TQFT), i.e. a field the-
ory whose correlation functions are invariant under diffeomor-
phisms. Remarkably, topological invariance does not imply
trivial low-energy physics.

1. Chern-Simons Theory

Consider the simplest example of a TQFT, Abelian Chern-
Simons theory, which is relevant to the Laughlin states at fill-
ing fractions of the formν = 1/k, with k an odd integer. Al-
though there are many ways to understand the Laughlin states,
it is useful for us to take the viewpoint of a low-energy ef-
fective theory. Since quantum Hall systems are gapped, we
should be able to describe the system by a field theory with
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very few degrees of freedom. To this end, we consider the
action

SCS =
k

4π

∫

d2r dt ǫµνρaµ∂νaρ (19)

wherek is an integer andǫ is the antisymmetric tensor. Here,
a is a U(1) gauge field and indicesµ, ν, ρ take the values0 (for
time-direction),1,2 (space-directions). This action represents
the low-energy degrees of freedom of the system, which are
purely topological.

The Chern-Simons gauge fielda in (19) is an emergent de-
gree of freedom which encodes the low-energy physics of a
quantum Hall system. Although in this particular case, it is
simply-related to the electronic charge density, we will also be
considering systems in which emergent Chern-Simons gauge
fields cannot be related in a simple way to the underlying elec-
tronic degrees of freedom.

In the presence of an external electromagnetic field and
quasiparticles, the action takes the form:

S = SCS −
∫

d2r dt

(
1

2π
ǫµνρAµ∂νaρ + jqp

µ aµ

)

(20)

wherejqp
µ is the quasiparticle current,jqp

0 = ρqp is the quasi-
particle density,jqp = (jqp

1 , jqp
2 ) is the quasiparticle spatial

current, andAµ is the external electromagnetic field. We
will assume that the quasiparticles are not dynamical, but in-
stead move along some fixed classically-prescribed trajecto-
ries which determinejqp

µ . The electrical current is:

jµ = ∂L/∂Aµ =
1

2π
ǫµνρ∂νaρ (21)

Since the action is quadratic, it is completely solvable, and
one can integrate out the fieldaµ to obtain the response of
the current to the external electromagnetic field. The result of
such a calculation is precisely the quantized Hall conductivity
σxx = 0 andσxy = 1

k e
2/h.

The equation of motion obtained by varyinga0 is the
Chern-Simons constraint:

k

2π
∇× a = jqp

0 +
1

2π
B (22)

According to this equation, each quasiparticle has Chern-
Simons flux2π/k attached to it (the magnetic field is assumed
fixed). Consequently, it has electrical charge1/k, accord-
ing to (21). As a result of the Chern-Simons flux, another
quasiparticle moving in this Chern-Simons field picks up an
Aharonov-Bohm phase. The action associated with taking
one quasiparticle around another is, according to Eq. 20, of
the form

1

2
k

∫

dr dt j · a = kQ

∫

C
dr · a (23)

whereQ is the charge of the quasiparticle and the final integral
is just the Chern-Simons flux enclosed in the path. (The factor
of 1/2 on the left-hand side is due to the action of the Chern-
Simons term itself which, according to the constraint (22) is

−1/2 times the Aharonov-Bohm phase. This is cancelled by a
factor of two coming from the fact that each particle sees the
other’s flux.) Thus the contribution to a path integraleiSCS

just gives an Aharonov-Bohm phase associated with moving
a charge around the Chern-Simons flux attached to the other
charges. The phases generated in this way give the quasipar-
ticles of this Chern-Simons theoryθ = π/k Abelian braiding
statistics.3

Therefore, an Abelian Chern-Simons term implements
Abelian anyonic statistics. In fact, it does nothing else. An
Abelian gauge field in2 + 1 dimensions has only one trans-
verse component; the other two components can be eliminated
by fixing the gauge. This degree of freedom is fixed by the
Chern-Simons constraint (22). Therefore, a Chern-Simons
gauge field has no local degrees of freedom and no dynam-
ics.

We now turn to non-Abelian Chern-Simons theory. This
TQFT describes non-Abelian anyons. It is analogous to the
Abelian Chern-Simons described above, but different meth-
ods are needed for its solution, as we describe in this section.
The action can be written on an arbitrary manifoldM in the
form

SCS [a] =
k

4π

∫

M
tr

(

a ∧ da+
2

3
a ∧ a ∧ a

)

(24)

=
k

4π

∫

M
ǫµνρ

(

aaµ∂νa
a
ρ +

2

3
fa b ca

a
µa

b
νa
c
ρ

)

In this expression, the gauge field now takes values in the Lie
algebra of the groupG. fa b c are the structure constants of
the Lie algebra which are simplyǫa b c for the case of SU(2).
For the case of SU(2), we thus have a gauge fielda

a
µ, where

the underlined indices run from 1 to 3. A matter field trans-
forming in the spin-j representation of the SU(2) gauge group
will couple to the combinationaaµxa, wherexa are the three
generator matrices of su(2) in the spin-j representation. For
gauge groupG and coupling constantk (called the ‘level’),
we will denote such a theory byGk. In this paper, we will be
primarily concerned with SU(2)k Chern-Simons theory.

To see that Chern-Simons theory is a TQFT, first note that
the Chern-Simons action (24) is invariant under all diffeomor-
phisms ofM to itself, f : M → M. The differential form
notation in (24) makes this manifest, but it can be checked
in coordinate form forxµ → fµ(x). Diffeomorphism in-
variance stems from the absence of the metric tensor in the
Chern-Simons action. Written out in component form, as in
(24), indices are, instead, contracted withǫµνλ.

Before analyzing the physics of this action (24), we will
make two observations. First, as a result of the presence of

3 The Chern-Simons effective action for a hierarchical stateis equivalent to
the action for the composite fermion state at the same fillingfraction (Blok
and Wen, 1990; Read, 1990; Wen and Zee, 1992). It is a simple gener-
alization of Eq. 19 which contains several internal gauge fields anµ (with
n = 1, 2, ...), corresponding (in essence) to the action for the different
species of particles (either the different levels of the hierarchy, or the dif-
ferent composite fermion Landau levels).
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ǫµνλ, the action changes sign under parity or time-reversal
transformations. In this paper, we will concentrate, for the
most part, on topological phases which are chiral, i.e. which
break parity and time-reversal symmetries. These are the
phases which can appear in the fractional quantum Hall ef-
fect, where the large magnetic field breaksP , T . However,
we shall also discuss non-chiral topological phases in sec-
tion III.G, especially in connection which topological phases
emerging from lattice models.

Secondly, the Chern-Simons action is not quite fully invari-
ant under gauge transformationsaµ → gaµg

−1 + g∂µg
−1,

whereg : M → G is any function on the manifold taking
values in the groupG. On a closed manifold, it is only in-
variant under “small” gauge tranformations. Suppose that the
manifoldM is the 3-sphere,S3. Then, gauge transformations
are mapsS3 → G, which can be classified topologically ac-
cording to it homotopyπ3(G). For any simple compact group
G, π3(G) = Z, so gauge transformations can be classified
according to their “winding number”. Under a gauge trans-
formation with windingm,

SCS [a] → SCS[a] + 2πkm (25)

(Deseret al., 1982). While the action is invariant under
“small” gauge transformations, which are continuously con-
nected to the identity and havem = 0, it is not invariant
under “large” gauge transformations (m 6= 0). However, it
is sufficient forexp(iS) to be gauge invariant, which will be
the case so long as we require that the levelk be an integer.
The requirement that the levelk be an integer is an example
of the highly rigid structure of TQFTs. A small perturbation
of the microscopic Hamiltonian cannot continuously change
the value ofk in the effective low energy theory; only a per-
turbation which is large enough to changek by an integer can
do this.

The failure of gauge invariance under large gauge tranfor-
mations is also reflected in the properties of Chern-Simons
theory on a surface with boundary, where the Chern-Simons
action is gauge invariant only up to a surface term. Conse-
quently, there must be gapless degrees of freedom at the edge
of the system whose dynamics is dictated by the requirement
of gauge invariance of the combined bulk and edge (Wen,
1992), as we discuss in section III.E.

To unravel the physics of Chern-Simons theory, it is use-
ful to specialize to the case in which the spacetime manifold
M can be decomposed into a product of a spatial surface and
time,M = Σ×R. On such a manifold, Chern-Simons theory
is a theory of the ground states of a topologically-ordered sys-
tem onΣ. There are no excited states in Chern-Simons theory
because the Hamiltonian vanishes. This is seen most simply
in a0 = 0 gauge, where the momentum canonically conjugate
to a1 is − k

4π a2, and the momentum canonically conjugate to
a2 is k

4π a1 so that

H =
k

4π
tr (a2∂0a1 − a1∂0a2) − L = 0 (26)

Note that this is a special feature of an action with a Chern-
Simons term alone. If the action had both a Chern-Simons

and a Yang-Mills term, then the Hamiltonian would not van-
ish, and the theory would have both ground states and excited
states with a finite gap. Since the Yang-Mills term is sublead-
ing compared to the Chern-Simons term (i.e. irrelevant in a
renormalization group (RG) sense), we can forget about it at
energies smaller than the gap and consider the Chern-Simons
term alone.

Therefore, when Chern-Simons theory is viewed as an ef-
fective field theory, it can only be valid at energies much
smaller than the energy gap. As a result, it is unclear, at the
moment, whether Chern-Simons theory has anything to say
about the properties of quasiparticles – which are excitations
above the gap – or, indeed, whether those properties are part
of the universal low-energy physics of the system (i.e. are
controlled by the infrared RG fixed point). Nevertheless, as
we will see momentarily, it does and they are.

Although the Hamiltonian vanishes, the theory is still not
trivial because one must solve the constraint which followsby
varyinga0. For the sake of concreteness, we will specialize to
the caseG =SU(2). Then the constraint reads:

ǫij∂ia
a
j + fa b ca

b
1a
c
2 = 0 (27)

wherei, j = 1, 2. The left-hand side of this equation is the
field strength of the gauge fieldaai , wherea = 1, 2, 3 is an
su(2) index. Since the field strength must vanish, we can al-
ways perform a gauge transformation so thata

a
i = 0 locally.

Therefore this theory has no local degrees of freedom. How-
ever, for some field configurations satisfying the constraint,
there may be a global topological obstruction which prevents
us from making the gauge field zero everywhere. Clearly, this
can only happen ifΣ is topologically non-trivial.

The simplest non-trivial manifold is the annulus, which
is topologically equivalent to the sphere with two punctures.
Following Elitzuret al., 1989 (see also (Wen and Zee, 1998)
for a similar construction on the torus), let us take coordinates
(r, φ) on the annulus, withr1 < r < r2, and lett be time.
Then we can writeaµ = g∂µg

−1, where

g(r, φ, t) = eiω(r,φ,t) ei
φ
k
λ(t) (28)

whereω(r, φ, t) andλ(t) take values in the Lie algebra su(2)
andω(r, φ, t) is a single-valued function ofφ. The functionsω
andλ are the dynamical variables of Chern-Simons theory on
the annulus. Substituting (28) into the Chern-Simons action,
we see that it now takes the form:

S =
1

2π

∫

dt tr (λ∂tΩ) (29)

whereΩ(r, t) =
∫ 2π

0 dφ (ω(r1, φ, t)−ω(r2, φ, t)). Therefore,
Ω is canonically conjugate toλ. By a gauge transformation,
we can always rotateλ and Ω so that they are along the3
direction in su(2), i.e.λ = λ3T

3, Ω = Ω3T
3. Since it is

defined through the exponential in (28),Ω3 takes values in
[0, 2π]. Therefore, its canonical conjugate,λ3, is quantized
to be an integer. From the definition ofλ in (28), we see that
λ3 ≡ λ3+2k. However, by a gauge transformation given by a
rotation around the1-axis, we can transformλ→ −λ. Hence,
the independent allowed values ofλ are0, 1, . . . , k.
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On the two-punctured sphere, if one puncture is of typea,
the other puncture must be of typeā. (If the topological charge
at one puncture is measured along a loop around the puncture
– e.g. by a Wilson loop, see subsection III.C – then the loop
can be deformed so that it goes around the other puncture, but
in the opposite direction. Therefore, the two punctures neces-
sarily have conjugate topological charges.) For SU(2),a = ā,
so both punctures have the same topological charge. There-
fore, the restriction to onlyk + 1 different possible allowed
boundary conditionsλ for the two-punctured sphere implies
that there arek + 1 different quasiparticle types in SU(2)k

Chern-Simons theory. As we will describe in later subsec-
tions, these allowed quasiparticle types can be identified with
thej = 0, 1

2 , . . . ,
k
2 representations of the SU(2)2 Kac-Moody

algebra.

2. TQFTs and Quasiparticle Properties

We will continue with our analysis of Chern-Simons theory
in sections III.C and III.D. Here, we will make some more
general observations abut TQFTs and the topological prop-
erties of quasiparticles. We turn to then-punctured sphere,
Σ = S2\P1∪P2 ∪ . . .∪Pn, i.e. the sphereS2 with the points
P1, P2 . . . Pn deleted, which is equivalent ton − 1 quasipar-
ticles in the plane (thenth puncture becomes the point at∞).
This will allow us to study the topological properties of quasi-
particle excitations purely from ground state properties.To
see how braiding emerges in this approach, it is useful to
note that diffeomorphisms should have a unitary representa-
tion on the ground state Hilbert space (i.e. they should com-
mute with the Hamiltonian). Diffeomorphisms which can be
smoothly deformed to the identity should have a trivial ac-
tion on the Hilbert space of the theory since there are no lo-
cal degrees of freedom. However, ‘large’ diffeomorphisms
could have a non-trivial unitary representation on the theory’s
Hilbert space. If we take the quotient of the diffeomorphism
group by the set of diffeomorphisms which can be smoothly
deformed to the identity, then we obtain themapping class
group. On then-punctured sphere, the braid groupBn−1 is a
subgroup of the mapping class group.4 Therefore, if we study
Chern-Simons theory on then-punctured sphere as we did for
the 2-punctured sphere above, and determine how the map-
ping class group acts, we can learn all of the desired informa-
tion about quasiparticle braiding. We do this by two different
methods in subsections III.C and III.D.

4 The mapping class group is non-trivial solely as a result of the punctures. In
particular, any diffeomorphism which moves one or more of the punctures
around other punctures cannot be deformed to the identity; conversely, if
two diffeomorphisms move the same punctures along trajectories which
can be deformed into each other, then the diffeomorphisms themselves can
also be deformed into each other. These classes of diffeomorphisms corre-
spond to the braid group which is, in fact, a normal subgroup.If we take
the quotient of the mapping class group by the Dehn twists ofn− 1 of the
punctures – all except the point at infinity – we would be left with the braid
groupBn−1.

One extra transformation in the mapping class group, com-
pared to the braid group, is a2π rotation of a puncture/particle
relative to the rest of the system (a Dehn twist). If we consider
particles with a finite extent, rather than point particles,then
we must consider the possibility of such rotations. For in-
stance, if the particles are small dipoles, then we can represent
their world lines as ribbons. A Dehn twist then corresponds to
a twist of the ribbon. Thickening a world line into a ribbon is
called aframing. A given world line has multiple choices of
framing, corresponding to how many times the ribbon twists.
A framing is actually essential in Chern-Simons theory be-
cause flux is attached to charge through the constraint (22)
or (27). By putting the flux and charge at opposite edges of
the ribbon, which is a short-distance regularization of thethe-
ory, we can associate a well-defined phase to a particle tra-
jectory. Otherwise, we wouldn’t know how many times the
charge went around the flux.

Any transformation acting on a single particle can only re-
sult in a phase; the corresponding phase is called the twist
parameterΘa. Often, one writesΘa ≡ e2πiha , whereha
is called thespin of the particle.5 (One must, however,
be careful to distinguish this from the actual spin of the
particle, which determines its transformation propertiesun-
der the three-dimensional rotation group and must be half-
integral.) However,ha is well-defined even if the system is
not rotationally-invariant, so it is usually called thetopolog-
ical spin of the particle. For Abelian anyons, it is just the
statistics parameter,θ = 2πiha.

The ground state properties on arbitrary surfaces, including
the n-punctured sphere and the torus, can be built up from
more primitive vector spaces in the following way. An ar-
bitrary closed surface can be divided into a collection of3-
punctured spheres which are glued together at their bound-
aries. This is called a ‘pants decomposition’ because of the
topological equivalence of a3-punctured sphere to a pair of
pants. Therefore, the3-punctured sphere plays a fundamen-
tal role in the description of a topological phase. Its Hilbert
space is denoted byV cab, if a, b, andc are the particle types at
the three punctures. If thea andb punctures are fused, a two-
punctured sphere will result. From the above analysis, it has a
one-dimensional vector space if both punctures have topolog-
ical chargec and a zero-dimensional vector space otherwise.
The dimension of the Hilbert space of the3-punctured sphere
is given by the fusion multiplicityN c

ab = dim(V cab) which ap-
pears in the fusion rule,φa × φb =

∑

cN
c
abφc. The Hilbert

space on a surface obtained by gluing together3-punctured
spheres is obtained by tensoring together theV ’s and sum-

5 If a is its own anti-particle, so that twoas can fuse to1, thenRaa1 = ±Θ∗
a,

where the minus sign is acquired for some particle typesa which are not
quite their own antiparticles but only up to some transformation which
squares to−1. This is analogous to the fact that the fundamental repre-
sentation of SU(2) is not real but is pseudoreal. Consequently, a spin-1/2
particleψµ and antiparticleψµ† can form a singlet,ψµ†ψµ, but two spin-
1/2 particles can as well,ψµψν i(σy)µν , whereσy is the antisymmet-
ric Pauli matrix. When some quantities are computed, an extra factor of
(iσy)2 = −1 results. This± sign is called the Froebenius-Schur indica-
tor. (See, for instance, Bantay, 1997.)
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ming over the particle types at the punctures where gluing oc-
curs. For instance, the Hilbert space on the4-punctured sphere
is given by the direct sumV eabd = ⊕cV cabV ecd; the Hilbert space
on the torus isVT 2 = ⊕aV a1aV aa1. (If one of the particle types
is the vacuum, then the corresponding puncture can simply
be removed; the3-punctured sphere is then actually only2-
punctured. Gluing two of them together end to end gives a
torus. This is one way of seeing that the degeneracy on the
torus is the number of particle types.)

The Hilbert space of then-punctured sphere with topolog-
ical chargea at each puncture can be constructed by sewing
together a chain of(n−2) 3-punctured spheres. The resulting
Hilbert space is:V 1

a...a = ⊕bi
V b1aaV

b2
ab1

. . . V aabN−3
. A simple

graphical notation for a set of basis states of this Hilbert space
is given by afusion chain (similar to the fusion tree discussed
in appendix A):

a

a a a a

b1 b2 b3 b4 . . . bn−4 bn−3

a a

a

The first two as on the far left fuse tob1. The nexta
fuses withb1 to give b2. The nexta fuses withb2 to give
b3, and so on. The different basis vectors in this Hilbert
space correspond to the different possible allowedbis. The
dimension of this Hilbert space isN b1

aaN
b2
ab1

. . . Na
abN−3

=

(Na)
b1
a (Na)

b2
b1
. . . (Na)

a
bN−3

. On the right-hand-side of this
equation, we have suggested that the fusion multiplicityN c

ab
can be viewed as a matrix(Na)

c
b associated with quasiparticle

speciesa. Let us denote the largest eigenvalue of the ma-
trix Na by da. Then the Hilbert space ofM quasiparticles of
typea has dimension∼ dM−2

a for largeM . For this reason,
da is called thequantum dimension of ana quasiparticle. It
is the asymptotic degeneracy per particle of a collection ofa
quasiparticle. For Abelian particles,da = 1 since the multi-
particle Hilbert space is one-dimensional (for fixed particle
positions). Non-Abelian particles haveda > 1. Note that
da is not, in general, an integer, which is symptomatic of the
non-locality of the Hilbert space: it isnot the tensor product
of da-dimensional Hilbert spaces associated locally with each
particle.

This non-locality is responsible for the stability of this de-
generate ground state Hilbert space. Not only the Yang-Mills
term, but all possible gauge-invariant terms which we can add
to the action (24) are irrelevant. This means that adding such a
term to the action might split the∼ dM−2

a -dimensional space
of degenerate states in a finite-size system, but the splitting
must vanish as the system size and the particle separations go
to infinity. In fact, we can make an even stronger statement
than that. All ground state matrix elements of gauge-invariant
local operators such as the field strength squared,F

a
µνFµνa,

vanish identically because of the Chern-Simons constraint.
Therefore, the degeneracy is not lifted at all in perturbation
theory. It can only be lifted by non-perturbative effects (e.g.
instantons/quantum tunneling), which could cause a splitting
∼ e−gL whereg is inversely proportional to the coefficient
of the Yang-Mills term. Therefore, the multi-quasiparticle
states are degenerate to within exponential accuracy. At finite-

temperatures, one must also consider transitions to excited
states, but the contributions of these will be∼ e−∆/T . Fur-
thermore if we were to add a time dependent (source) term to
the action, these properties will remain preserved so long as
the frequency of this term remains small compared with the
gap.

Aside from then-punctured spheres, the torus is the most
important manifold for considering topological phases. Al-
though not directly relevant to experiments, the torus is very
important for numerical simulations since periodic boundary
conditions are often the simplest choice. As noted above, the
ground state degeneracy on the torus is equal to the number
of quasiparticle species. Suppose one can numerically solve a
Hamiltonian on the torus. If it has a gap between its ground
state(s) and the lowest energy excited states, then its ground
state degeneracy is an important topological property of the
state – namely the number of of quasiparticle species. A sim-
ple physical understanding of this degeneracy can be obtained
in the following way. Suppose that we have a system of elec-
trons in a topological phase. If we consider the system on the
torus, then the electrons must have periodic boundary con-
ditions around either generator of the torus (i.e. around ei-
ther handle), but the quasiparticles need not. In the Abelian
ν = 1/m fractional quantum Hall state, for instance, it is pos-
sible for a quasiparticle to pick up a phasee2πin/m in going
around the meridian of the torus, wheren can take any of the
valuesn = 0, 1, . . . ,m−1; electrons would still have periodic
boundary conditions since they are made up ofm quasiparti-
cles. Indeed, allm of these possibilities occur, so the ground
state ism-fold degenerate.

Let us make this a little more precise. We introduce oper-
atorsT1 andT2 which create a quasiparticle-quasihole pair,
take the quasiparticle around the meridian or longitude, re-
spectively, of the torus and annihilate them again. ThenT1

andT2 must satisfy:

T−1
2 T−1

1 T2T1 = e2πi/m (30)

becauseT−1
1 T1 amounts to a contractible quasiparticle-

quasihole loop, as doesT−1
2 T2; by alternating these pro-

cesses, we cause these loops to be linked. The quasiparticle
trajectories in spacetime (which can be visualized as a thick-
ened torus) are equivalent to a simple link between two circles
(the Hopf link): the first quasiparticle-quasihole pair is pulled
apart along the meridian (T1); but before they can be brought
back together (T−1

1 ), the second pair is pulled apart along the
longitude (T2). After the first pair is brought back together
and annihilated (T−1

1 ), the second one is, too (T−1
2 ). In other

words, the phase on the right-hand-side of Eq. 30 is simply the
phase obtained when one quasiparticle winds around another.
This algebra can be represented on a vector space of minimum
dimensionm. Let us call the states in this vector space|n〉,
n = 0, 1, . . . ,m− 1. Then

T1|n〉 = e2πin/m|n〉
T2|n〉 = |(n+ 1) modm〉 (31)

Thesem states correspond ton = 0, 1, . . . ,m − 1 quanta of
flux threaded through the torus. If we were to cut along a
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meridian and open the torus into an annulus, then these states
would have fluxn threaded through the hole in the annulus
and chargen/m at the inner boundary of the annulus (and a
compensating charge at the outer boundary). We can instead
switch to a basis in whichT2 is diagonal by a discrete Fourier
transform. If we write|ñ〉 = 1√

m

∑m−1
n=0 e

2πinñ/m|n〉, then

|ñ〉 is an eigenstgate ofT2 with eigenvaluee2πiñ/m. In this
basis,T1 is an off-diagonal operator which changes the bound-
ary conditions of quasiparticles around the longitude of the
torus. In non-Abelian states, a more complicated version of
the same thing occurs, as we discuss for the case of Ising
anyons at the end of section III.B. The different boundary con-
ditions around the meridian correspond to the different possi-
ble quasiparticle types which could thread the torus (or, equiv-
alently, could be present at the inner boundary of the annulus
if the torus were cut open along a meridian). One can switch
to a basis in which the boundary conditions around the longi-
tude are fixed. The desired basis change is analogous to the
discrete Fourier transform given above and is given by the ‘S-
matrix’ or ‘modularS-matrix’ of the theory. Switching the
longitude and meridian is one of the generators of the map-
ping class group of the torus; theS-matrix expresses how it
acts on the ground state Hilbert space. The elements of the
S-matrix are closely related to quasiparticle braiding. By fol-
lowing a similar construction to the one withT1, T2 above,
one can see thatSab is equal to the amplitude for creatingaā
andbb̄ pairs, braidinga andb, and annihilating again in pairs.
This is why, in an Abelian state, the elements of theS-matrix
are all phases (up to an overall normalization which ensures
unitarity), e.g.Snn′ = 1√

m
e2πinn

′/m in the example above.
In a non-Abelian state, the different entries in the matrix can
have different magnitudes, so the basis change is a little more
complicated than a Fourier transform. Entries can even vanish
in the non-Abelian case since, aftera andb have been braided,
a andā may no longer fuse to1.

In the case of Ising anyons on the torus (SU(2)2), there
are three ground states. One basis is|1m〉, |σm〉, |ψm〉,
corresponding to the different allowed topological charges
which would be measured at the inner boundary of the re-
sulting annulus if the torus were cut open along its meridian.
An equally good basis is given by eigenstates of topological
charge around the longitude:|1l〉, |σl〉, |ψl〉. As we will see in
at the end of the next section, the basis change between them
is given by

S =






1
2

1√
2

1
2

1√
2

0 − 1√
2

1
2 − 1√

2
1
2
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TheS-matrix not only contains information about braiding,
but also about fusion, according to Verlinde’s formula (Ver-
linde, 1988) (for a proof, see Moore and Seiberg, 1988, 1989):

N c
ab =

∑

x

SaxSbxSc̄x
S1x

(33)

Consequently, the quantum dimension of a particle of species

a is:

da =
S1a

S11

(34)

The mathematical structure encapsulating these braiding
and fusion rules is amodular tensor category (Bakalov and
Kirillov, 2001; Kassel, 1995; Kitaev, 2006; Turaev, 1994;
Walker, 1991). A category is composed of objects and mor-
phisms, which are maps between the objects which preserve
their defining structure. The idea is that one can learn more
about the objects by understanding the morphisms between
them. In our case, the objects are particles with labels (which
specify their species) as well as fixed configurations of sev-
eral particles. The morphisms are particle trajectories, which
map a set of labeled partices at some initial time to a set of
labeled particles at some final time. Atensor category has
a tensor product structure for multiplying objects; here, this
is simply the fact that one can take two well-separated (and
historically well-separated) collections of particles and con-
sider their union to be a new ‘tensor-product’ collection. Since
we consider particles in two dimensions, the trajectories are
essentially the elements of the braid group, but they include
the additional possibility of twisting. (Allowing twists in the
strands of a braid yields abraided ribbon category.) We will
further allow the trajectories to include the fusion of two parti-
cles (so that we now have afusion category). Morphisms can,
therefore, be defined by specifyingΘa, V cab,R, andF .

Why is it necessary to invoke category theory simply to
specify the topological properties of non-Abelian anyons?
Could the braid group not be the highest level of abstraction
that we need? The answer is that for a fixed number of par-
ticlesn, the braid groupBn completely specifies their topo-
logical properties (perhaps with the addition of twistsΘa to
account for the finite size of the particles). However, we need
representations ofBn for all values ofn which are compatible
with each other and with fusion (of which pair creation and an-
nihilation is simply the special case of fusion to the vacuum).
So we really need a more complex – and much more tightly
constrained – structure. This is provided by the concept of a
modular tensor category. TheF andR matrices play particu-
larly important roles. TheF matrix can essentially be viewed
an associativity relation for fusion: we could first fusei with
j, and then fuse the result withk; or we could fusei with
the result of fusingj with k. The consistency of this property
leads to a constraint on theF -matrices called the pentagon
equation. (An explicit example of the pentagon equation is
worked out in Section IV.B.) Consistency betweenF andR
leads to a constraint called the hexagon equation. Modularity
is the condition that theS-matrix be invertible. These self-
consistency conditions are sufficiently strong that a solution
to them completely defines a topological phase.6

An equivalent alternative to studying punctured surfaces is
to add non-dynamical charges which are coupled to the Chern-
Simons gauge field. Then the right-hand-side of the constraint

6 Modulo details regarding the central chargec at the edge.e2πic/8 can be
obtained from the topological spins, but notc itself.
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(27) is modified and a non-trivial gauge field configuration
is again obtained which is essentially equivalent to that ob-
tained around a puncture. In the following subsections, we
will discuss the Hilbert spaces of SU(2)k Chern-Simons the-
ory, either on then-punctured sphere or in the presence of
non-dynamical sources. These discussions will enable us to
compute the braiding and fusion matrices. The non-trivial
quasiparticle of SU(2)1 is actually Abelian so we do not dis-
cuss this ‘trivial’ case. The next case, SU(2)2, is non-Abelian
and may be relevant to theν = 5/2 fractional quantum Hall
state. It can be understood in several different equivalent
ways, which express its underlying free Majorana fermion
structure. Quantum computation with Majorana fermions is
described in Section IV.A. In the next section, we explain this
structure from the perspective of a superconductor withp+ ip
pairing symmetry. Although this description is very elegant,
it cannot be generalized to higherk. Therefore, in the two
sections after that, we describe two different approaches to
solving SU(2)k Chern-Simons theory for generalk. We reca-
pitulate the case of SU(2)2 in these other languages and also
describe the case of SU(2)3. The latter has quasiparticles in
its spectrum which are Fibonacci anyons, a particularly beau-
tiful non-Abelian anyonic structure which allows for univer-
sal topological quantum computation. It may also underlie the
observedν = 12/5 fractonal quantum Hall state. More details
of the Fibonacci theory are given in Sections IV.B.

B. Superconductors with p+ ip pairing symmetry

In this section, we will discuss the topological properties
of a superconductor withp + ip pairing symmetry following
the method introduced by Read and Green (Read and Green,
2000). This is the most elementary way in which a non-
Abelian topological state can emerge as the ground state of
a many-body system. This non-Abelian topological state has
several possible realizations in various two dimensional sys-
tems: p + ip superconductors, such as Sr2RuO4 (although
the non-Abelian quasiparticles are half-quantum vorticesin
this case (Das Sarmaet al., 2006b));p + ip superfluids of
cold atoms in optical traps (Gurarieet al., 2005; Tewariet al.,
2007b), and the A-phase (especially theA1 phase(Leggett,
1975; Volovik, 1994)) of3He films; and the Moore-Read Pfaf-
fian quantum Hall state (Moore and Read, 1991). The last of
these is a quantum Hall incarnation of this state: electronsat
filling fraction ν = 1/2 are equivalent to fermions in zero
field interacting with an Abelian Chern-Simons gauge field.
When the fermions pair and condense in ap + ip supercon-
ducting state, the Pfaffian quantum Hall state forms (Greiter
etal., 1992). Such a state can occur at5

2 = 2+ 1
2 if the lowest

Landau level (of both spins) is filled and inert, and the first
excited Landau level is half-filled.

Ordinarily, one makes a distinction between the fermionic
quasiparticles (or Bogoliubov-De Gennes quasiparticles)of
a superconductor and vortices in a superconductor. This is
because, in terms of electron variables, the former are rela-
tively simple while the latter are rather complicated. Further-
more, the energy and length scales associated with the two are

very different in the weak-coupling limit. However, fermionic
quasiparticles and vortices are really just different types of
quasiparticle excitations in a superconductor – i.e. different
types of localized disturbances above the ground state. There-
fore, we will often refer to them both as simply quasiparticles
and use the terms Bogoliubov-de Gennes or fermionic when
referring to the former. In ap+ ip superconductor, the quasi-
particles which exhibit non-Abelian statistics are fluxhc/2e
vortices.

1. Vortices and Fermion Zero Modes

Let us suppose that we have a system of fully spin-polarized
electrons in a superconducting state ofpx + ipy pairing sym-
metry. The mean field Hamiltonian for such a superconductor
is,

H =

∫

drψ†(r)h0ψ(r) (35)

+
1

2

∫

drdr′
{
D∗(r, r′)ψ(r′)ψ(r) +D(r, r′)ψ†(r)ψ†(r′)

}

with single-particle termh0 = − 1
2m∇2 − µ and complexp-

wave pairing function

D(r, r′) = ∆

(
r + r′

2

)

(i∂x′ − ∂y′)δ(r − r′). (36)

The dynamics of∆ is governed by a Landau-Ginzburg-type
Hamiltonian and will be briefly discussed later. The quadratic
Hamiltonian (36) may be diagonalized by solving the corre-
sponding Bogoliubov-de Gennes equations (BdG) equations,

E

(
u(r)
v(r)

)

= (37)

(
−µ(r) i

2 {∆(r), ∂x + i∂y}
i
2 {∆∗(r), ∂x − i∂y} µ(r)

)(
u(r)
v(r)

)

,

The Hamiltonian then takes the form:

H = E0 +
∑

E

E Γ†
EΓE (38)

where Γ†
E ≡

∫
dr
[
uE(r)ψ(r) + vE(r)ψ†(r)

]
is the cre-

ation operator formed by the positive energy solutions of the
Bogoliubov-de Gennes equations andE0 is the ground state
energy. For the ground state of the Hamiltonian (36) to be
degenerate in the presence of several vortices (which are the
most interesting quasiparticles in this theory) it is essential
that the BdG equations have solutions with eigenvalue zero in
this situation.

Before searching for zero eigenvalues of (38) in the pres-
ence of vortices, however, we focus on a uniform supercon-
ductor, where∆ is a constant. Read and Green (Read and
Green, 2000) retain only the potential part ofh0, which for a
uniform superconductor is a constant−µ. With this simplifi-
cation, a BdG eigenstate with momentumk has energy

Ek =
√

µ2 + ∆2|k|2 (39)
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The ground state of (36) is the celebrated BCS wave function,
written here in an un-normalized form,

|g.s.〉 =
∏

k

(

1 +
vk
uk

c†kc
†
−k

)

|vac〉 = e
P

k

v
k

u
k
c†
k
c†−k |vac〉

(40)
where

(
|uk|2
|vk|2

)

=
1

2

(

1 ∓ µ
√

µ2 + |∆k|2

)

(41)

are the BCS coherence factors. The wave function (40) de-
scribes a coherent state of an undetermined number of Cooper
pairs, each in an internal state of angular momentumℓ = −1.
Its projection onto a fixed even number of particlesN is car-
ried out by expanding the exponent in (40) to the(N/2)th or-
der. When written in first quantized language, this wave func-
tion describes a properly anti-symmetrized wave function of
N/2 Cooper-pairs, each in an internal state

g(r) =
∑

k

vk
uk

eikr (42)

In first quantized form the multiparticle BCS wavefunction
is then of the form of the Pfaffian of an antisymmetric matrix
whosei−j element isg(ri−rj), an antisymmetrized product
of pair wavefunctions

ΨBCS = Pf [g(ri − rj)] (43)

= A [g(r1 − r2)g(r3 − r4) . . . g(rN−1 − rN )]

with A being an antisymmetrization operator.
The functiong(r) depends crucially on the sign ofµ, since

the smallk behavior ofvk/uk depends on that sign. When
µ > 0, we haveg(r) = 1/(x + iy) in the long distance limit
(Read and Green, 2000). If we assume this form holds for all
distances, the Pfaffian wave function obtained is identicalto
the Moore-Read form discussed below in connection with the
Ising model and theν = 5/2 quantum Hall state in section
III.D (see Eqs.??). The slow decay ofg(r) implies a weak
Cooper pairing. (But it does not imply that the state is gapless.
One can verify that electron Green functions all decay expo-
nentially for any non-zeroµ.) Whenµ < 0 the functiong(r)
decays much more rapidly withr, generically in an exponen-
tial way, such that the Cooper pairs are strongly bound. Fur-
thermore, there is a topological distinction between theµ > 0
andµ < 0 phases. The distinction, which is discussed in de-
tail in (Read and Green, 2000), implies that, despite the fact
that both states are superconducting, theµ > 0 andµ < 0
states must be separated by a phase transition. (In the analo-
gous quantum Hall state, both states are characterized by the
same Hall conductivity but are separated by a phase transi-
tion, and are distinguished by their thermal Hall conductivi-
ties(Read and Green, 2000)) Indeed, from (39) we see that the
gap vanishes for a uniformp+ ip superconductor withµ = 0.
The low-energy BdG eigenstates at this second-order phase
transition point form a Dirac cone.

For every solution(u, v) of the BdG equations with energy
E, there is a solution(v∗, u∗) of energy−E. A solution with

u = v∗ therefore has energy zero. We will soon be consid-
ering situations in which there are multiple zero energy solu-
tions (ui, u

∗
i ), i = 1, 2, . . .. If we denote the corresponding

operators byγi (see eq. 47 below), then they satisfy:

γ†i = γi (44)

Eq. (44) is the definition of a Majorana fermion operator.
Let us now consider the BdG equations in the presence of

vortices when the bulk of the superconductor is in theµ > 0
phase. As usual, a vortex is characterized by a point of van-
ishing ∆, and a2π-winding of the phase of∆ around that
point. In principle we should, then, solve the BdG equations
in the presence of such a non-uniform∆. However, we can,
instead, solve them in the presence of a non-uniformµ, which
is much simpler. All that we really need is to make the core of
the superconductor topologically distinct from the bulk – i.e.
a puncture in the superconductivity. Makingµ < 0 in the core
is just as good as taking∆ to zero, as far as topological prop-
erties are concerned. Therefore, we associate the core of the
vortex with a region ofµ < 0, whereas the bulk is atµ > 0.
Thus, there is aµ = 0 line encircling the vortex core. This
line is an internal edge of the system. We will consider the
dynamics of edge excitations in more detail in section III.E,
but here we will be content to show that a zero energy mode
is among them.

The simplest situation to consider is that of azymuthal sym-
metry, with the polar coordinates denoted byr andθ. Imag-
ine the vortex core to be at the origin, so that∆(r, θ) =
|∆(r)|eiθ+iΩ. HereΩ is the phase of the order parameter
along theθ = 0 line, a phase which will play an important
role later in our discussion. Assume that theµ = 0 line is the
circler = r0, and write

µ(r) = ∆h(r), (45)

with h(r) large and positive for large r, andh(r) < 0 for
r < r0; therefore, the electron density will vanish forr ≪ r0.
Such a potential defines an edge atr = r0. There are low-
energy eigenstates of the BdG Hamiltonian which are spa-
tially localized nearr = 0 and are exponentially decaying
for r → ∞:

φedgeE (r, θ) = eiℓθe−
R

r
0
h(r′)dr′

(
e−iθ/2

eiθ/2

)

, (46)

The spinor on the right-hand-side points in a direction in pseu-
dospin space which is tangent to ther = r0 circle atθ. This
wavefunction describes a chiral wave propagating around the
edge, with angular momentumℓ and energyE = ∆ℓ/r0.
Since the flux is an odd multiple ofhc/2e, the Bogoliubov
quasiparticle (46) must be anti-periodic as it goes around the
vortex. However, the spinor on the right-hand-side of (46) is
also anti-periodic. Therefore, the angular momentumℓ must
be an integer,ℓ ∈ Z. Consequently, a fluxhc/2e vortex has
anℓ = 0 solution, with energyE = 0. (Conversely, if the flux
through the vortex were an even multiple ofhc/2e, ℓwould be
a half-integer,ℓ ∈ Z + 1

2 , and there would be no zero-mode.)
The operator corresponding to this zero mode, which we will



31

call γ, can be written in the form:

γ =
1√
2

∫

dr
[

F (r) e−
i
2
Ωψ(r) + F ∗(r) e

i
2
Ωψ†(r)

]

(47)

Here,F (r) = e−
R

r
0
h(r′)dr′e−iθ/2. Since eachγ is an equal

superposition of electron and hole, it is overall a chargeless,
neutral fermion operator

When there are several well separated vortices at posi-
tionsRi, the gap function near theith vortex takes the form
∆(r) = |∆(r)| exp (iθi + iΩi), with θi = arg (r − Ri) and
Ωi =

∑

j 6=i arg((Rj − Ri)). There is then one zero energy
solution per vortex. Each zero energy solutionγi is localized
near the core of its vortex atRi, but the phaseΩi that replaces
Ω in (47) depends on the position of all vortices. Moreover,
the dependence of the Majorana operatorsγi on the positions
Ri is not single valued.

While for anyE 6= 0 the operatorsΓ†
E ,ΓE are conventional

fermionic creation and annihilation operators, theγi’s are not.
In particular, forE 6= 0 we have(Γ†

E)2 = Γ2
E = 0, but

the zero energy operators follow (with a convenient choice of
normalization)γ2

i = 1. The two types of fermion operator
share the property of mutual anti-commutation, i.e., theγ’s
satisfy{γi, γj} = 2δij .

2. Topological Properties of p+ ip Superconductors

The existence of theγi’s implies a degeneracy of the ground
state. The counting of the number of degenerate ground states
should be done with care. A pair of conventional fermionic
creation and annihilation operators span a two dimensional
Hilbert space, since their square vanishes. This is not true
for a Majorana operator. Thus, to count the degeneracy of
the ground state when2N0 vortices are present, we construct
“conventional” complex (Dirac) fermionic creation and anni-
hilation operators,

ψi = (γi + iγN0+i)/2 (48)

ψ†
i = (γi − iγN0+i)/2 (49)

These operators satisfyψ2
i =

(

ψ†
i

)2

= 0 and thus span a

two-dimensional subspace of degenerate ground states asso-
ciated with these operators. Over all, then, the system has
2N0 degenerate ground states. If the fermion number is fixed
to be even or odd, then the degeneracy is2N0−1. Therefore,
the quantum dimension of a vortex isdvort =

√
2 or, in the

notation introduced in Sec. II.A.1 for Ising anyons,dσ =
√

2.
For any two vorticesi andj, we can associate a two state

system. If we work in the basis ofiγiγj eigenstates, theniγiγj
acts asσz with eigenvalues±1, while γi andγj act asσx and
σy. (However, it is important to keep in mind that Majorana
fermionsγk, γl anti-commute withγi, γj , unlike operators
associated with different spins, which commute.) The two
eigenvaluesiγiγj = ∓1 are the two fusion channels of two
fermions. If we form the Dirac fermionψ = (γi+iγj)/2, then
the twoiγiγj eigenstates haveψ†ψ = 0, 1. Therefore, we will
call these fusion channels1 andψ. (One is then tempted to

refer to the state for whichψ†ψ = 1 as a “filled fermion”,
and to theψ†ψ = 0 state as an empty fermion. Note however
that the eigenvalue ofψ†ψ has no bearing on the occupation
of single-particle states.)

Of course, the pairing of vortices to form Dirac fermions is
arbitrary. A given pairing defines a basis, but one can trans-
form to a basis associated with another pairing. Consider four
vortices with corresponding zero modesγ1, γ2, γ3, γ4. The
F -matrix transforms states from the basis in whichiγ1γ2 and
iγ3γ4 are diagonal to the basis in whichiγ1γ4 andiγ2γ3 are
diagonal. Sinceiγ1γ4 acts asσx on aniγ1γ2 eigenstate, the
F -matrix is just the basis change from theσz basis to theσx
basis:

[F σσσσ ] =
1√
2

(
1 1
1 −1

)

(50)

We will refer to this type of non-Abelian anyons by the name
‘Ising anyons’; they are the model introduced in Section
II.A.1. The reason for the name will be explained in Section
III.E.

In a compact geometry, there must be an even number of
vortices (since a vortex carries half a flux quantum, and the
number of flux quanta penetrating a compact surface must be
integer). In a non-compact geometry, if the number of vortices
is odd, the edge has a zero energy state of its own, as we show
in Section III.E.

Now, let us examine what happens to the Majorana opera-
tors and to the ground states as vortices move. The positions
of the vortices are parameters in the Hamiltonian (36). When
they vary adiabatically in time, the operatorsγi vary adiabati-
cally in time. In principle, there are two sources for this vari-
ation - the explicit dependence ofγi on the positions and the
Berry phase associated with the motion. The choice of phases
taken at (47) is such that the Berry phase vanishes, and the
entire time dependence is explicit. The non-single-valuedness
of the phases in (47) implies then that a change of2π in Ω,
which takes place when one vortex encircles another, does not
leave the state unchanged.

As vortices adiabatically traverse trajectories that start and
end in the same set of positions (Ivanov, 2001; Sternet al.,
2004), there is a unitary transformationU within the subspace
of ground states that takes the initial state|ψ(t = 0)〉 to the
final one|ψ(t = T )〉,

|ψ(t = T )〉 = U |ψ(t = 0)〉. (51)

Correspondingly, the time evolution of the operatorsγi is

γi(t = T ) = Uγi(t = 0)U †. (52)

By reading the time evolution ofγi from their explicit form
(47) we can determineU up to a phase. Indeed, one expects
this Abelian phase to depend not only on the topology of the
trajectory but also on its geometry, especially in the analogous
quantum Hall case, where there is an Aharonov-Bohm phase
accumulated as a result of the charge carried by the quasipar-
ticle.

When vortexi encircles vortexi + 1, the unitary transfor-
mation is simple: bothγi andγi+1 are multiplied by−1, with
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all other operators unchanged. This is a consequence of the
fact that when the order parameter changes by a phase fac-
tor 2π, fermionic operators change by a phaseπ. Exchange
trajectories, in which some of the vortices trade places, are
more complicated, since the phase changes ofΩk associated
with a particular trajectory do not only depend on the winding
numbers, but also on the details of the trajectory and on the
precise definition of the cut of the functionarg(r) where its
value jumps by2π.

The simplest example is the interchange of two vortices.
Inevitably, one of the vortices crosses the branch cut line
of the other vortex. We can place the branch cuts so that
a counterclockwise exchange of vortices1 and2 transforms
c1 → c2 andc2 → −c1 while a clockwise exchange trans-
formsc1 → −c2 andc2 → c1 (Ivanov, 2001).

This may be summarized by writing the representation ma-
trices for the braid group generators (Ivanov, 2001; Nayak and
Wilczek, 1996):

ρ(σi) = eiθ e−
π
4
γiγi+1 (53)

whereθ is the Abelian part of the transformation. The two
eigenvaluesiγiγi+1 = ∓1 are the two fusion channels1 and
ψ of a pair of vortices. From (53), we see that theR-matrices
satisfyRσσψ = i Rσσ1 (i.e., the phase of taking twoσ particles
around each other differ byi depending on whether they fuse
toψ or1). It is difficult to obtain the Abelian part of the phase
using the methods of this section, but we will derive it by other
methods in Sections III.C and III.D. The non-Abelian part of
(53), i.e. the second factor on the right-hand-side, is the same
as aπ/2 rotation in the spinor representation of SO(2n) (see
Nayak and Wilczek, 1996 for details). The fact that braiding
only enactsπ/2 rotations is the reason why this type of non-
Abelian anyon does not enable universal topological quantum
computation, as we discuss further in section IV.

According to (53), if a system starts in a ground state|gsα〉
and vortexj winds around vortexj + 1, the system’s final
state isγjγj+1 |gsα〉. Writing this out in terms of the original
electron operators, we have
(

cje
i
2
Ωj + c†je

− i
2
Ωj

)(

cj+1e
i
2
Ωj+1 + c†j+1e

− i
2
Ωj+1

)

|gsα〉 ,
(54)

wherec(†)j annihilates a particle in the stateF (r − Rj) and

c
(†)
j+1 creates a particle in the state (F (r − Rj+1)) localized

very close to the cores of thejth and(j+ 1)th vortex, respec-
tively. Eq. (54) seemingly implies that the motion of thejth
vortex around the(j + 1)th vortex affects the occupations of
states very close to the cores of the two vortices. This is in
contrast, however, to the derivation leading to Eq. (54), which
explicitly assumes that vortices are kept far enough from one
another so that tunneling between vortex cores may be disre-
garded.

This seeming contradiction is analyzed in detail in Stern
et al., 2004, where it is shown that the unitary transformation
(54) does not affect the occupation of the core states of the
j, j + 1 vortices, because all ground states are composed of
superpositions in which the core states have a probability of
one-half to be occupied and one-half to be empty. The uni-
tary transformation within the ground state subspace does not

change that probability. Rather, they affect phases in the su-
perpositions. Using this point of view it is then possible to
show that two ingredients are essential for the non-Abelian
statistics of the vortices. The first is thequantum entangle-
ment of the occupation of states near the cores of distant vor-
tices. The second ingredient is familiar from (Abelian) frac-
tional statistics: thegeometric phase accumulated by a vortex
traversing a closed loop.

Therefore, we conclude that, forp−wave superconductors,
the existence of zero-energy intra-vortex modes leads, first, to
a multitude of ground states, and, second, to a particle-hole
symmetric occupation of the vortex cores in all ground states.
When represented in occupation-number basis, a ground state
is a superposition which has equal probability for the vortex
core being empty or occupied by one fermion. When a vortex
traverses a trajectory that encircles another vortex, the phase
it accumulates depends again on the number of fluid particles
it encircles. Since a fluid particle is, in this case, a Cooper
pair, the occupation of a vortex core by a fermion, half a pair,
leads to an accumulation of a phase ofπ relative to the case
when the core is empty. And since the ground state is a su-
perposition with equal weights for the two possibilities, the
relative phase ofπ introduced by the encircling might in this
case transform the system from one ground state to another.

Now consider the ground state degeneracy of ap + ip su-
perconductor on the torus. Let us define, following Oshikawa
et al., 2007 (see also Chung and Stone, 2007), the opera-
tors A1, A2 which create a pair of Bogoliubov-de Gennes
quasiparticles, take one around the meridian or longitude of
the torus, respectively, and annihilate them again. We then
defineB1, B2 as operators which create a vortex-antivortex
pair, take the vortex around the meridian or longitude of the
torus, respectively, and annihilate them.B1 increases the flux
through the hole encircled by the longitude of the torus by
one half of a flux quantum whileB2 does the same for the
other hole. These operators satisfy the commutation relations
[A1, A2] = 0 andA1B2 = −B2A1, A2B1 = −B1A2. We
can construct a multiplet of ground states as follows. Since
A1 andA2 commute and square to1, we can label states by
theirA1 andA2 eigenvalues±1. Let |1, 1〉 be the state with
both eigenvalues equal to1, i.e.A1|1, 1〉 = A2|1, 1〉 = |1, 1〉.
ThenB1|1, 1〉 = |1,−1〉 andB2|1, 1〉 = | − 1, 1〉. Suppose
we now try to applyB2 toB1|1, 1〉 = |1,−1〉. This will cre-
ate a vortex-antivortex pair; the Majorana zero modes,γa, γb
associated with the vortex and anti-vortex will be in the state
|0〉 defined by(γa + iγb) |0〉 = 0. When the vortex is taken
around the longitude of the torus, its Majorana mode will be
multiplied by−1: γa → −γa. Now, the vortex-antivortex pair
will no longer be in the state|0〉, but will instead be in the state
|1〉 defined by(γa − iγb) |1〉 = 0. Consequently, the vortex-
antivortex pair can no longer annihilate to the vacuum. When
they fuse, a fermion is left over. Therefore,B2B1|1, 1〉 does
not give a new ground state (and, by a similar argument, nei-
ther doesB1B2|1, 1〉). Consequently, ap+ ip superconductor
has ‘only’ three ground states on the torus. A basis in which
B1 is diagonal is given by:(|1, 1〉± |1,−1〉)/

√
2, with eigen-

value±1, and| − 1, 1〉, with eigenvalue0 (since there is zero
amplitude forB1| − 1, 1〉 to be in the ground state subspace).
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They can be identified with the states|1m〉, |ψm〉, and|σm〉
in Ising anyon language. Meanwhile,B2 is diagonal in the
basis(|1, 1〉 ± | − 1, 1〉)/

√
2, |1,−1〉. By changing from one

basis to the other, we find theS-matrix given in the previous
subsection follows.

The essential feature of chiralp-wave superconductors is
that they have Majorana fermion excitations which have zero
energy modes at vortices (and gapless excitations at the edge
of the system, see section III.E). The Majorana character isa
result of the superconductivity, which mixes particle and hole
states; the zero modes and gapless edge excitations result from
the chirality. Majorana fermions arise in a completely differ-
ent way in the Kitaev honeycomb lattice model (Kitaev, 2006):

H = −Jx
∑

x−links

σxj σ
x
j − Jy

∑

y−links

σyj σ
y
j − Jz

∑

z−links

σxj σ
z
j

(55)
where thez-links are the vertical links on the honeycomb lat-
tice, and thex andy links are at angles±π/3 from the ver-
tical. The spins can be represented by Majorana fermions
bx, by, bz, and c, according toσxj = ibxj cj , σ

x
j = ibyj cj ,

σxj = ibzjcj so long as the constraintbxj b
y
j b
z
jcj = 1 is satis-

fied. Then, the Hamiltonian is quartic in Majorana fermion
operators, but the operatorsbxj b

x
k, byj b

y
k, bzjb

z
k commute with

the Hamiltonian. Therefore, we can take their eigenvalues as
parametersujk = bαj b

α
k , with α = x, y, or z appropriate to

the jk link. These parameters can be varied to minimize the
Hamiltonian, which just describes Majorana fermions hop-
ping on the honeycomb lattice:

H =
i

4

∑

jk

tjkcjck (56)

wheretjk = 2Jαujk for nearest neighborj, k and zero other-
wise. For different values of theJαs, thetjk ’s take different
values. The topological properties of the correspondingcj
bands are encapsulated by their Chern number (Kitaev, 2006).
For a certain range ofJαs, aP, T -violating perturbation gives
the Majorana fermions a gap in such a way as to support zero
modes on vortex-like excitations (plaquettes on which one of
theujks is reversed in sign). These excitations are identical in
topological character to the vortices of ap+ip superconductor
discussed above.

C. Chern-Simons Effective Field Theories, the Jones
Polynomial, and Non-Abelian Topological Phases

1. Chern-Simons Theory and Link Invariants

In the previous subsection, we have seen an extremely sim-
ple and transparent formulation of the quasiparticle braiding
properties of a particular non-Abelian topological state which,
as we will see later in this section, is equivalent to SU(2)2

Chern-Simons theory. It describes the multi-quasiparticle
Hilbert space and the action of braiding operations in termsof
free fermions. Most non-Abelian topological states are notso
simple, however. In particular, SU(2)k Chern-Simons theory

for k > 2 does not have a free fermion or boson description.7

Therefore, in the next two subsections, we discuss these field
theories using more general methods.

Even though its Hamiltonian vanishes and it has no local
degrees of freedom, solving Chern-Simons theory is still a
non-trivial matter. The reason is that it is difficult in a non-
Abelian gauge theory to disentangle the physical topological
degrees of freedom from the unphysical local gauge degrees
of freedom. There are essentially two approaches. Each has
its advantages, and we will describe them both. One is to
work entirely with gauge-invariant quantities and derive rules
governing them; this is the route which we pursue in this sub-
section. The second is to pick a gauge and simply calculate
within this gauge, which we do in the next subsection (III.D).

Consider SU(2)k non-Abelian Chern-Simons theory:

SCS [a] =
k

4π

∫

M
tr

(

a ∧ da+
2

3
a ∧ a ∧ a

)

(57)

We modify the action by the addition of sources,jµa, accord-
ing to L → L + tr (j · a). We take the sources to be a set
of particles on prescribed classical trajectories. Theith parti-
cle carries the spinji representation of SU(2). As we saw in
subsection III.A, there are onlyk+1 allowed representations;
later in this subsection, we will see that if we give a particle
a higher spin representation thanj = k/2, then the amplitude
will vanish identically. Therefore,ji must be in allowed set of
k + 1 possibilities:0, 1

2 , . . . ,
k
2 . The functional integral in the

presence of these sources can be written in terms of Wilson
loops,Wγi,ji [a], which are defined as follows. The holonomy
Uγ,j[a] is anSU(2) matrix associated with a curveγ. It is
defined as the path-ordered exponential integral of the gauge
field along the pathγ:

Uγ,j[a] ≡ Pei
H

γ
acT c·dl

=

∞∑

n=0

in
∫ 2π

0

ds1

∫ s1

0

ds2 . . .

∫ sn−1

0

dsn

[

γ̇(s1)·aa1 (γ(s1)) T
a1 . . .

γ̇(sn) · aan (γ(sn)) T
an

]

(58)

whereP is the path-ordering symbol. The Lie algebra genera-
torsT a are taken in the spinj representation.~γ(s), s ∈ [0, 2π]
is a parametrization ofγ; the holonomy is clearly independent
of the parametrization. The Wilson loop is the trace of the
holonomy:

Wγ,j [a] = tr (Uγ,j[a]) (59)

Let us consider the simplest case, in which the source is a
quasiparticle-quasihole pair of typej which is created out of
the ground state, propagated for a period of time, and then

7 It is an open question whether there is an alternative description of an
SU(2)k topological phase withk > 2 in terms of fermions or bosons which
is similar to thep+ ip chiral superconductor formulation of SU(2)2.
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annihilated, returning the system to the ground state. The am-
plitude for such a process is given by:

〈0|0〉γ,j =

∫

Da eiSCS [a]Wγ,j [a] (60)

Here,γ is the spacetime loop formed by the trajectory of the
quasiparticle-quasihole pair. The Wilson loop was introduced
as an order parameter for confinement in a gauge theory be-
cause this amplitude roughly measures the force between the
quasiparticle and the quasihole. If they were to interact with
a confining forceV (r) ∼ r, then the logarithm of this ampli-
tude would be proportional to the the area of the loop; if they
were to have a short-ranged interaction, it would be propor-
tional to the perimeter of the loop. However, Chern-Simons
theory is independent of a metric, so the amplitude cannot de-
pend on any length scales. It must simply be a constant. For
j = 1/2, we will call this constantd. As the notation implies,
it is, in fact, the quantum dimension of aj = 1/2 particle. As
we will see below,d can be determined in terms of the level
k, and the quantum dimensions of higher spin particles can be
expressed in terms ofd.

We can also consider the amplitude for two pairs of quasi-
particles to be created out of the ground state, propagated for
some time, and then annihilated, returning the system to the
ground state:

〈0|0〉γ1,j1;γ2,j2
=

∫

Da eiSCS [a]Wγ,j[a]Wγ′,j′ [a] (61)

This amplitude can take different values depending on how
γ andγ′ are linked as in Fig. 4a vs 4b. If the curves are
unlinked the integral must gived2, but when they are linked
the value can be nontrivial. In a similar way, we can formulate
the amplitudes for an arbitrary number of sources.

It is useful to think about the history in figure 4a as a two
step process: fromt = −∞ to t = 0 and fromt = 0 to
t = ∞. (The two pairs are created at some timet < 0 and
annihilated at some timet > 0.) At t = 0−, the system is in
a four-quasiparticle state. (Quasiparticles and quasiholes are
topologically equivalent ifG =SU(2), so we will use ‘quasi-
particle’ to refer to both.) Let us call this stateψ:

ψ[A] =

∫

a(x,0)=A(x)

Da(x, t)Wγ−,j
[a]Wγ′

−,j
′ [a]×

e
R

0

−∞
dt

R

d2x LCS (62)

whereγ− and γ′− are the arcs given byγ(t) and γ′(t) for
t < 0. A(x) is the value of the gauge field on thet = 0 spatial
slice; the wavefunctionalψ[A] assigns an amplitude to every
spatial gauge field configuration. ForG=SU(2) andk > 1,
there are actually two different four-quasiparticle states: if
particles1 and2 fuse to the identity fieldj = 0, then par-
ticles3 and4 must as well; if particles1 and2 fuse toj = 1,
then particles3 and4 must as well. These are the only possi-
bilities. (Fork = 1, fusion toj = 1 is not possible.) Which
one the system is in depends on how the trajectories of the
four quasiparticles are intertwined. Although quasiparticles1
and2 were created as a pair from the vacuum, quasiparticle2
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γ+ γ+

γ−γ−

χ

χ
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FIG. 4 The functional integrals which give (a)〈χ|ρ
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|χ〉 (b)
〈χ|χ〉, (c) 〈χ|ρ(σ2) |χ〉, (d) 〈χ|ρ

`

σ−1
2

´

|χ〉.

braided with quasiparticle3, so1 and2 may no longer fuse to
the vacuum. In just a moment, we will see an example of a
different four-quasiparticle state.

We now interpret thet = 0 to t = ∞ history as the conju-
gate of at = −∞ to t = 0 history. In other words, it gives us
a four quasiparticle bra rather than a four quasiparticle ket:

χ∗[A] =

∫

a(x,0)=A(x)

Da(x, t)Wγ+,j [a]Wγ′
+
,j′ [a]×

e
R

∞
0
dt

R

d2x LCS (63)

In the state|χ〉, quasiparticles1 and2 fuse to form the trivial
quasiparticle, as do quasiparticles3 and4. Then we can in-
terpret the functional integral fromt = −∞ to t = ∞ as the
matrix element between the bra and the ket:

〈χ|ψ〉 =

∫

Da eiSCS [a]Wγ1,j1 [a]Wγ2,j2 [a] (64)

Now, observe that|ψ〉 is obtained from|χ〉 by taking quasi-
particle2 around quasiparticle3, i.e. by exchanging quasipar-
ticles2 and3 twice, |ψ〉 = ρ

(
σ2

2

)
|χ〉. Hence,

〈χ|ρ
(
σ2

2

)
|χ〉 =

∫

Da eiSCS[a]Wγ1,j1 [a]Wγ2,j2 [a] (65)

In this way, we can compute the entries of the braiding ma-
tricesρ(σi) by computing functional integrals such as the one
on the right-hand-side of (65). Note that we should normal-
ize the state|χ〉 by computing the figure 4b, which gives its
matrix element with itself.
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Consider, now, the stateρ(σ2) |χ〉, in which particles2 and
3 are exchanged just once. It is depicted in figure 4c. Simi-
larly, the stateρ

(
σ−1

2

)
|ψ〉 is depicted in figure 4d. From the

figure, we see that

〈χ|ρ(σ2) |χ〉 = d (66)

〈χ|ρ
(
σ−1

2

)
|χ〉 = d (67)

since both histories contain just a single unknotted loop.
Meanwhile,

〈χ|χ〉 = d2 (68)

Since the four-quasiparticle Hilbert space is two-
dimensional,ρ(σ2) has two eigenvalues,λ1, λ2, so that

ρ(σ) − (λ1 + λ2) + λ1λ2ρ
(
σ−1

)
= 0 (69)

Taking the expectation value in the state|χ〉, we find:

d− (λ1 + λ2) d
2 + λ1λ2d = 0 (70)

so that

d =
1 + λ1λ2

λ1 + λ2
(71)

Since the braiding matrix is unitary,λ1 andλ2 are phases.
The overall phase is unimportant for quantum computation,
so we really need only a single number. In fact, this number
can be obtained from self-consistency conditions (Freedman
etal., 2004). However, the details of the computation ofλ1, λ2

within is technical and requires a careful discussion of fram-
ing; the result is (Witten, 1989) thatλ1 = −e−3πi/2(k+2),

λ2 = eπi/2(k+2). These eigenvalues are simplyR
1
2
, 1
2

0 = λ1,

R
1
2
, 1
2

1 = λ2. Consequently,

d = 2 cos

(
π

k + 2

)

(72)

and

q−1/2ρ(σi) − q1/2ρ
(
σ−1
i

)
= q − q−1 (73)

whereq = −eπi/(k+2) (see Fig. 18). Since this operator equa-
tion applies regardless of the state to which it is applied, we
can apply it locally to any given part of a knot diagram to re-
late the amplitude to the amplitude for topologically simpler
processes, as we will see below (Kauffman, 2001). This is an
example of askein relation; in this case, it is the skein rela-
tion which defines the Jones polynomial. In arriving at this
skein relation, we are retracing the connection between Wil-
son loops in Chern-Simons theory and knot invariants which
was made in the remarkable paper (Witten, 1989). In this pa-
per, Witten showed that correlation functions of Wilson loop
operators in SU(2)k Chern-Simons theory are equal to cor-
responding evaluations of the Jones polynomial, which is a
topological invariant of knot theory (Jones, 1985):

∫

DaWγ1,
1
2
[a] . . .Wγn,

1
2
[a] eiSCS[a] = VL(q) (74)

VL(q) is the Jones polynomial associated with the linkL =
γ1 ∪ . . .∪ γn, evaluated atq = −eπi/(k+2) using the skein re-
lation (73). Note that we assume here that all of the quasiparti-
cles transform under thej = 1

2 representation ofSU(2). The
other quasiparticle types can be obtained through the fusion
of severalj = 1/2 quasiparticles, as we will discuss below in
Section III.C.2.

2. Combinatorial Evaluation of Link Invariants and
Quasiparticle Properties

The Jones polynomial (Jones, 1985)VL(q) is a formal
Laurent series in a variableq which is associated to a link
L = γ1 ∪ . . .∪ γn. It can be computed recursively using (73).
We will illustrate how this is done by showing how to use a
skein relation to compute a related quantity called the Kauff-
man bracketKL(q) (Kauffman, 1987), which differs from the
Jones polynomial by a normalization:

VL(q) =
1

d
(−q3/2)w(L)KL(q) (75)

wherew(L) is the writhe of the link. (The Jones polynomial
is defined for an oriented link. Given an orientation, each
crossing can be assigned a sign±1; the writhe is the sum
over all crossings of these signs.) The linkL embedded in
three-dimensional space (or, rather, three-dimensional space-
time in our case) is projected onto the plane. This can be
done faithfully if we are careful to mark overcrossings and
undercrossings. Such a projection is not unique, but the same
Kauffman bracket is obtained for all possible2D projections
of a knot (we will see an example of this below). An unknot-
ted loop© is given the valueK©(q) = d ≡ − q −
q−1 = 2 cosπ/(k + 2). For notational simplicity, when we
draw a knot, we actually mean the Kauffman bracket associ-
ated to this knot. Hence, we write

= d (76)

The disjoint union ofn unknotted loops is assigned the value
dn.

The Kauffman bracket for any given knot can be obtained
recursively by repeated application of the following skeinre-
lation which relates it with the Kauffman brackets for two
knots both of which have one fewer crossing according to the
rule:

= q1/2 + q−1/2 (77)

With this rule, we can eliminate all crossings. At this point,
we are left with a linear combination of the Kauffman brack-
ets for various disjoint unions of unknotted loops. Adding up
these contributions of the formdm with their appropriate co-
efficients coming from the recursion relation (77), we obtain
the Kauffman bracket for the knot with which we started.

Let us see how this works with a simple example. First,
consider the two arcs which cross twice in figure 5. We will
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assume that these arcs continue in some arbitrary way and
form closed loops. By applying the Kauffman bracket recur-
sion relation in figure 5, we see that these arcs can be replaced
by two arcs which do not cross. In Section II.C.3, we will use

=  

1/2q +    q−1/2

−1q

−1q

=  q

=  

+    

+    

+    

+    (q+    +d )    

=  

FIG. 5 The Kauffman bracket is invariant under continuous motions
of the arcs and, therefore, independent of the particular projection of
a link to the plane.

these methods to evaluate some matrix elements relevant to
interference experiments.

Now, let us consider the two fusion channels of a pair of
quasiparticles in some more detail. When the two quasiparti-
cles fuse to the trivial particle, as1 and2 did above, we can
depict such a state, which we will call|0〉, as 1√

d
times the

state yielded by the functional integral (62) with a Wilson line
which looks like

⋃
because two quasiparticles which are cre-

ated as a pair out of the ground state must necessarily fuse
to spin0 if they do not braid with any other particles. (The
factor1/

√
d normalizes the state.) Hence, we can project any

two quasiparticles onto thej = 0 state by evolving them with
a history which looks like:

Π0 =
1

d
(78)

On the right-hand-side of this equation, we mean a functional
integral between two timest1 and t2. The functional inte-
gral has two Wilson lines in the manner indicated pictorially.
On the left-hand-side, we have suggested that evolving a state
through this history can be viewed as acting on it with the
projection operatorΠ0 = |0〉〈0|.

However, the two quasiparticles could instead be in the state
|1〉, in which they fuse to form thej = 1 particle. Since these
states must be orthogonal,〈0|1〉 = 0, we must get identically
zero if we follow the history (78) with a history which defines
a projection operatorΠ1 onto thej = 1 state:

Π1 = − 1

d
(79)

It is easy to see that if this operator acts on a state which is
given by a functional integral which looks like

⋃
, the result is

zero.

(a)

3 4

(b)

t=0

t

41 2
3 1 2

Π1

FIG. 6 The elements of theF -matrix can be obtained by computing
matrix elements between kets in which1 and2 have a definite fusion
channel and bras in which1 and4 have a definite fusion channel.

The projection operatorsΠ0 , Π1, which are calledJones-
Wenzl projection operators, project a pair of a quasiparticles
onto the two natural basis states of their qubit. In other words,
we do not need to introduce new types of lines in order to com-
pute the expectation values of Wilson loops carryingj = 0 or
j = 1. We can denote them with pairs of lines projected onto
either of these states. Recall that aj = 1/2 loop had ampli-
tuded, which was the quantum dimension of aj = 1/2 par-
ticle. Using the projection operator (79), we see that aj = 1
loop has amplituded2 − 1 (by connecting the top of the line
segments to the bottom and evaluating the Kauffman bracket).
One can continue in this way to construct projection operators
which projectm lines ontoj = m/2. This projection opera-
tor must be orthogonal to thej = 0, 1, 3/2, 2, . . . , (m− 1)/2
projection operators acting on subsets of them lines, and this
condition is sufficient to construct all of the Jones-Wenzl pro-
jection operators recursively. Similarly, the quantum dimen-
sions can be computed through a recursion relation. At level
k, we find that quasiparticles withj > k/2 have quantum di-
mensions which vanish identically (e.g. fork = 1, d = 1 so
the quantum dimension of aj = 1 particle isd2 − 1 = 0).
Consequently, these quasiparticle types do not occur. Only
j = 0, 1

2 , . . . ,
k
2 occur.

The entries in theF -matrix can be obtained by graphically
computing the matrix element between a state in which, for
instance,1 and2 fuse to the vacuum and3 and4 fuse to the
vacuum and a state in which1 and4 fuse to the vacuum and2
and3 fuse to the vacuum, which is depicted in Figure 6a. (The
matrix element in this figure must be normalized by the norms
of the top and bottom states to obtain theF -matrix elements.)
To compute the matrix element between a state in which1
and2 fuse to the vacuum and3 and4 fuse to the vacuum and
a state in which1 and4 fuse toj = 1 and2 and3 fuse to
j = 1, we must compute the diagram in Figure 6b. Fork = 2,
we find the sameF -matrix as was found for Ising anyons in
Section III.B.

Let us now briefly consider the ground state properties of
the SU(2)k theory on the torus. As above, we integrate the
Chern-Simons Lagrangian over a3-manifoldM with bound-
aryΣ, i.e.M = Σ× (−∞, 0] in order to obtain at = 0 state.
The boundaryΣ is the spatial slice att = 0. For the torus,
Σ = T 2, we takeM to be the solid torus,M = S1 × D2,
whereD2 is the disk. By foliating the solid torus, we ob-
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tain earlier spatial slices. If there are no quasiparticles, then
there are no Wilson lines terminating atΣ. However, the
functional integral can have Wilson loops in the body of the
solid torus as in Figure 7a. These correspond to processes
in the past,t < 0, in which a quasiparticle-quashole pair
was created, taken around the meridian of the torus and an-
nihilated. The Wilson loop can be in any of thek + 1 al-
lowed representationsj = 0, 1

2 , . . . ,
k
2 ; in this way, we obtain

k + 1 ground state kets on the torus (we will see momen-
tarily that they are all linearly independent). Wilson loops
around the meridian are contractible (Figure 7b), so they can
be simply evaluated by taking their Kauffman bracket; they
multiply the state bydj . Evidently, these Wilson loop oper-
ators are diagonal in this basis. Bras can be obtained by in-
tegrating the Chern-Simons Lagrangian over the3-manifold
M′ = Σ × [0,∞) = S3\S1 × D2, i.e. the exterior of the
torus. Wilson loops in the exterior torus are now contractible
if they are parallel to a longitude but non-trivial if they are
around the meridian, as in in Figure 7c. Again, we obtain
k + 1 ground state bras in this way. The matrix elements be-
tween these bras and kets (appropriately normalized such that
the matrix product of a bra with its conjugate ket is unity)
are the entries in theS-matrix, which is precisely the basis
change between the longitudinal and meridinal bases. A ma-
trix element can be computed by evaluating the corresponding
picture. Theab entry in theS-matrix is given by evaluating
the Kauffman bracket of the picture in Figure 7d (and divid-
ing by the normalization of the states). This figure makes the
relationship between theS-matrix and braiding clear.

(

j
(c)

j

j

(d)

j
j

(a) (b)

FIG. 7 Different degenerate ground states on the torus are given by
performing the functional integral with longitudinal Wilson loops (a)
carrying spinj = 0, 1

2
, . . . , k

2
. Meridinal Wilson loops are con-

tractible (b); they do not give new ground states. The corresponding
bras are have Wilson lines in the exterior solid torus (c).S-matrix
elements are given by evaluating the history obtained by combining
a bra and ket with their linked Wilson lines.

Finally, we comment on the difference between SU(2)2 and
Ising anyons, which we have previously described as differing
only slightly from each other (See also the end of section III.E
below). The effective field theory for Ising anyons containsan
additional U(1) Chern-Simons gauge field, in addition to an
SU(2)2 gauge field (Fradkinet al., 2001, 1998). The conse-

quences of this difference are thatΘσ = e−πi/8 whileΘ1/2 =

e−3πi/8; Rσσ1 = e−πi/8 while R
1
2
, 1
2

0 = −e−3πi/8; Rσσψ =

e3πi/8 whileR
1
2
, 1
2

1 = eπi/8; [F σσσσ ]ab = −
[

F
1
2
, 1
2
, 1
2

1
2

]

ab
. The

rest of theF -matrices are the same, as are the fusion multiplic-
itiesN c

ab and theS-matrix. In other words, the basic structure
of the non-Abelian statistics is the same in the two theories,
but there are some minor differences in the U(1) phases which
result from braiding. Both theories have threefold ground
state degeneracy on the torus; the Moore-Read Pfaffian state
has ground state degeneracy6 because of an extra U(1) factor
corresponding to the electrical charge degrees of freedom.

Of course, in thek = 2 case we have already obtained all of
these results by the method of the previous subsection. How-
ever, this approach has two advantages: (1) once Witten’s re-
sult (74) and Kauffman’s recursion relation (77) are accepted,
braiding matrix elements can be obtained by straightforward
high school algebra; (2) the method applies to all levelsk,
unlike free Majorana fermion methods which apply only to
thek = 2 case. There is an added bonus, which is that this
formalism is closely related to the techniques used to analyze
lattice models of topological phases, which we discuss in a
later subsection.

D. Chern-Simons Theory, Conformal Field Theory, and
Fractional Quantum Hall States

1. The Relation between Chern-Simons Theory and
Conformal Field Theory

Now, we consider Chern-Simons theory in a particular
gauge, namely holomorphic gauge (to be defined below). The
ground state wavefunction(s) of Chern-Simons theory can be
obtained by performing the functional integral from the dis-
tant past,t = −∞, to timet = 0 as in the previous subsec-
tion:

ψ[A(x)] =

∫

a(x,0)=A(x)

Da(x, t) e
R

0

−∞
dt

R

Σ
d2x LCS (80)

For the sake of concreteness, let us consider the torus,Σ =
T 2, for which the spacetime manifold isM = (−∞, 0] ×
T 2 = S1 × D2. We assume for simplicity that there are no
Wilson loops (either contained within the solid torus or ter-
minating at the boundary). Ifx andy are coordinates on the
torus (the fields will be subject to periodicity requirements),
we writez = x+ iy. We can then change to coordinatesz, z̄,
and, as usual, treataaz andaaz̄ as independent variables. Then,
we take the holomorphic gauge,aaz̄ = 0. The fieldaaz̄ only
appears in the action linearly, so the functional integral over
a
a
z̄ may be performed, yielding aδ-function:

∫

Da e
k
4π

R

D2×S1 ǫ
µνλ(aa

µ∂νa
a
λ+ 2

3
fabca

a
µa

b
νa

c
λ) =

∫

Dai δ(f
a
ij) e

k
4π

R

D2×S1 ǫ
ijaa

i ∂z̄a
a
j (81)

wherei, j = t, z. Herefaij = partialia
a
j − partialja

a
i +

iǫabca
a
i a
b
j are the spatial components of the field strength.
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There are no other cubic terms in the action onceaz̄ has been
eliminated (as is the case in any such gauge in which one of
the components of the gauge field vanishes). The constraint
imposed by theδ-function can be solved by taking

aai = ∂iU U
−1 (82)

whereU is a single-valued function taking values in the Lie
group. Substituting this into the right-hand-side of (81),we
find that the action which appears in the exponent in the func-
tional integral takes the form

S =
k

4π

∫

D2×S1

ǫij tr
(
∂iU U

−1∂z̄
(
∂jU U

−1
))

=
k

4π

∫

D2×S1

ǫij
[

tr
(
∂iU U

−1∂z̄∂jU U
−1
)

+

tr
(
∂iU U

−1∂jU ∂z̄U
−1
)
]

=
k

4π

∫

D2×S1

ǫij
[

∂j tr
(
∂i U

−1∂z̄U
)

+

tr
(
∂iU U

−1∂jU ∂z̄U
−1
)
]

=
k

4π

∫

T 2

tr
(
∂zU

−1∂z̄U
)

+

k

12π

∫

D2×S1

ǫµνλtr
(
∂µU U

−1∂νU U
−1 ∂λU U

−1
)
(83)

The Jacobian which comes from theδ-functionδ(faij) is can-
celled by that associated with the change of integration vari-
able fromDa to DU . In the final line, the first term has
been integrated by parts while the second term, although it
appears to be an integral over the3D manifold, only depends
on the boundary values ofU (Wess and Zumino, 1971; Wit-
ten, 1983). This is the Wess-Zumino-Witten (WZW) action.
What we learn from (83) then, is that, in a particular gauge, the
ground state wavefunction of2 + 1-D Chern-Simons theory
can be viewed as the partition function of a2+0-dimensional
WZW model.

For positive integerk, the WZW model is a2D confor-
mal field theory which, in the SU(2) case, has Virasoro cen-
tral chargec = c̄ = 3k

k+2 . (For a brief review of some of
the basics of conformal field theory, see appendix A and ref-
erences therein.) However, in computing properties of the
Chern-Simons theory from which we have derived it, we will
couple only toaz = ∂zU · U−1; i.e. only to the holomor-
phic or right-moving sector of the theory. Thus, it is the chiral
WZW model which controls the ground state wavefunction(s)
of Chern-Simons theory.

If we were to follow the same strategy to calculate the
Chern-Simons ground state wavefunction with Wilson lines
or punctures present, then we would end up with a correlation
function of operators in the chiral WZW model transforming
under the corresponding representations of SU(2). (Strictly
speaking, it is not a correlation function, but aconformal
block, which is a chiral building block for a correlation func-
tion. While correlation functions are single-valued, conformal
blocks have the non-trivial monodromy properties which we
need, as is discussed in appendix A.) Therefore, following

(Elitzur etal., 1989; Witten, 1989), we have mapped the prob-
lem of computing the ground state wavefunction (in2 + 0-
dimensions) of Chern-Simons theory, which is a topological
theory with a gap, to the problem of computing a correla-
tion function in the chiral WZW model (in1+1-dimensions),
which is a critical theory. This is a bit peculiar since one the-
ory is gapped while the other is gapless. However, the gap-
less degrees of freedom of the WZW model for thet = 0
spatial slice are pure gauge degrees of freedom for the cor-
responding Chern-Simons theory. (In the very similar situa-
tion of a surfaceΣ with boundary, however, the correspond-
ing conformally-invariant1 + 1-D theory describes the actual
dynamical excitations of the edge of the system, as we discuss
in section III.E.) Only the topological properties of the chiral
WZW conformal blocks are physically meaningful for us.

More complicated topological states with multiple Chern-
Simons fields and, possibly, Higgs fields (Fradkinetal., 2001,
1999, 1998) correspond in a similar way to other chiral ratio-
nal conformal field theories which are obtained by tensoring
or cosetting WZW models. (RCFTs are those CFTs which
have a finite number of primary fields – see appendix A for
the definition of a primary field – under some extended chiral
algebra which envelopes the Virasoro algebra; a Kac-Moody
algebra in the WZW case; and, possibly, other symmetry gen-
erators.) Consequently, it is possible to use the powerful al-
gebraic techniques of rational conformal field theory to com-
pute the ground state wavefunctions of a large class of topo-
logical states of matter. The quasiparticles of the topological
state correspond to the primary fields of the chiral RCFT. (It
is a matter of convenience whether one computes correlation
functions with a primary field or one of its descendants since
their topological properties are the same. This is a freedom
which can be exploited, as we describe below.)

The conformal blocks of an RCFT have one property which
is particularly useful for us, namely they are holomorphic
functions of the coordinates. This makes them excellent can-
didate wavefunctions for quantum Hall states. We identify pri-
mary fields with the quasiparticles of the quantum Hall state,
and compute the corresponding conformal block. However,
there is one important issue which must be resolved: a quan-
tum Hall wavefunction is normally viewed as a wavefunction
for electrons (the quasiparticle positions, by contrast, are usu-
ally viewed merely as some collective coordinates specifying
a given excited state). Where are the electrons in our RCFT?
Electrons have trivial braiding properties. When one electron
is taken around another, the wavefunction is unchanged, ex-
cept for a phase change which is an odd integral multiple of
2π. More importantly, when any quasiparticle is taken around
an electron, the wavefunction is unchanged apart from a phase
change which is an integral multiple of2π. Therefore, the
electron must be a descendant of the identity. In other words,
the RCFT must contain a fermionic operator by which we can
extend the chiral algebra. This new symmetry generator is es-
sentially the electron creation operator – which is, therefore, a
descendant of the identity under its own action. Not all RCFTs
have such an operator in their spectrum, so this is a strong con-
straint on RCFTs which can describe quantum Hall states. If
we are interested, instead, in a quantum Hall state of bosons,
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as could occur with ultra-cold bosonic atoms in a rotating op-
tical trap (Cooperet al., 2001), then the RCFT must contain a
bosonic field by which we can extend the chiral algebra.

An RCFT correlation function ofNe electron operators
therefore corresponds to the Chern-Simons ground state
wavefunction with Ne topologically-trivial Wilson lines.
From a purely topological perspective, such a wavefunction
is just as good as a wavefunction with no Wilson lines, so
the Wilson lines would seem superfluous. However, if the de-
scendant field which represents the electron operator is cho-
sen cleverly, then the wavefunction withNe Wilson lines may
be a ‘good’ trial wavefunction for electrons in the quantum
Hall regime. Indeed, in some cases, one finds that these trial
wavefunctions are the exact quantum Hall ground states of
simple model Hamiltonians (Ardonne and Schoutens, 1999;
Blok and Wen, 1992; Greiteret al., 1991; Moore and Read,
1991; Read and Rezayi, 1999; Simonet al., 2007a; Wen and
Wu, 1994). In the study of the quantum Hall effect, however,
a wavefunction is ‘good’ if it is energetically favorable for a
realistic Hamiltonian, which is beyond the scope of the un-
derlying Chern-Simons theory, which itself only knows about
braiding properties. It is unexpected good luck that the trial
wavefunctions obtained from Chern-Simons theory are often
found to be ‘good’ from this energetic perspective, which is
a reflection of how highly constrained quantum Hall wave-
functions are, and how central these braiding properties are to
their physics. We emphasize, however, that a wavefunction
obtained in this way willnot be the exact ground state wave-
function for electrons with Coulomb interactions. In some
cases it might not even have particularly high overlap with the
ground state wavefunction, or have good energetics. The one
thing which it does capture is the topological structure of a
particular universality class.

2. Quantum Hall Wavefunctions from Conformal Field Theory

Ideally, the logic which would lead us to a particular RCFT
would be as follows, as displayed in Fig. 8. One begins
with the experimental observation of the quantized Hall ef-
fect at some filling fractionν (shown at the top). We certainly
know that the Hamiltonian for the system is simply that of
2D electrons in a magnetic field, and at the bottom, we know
the form of the low energy theory should be of Chern-Simons
form. One would like to be able to “integrate out” high en-
ergy degrees of freedom directly to obtain the low-energy the-
ory. Given the low-energy Chern-Simons effective field the-
ory, one can pass to the associated RCFT, as described above.
With the RCFT in hand, one can construct wavefunctions, as
we will describe below. Indeed, such a procedure has been
explicitly achieved for Abelian quantum Hall states (López
and Fradkin, 1991; Zhanget al., 1989). In some special non-
Abelian cases, progress in this direction has been made (Wen,
1991b, 1999).

For most non-Abelian theories, however, the situation is not
so simple. The RCFT is usually obtained through inspired
guesswork (Ardonne and Schoutens, 1999; Blok and Wen,
1992; Cappelliet al., 2001; Moore and Read, 1991; Read and

2D Electrons in B field:
Observation of FQHE

Low Energy Theory

Trial Wave Functions

Numerics

CFT
Edge Theory
WZW Model

FIG. 8 How one arrives at a low-energy theory of the quantum Hall
effect. At the top, one begins with the experimental observation of
the quantized Hall effect. At the bottom, we know the low energy
theory should be of Chern-Simons form. One would like to be able
to “integrate out” high energy degrees of freedom directly to obtain
the low energy theory, as shown by the dotted line, but must instead
take a more circuitous route, as described in the text.

Rezayi, 1999; Simonet al., 2007c). One may try to justify
it ex post facto by solving for the properties of quasiholes
of a system with some unrealistic (e.g. involving3-body or
higher interactions) but soluble Hamiltonian. The degeneracy
can be established by counting (Nayak and Wilczek, 1996;
Read, 2006; Read and Rezayi, 1996). The braiding matrices
can be obtained by numerically computing the Berry integrals
for the given wavefunctions (Tserkovnyak and Simon, 2003)
or by using their connection to conformal field theory to de-
duce them (Gurarie and Nayak, 1997; Moore and Read, 1991;
Nayak and Wilczek, 1996; Slingerland and Bais, 2001). One
can then deduce the Chern-Simons effective field theory of
the state either from the quasiparticle properties or from the
associated conformal field theory with which both it and the
wavefunctions are connected.

We now show how such wavefunctions can be constructed
through some examples. In appendix A, we review some of
the rudiments of conformal field theory.

(a) Wavefunctions from CFTs: Our goal is to construct
a LLL FQH wavefunctionΨ(z1, . . . , zN) which describes an
electron fluid in a circular droplet centered at the origin.Ψ
must be a homogeneous antisymmetric analytic function of
the zis, independent of thēzis apart from the Gaussian fac-
tor, which we will frequently ignore (see Sec. II.C.1). If we
consider the FQHE of bosons, we would needΨ to instead be
symmetric. The filling fractionν of a FQH wavefunctionΨ
is given byν = N/NΦ whereN is the number of electrons
andNΦ is the number of flux quanta penetrating the droplet
(Prange and Girvin, 1990). In the LLL,NΦ is given by the
highest power ofz occurring inΨ.

We will also frequently need the fact that in an incompress-
ible state of filling fractionν, multiplying a wavefuncton by a
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factor
∏

i(zi −w)m pushes a chargeνm away from the point
w. This can be understood (Laughlin, 1983) as insertion ofm
flux quanta at the pointw, which, via Faraday’s law creates an
azimuthal electric field, which, then, via the Hall conductivity
transfers chargeνm away from the pointw.

Our strategy will be to choose a particular chiral RCFT,
pick an “electron” fieldψe in this theory (which, by the rea-
soning given above, must be a fermionic generator of the ex-
tended chiral algebra of the theory), and write a ground state
trial wavefunctionΨgs for N electrons as

Ψgs = 〈ψe(z1) . . . ψe(zN ) 〉 (84)

The fieldψe must be fermionic since the quantum Hall wave-
function on the left-hand-side must be suitable for electrons.
Not all RCFTs have such a field in their spectrum, so this re-
quirement constrains our choice. This requirement also en-
sures that we will obtain a wavefunction which has no branch
cuts; in particular, there will only be one conformal block on
the right-hand-side of (84). We must do a little more work in
choosingψe so that there are no poles either on the right-hand-
side of (84). As discussed above, the correlation function on
the right-hand-side of (84) is a ground state wavefunction of
Chern-Simons theory withNe trivial topological charges at
fixed positionsz1, z2, . . . , zNe

.
Of course, there isn’t a unique choice of RCFT, even at

a given filling fraction. Therefore, there are different frac-
tional quantum Hall states which can be constructed in this
way. Which fractional quantum Hall state is actually observed
at a particularν is determined by comparing the energies of
the various possible competing ground states. Having a good
wavefunction is, by itself, no guarantee that this wavefunction
actually describes the physical system. Only a calculationof
its energy gives real evidence that it is better than other possi-
ble states.

The reason for introducing this complex machinery sim-
ply to construct a wavefunction becomes clearer when
we consider quasihole wavefunctions, which are Chern-
Simons ground state wavefunctions withNe trivial topolog-
ical charges andNqh non-trivial topological charges. In gen-
eral, there are many possible quasihole operators, correspond-
ing to the different primary fields of the theory, so we must
really considerNqh1, Nqh2, . . . Nqhm numbers of quasiholes
if there arem primary fields. Each different primary field
corresponds to a different topologically-distinct type of“de-
fect” in the ground state. (As in the case of electrons, we are
free to choose a descendant field in place of the corresponding
primary field since the two have identical topological proper-
ties although the wavefunction generated by a descendant will
be different from that generated by its primary.) Let us sup-
pose that we focus attention on a particular type of quasipar-
ticle which, in most cases, will be the quasiparticle of mini-
mal electrical charge. Then we can write a wavefunction with
quasiholes at positionsw1, . . . , wM as

Ψ(w1. . . wM)=〈ψqh(w1) . . . ψqh(wM ) ψe(z1) . . . ψe(zN )〉
(85)

whereψqh is the corresponding primary field. Sinceψqh is a
primary field andψe is a descendant of the identity, we are

guaranteed thatψqh andψe are local with respect to each
other, i.e. taking one field around can only produce a phase
which is a multiple of2π. Consequently, the wavefunction
Ψ remains analytic in the electron coordinateszi even after
the fieldsψqh(w1) . . . ψqh(wM ) have been inserted into the
correlation function.

One important feature of the conformal block on the right-
hand-side of (85) is thatψqh(wa) andψe(zi) are on roughly
the same footing – they are both fields in some conformal field
theory (or, equivalently, they are both fixed sources coupled
to the Chern-Simons gauge field). However, when intepreted
as a wavefunction on the left-hand-side of (85), the electron
coordinateszi are the variables for which the wavefunction
gives a probability amplitude while the quasihole coordinates
wa are merely some parameters in this wavefunction. If we
wished to normalize the wavefunction differently, we could
multiply by an arbitrary function of thewas. However, the
particular normalization which is given by the right-hand-side
of (85) is particularly convenient, as we will see momentar-
ily. Note that since the quasihole positionswj are merely pa-
rameters in the wavefunction, the wavefunction need not be
analytic in these coordinates.

(b) Quasiparticle Braiding: The branch cuts in quasihole
positionswa are symptoms of the fact that there may be a
vector space of conformal blocks corresponding to the right-
hand-side of (85). In such a case, even when the quasihole
positions are fixed, there are several possible linearly inde-
pendent wavefunctions. These multiple degenerate states are
necessary for non-Abelian statistics, and they will generically
mix when the quasiholes are dragged around each other.

However, there is still a logical gap in the above reason-
ing. The wavefunctions produced by an RCFT have the cor-
rect braiding properties for the corresponding Chern-Simons
ground state wavefunction built into them through their ex-
plicit monodromy properties. As a result of the branch cuts
in the conformal blocks as a function of thewas, when one
quasihole is taken around another, the wavefunctionΨα trans-
forms intoMαβΨβ, where the indexα = 1, 2, . . . , g runs
over theg different degeneraten-quasihole states. However,
when viewed as quantum Hall wavefunctions, their quasipar-
ticle braiding properties are a combination of their explicit
monodromy and the Berry matrix which is obtained from:

eiγαβ = P exp

(∮

d~w
〈

Ψα
∣
∣
∣∇~w

∣
∣
∣Ψβ

〉)

(86)

whereΨα, α = 1, 2, . . . , g are theg different degeneraten-
quasihole states and P is the path ordering symbol. In this
equation, thezis are integrated over in order to compute the
inner product, but thewas are held fixed, except for the one
which is taken around some loop.

Strictly speaking, the effect of braiding is to transform a
state according toΨα → eiγαβMβγΨγ . By changing the nor-
malization of the wavefunction, we can altereiγαβ andMβγ.
Only the product of the two matrices on the right-hand-side
of this equation is gauge invariant and physically meaning-
ful. When we presume that the braiding properties of this
wavefunction are given by those of the corresponding CFT
and Chern-Simons theory, we take it to be equal toMβγ and
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ignoreeiγαβ . This can only be correct ifγαβ vanishes up to
a geometric phase proportional to the area for a wavefunction
given by a CFT conformal block. In the case of the Laughlin
states, it can be verified that this is indeed correct by repeat-
ing the the Arovas, Schrieffer, Wilczek calculation (Arovas
et al., 1984) with the Laughlin state normalized according to
the quasihole position dependence given by the corresponding
CFT (see below) (Blok and Wen, 1992). This calculation rests
upon the plasma analogy originally introduced by Laughlin in
his seminal work (Laughlin, 1983). For other, more complex
states, it is more difficult to compute the Berry matrix. A ver-
sion of a plasma analogy for the MR Pfaffian state was con-
structed in Gurarie and Nayak, 1997; one could thereby ver-
ify the vanishing of the Berry matrix for a two-quasihole state
and, with some further assumptions, for four and higher mul-
tiquasihole states. A direct evaluation of the integral in (86)
by the Monte-Carlo method (Tserkovnyak and Simon, 2003)
established that it vanishes for MR Pfaffian quasiholes. The
effect of Landau level mixing on statistics has also been stud-
ied (Simon, 2007). Although there has not been a complete
proof that the CFT-Chern-Simons braiding rules are identical
to those of the wavefunction, when it is interpreted as an elec-
tron wavefunction (i.e. there has not been a complete proof
that (86) vanishes when the wavefunction is a CFT confor-
mal block), there is compelling evidence for the MR Pfaffian
state, and it is almost certainly true for many other states as
well. We will, therefore, take it as a given that we can simply
read off the braiding properties of the wavefunctions which
we construct below.

(c) The Laughlin State: We now consider wavefunctions
generated by perhaps the simplest CFT, the chiral boson. We
suppose that the chiral boson has compactification radius

√
m,

so thatφ ≡ φ + 2π
√
m. The U(1) Kac-Moody algebra and

enveloping Virasoro algebra can be extended by the symmetry
generatoreiφ

√
m. Since the dimension of this operator ism/2,

it is fermionic form odd and bosonic for evenm. The primary
fields of this extended chiral algebra are of the formeinφ/

√
m,

with n = 0, 1, . . . ,m − 1. They are all of the fields which
are not descendants and are local with respect toeiφ

√
m (and

to the Kac-Moody and Virasoro generators), as may be seen
from the operator product expansion (OPE) (see Appendix A):

eiφ(z)
√
m einφ(0)/

√
m ∼ zn ei(n+m)φ(0)/

√
m + . . . (87)

Whenz is taken around the origin, the right-hand-side is un-
changed. It is convenient to normalize theU(1) current as
j = 1√

m
∂φ; then the primary fieldeinφ/

√
m has chargen/m.

We takeψe = eiφ
√
m as our electron field (which has charge

1) and consider the resulting ground state wavefunction ac-
cording to Eq. 84. Using Eq. A7 we find

Ψgs = 〈ψe(z1) . . . ψe(zN)〉 =
∏

i<j (zi − zj)
m (88)

It is now clear why we have chosen this CFT: to haveΨgs

given by correlators of a vertex operator of the formeiαφ an-
alytic (no branch cuts or poles) we must haveα2 = m a non-
negative integer, andm must be odd to obtain an antisymmet-
ric wavefunction (or even for symmetric). We recognizeΨgs

as theν = 1/m Laughlin wavefunction. The astute reader
will notice that the correlator in Eq. 88 actually violates the
neutrality condition discussed in Appendix A and so it should
actually have zero value. One fix for this problem is to insert
into the correlator (by hand) a neutralizing vertex operator at
infinity e−iNφ(z=∞)

√
m which then makes Eq. 88 valid (up

to a contant factor). Another approach is to insert an oper-
ator that smears the neutralizing background over the entire
system (Moore and Read, 1991). This approach also conve-
niently results in the neglected Gaussian factors reappearing!
We will ignore these neutralizing factors for simplicity. From
now on, we will drop the Gaussian factors from quantum Hall
wavefunctions, with the understanding that they result from
including a smeared neutralizing background.

The quasihole operator must be a primary field; the primary
field of minimum charge iseiφ/

√
m. Using Eq. A7, Eq. 85

yields

Ψ(w1, . . . , wM)=
M

Π
i<j

(wi − wj)
1/m

N

Π
i=1

M

Π
j=1

(zi − wj)Ψgs

(89)
As mentioned above, the factor

∏

j (zj −w) “pushes” charge
away from the positionw leaving a hole of charge precisely
Q = +e/m. The first term on the right of Eq. 89 results from
the fusion of quasihole operators with each other, and explic-
itly shows the fractional statistics of the quasiholes. Adia-
batically taking two quasiholes around each other results in a
fractional phase of2π/m. As promised above, this statistical
term appears automatically in the wavefunction given by this
CFT!

(d) Moore-Read Pfaffian State:
In the Ising CFT (see Appendix A), we might try to use

ψe(z) = ψ(z) as the electron field (Moore and Read, 1991).
The ψ fields can fuse together in pairs to give the identity
(sinceψ × ψ = 1) so long as there are an even number of
fields. However, when we take twoψ fields close to each
other, the OPE tells us that

lim
zi→zj

ψ(zi)ψ(zj) ∼ 1/(zi − zj) (90)

which diverges aszi → zj and is therefore unacceptable as a
wavefunction. To remedy this problem, we tensor the Ising
CFT with the chiral boson CFT. There is now an operator
ψ eiφ

√
m by which we can extend the chiral algebra. (Ifm

is even, this symmetry generator is fermionic; ifm is odd, it
is bosonic.) As before, we will take this symmetry genera-
tor to be our electron field. The corresponding primary fields
are of the formeinφ/

√
m, σ ei(2n+1)φ/2

√
m, andψ einφ/

√
m,

wheren = 0, 1, . . . ,m − 1. Again, these are determined by
the requirement of locality with respect to the generators of
the chiral algebra, i.e. that they are single-valued when taken
around a symmetry generator, in particular the elecron field
ψ eiφ

√
m. For instance,

ψ(z) eiφ(z)
√
m · σ(0) ei(2n+1)φ(0)/2

√
m ∼

z−1/2σ(0) zn+1/2ei(2(n+m)+1)φ(0)/
√
m + . . .

= znσ(0) ei(2(n+m)+1)φ(0)/
√
m (91)
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and similarly for the other primary fields.
Using our new symmetry generator as the electron field, we

obtain the ground state wavefunction according to Eq. 84:

Ψgs = 〈ψ(z1) . . . ψ(zN )〉 ∏i<j(zi − zj)
m

= Pf

(
1

zi − zj

)
∏

i<j(zi − zj)
m (92)

(See, e.g. Di Francescoet al., 1997 for the calculation of this
correlation function.) Again,m odd gives an antisymmetric
wavefunction andm even gives a symmetric wavefunction.
Form = 2 (and evenN ), Eq. 92 gives precisely the Moore-
Read Pfaffian wavefunction (Eq. 43 withg = 1/z and two
Jastrow factors attached).

To determine the filling fraction of our newly constructed
wavefunction, we need only look at the exponent of the Jas-
trow factor in Eq. 92. Recall that the filling fraction is de-
termined by the highest power of anyz (See III.D.1 above).
There arem(N − 1) factors ofz1 in the Jastrow factor. The
Pfaffian has a factor ofz1 in the denominator, so the highest
power ofz1 is m(N − 1) − 1. However, in the thermody-
namic limit, the number of factors scales asmN . Thus the
filling fraction isν = 1/m.

We now consider quasihole operators. As in the Laughlin
case we might consider the primary fieldsψqh = einφ/

√
m.

Similar arguments as in the Laughlin case show that then = 1
case generates precisely the Laughlin quasihole of charge
Q = +e/m. However we have other options for our quasi-
hole which have smaller electrical charge. The primary field
σ eiφ/2

√
m has chargeQ = +e/2m. We then obtain the wave-

function according to Eq. 85

Ψ(w1, . . . , wM)=〈σ(w1) . . . σ(wm)ψ(z1) . . . ψ(zN )〉 ×
M

Π
i<j

(wi − wj)
1/2m

N

Π
i=1

M

Π
j=1

(zi − wj)
1/2

N

Π
i<j

(zi − zj)
m (93)

Using the fusion rules of theσ fields (See Eq. 7, as well as
Fig. 22 and Table II in Appendix A), we see that it is impossi-
ble to obtain1 from an odd number ofσ fields. We conclude
that quasiholesψqh can only occur in pairs. Let us then con-
sider the simplest case of two quasiholes. If there is an even
number of electrons, theψ fields fuse in pairs to form1, and
the remaining two quasiholes must fuse to form1 also. As
discussed in Eq. A3 the OPE of the twoσ fields will then
have a factor of(w1 −w2)

−1/8. In addition, the fusion of the
two vertex operatorseiφ/2

√
m results in the first term in the

second line of Eq. 93,(w1 − w2)
1/(4m). Thus the phase ac-

cumulated by taking the two quasiholes around each other is
−2π/8 + 2π/4m.

On the other hand, with an odd number of electrons in
the system, theψ’s fuse in pairs, but leave one unpairedψ.
The twoσ’s must then fuse to form aψ which can then fuse
with the unpairedψ to give the identity. (See Eq. A3). In
this case, the OPE of the twoσ fields will give a factor of
(w1 −w2)

3/8. Thus the phase accumulated by taking the two
quasiholes around each other is6π/8 + 2π/4m.

In the language of section III.B above, when there is an
even number of electrons in the system, all of these are paired

and the fermion orbital shared by the quasiholes is unoccu-
pied. When an odd electron is added, it ‘occupies’ this or-
bital, although the fermion orbital is neutral and the electron
is charged (we can think of the electrons’ charge as being
screened by the superfluid).

When there are many quasiholes, they may fuse together in
many different ways. Thus, even when the quasihole positions
are fixed there are many degenerate ground states, each cor-
responding to a different conformal block (see appendix A).
This degeneracy is precisely what is required for non-Abelian
statistics. Braiding the quasiholes around each other produces
a rotation within this degenerate space.

Fusing2m σ fields results in2m−1 conformal blocks, as
may be seen by examining the Bratteli diagram of Fig. 22 in
appendix A. When two quasiholes come together, they may
either fuse to form1 orψ. As above, if they come together to
form1 then taking the two quasiholes around each other gives
a phase of−2π/8 + 2π/4m. On the other hand, if they fuse
to formψ then taking them around each other gives a phase of
2π3/8 + 2π/4m.

These conclusions can be illustrated explicitly in the cases
of two and four quasiholes. For the case of two quasiholes, the
correlation function (93) can be evaluated to give (Moore and
Read, 1991; Nayak and Wilczek, 1996) (for an even number
of electrons):

Ψ(w1, w2) =
∏

j<k

(zj − zk)
2 ×

Pf

(
(zj − w1) (zk − w2) + zj ↔ zk

zj − zk

)

. (94)

wherew12 = w1 − w2. For simplicity, we specialize to
the casem = 2; in general, there would be a prefactor

(w12)
1

4m
− 1

8 . When the two quasiholes atw1 and w2 are
brought together at the pointw, a single flux quantum Laugh-
lin quasiparticle results, since twoσs can only fuse to the iden-
tity in this case, as expected from the above arguments:

Ψqh(w) =
∏

j<k

(zj − zk)
2
∏

i

(zi − w) Pf

(
1

zj − zk

)

.

(95)

The situation becomes more interesting when we consider
states with 4 quasiholes. The ground state is 2-fold degener-
ate (see appendix A). If there is an even number of electrons
(which fuse to form the identity), we are then concerned with
the 〈σσσσ〉 correlator. As discussed in appendix A, two or-
thogonal conformal blocks can be specified by whether 1 and
2 fuse to form either1 orψ. The corresponding wavefunctions
obtained by evaluating these conformal blocks are (Nayak and
Wilczek, 1996):

Ψ(1,ψ) =
(w13w24)

1
4

(1 ±√
x)1/2

(
Ψ(13)(24) ± √

x Ψ(14)(23)

)
(96)

wherex = w14w23/w13w24. (Note that we have taken
a slightly different anharmonic ratiox than in Nayak and
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Wilczek, 1996 in order to make (96) more compact than Eqs.
(7.17), (7.18) of Nayak and Wilczek, 1996.) In this expres-
sion,

Ψ(13)(24) =
∏

j<k

(zj − zk)
2 ×

Pf

(
(zj − w1)(zj − w3)(zk − w2)(zk − w4) + (j ↔ k)

zj − zk

)

(97)

and

Ψ(14)(23) =
∏

j<k

(zj − zk)
2 ×

Pf

(
(zj − w1)(zj − w4)(zk − w2)(zk − w3) + (j ↔ k)

zj − zk

)

(98)

Suppose, now, that the system is in the stateΨ(1). Braid-
ing 1 around 2 or 3 around 4 simply gives a phase (which is
Rσσ1 multiplied by a contribution from the Abelian part of the
theory). However, if we takew2 aroundw3, then after the
braiding, the system will be in the stateΨ(ψ) as a result of the
branch cuts in (96). Now, 1 and 2 will instead fuse together
to formψ, as expected from the general argument in Eq. A6.
Thus, the braiding yields a rotation in the degenerate space.
The resulting prediction for the behavior under braiding for
the Moore-Read Pfaffian state is in agreement with the results
obtained in sections III.B and III.C above.

(e) Z3 Read-Rezayi State (Briefly): We can follow a com-
pletely analogous procedure with a CFT which is the tensor
product of theZ3 parafermion CFT with a chiral boson. As
before, the electron operator is a product of a chiral vertex
operator from the bosonic theory with an operator from the
parafermion theory. The simplest choice isψe = ψ1e

iαφ.
We would like this field to be fermionic so that it can be
an electron creation operator by which we can extend the
chiral algebra (i.e., so that the electron wavefunction hasno
branch cuts or singularities). (See appendix A for the nota-
tion for parafermion fields.) The fusion rules forψ1 in theZ3

parafermion CFT are:ψ1×ψ1 ∼ ψ2 butψ1×ψ1×ψ1 ∼ 1 so
that the correlator in Eq. 84 is only nonzero ifN is divisible by
3. From the OPE, we obtainψ1(z1)ψ1(z2) ∼ (z1−z2)−2/3ψ2

so in order to have the wavefunction analytic, we must choose
α =

√

m+ 2/3 with m ≥ 0 an integer (m odd results
in an antisymmetric wavefunction and even results in sym-
metric). The filling fraction in the thermodynamic limit is
determined entirely by the vertex operatoreiαφ, resulting in
ν = 1/α2 = 1/(m+ 2/3).

The ground state wavefunction forN = 3n electrons takes
the form:

Ψgs(z1, . . . , z3n) =
∏

i<j

(zi − zj)
m ×

S







∏

0≤r<s<n
χr,s(z3r+1, . . . , z3r+k, z3k+1, . . . z3s+3)







(99)

whereM must be odd for electrons,S means the symmetriza-
tion over all permutations, and

χr,s = (z3r+1 − z3s+1)(z3r+1 − z3s+2)×
(z3r+2 − z3s+2)(z3r+2 − z3s+3) . . . ×

(z3r+3 − z3s+3)(z3r+3 − z3s+1) (100)

With the electron operator in hand, we can determine the
primary fields of the theory. The primary field of minimum
electrical charge isψqh = σ1e

iφ/3α To see that this field is
local with respect toψe (i.e., there should be no branch cuts
for the electron coordinateszi), observe thatσ1(w)ψ1(z) ∼
(z − w)−1/3ψ andeiφ/3α(w)eiαφ(z) ∼ (z − w)1/3. Con-
structing the full wavefunction (as in Eq. 85 and analogous to
Eq. 93) the fusion of ofeiφ/3α (from ψqh) with eiαφ (from
ψe) again generates a factor of

∏

i(zi − w)1/3. We conclude
that the elementary quasihole has chargeQ = +eν/3.
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FIG. 9 (a) Bratteli diagram for fusion of multipleσ1 fields in theZ3

Parafermion CFT.(b) Bratteli diagram for Fibonacci anyons.

The general braiding behavior for theZ3 parafermions has
been worked out in Slingerland and Bais, 2001. It is trivial,
however, to work out the dimension of the degenerate space
by examining the Bratteli diagram Fig. 9a (See the appendix
for explanation of this diagram). For example, if the number
of electrons is a multiple of 3 then they fuse together to form
the identity. Then, for example, with 6 quasiholes one has 5
paths of length 5 ending at1 (hence a 5 dimensional degener-
ate space). However, if, for example, the number of electrons
is 1 mod 3, then the electrons fuse in threes to form1 but there
is oneψ1 left over. Thus, the quasiholes must fuse together to
formψ2 which can fuse with the leftoverψ1 to form1. In this
case, for example, with 4 quasiholes there is a 2 dimensional
space. It is easy to see that (if the number of electrons is divis-
ible by 3) the number of blocks withn quasiparticles is given
by then− 1st Fibonacci number, notated Fib(n-1) defined by
Fib(1) = Fib(2) = 1 and Fib(n) = Fib(n− 1) + Fib(n− 2)
for n > 2.

E. Edge Excitations

When a system in a chiral topological phase has a bound-
ary (as it must in any experiment), there must be gapless ex-
citations at the boundary (Halperin, 1982; Wen, 1992). To
see this, consider the Chern-Simons action on a manifoldM
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State CFT ν ψe ψqh

Laughlin Boson 1
m

eiφ
√
m eiφ/

√
m

Moore-ReadIsing 1
m+1

ψeiφ
√
m+1 σeiφ/(2

√
m+1)

Z3 RR Z3 Paraf. 1
m+2/3

ψ1e
iφ
√
m+2/3 σ1e

iφ/(3
√
m+2/3)

TABLE I Summary of CFT-wavefunction correspondences dis-
cussed here. In all casesm ≥ 0. Odd (even)m represents a Fermi
(Bose) wavefunction.

with boundary∂M (Elitzur et al., 1989; Witten, 1989), Eq.
24. The change in the action under a gauge transformation,
aµ → gaµg

−1 + g∂µg
−1, is:

SCS [a] → SCS [a] +
k

4π

∫

∂M
tr(g−1dg ∧ a) (101)

In order for the action to be invariant, we fix the boundary
condition so that the second term on the r.h.s. vanishes. For
instance, we could take boundary condition

(
a
a
0

)

|∂M
= 0,

wherex0, x1 are coordinates on the boundary ofM andx2

is the coordinate perpendicular to the boundary ofM. Then
the action is invariant under all transformations which respect
this boundary condition, i.e. which satisfy∂0g = 0 on the
boundary. We separate these into gauge and global symme-
tries. Functionsg : M → G satisfyingg

|∂M
= 1 are the

gauge symmetries of the theory. (They necessarily satisfy
∂0g = 0 sincex0 is a coordinate along the boundary.) Mean-
while, functionsf : M → G which are independent ofx0 are
really global symmetries of the theory. The representations
of this global symmetry form the spectrum of edge excita-
tions of the theory. (The distinction between gauge and global
transformations is that a gauge transformation can leave the
t = 0 state unchanged while changing the state of the sys-
tem at a later timet. Since it is, therefore, not possible for a
given initial condition to uniquely define the state of the sys-
tem at a later time, all physically-observable quantities must
be invariant under the gauge transformation. By contrast, a
global symmetry, even if it acts differently at different spatial
points, cannot leave thet = 0 state unchanged while chang-
ing the state of the system at a later timet. A global sym-
metry does not prevent the dynamics from uniquely defining
the state of the system at a later time for a given initial con-
dition. Therefore, physically-observable quantities need not
be invariant under global transformations. Instead, the spec-
trum of the theory can be divided into representations of the
symmetry.)

With this boundary condition, the natural gauge choice for
the bulk isaa0 = 0. We can then transform the Chern-Simons
functional integral into the chiral WZW functional integral
following the steps in Eqs. 81-83 (Elitzuret al., 1989):

S =
k

4π

∫

∂M
tr
(
∂0U

−1∂1U
)

+

k

12π

∫

M
ǫµνλtr

(
∂µU U

−1∂νU U
−1 ∂λU U

−1
)

(102)

Note the off-diagonal form of the quadratic term (analogous
to thez− z̄ form in Eq. 83), which follows from our choice of

boundary condition. This boundary condition is not unique,
however. The topological order of the bulk state does not
determine the boundary condition. It is determined by the
physical properties of the edge. Consider, for instance, the
alternative boundary condition

(
a
a
0 + va

a
1

)

|∂M
= 0 for some

constantv with dimensions of velocity. With this bound-
ary condition, the quadratic term in the Lagrangian will now
be tr

(
(∂0 + v∂1)U

−1∂1U
)

and the edge theory is the chiral
WZW model with non-zero velocity.

It is beyond the scope of this paper to discuss the chiral
WZW model in any detail (for more details, see Gepner and
Qiu, 1987; Gepner and Witten, 1986; Knizhnik and Zamolod-
chikov, 1984 ). However, there are a few key properties which
we will list now. The chiral WZW model is a conformal field
theory. Therefore, although there is a gap to all excitations in
the bulk, there are gapless excitations at the edge of the sys-
tem. The spectrum of the WZW model is organized into rep-
resentations of the Virasoro algebra and is further organized
into representations of theGk Kac-Moody algebra. For the
sake of concreteness, let us consider the case of SU(2)k. The
SU(2)k WZW model contains primary fieldsφj , transforming
in the j = 0, 1/2, 1, . . . , k/2 representations. These corre-
spond precisely to the allowed quasiparticle species: whenthe
total topological charge of all of the quasiparticles in thebulk
is j, the edge must be in the sector created by acting with the
spinj primary field on the vacuum.

TheGk case is a generalization of the U(1)m case, where
g = eiφ and the WZW model reduces to a free chiral bosonic
theory:

S =
m

4π

∫

d2x (∂t + v∂x)φ∂xφ (103)

(In Sec. III.A, we usedk for the coefficient of an Abelian
Chern-Simons term; here, we usem to avoid confusion with
the corresponding coupling of the SU(2) Chern-Simons term
in situations in which both gauge fields are present.) The pri-
mary fields areeinφ, with n = 0, 1, ...,m−1. (The fieldeimφ

is either fermionic or bosonic form odd or even, respecitvely,
so it is not a primary field, but is, rather, included as a genera-
tor of an extended algebra.) A quantum Hall state will always
have such a term in its edge effective field theory; the U(1)
is the symmetry responsible for charge conservation and the
gapless chiral excitations (103) carry the quantized Hall cur-
rent.

Therefore, we see that chiral topological phases, such as
fractional quantum Hall states, must have gapless chiral edge
excitations. Furthermore, the conformal field theory which
models the low-energy properties of the edge isthe same con-
formal field theory which generates ground state wavefunc-
tions of the corresponding Chern-Simons action. This is clear
from the fact that the two derivations (Eqs. 83 and 102)
are virtually identical. The underlying reason is that Chern-
Simons theory is a topological field theory. When it is solved
on a manifold with boundary, it is unimportant whether the
manifold is a fixed-time spatial slice or the world-sheet of the
edge of the system. In either case, Chern-Simons theory re-
duces to the same conformal field theory (which is an example
of ‘holography’). One important difference, however, is that,
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in the latter case, a physical boundary condition is imposed
and there are real gapless degrees of freedom. (In the former
case, the CFT associated with a wavefunction for a fixed-time
spatial slice may have apparent gapless degrees of freedom
which are an artifact of a gauge choice, as discussed in Sec-
tion III.D.)

The WZW models do not, in general, have free field rep-
resentations. One well-known exception is the equivalence
between the SU(N)1 × U(1)N chiral WZW model andN free
chiral Dirac fermions. A somewhat less well-known excep-
tion is the SU(2)2 chiral WZW model, which has a represen-
tation in terms of 3 free chiral Majorana fermions. Before dis-
cussing this representation, we first consider the edge excita-
tions of ap+ ip superconductor, which supports Ising anyons
which, in turn, differ from SU(2)2 only by a U(1) factor.

Let us solve the Bogoliubov-de Gennes Hamiltonian (38)
with a spatially-varying chemical potential, just as we didin
Section III.B. However, instead of a circular vortex, we con-
sider an edge aty = 0:

µ(y) = ∆h(y), (104)

with h(y) large and positive for largey, andh(y) < 0 for
y < 0; therefore, the electron density will vanish fory large
and positive. Such a potential defines an edge aty = 0. There
are low-energy eigenstates of the BdG Hamiltonian which are
spatially localized neary = 0:

φedgeE (x) ≈ eikxe−
R

y

0
h(y′)dy′φ0, (105)

with φ0 =
(
1
1

)
an eigenstate ofσx. This wavefunction de-

scribes a chiral wave propagating in thex−direction localized
on the edge, with wave vectork = E/∆. A more complete
solution of the superconducting Hamiltonian in this situation
would involve self-consistently solving the BdG equations, so
that both the density and the gap∆(y) would vanish for large
positivey. The velocity of the chiral edge mode would then
depend on how sharplyh(y) varies. However, the solutions
given above with fixed constant∆ are sufficient to show the
existence of the edge mode.

If we define an edge fermion operatorψ(x):

ψ(x) = e−
R

y
0
h(y′)dy′

∑

k>0

[ψke
ikxφ0 + ψ−ke

−ikxφ0].

The fermion operators,ψk, satisfyψ−k = ψ†
k, soψ(x) =

∑

k ψke
ikx is a real Majorana field,ψ(x) = ψ†(x). The edge

Hamitonian is:

Ĥedge =
∑

k>0

vnk ψ
†
kψk =

∫

dxψ(x)(−ivn∂x)ψ(x),

(106)
where the edge velocityv = ∆. The Lagrangian density takes
the form:

Lfermion = iψ(x)(∂t + vn∂x)ψ(x) (107)

The 2D Ising model can be mapped onto the problem of
(non-chiral) Majorana fermions on a lattice. At the critical

point, the Majorana fermions become massless. Therefore,
the edge excitations are the right-moving chiral part of the
critical Ising model. (This is why the vortices of ap+ ip su-
perconductor are call Ising anyons.) However, the edge exci-
tations have non-trivial topological structure for the same rea-
son that correlation functions of the spin field are non-trivial
in the Ising model: while the fermions are free, the Ising spin
field is non-local in terms of the fermions, so its correlations
are non-trivial. The Ising spin fieldσ(z) inserts a branch cut
running fromz = vnx+ it to infinity for the fermionψ. This
is precisely what happens when a fluxhc/2e vortex is created
in ap+ ip superconductor.

The primary fields of the free Majorana fermion are1, σ,
andψ with respective scaling dimensions0, 1/16, and1/2,
as discussed in Section III.D. When there is an odd number
of flux hc/2e vortices in the bulk, the edge is in theσ(0)|0〉
sector. When there is an even number, the edge is in either
the |0〉 or ψ(0)|0〉 sectors, depending on whether there is an
even or odd number of fermions in the system. So long as
quasiparticles don’t go from the edge to the bulk or vice versa,
however, the system remains in one of these sectors and all
excitations are simply free fermion excitations built on top of
the ground state in the relevant sector.

However, when a quasiparticle tunnels from the edge to the
bulk (or through the bulk), the edge goes from one sector to
another – i.e. it is acted on by a primary field. Hence, in the
presence of a constriction at which vortices of fermions can
tunnel from one edge to another, the edge Lagrangian of a
p+ ip superconductor is (Fendleyet al., 2007a):

S =

∫

dτ dx (Lfermion(ψa) + Lfermion(ψb))

+

∫

dτ λψ iψaψb +

∫

dτ λσσaσb (108)

wherea, b denote the two edges. (We have dropped all irrel-
evant terms, e.g descendant fields.) In other words, although
the edge theory is a free theory in the absence of coupling to
the bulk or to another edge through the bulk, it is perturbed by
primary fields when quasiparticles can tunnel to or from the
edge through the bulk. The topological structure of the bulk
constrains the edge through the spectrum of primary fields.

As in the discussion of Section III.D, the edge of the Moore-
Read Pfaffian quantum Hall state is a chiral Majorana fermion
together with a free chiral bosonφ for the charge sector of the
theory. As in the case of ap+ ip superconductor, the primary
fields of this theory determine how the edge is perturbed by
the tunneling of quasiparticles between two edges through the
bulk (Fendleyet al., 2006, 2007a):

S =

∫

dτ

[∫

dx (Ledge(ψa, φa) + Ledge(ψb, φb))

+ λ1/2 cos((φa(0) − φb(0))/
√

2) + λψ,0 iψaψb

+ λ1/4 σa(0)σb(0) cos((φa(0) − φb(0))/2
√

2)
]

(109)

The most relevant coupling isλ1/4, so the tunneling of charge
e/4 quasiparticles dominates the transport of charge from
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one edge to the other at the point contact. (The tunneling
of chargee/2 quasiparticles makes a subleading contribution
while the tunneling of neutral fermions contributes only to
thermal transport.) At low enough temperatures, this relevant
tunneling process causes the point contact to be pinched off
(Fendleyet al., 2006, 2007a), but at temperatures that are not
too low, we can treat the tunneling ofe/4 quasiparticles per-
turbatively and neglect other the other tunneling operators. Of
course, the structure of the edge may be more complex than
the minimal structure dictated by the bulk which we have an-
alyzed here. This depends on the details of the confining po-
tential defining the system boundary, but at low enough tem-
peratures, the picture described here should still apply. In-
teresting information about the non-Abelian character of the
Moore-Read Pfaffian state can be obtained from the tempera-
ture dependence of the tunneling conductance (Fendleyet al.,
2006, 2007a) and from current noise (Bena and Nayak, 2006).

Finally, we return to SU(2)2. The SU(2)2 WZW model is
a triplet of chiral Majorana fermions,ψ1, ψ2, ψ3 – i.e. three
identical copies of the chiral Ising model. This triplet is the
spin-1 primary field (with scaling dimension1/2). The spin-
1/2 primary field is roughly∼ σ1σ2σ3 with dimension3/16
(a more precise expression involves the sum of products such
asσ1σ2µ3, whereµ is the Ising disorder operator dual toσ).
This is one of the primary differences between the Ising model
and SU(2)2: σ is a dimension1/16 field, while the spin-1/2
primary field of SU(2)2 has dimension3/16. Another way to
understand the difference between the two models is that the
SU(2)2 WZW model has two extra Majorana fermions. The
pair of Majorana fermions can equally well be viewed as a
Dirac fermion or, through bosonization, as a free chiral bo-
son, which has U(1) symmetry. Thus, the Ising model is often
written as SU(2)2/U(1) to signify that the the U(1) chiral bo-
son has been removed. (This notion can be made precise with
the notion of acoset conformal field theory (Di Francesco
et al., 1997) or by adding a U(1) gauge field to the 2D action
and coupling it to a U(1) subgroup of the SU(2) WZW fieldg
(Gawȩdzki and Kupiainen, 1988; Karabaliet al., 1989). The
gauge field has no Maxwell term, so it serves only to elimi-
nate some of the degrees of freedom, namely the U(1) piece.)
As we discussed in subsection III.C, these differences are also
manifested in the bulk, where they lead to some differences
in the Abelian phases which result from braiding but do not
change the basic non-Abelian structure of the state.

On the other hand, the edge of the Moore-Read Pfaffian
quantum Hall state is a chiral Majorana fermion together with
a free chiral bosonφ which carries the charged degrees of
freedom. So we restore the chiral boson which we eliminated
in passing from SU(2)2 to the Ising model, with one important
difference. The compactification radiusR (i.e., the theory is
invariant underφ→ φ+ 2πR) of the charged boson need not
be the same as that of the boson which was removed by coset-
ting. For the special case of bosons atν = 1, the boson is, in
fact, at the right radius. Therefore, the charge boson can be
fermionized so that there is a triplet of Majorana fermions.In
this case, the edge theory is the SU(2)2 WZW model (Fradkin
etal., 1998). In the case of electrons atν = 2+1/2, the chiral
boson is not at this radius, so the edge theory is U(1)2×Ising,

which is not quite the SU(2)2 WZW model.

F. Interferometry with Anyons

In Section II of this review we described an interference
experiment that is designed to demonstrate the non-Abelian
statistics of quasiparticles in theν = 5/2 state. We start this
section by returning to this experiment, and using it as an exer-
cise for the application of the calculational methods reviewed
above. We then generalize our analysis to arbitrary SU(2)k

non-Abelian states and also describe other experiments that
share the same goal.

In the experiment that we described in Section II, a Fabry-
Perot interference device is made of a Hall bar perturbed by
two constrictions (see Fig. 2). The back-scattered currentis
measured as a function of the area of the cell enclosed by the
two constrictions and of the magnetic field. We assume that
the system is atν = 5/2 and consider interference experi-
ments which can determine if the electrons are in the Moore-
Read Pfaffian quantum Hall state.

Generally speaking, the amplitude for back–scattering is a
sum over trajectories that wind the cellℓ times, with ℓ =
0, 1, 2... an integer. The partial wave that winds the cellℓ
times, winds then quasiparticles localized inside the cellℓ
times. From the analysis in Section III.B, if the electrons are
in the Pfaffian state, the unitary transformation that the tun-
neling quasiparticle applies on the wave function of the zero
energy modes is

(

Ûn

)ℓ

=

[

eiαnγna

n∏

i=1

γi

]ℓ

(110)

where theγi’s are the Majorana modes of the localized bulk
quasiparticles,γa is the Majorana mode of the quasiparticle
that flows around the cell, andαn is an Abelian phase that
will be calculated below.

The difference between the even and odd values ofn, that
we described in Section II of the review, is evident from Eq.
(110) when we we look at the lowest order,ℓ = 1. For evenn,
Ûn is independent ofγa. Thus, each tunneling quasiparticle
applies the same unitary transformation on the ground state.
The flowing current thenmeasures the operator̂Un (more pre-
cisely, it measures the interference term, which is an hermitian
operator. From that term the value ofÛn may be extracted).
In contrast, whenn is odd the operator̂Un depends onγa.
Thus, a different unitary operation is applied by every incom-
ing quasiparticle. Moreover, the different unitary operators
do not commute, and share no eigenvectors. Thus, their ex-
pectation values average to zero, and no interference is to be
observed. This analysis holds in fact for all odd values ofℓ.

The phaseαn is composed of two parts. First, the quasi-
particle accumulates an Aharonov-Bohm phase of2πe∗Φ/hc,
wheree∗ = e/4 is the quasiparticle charge forν = 5/2 andΦ
is the flux enclosed. And second, the tunneling quasiparticle
accumulates a phase as a consequence of its interaction with
then localized quasiparticles. When a chargee/4 object goes
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aroundn flux tubes of half a flux quantum each, the phase it
accumulates isnπ/4.

Altogether, then, the unitary transformation (110) has two
eigenvalues. For evenn, they are(±i)nl/2. For oddn, they
are (±i)(n−1)l/2. The back–scattered current then assumes
the following form (Stern and Halperin, 2006),

Ibs =
∞∑

m=0

Im cos2mn
π

2
cosm(φ+

ñπ

4
+
πα

2
) (111)

whereñ = n for n even, and̃n = n + 1 for n odd. Themth

term of this sum is the contribution from a process that loops
aroundm times, which vanishes ifn andm are both odd.

We can restate this analysis using the CFT description of
the Moore-Read Pfaffian state. Chargee/4 quasiparticles are
associated with the operatorσ eiφ/

√
8 operators. The fusion

of n such quasiparticles is then to

einφ/
√

8 ×







1

ψ

σ

(112)

where either of the first two is possible for evenn, and the last
is the outcome of the fusion for oddn. In order to determine
the effect of braiding an incoming quasiparticle around then
bulk ones, we consider the possible fusion channels of one
quasiparticle with (112). The fusion of the bosonic factors
(i.e. the electrical charge) is:

einφ(z1)/
√

8 × eiφ(z2)/
√

8 → ei(n+1)φ(z1)/
√

8(z1 − z2)
−n/8

(113)
Thus, when the incoming quasiparticle, at coordinatez2, en-
circles the bulkℓ times, it accumulates a phase of2π×(n/8)×
ℓ = nℓπ/4 purely as a result of the U(1) part of the theory.
Now consider the neutral sector. The fusion of theσ oper-
ator depends on the state of the bulk. When the bulk is has
total topological charge1, the fusion is trivial, and does not
involve any accumulation of phases. When the bulk has total
topological chargeψ, the fusion is:

σ(z2) × ψ(z1) → σ(z1) × (z1 − z2)
−1/2 (114)

and an extra phase ofπℓ is accumulated when the incoming
quasiparticle winds the bulk quasiparticlesℓ times. When the
bulk has total topological chargeσ, i.e. whenn is odd, the
non-Abelian fusion rule applies (see Eq. A3), and

σ(z1) × σ(z2) → (z1 − z2)
−1/8

[

1 + (z1 − z2)
1/2ψ(z1)

]

(115)
Since the probability for the two fusion outcomes is equal8,
for any oddℓ we get two interference patterns that are mu-
tually shifted byπ, and hence mutually cancel one another,

8 This follows fromN1
σσ = Nψ

σσ = 1.

q

q−1

+    q −1q( ) d  +  2d2

= +    

+    +    

=

FIG. 10 Using the recursion relation (77), we can evaluate
〈χ|ρ

`

σ2
2

´

|χ〉.

while for evenℓ we get an extra phase ofℓπ/4. Altogether,
this reproduces the expression (111).

Now let us consider the same calculation using the rela-
tion between Chern-Simons theory and the Jones polynomial.
For simplicity, we will just compute the current due to a sin-
gle backscattering and neglect multiple tunneling processes,
which can be computed in a similar way. The elementary
quasiparticles havej = 1/2. These are the quasiparticles
which will tunnel at the point contacts, either encircling the
bulk quasiparticles or not. (Other quasiparticles will give a
sub-leading contribution to the current because their tunnel-
ing amplitudes are smaller and less relevant in the RG sense.)
First, consider the case in which there is a singlej = 1/2
quasiparticle in the bulk. The back-scattered current is ofthe
form:

Ibs = I0 + I1Re
{
eiφ
〈
χ
∣
∣ρ
(
σ2

2

)∣
∣χ
〉}

(116)

The matrix element on the right-hand-side is given by the eval-
uation of the link in Figure 4a (Bondersonet al., 2006a; Frad-
kin et al., 1998) (up to a normalization of the bra and ket; see
Sec. III.C). It is the matrix element between a state|χ〉 is the
state in which1 and2 fuse to the trivial particle as do3 and
4 and the stateρ

(
σ2

2

)
|χ〉. The former is the state in which

the tunneling quasparticle (qp.3)does not encircle the bulk
quasiparticle (qp.2); the latter is the state in which it does.
The matrix element between these two states determines the
interference.

Using the recursion relation (77) as shown in Figure 10, we
obtain:

〈χ|ρ
(
σ2

2

)
|χ〉 =

(
q + q−1

)
d2 + 2d

= −d3 + 2d (117)

For k = 2, d =
√

2, so this vanishes. Consequently, the
interference term in (116) also vanishes, as we found above
by other methods. The case of an arbitrary odd number of
quasiparticles in the island is similar.

Now consider the case in which there are an even number
of quasiparticles in the island. For the sake of simplicity,we
consider the case in which there are two quasiparticles in the
bulk, i.e. a qubit. The pair can either fuse toj = 0 or j = 1.
In the former case, it is clear that no phase is acquired, see Fig.
11a. In the latter case, the recursion rule (77) gives us a−1,
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as depicted in figure 11. This difference allows us to read out
the value of a topologically-protected qubit (Das Sarmaet al.,
2005).

What happens if the qubit is in a superposition ofj = 0 and
j = 1? The interference measurement causes the tunneling
quasiparticles to become entangled with the bulk quasiparti-
cle (Bondersonetal., 2007; Freedmanetal., 2006; Overbosch
and Bais, 2001). When the integrated current is large enough
that many quasiparticles have tunneled and equilibrated atthe
current leads, thej = 0 andj = 1 possibilities will have deco-
hered. The measurement will see one of the two possibilities
with corresponding probabilities.

=

10 1

(b)(a)

= (−1)

FIG. 11 We can obtain the result of taking aj = 1/2 quasiparticle
around a qubit from the two diagrams in this figure. In (a) the qubit is
in the state0, while in (b) it is in state1. These figures are similar to
the left-hand-side of Fig. 10, but with the loop on the right replaced
by a loop with (a)j = 0 or (b) j = 1.

The experiment that we analyzed above forν = 5/2 may
be analyzed also for other non-Abelian states. The com-
putation using knot invariants can be immediately adapted
to other SU(2)k states by simply replacingd =

√
2 with

d = 2 cosπ/(k + 2). We should calculate the value of the
Hopf link as in figures 10 and 11, with one of the loops corre-
sponding to the tunneling quasiparticle and the other loop cor-
responding to the total topological charge of the bulk quasi-
particles. The result can be written in the more general form
(Bondersonet al., 2006b):

Ibs(a) = I0 + I1 |Mab| cos(β + θab) (118)

whereMab is defined in terms of theS-matrix:

Mab =
SabS11

S1aS1b
(119)

andMab = |Mab| eiθab . The expression (118) gives the cur-
rent to due toa quasiparticles if the quasiparticles in the bulk
fuse tob. If the contribution ofj = 1/2 quasiparticles domi-
nates, as in theν = 5/2 case, then we should seta = 1

2 in this
expression. For the levelk = 3 case, takinga = 1

2 , |Mab| = 1

for b = 0, 3
2 while |Mab| = φ−2 for b = 1

2 , 1, whereφ is the
golden mean,φ = (1 +

√
5)/2. (In Z3 parafermion language,

b = 0, 3
2 correspond to the fields1, ψ1,2 while b = 1

2 , 1 corre-
spond to the fieldsσ1,2, ε.)

Finally, we can analyze the operation of an interferometer
using the edge theory (109). The preceding discussion esen-
tially assumed that the current is carried by non-interacting
anyonic quasiparticles. However, the edge is gapless and,
in general, does not even have well-defined quasiparticles.
Therefore, a computation using the edge theory is more com-
plete. The expected results are recovered since they are deter-
mined by the topological structure of the state, which is shared

by both the bulk and the edge. However, the edge theory also
enables one to determine the temperature and voltage depen-
dences ofI0, I1, ... in (111), (116) (Ardonne and Kim, 2007;
Bishara and Nayak, 2007; Fidkowski, 2007). As is discussed
in these papers, at finite temperature, interference will not be
visible if the two point contacts are further apart than the ther-

mal length scaleLφ, whereL−1
φ = kBT

(
1/8
vc

+ 1/8
vn

)

, if the

charged and neutral mode velocities arevc, vn. Another im-
portant feature is that the interference term (when it is non-
vanishing) is oscillatory in the source-drain voltage while the
I0 term has a simple power law dependence.

The assumption that the edge and the bulk are well sepa-
rated is crucial to that above calculations of interference, but
in practice this may not be the case. When there is bulk-
edge tunneling one might imagine that a quasiparticle mov-
ing along the edge may tunnel into the bulk for a moment and
thereby evade encircling some of the localized quasiparticles
thus smearing out any interference pattern. The first theoreti-
cal steps to analysing this situation have been taken in (Over-
bosch and Wen, 2007; Rosenowet al., 2007) where tunnling
to a single impurity is considered. Surprisingly it is found
that the interfernece pattern is full strength both in the strong
tunneling limit as well as in the weak tunneling limit.

While the experiment we described for theν = 5/2 state
does not require a precise determination ofn, as it is only
its parity that determines the amplitude of the interference
pattern, it does require that the numbern does not fluctu-
ate within the duration of the experiment. Generally, fluc-
tuations inn would be suppressed by low temperature, large
charging energy and diminished tunnel coupling between the
bulk and the edge. However, when their suppression is not
strong enough, andn fluctuates over a range much larger than
1 within the time of the measurement, two signatures of the
non-Abelian statistics of the quasiparticles would still survive,
at least as long as the characteristic time scale of these fluctu-
ations is much longer than the time between back–scattering
events. First, any change inn would translate to a change in
the back–scattered current, or the two-terminal conductance
of the device. Hence, fluctuations inn would introduce cur-
rent noise of the telegraph type, with a unique frequency de-
pendence (Grosfeldet al., 2006). Second, fluctuations inn
would suppress all terms in Eq. (111) other than those where
m = 4k with k an integer. Thus, the back–scattered current
will have a periodicity of one flux quatumΦ0, and the visi-
bility of the flux oscillations, for weak back–scattering, would
be I4

I0
∝ I3

0 .
A similar relation holds also for another type of interfer-

ence experiment, in which the interferometer is of the Mach-
Zehnder type, rather than the Fabry-Perot type. (A Mach-
Zehnder interferometer has already been constructed in the
integer quantum Hall regime (Jiet al., 2003)). If we are
to describe the Mach-Zehnder interferometer in a language
close to that we used for the Fabry-Perot one, we would note
the following important differences: first, no multiple back–
scattering events are allowed. And second, since the area en-
closed by the interfering partial waves now encompasses the
inner edge, the quantum state of the encircled areachanges
with each tunneling quasiparticle. Thus, it is not surprising
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that the outcome of an interference experiment in a Mach-
Zehnder geometry will be very close to that of a Fabry-Perot
experiment with strong fluctuations inn. The telegraph noise
in the Fabry-Perot case(Grosfeldet al., 2006) becomes shot
noise in the Mach-Zehnder case. Remarkably(Feldmanet al.,
2006) the effective charge extracted from that noise carries a
signature of the non-Abelian statistics: as the flux is varied,
the charge changes frome/4 to about3e.

Other than interference experiments, there are several pro-
posals for experiments that probe certain aspects of the
physics of non-Abelian states. The degeneracy of the ground
state in the presence of vortices may be probed(Grosfeld and
Stern, 2006) by the consequences of its removal: when the fill-
ing factor isν = 5/2 + ǫ with ǫ≪ 1, quasiparticles are intro-
duced into the bulk of the system, with a density proportional
to ǫ. For a clean enough sample, and a low enough density,
the quasiparticles form a lattice. In that lattice, the Majorana
zero modes of the different quasiparticles couple by tunneling,
and the degeneracy of the ground states is removed. The sub-
space of multiply-degenerate ground states is then replaced by
a band of excitations. The neutrality of the Majorana modes is
removed too, and the excitations carry a charge that is propor-
tional to their energy. This charge makes these modes weakly
coupled to an externally applied electric field, and provides a
unique mechanism for a dissipation of energy, with a charac-
teristic dependence on the wave vector and frequency of the
electric field. Since the tunnel coupling between neighboring
quasiparticles depends exponentially on their separation, this
mechanism will be exponentially sensitive to the distance of
the filling factor from 5/2 (Grosfeld and Stern, 2006).

G. Lattice Models with P, T -Invariant Topological Phases

Our discussion of topological phases has revolved around
fractional quantum Hall states because these are the only ones
known to occur in nature (although two dimensional3He-A
(Leggett, 1975; Volovik, 1994) and Sr2RuO4 may join this list
(Kidwingira et al., 2006; Xiaet al., 2006)). However, there is
nothing inherent in the definition of a topological phase which
consigns it to the regime of high magnetic fields and low tem-
peratures. Indeed, highly idealized models of frustrated mag-
nets also show such phases, as we have discussed in section
II.D. Of course, it is an open question whether these models
have anything to do with any real electronic materials or their
analogs with cold atoms in optical lattices, i.e. whether the
idealized models can be adiabatically connected to more real-
istic models. In this section, we do not attempt to answer this
question but focus, instead, on understanding how these mod-
els of topological phases can be solved. As we will see, their
solubility lies in their incorporation of the basic topological
structure of the corresponding phases.

One way in which a topological phase can emerge from
some microscopic model of interacting electrons, spins, or
cold atoms is if the low-lying degrees of freedom of the mi-
croscopic model can be mapped to the degrees of freedom of
the topological phase in question. As we have seen in section
III.C, these degrees of freedom are Wilson loops (59). Loops

are the natural degrees of freedom in a topological phase be-
cause the topological charge of a particle or collection of par-
ticles can only be determined, in general, by taking a test par-
ticle around the particle or collection in question. Therefore,
the most direct way in which a system can settle into a topo-
logical phase is if the microscopic degrees of freedom orga-
nize themselves so that the low-energy degrees of freedom are
loops or, as we will see below, string nets (in which we allow
vertices into which three lines can run). As we will describe
more fully below, the Hilbert space of a non-chiral topologi-
cal phase can be described very roughly as a ‘Fock space for
loops’ (Freedmanet al., 2004). Wilson loop operators are es-
sentially creation/annihilation operators for loops. TheHilbert
space is spanned by basis states which can be built up by act-
ing with Wilson loop operators on the state with no loops, i.e.
|γ1 ∪ . . . ∪ γn〉 = W [γn] . . .W [γ1]|∅〉 is (vaguely) analgous
to |k1, . . . , k2〉 ≡ a†kn

. . . a†k1 |0〉. An important difference is
that the states in the topological theory must satisfy some ex-
tra constraints in order to correctly represent the algebraof
the operatorsW [γ]. If we write an arbitrary state|Ψ〉 in the
basis given above,Ψ[γ1 ∪ . . . ∪ γn] = 〈Ψ|γ1 ∪ . . . ∪ γn〉,
then the ground state(s) of the theory are linearly independent
Ψ[γ1 ∪ . . . ∪ γn] satisfying some constraints.

In fact, we have already seen an example of this in section
II.D: Kitaev’s toric code model (18). We now represent the
solution in a way which makes the emergence of loops clear.
We color every link of the lattice on which the spin points up.
Then, the first term in (18) requires that there be an even num-
ber of colored links emerging from each site on the lattice. In
other words, the colored links form loops which never termi-
nate. On the square lattice, loops can cross, but they cannot
cross on the honeycomb lattice; for this reason, we will often
find it more convenient to work on the honeycomb lattice. The
second term in the Hamiltonian requires that the ground state
satisfy three further properties: the amplitude for two config-
urations is the same if one configuration can be transformed
into another simply by (1) deforming some loop without cut-
ting it, (2) removing a loop which runs around a single plaque-
tte of the lattice, or (3) cutting open two loops which approach
each other within a lattice spacing and rejoining them into a
single loop (or vice-versa), which is calledsurgery. A vertex
at which the first term in the Hamiltonian is not satisfied is an
excitation, as is a plaquette at which the second term is not
satisfied. The first type of excitation acquires a−1 when it is
taken around the second.

The toric code is associated with the low-energy physics
of the deconfined phase ofZ2 gauge theory (Fradkin and
Shenker, 1975; Kogut, 1979); see also Senthil and Fisher,
2000 for an application to strongly-correlated electron sys-
tems). This low-energy physics can be described by an
Abelian BF-theory (Hanssonet al., 2004):

S =
1

π

∫

eµǫ
µνλ∂νaλ

= SCS
(
a+ 1

2e
)
− SCS

(
a− 1

2e
)

(120)

eµ is usually denotedbµ andǫµνλ∂νaλ = 1
2ǫ
µνλfνλ, hence

the name. Note that this theory is non-chiral. Under a com-
bined parity and time-reversal transformation,eµ must change
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sign, and the action is invariant. This is important since iten-
ables the fluctuating loops described above to represent the
Wilson loops of the gauge fieldaµ. In a chiral theory, it is
not clear how to do this sincea1 anda2 do not commute with
each other. They cannot both be diagonalized; we must arbi-
trarily choose one direction in which Wilson loops are diago-
nal operators. It is not clear how this will emerge from some
microscopic model, where we would expect that loops would
not have a preferred direction, as we saw above in the toric
code. Therefore, we focus on non-chiral phases, in particular,
the SU(2)k analog of (120) (Cattaneoet al., 1995):

S = SkCS(a+ e) − SkCS(a− e)

=
k

4π

∫

tr

(

e ∧ f +
1

3
e ∧ e ∧ e

)

(121)

We will call this theorydoubled SU(2)k Chern-Simons theory
(Freedmanet al., 2004).

We would like a microscopic lattice model whose low-
energy Hilbert space is composed of wavefunctionsΨ[γ1 ∪
. . . ∪ γn] which assign a complex amplitude to a given con-
figuration of loops. The model must differ from the toric code
in the constraints which it imposes on these wavefunctions.
The corresponding constraints for (121) are essentially the
rules for Wilson loops which we discussed in subsection III.C
(Freedmanet al., 2004). For instance, ground state wavefunc-
tions shouldnot give the same the amplitude for two config-
urations if one configuration can be transformed into another
simply by removing a loop which runs around a single plaque-
tte of the lattice. Instead, the amplitude for the former config-
uration should be larger by a factor ofd = 2 cosπ/(k + 2),
which is the value of a single unknotted Wilson loop. Mean-
while, the appropriate surgery relation is not the joining of
two nearby loops into a single one, but instead is the condi-
tion that whenk+1 lines come close together, the amplitudes
for configurations in which they are cut open and rejoined in
different ways satisfy some linear relation. This relationis es-
sentially the requirement that thej = (k + 1)/2 Jones-Wenzl
projector should vanish within any loop configuration, as we
might expect since a Wilson loop carrying the corresponding
SU(2) representation should vanish.

The basic operators in the theory are Wilson loops,W [γ],
of the gauge fieldaaµ in (121) in the fundamental (j = 1/2)
representation of SU(2). A Wilson loop in a higherj repre-
sentation can be constructed by simply taking2j copies of a
j = 1/2 Wilson loop and using the appropriate Jones-Wenzl
projector to eliminate the other representations which result
in the fusion of2j copies ofj = 1/2. If the wavefunction
satisfies the constraint mentioned above, then it will vanish
identically if acted on by aj > k/2 Wilson loop.

These conditions are of a topological nature, so they are
most natural in the continuum. In constructing a lattice model
from which they emerge, we have a certain amount of free-
dom in deciding how these conditions are realized at the lattice
scale. Depending on our choice of short-distance regulariza-
tion, the model may be more of less easily solved. In some
cases, an inconvenient choice of short-distance regularization
may actually drive the system out of the desired topological
phase. Loops on the lattice prove not to be the most conve-

nient regularization of loops in the continuum, essentially be-
cause whend is large, the lattice fills up with loops which then
have no freedom to fluctuate (Freedmanetal., 2004). Instead,
trivalent graphs on the lattice prove to be a better way of pro-
ceeding (and, in the case of SU(3)k and other gauge groups,
trivalent graphs are essential (Kuperberg, 1996; Turaev and
Viro, 1992)). The most convenient lattice is the honeycomb
lattice, since each vertex is trivalent. A trivalent graph is sim-
ply a subset of the links of the honeycomb lattice such that no
vertex has only a single link from the subset emanating from
it. Zero, two, or three links can emanate from a vertex, cor-
responding to vertices which are not visited by the trivalent
graph, vertices through which a curve passes, and vertices at
which three curves meet. We will penalize energetically ver-
tices from which a single colored link emanates. The ground
state will not contain such vertices, which will be quasipar-
ticle excitations. Therefore, the ground stateΨ[Γ] assigns a
complex amplitude to a trivalent graphΓ.

Such a structure arises in a manner analogous to the loop
structure of the toric code: if we had spins on the links of
the honeycomb lattice, then an appropriate choice of interac-
tion at each vertex will require that colored links (on which
the spin points up) form a trivalent graph. We note that links
can be given a further labeling, although we will not dis-
cuss this more complicated situation in any detail. Each col-
ored link can be assigned aj in the set12 , 1, . . . ,

k
2 . Uncol-

ored links are assignedj = 0. Rather than spin-1/2 spins
on each link, we should take spin-k/2 on each link, with
Sz = −k/2 corresponding toj = 0, Sz = −k/2 + 1
corresponding toj = 1/2, etc. (or perhaps, we may want
to consider models with rather different microscopic degrees
of freedom). In this case, we would further require that the
links around each vertex should satisfy the branching rules
of SU(2)k: |j1 − j2| ≥ j3 ≤ min

(
j1 + j2,

k
2 − j1 − j2

)
. The

case which we have described in the previous paragraph, with-
out the additionalj label could be applied to the levelk = 1
case, with colored links carryingj = 1/2 or to levelk = 3,
with colored links carryingj = 1, as we will discuss further
below. A trivalent graph represents a loop configuration in the
manner depicted in Figure 12a. One nice feature is that the
Jones-Wenzl projections are enforced on every link from the
start, so no corresponding surgery constraint is needed.

If we would like a lattice model to be in the doubled SU(2)3

universality class, which has quasiparticle excitations which
are Fibonacci anyons, then its Hamiltonian should impose the
following: all low-energy states should have vanishing am-
plitude on configurations which are are not trivalent graphs,
as defined above; and the amplitude for a configuration with
a contractible loop should be larger than the amplitude for a
configuration without this loop by a factor ofd = 2 cos π5 =

φ = (1 +
√

5)/2 for a closed, contractible loop. These condi-
tions can be imposed by terms in the Hamiltonian which are
more complicated versions of the vertex and plaquette terms
of (18). It is furthermore necessary for the ground state wave-
function(s) to assign the same amplitude to any two trivalent
graphs which can be continuously deformed into each other.
However, as mentioned above, surgery is not necessary. The
Hamiltonian takes the form (Levin and Wen, 2005b) (see also
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FIG. 12 (a)j/2 parallel lines projected onto representationj are
represented by the labelj on a link. (b) The plaquette terms add a
rep.-j loop. This can be transformed back into a trivalent graph on
the lattice using theF -matrix as shown.

Turaev and Viro, 1992):

H = −J1

∑

Ai − J2

∑

p

k/2
∑

j=0

F (j)
p (122)

Here and below, we specialize tok = 3. The degrees of free-
dom on each link ares = 1/2 spins;sz = + 1

2 is interpreted
as aj = 1 colored link, whilesz = − 1

2 is interpreted as a
j = 0 uncolored link. The vertex terms impose the triangle in-
equality,|j1 − j2| ≥ j3 ≤ min

(
j1 + j2,

3
2 − j1 − j2

)
, on the

threej’s on the links neighboring each vertex. For Fibonacci
anyons (see Sec. IV.B), which can only havej = 0, 1, this
means that if links withj = 1 are colored, then the colored
links must form a trivalent graph, i.e. no vertex can have only
a single up-spin adjacent to it. (There is no further require-
ment, unlike in the general case, in which there are additional
labels on the trivalent graph.)

The plaquette terms in the Hamiltonian are complicated in
form but their action can be understood in the following sim-
ple way: we imagine adding to a plaquette a loopγ carrying
representationj and require that the amplitude for the new
configurationΨ[Γ ∪ γ] be larger than the amplitude for the
old configuration by a factor ofdj . For Fibonacci anyons, the
only non-trivial representation isj = 1; we require that the
wavefunction change by a factor ofd = φ when such a loop is
added. If the plaquette is empty, then ‘adding a loop’ is sim-
ple. We simply have a new trivalent graph with one extra loop.
If the plaquette is not empty, however, then we need to spec-
ify how to ‘add’ the additional loop to the occupied links. We
draw the new loop in the interior of the plaquette so that it runs
alongside the links of the plaquette, some of which are occu-
pied. Then, we use theF -matrix, as depicted in Figure 12b,
to recouple the links of the plaquette (Levin and Wen, 2005b)
(see also Turaev and Viro, 1992). This transforms the plaque-
tte so that it is now in a superposition of states with different

j’s, as depicted in Figure 12b; the coefficients in the superpo-
sition are sums of products of elements of theF -matrix. The
plaquette term commutes with the vertex terms since adding a
loop to a plaquette cannot violate the triangle inequality (see
Figure 12a). Clearly vertex terms commute with each other,
as do distant plaquette terms. Plaquette terms on adjacent
plaquettes also commute because they just add loops to the
link which they share. (This is related to the pentagon iden-
tity, which expresses the associativity of fusion.) Therefore,
the model is exactly soluble since all terms can be simulta-
neously diagonalized. Vertices with a single adjacent colored
(ie. monovalent vertices) are non-Abelian anyonic excitations
carryingj = 1 under the SU(2) gauge group ofaaµ in (121).
A state at which the plaquette term in (122) is not satisfied is
a non-Abelian anyonic excitation carryingj = 1 under the
SU(2) gauge group ofeaµ (or, equivalently,aaµ flux).

One interesting feature of the ground state wavefunction
Ψ[Γ] of (122), and of related models with loop representations
(Fendley and Fradkin, 2005; Fidkowskietal., 2006; Freedman
et al., 2004) is their relation to the Boltzmann weights of sta-
tistical mechanical models. For instance, the norm squaredof
ground state of of (122), satisfies|Ψ[Γ]|2 = e−βH , whereβH
is the Hamiltonian of theq = φ + 2 state Potts model. More
precisely, it is the low-temperature expansion of theq = φ+2
state Potts model extrapolated to infinite temperatureβ = 0.
The square of the ground state of the toric code (18) is the
low-temperature expansion of the Boltzmann weight of the
q = 2 state Potts model extrapolated to infinite temperature
β = 0. On the other hand, the squares of the ground states
|Ψ[γ1 ∪ . . . ∪ γn]|2 of loop models (Freedmanet al., 2004),
are equal to the partition functions of O(n) loop gas models of
statistical mechanics, withn = d2. These relations allow one
to use known results from statistical mechanics to compute
equal-time ground state correlation functions in a topological
ground state, although the interesting ones are usually of oper-
ators which are non-local in the original quantum-mechanical
degrees of freedom of the model.

It is also worth noting that a quasi-one-dimensional analog
has been studied in detail (Bonesteel and Yang, 2007; Feiguin
et al., 2007a). It is gapless for a single chain and has an inter-
esting phase diagram for ladders.

Finally, we note that the model of Levin and Wen is, admit-
tedly, artificial-looking. However, a model in the same uni-
versality class might emerge from simpler models (Fidkowski
et al., 2006). Since (122) has a gap, it will be stable against
small perturbations. In the case of the toric code, it is known
that even fairly large perturbations do not destabilize thestate
(Trebstet al., 2007).

This brings to a close our survey of the physics of topolog-
ical phases. In section IV, we will consider their application
to quantum computing.
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IV. QUANTUM COMPUTING WITH ANYONS

A. ν = 5/2 Qubits and Gates

A topological quantum computer is constructed using a sys-
tem in a non-Abelian topological phase. A computation is
performed by creating quasiparticles, braiding them, and mea-
suring their final state. In section II.C.4, we saw how a qubit
could be constructed with theν = 5/2 state and a NOT gate
applied. In this section, we discuss some ideas about how a
quantum computer could be built by extending these ideas.

The basic feature of the Ising TQFT and its close relative,
SU(2)2, which we exploit for storing quantum information is
the existence of two fusion channels for a pair ofσ quasipar-
ticles,σ × σ ∼ 1 + ψ. When the fusion outcome is1, we
say that the qubit is in the state|0〉; when it isψ, the state|1〉.
When there are2n quasiparticles, there is a2n−1-dimensional
space of states. (This is how many states there are with total
topological charge1; there is an equal number with total topo-
logical chargeψ.) We would like to use this2n−1-dimensional
space to store quantum information; the most straightforward
way to do so is to view it asn− 1 qubits.

Generalizing the construction of section II.C.4 to many
pairs of anti-dots, we can envision (Freedmanet al., 2006)
an(n − 1)-qubit system which is a Hall bar with2n antidots
at which quasiholes are pinned, as in Figure 13.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

FIG. 13 A system withn quasihole pairs (held at pairs of anti-dots,
depicted as shaded circles) supportsn qubits. Additional antidots
(hatched) can be used to move the quasiparticles.

The NOT gate discussed in section II.C.4 did not require
us to move the quasiparticles comprising the qubit, only ad-
ditional quasiparticles which we brought in from the edge.
However, to implement other gates, we will need to move
the quasiparticles on the anti-dots. In this figure, we have
also depicted additional anti-dots which can be used to move
quasiparticles from one anti-dot to another (e.g. as a ‘bucket
brigade’), see, for instance, Simon, 2000. If we exchange two
quasiparticles from the same qubit, then we apply the phase
gateU = eπi/8 diag(Rσσ1 , Rσσψ ) (the phase in front of the ma-
trix comes from the U(1) part of the theory). However, if the
two quasiparticles are from different qubits, then we applythe
transformation

U =
1√
2








1 0 0 −i
0 1 −i 0

0 −i 1 0

−i 0 0 1







. (123)

to the two-qubit Hilbert space.
By coupling two qubits in this way, a CNOT gate can be

constructed. Let us suppose that we have 4 quasiparticles.
Then, the first pair can fuse to either1 orψ, as can the second
pair. Naively, this is4 states but, in fact, it is really two states
with total topological charge1 and two states with total topo-
logical chargeψ. These two subspaces cannot mix by braid-
ing the four quasiparticles. However, by braiding our qubits
with additional quasiparticles, we can mix these four states.
(In our single qubit NOT gate, we did this by using quasipar-
ticles from the edge.) Therefore, following Georgiev, 2006,
we consider a system with 6 quasiparticles. Quasiparticles1
and2 will be qubit 1; when they fuse to1 or ψ, qubit 1 is in
state|0〉 or |1〉. Quasiparticles5 and6 will be qubit 2; when
they fuse to1 or ψ, qubit 2 is in state|0〉 or |1〉. Quasiparti-
cles 3 and 4 soak up the extraψ, if necessary to maintain total
topological charge1 for the entire six-quasiparticle system.
In the four states|0, 0〉, |1, 0〉, |0, 1〉, and|1, 1〉, the quasipar-
ticle pairs fuse to1,1,1, toψ, ψ,1, to1, ψ, ψ, and toψ,1, ψ,
respectively.

In this basis,ρ(σ1), ρ(σ3), ρ(σ5) are diagonal, whileρ(σ2)
andρ(σ4) are off-diagonal (e.g.ρ(σ2) is (123) rewritten in the
two qubit/six quasiparticle basis). By direct calculation(e.g.
by usingρ(σi) = e

π
4
γiγi+1), it can be shown (Georgiev, 2006)

that:

ρ(σ−1
3 σ4σ3σ1σ5σ4σ

−1
3 ) =








1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







. (124)

which is simply a controlled NOT operation.
One can presumably continue in this way, with one extra

pair of quasiparticles, which is used to soak up an extraψ if
necessary. However, this is not a particularly convenient way
of proceeding since various gates will be different for differ-
ent numbers of particles: the CNOT gate above exploited the
extra quasiparticle pair which is shared equally between the
two qubits acted on by the gate, but this will not work in the
same way for more than two qubits. Instead, it would be eas-
ier to encode each qubit in four quasiparticles. If each quartet
of quasiparticles has total topological charge1, then it can be
in either of two states since a given pair within a quartet can
fuse to either1 or ψ. In other words, each quasiparticle pair
comes with its own spare pair of quasiparticles to soak up its
ψ if necessary.

Unfortunately, the SU(2)2 phase of matter is not capable
of universal quantum computation, i.e. the transformations
generated by braiding operations are not sufficient to imple-
ment all possible unitary transformations (Freedmanet al.,
2002a,b). The reason for this shortcoming is that in this the-
ory, braiding of two particles has the effect of a 90 degree ro-
tation (Nayak and Wilczek, 1996) in the multi-quasiparticle
Hilbert space. Composing such 90 degree rotations will
clearly not allow one to construct arbitrary unitary operations
(the set of 90 degree rotations form a finite closed set).

However, we do not need to supplement braiding with much
in order to obtain a universal gate set. All that is needed
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is a single-qubitπ/8 phase gate and a two-qubit measure-
ment. One way to implement these extra gates is to use some
non-topological operations (Bravyi, 2006). First, consider the
single-qubit phase gate. Suppose quasiparticles1, 2, 3, 4 com-
prise the qubit. The states|0〉 and|1〉 correspond to1 and2
fusing to1 or ψ (3 and4 must fuse to the same as1 and2,
since the total topological charge is required to be1). If we
bring quasiparticles1 and2 close together then their splitting
will become appreciable. We expect it to depend on the sepa-
rationr as∆E(r) ∼ e−r∆/c, wherer is the distance between
the quasiparticles andc is some constant with dimensions of
velocity. If we wait a timeTp before pulling the quasiparti-
cles apart again, then we will apply the phase gate (Freedman
et al., 2006)UP = diag(1, ei∆E(r)Tp). If the timeT and dis-
tancer are chosen so that∆E(r)Tp = π/4, then up to an
overall phase, we would apply the phase gate:

Uπ/8 =

(

e−πi/8 0

0 eπi/8

)

(125)

We note that, in principle, by measuring the energy when the
two quasiparticles are brought together, the state of the qubit
can be measured.

The other gate which we need for universal quantum com-
putation is the non-destructive measurement of the total topo-
logical charge of any four quasiparticles. This can be done
with an interference measurement. Suppose we have two
qubits which are associated with quasiparticles1, 2, 3, 4 and
quasiparticles5, 6, 7, 8 and we measure the total topologi-
cal charge of3, 4, 5, 6. The interference measurement is of
the type described in subsection II.C.3: edge currents tunnel
across the bulk at two points on either side of the set of four
quasiparticles. Depending on whether the four quasiparticles
have total topological charge1 or ψ, the two possible trajec-
tories interfere with a phase±1. We can thereby measure the
total parity of two qubits. (For more details, see Freedman
et al., 2006.)

Neither of these gates can be applied exactly, which means
that we are surrendering some of the protection which we have
worked so hard to obtain and need some software error cor-
rection. However, it is not necessary for theπ/8 phase gate or
the two qubit measurement to be extremely accurate in order
for error correction to work. The former needs to be accurate
to within 14% and the latter to within38% (Bravyi, 2006).
Thus, the requisite quantum error correction protocols arenot
particularly stringent.

An alternate solution, at least in principle, involves chang-
ing the topology of the manifold on which the quasiparticles
live (Bravyi and Kitaev, 2001). This can be realized in a de-
vice by performing interference measurements in the presence
of moving quasiparticles (Freedmanet al., 2006).

However, a more elegant approach is to work with a non-
Abelian topological state which supports universal topological
quantum computation through quasiparticle braiding alone. In
the next subsection, we give an example of such a state and
how quantum computation can be performed with it. In sub-
section IV.C, we sketch the proof that a large class of such
states is universal.

B. Fibonacci Anyons: a Simple Example which is
Universal for Quantum Computation

One of the simplest models of non-Abelian statistics is
known as the Fibonacci anyon model, or “Golden theory”
(Bonesteeletal., 2005; Freedmanetal., 2002a; Hormozietal.,
2007; Preskill, 2004). In this model, there are only two fields,
the identity (1) as well as single nontrivial field usually called
τ which represents the non-Abelian quasiparticle. (Note there
is no field representing the underlying electron in this simpli-
fied theory). There is a single nontrivial fusion rule in this
model

τ × τ = 1 + τ (126)

which results in the Bratteli diagram given in Fig. 9b. This
model is particularly simple in that any cluster of quasiparti-
cles can fuse only to1 or τ .

Thej = 0 andj = 1 quasiparticles in SU(2)3 satisfy the fu-
sion rules of Fibonacci anyons. Therefore, if we simply omit
thej = 1/2 andj = 3/2 quasiparticles from SU(2)3, we will
have FIbonacci anyons. This is perfectly consistent since half-
integralj will never arise from the fusions of integraljs; the
model with only integer spins can be called SO(3)2 or, some-
times, ‘the even part of SU(2)3’. As a result of the connection
to SU(2)3, sometimes1 is called q-spin “0” andτ is called
q-spin “1” (see (Hormoziet al., 2007)).Z3 parafermions are
equivalent to a coset theory SU(2)3/U(1). This can be real-
ized with an SU(2)3 WZW model in which the U(1) subgroup
is coupled to a gauge field (Gawȩdzki and Kupiainen, 1988;
Karabaliet al., 1989). Consequently,Z3 parafermions have
essentially the same fusion rules as SU(2)3; there are some
phase differences between the two theories which show up in
theR andF -matrices. In theZ3 parafermion theory, the field
ǫ which results from fusingσ1 with ψ1 satisfies the Fibonacci
fusion rule Eq. 126, i.e.,ǫ× ǫ = 1 + ǫ.

As with theZ3 parafermion model described above, the di-
mension of the Hilbert space withn quasiparticles (i.e., the
number of paths through the Bratteli diagram 9b terminating
at1) is given by the Fibonacci number Fib(n − 1), hence the
name Fibonacci anyons. And similarly the number terminat-
ing at τ is Fib(n). Therefore, the quantum dimension of the
τ particle is the golden mean,dτ = φ ≡ (1 +

√
5)/2 (from

which the theory receives the name “golden” theory). The Fi-
bonacci model is the simplest known non-Abelian model that
is capable of universal quantum computation (Freedmanetal.,
2002a). (In the next section, the proof will be described for
SU(2)3, but the Fibonacci theory, which is its even part, is also
universal.) It is thus useful to study this model in some detail.
Many of the principles that are described here will generalize
to other non-Abelian models. We note that a detailed discus-
sion of computing with the Fibonacci model is also given in
Hormoziet al., 2007.

(a) Structure of the Hilbert Space: An important feature
of non-Abelian systems is the detailed structure of the Hilbert
space. A given state in the space will be described by a “fusion
path”, or “fusion tree” (See appendix A). For example, using
the fusion rule (126), or examining the Bratteli diagram we
see that when twoτ particles are present, they may fuse into
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1 τ|0〉 = |((•, •)1, •)τ 〉 = =

τ τ τ

1

τ

τ τ|1〉 = |((•, •)τ , •)τ 〉 = =

τ τ τ

τ
τ

τ 1
|N〉 = |((•, •)τ , •)1〉 = =

τ τ τ

τ

1

FIG. 14 The three possible states of three Fibonacci particles, shown
in several common notations. The “quantum number” of an individ-
ual particle isτ . In the parenthesis and ellipse notation (middle),
each particle is shown as a black dot, and each pair of parenthesis or
ellipse around a group of particles is labeled at the lower right with
the total quantum number associated with the fusion of that group.
Analogously in the fusion tree notation (right) we group particles as
described by the branching of the tree, and each line is labeled with
the quantum number corresponding to the fusion of all the particles
in the branches above it. For example on the top line the two parti-
cles on the left fuse to form1 which then fuses with the remaining
particle on the right to formτ . As discussed below in section IV.B.c,
three Fibonacci particles can be used to represent a qubit. The three
possible states are labeled (far left) as the logical|0〉, |1〉 and |N〉
(noncomputational) of the qubit.

two possible orthogonal degenerate states – one in which they
fuse to form1 and one in which they fuse to formτ . A con-
venient notation (Bonesteelet al., 2005) for these two states
is |(•, •)1〉 and |(•, •)τ 〉. Here, each• represents a particle.
From the fusion rule, when a third is added to two particles
already in the1 state (i.e., in|(•, •)1〉) it must fuse to form
τ . We denote the resulting state as|((•, •)1, •)τ 〉 ≡ |0〉. But
if the third is added to two in theτ state, it may fuse to form
eitherτ or 1, giving the two states|((•, •)τ , •)τ 〉 ≡ |1〉 and
|((•, •)τ , •)1〉 ≡ |N〉 respectively. (The notations|0〉, |1〉 and
|N〉 will be discussed further below). Thus we have a three
dimensional Hilbert space for three particles shown using sev-
eral notations in Fig. 14.

In the previous example, and in Fig. 14 we have always
chosen to fuse particles together starting at the left and go-
ing to the right. It is, of course, also possible to fuse parti-
cles in the opposite order, fusing the two particles on the right
first, and then fusing with the particle furthest on the left last.
We can correspondingly denote the three resulting states as
|(•, (•, •)1)τ 〉, |(•, (•, •)τ )τ 〉, and|(•, (•, •)τ )1〉. The space
of states that is spanned by fusion of non-Abelian particlesis
independent of the fusion order. However, different fusionor-
ders results in a different basis set for that space. This change
of basis is precisely that given by theF -matrix. For Fibonacci
anyons it is easy to see that

|(•, (•, •)τ)1〉 = |((•, •)τ , •)1〉 (127)

since in either fusion order there is only a single state thathas
total topological charge1 (the overall quantum number of a
group of particles is independent of the basis). However, the
other two states of the three particle space transform nontriv-
ially under change of fusion order. As described in appendix

A, we can write a change of basis using theF -matrix as

|(•, (•, •)i)k〉 =
∑

j [F τττk ]ij |((•, •)j , •)k〉 (128)

wherei, j, k take the values of the fields1 or τ . (This is just a
rewriting of a special case of Fig. 23). Clearly from Eq. 127,
F τττ1 is trivially unity. However, the two-by-two matrixF ττττ

is nontrivial

[F ττττ ] =

(

F11 F1τ

Fτ1 Fττ

)

=

(

φ−1
√

φ−1
√

φ−1 −φ−1

)

(129)

Using thisF matrix, one can translate between bases that de-
scribe arbitrary fusion orders of many particles.

For the Fibonacci theory (Preskill, 2004), it turns out to be
easy to calculate theF -matrix using a consistency condition
known as the pentagon equation (Fuchs, 1992; Gomézet al.,
1996; Moore and Seiberg, 1988, 1989). This condition simply
says that one should be able to make changes of basis for four
particles in several possible ways and get the same result in
the end. As an example, let us consider

|(•, (•, (•, •)1)τ )1〉 = |((•, •)1, (•, •)1)1〉
= |((•, •)1, •)τ , •)1〉 (130)

where both equalities, as in Eq. 127 can be deduced from the
fusion rules alone. For example, in the first equality, given
(on the left hand side) that the overall quantum number is1

and the rightmost two particles are in a state1, then (on the
right hand side) when we fuse the leftmost two particles they
must fuse to1 such that the overall quantum number remains
1. On the other hand, we can also use theF -matrix (Eq. 128)
to write

|(•, (•, (•, •)1)τ )1〉 = (131)

F11|(•, ((•, •)1, •)τ )1〉 + F1τ |(•, ((•, •)τ , •)τ )1〉 =

F11|((•, (•, •)1)τ , •)1〉 + F1τ |((•, (•, •)τ )τ , •)1〉 =
∑

j (F11F1j + F1τFτj) |((•, •)j, •)τ , •)1〉

Comparing to Eq. 130, yieldsF1τ (F11 + Fττ ) = 0 and
F11F11 + F1τFτ1 = 1. This, and other similar consistency
identities, along with the requirement thatF be unitary, com-
pletely fix the FibonacciF -matrix to be precisely that given in
Eq. 129 (up to a gauge freedom in the definition of the phase
of the basis states).

(b) Braiding Fibonacci Anyons: As discussed in the in-
troduction, for non-Abelian systems, adiabatically braiding
particles around each other results in a unitary operation on
the degenerate Hilbert space. Here we attempt to determine
which unitary operation results from which braid. We start
by considering what happens to two Fibonacci particles when
they are braided around each other. It is known (Fuchs,
1992) that the topological spinΘτ of a Fibonacci fieldτ is
Θτ ≡ e2πi∆τ = e4πi/5. (Note that∆τ is also the dimension
of theǫ field of theZ3 theory, see Appendix A.) With this in-
formation, we can use the OPE (see Appendix A)as in section
III.D above, to determine the phase accumulated when two



55

time

σ1 σ2

j k j k

time

σ2 σ1 σ1 σ−1
2 σ−1

2 σ1

FIG. 15 Top: The two elementary braid operationsσ1 andσ2 on
three particles.Bottom: Using these two braid operations and their
inverses, an arbitrary braid on three strands can be built. The braid
shown here is written asσ2σ1σ1σ

−1
2 σ−1

2 σ1.

particles wrap around each other. If the twoτ fields fuse to-
gether to form1, then taking the two fields around each other
clockwise results in a phase−8π/5 = 2π(−2∆τ ) whereas
if the two fields fuse to formτ , taking the two fields around
each other results in a phase−4π/5 = 2π(−∆τ ). Note that
a Fibonacci theory with the opposite chirality can exist too
(an “antiholomorphic theory”), in which case one accumu-
lates the opposite phase. A particularly interesting non-chiral
(or “achiral”) theory also exists which is equivalent to a com-
bination of two chiral Fibonacci theories with opposite chiral-
ities. In section III.G, we discussed lattice spin models (Levin
and Wen, 2005b) which give rise to a non-chiral (or “achiral”)
theory which is equivalent to a combination of two chiral Fi-
bonacci theories with opposite chiralities. We will not discuss
these theories further here.

Once we have determined the phase accumulated for a full
wrapping of two particles, we then know that clockwise ex-
change of two particles (half of a full wrapping) gives a phase
of ±4π/5 if the fields fuse to1 or ±2π/5 if the fields fuse
to τ . Once again we must resort to consistency conditions to
determine these signs. In this case, we invoke the so-called
“hexagon”-identities (Fuchs, 1992; Moore and Seiberg, 1988,
1989) which in essence assure that the rotation operations are
consistent with theF -matrix, i.e., that we can rotate before or
after changing bases and we get the same result. (Indeed, one
way of proving that∆τ = 2/5 is by using this consistency
condition). We thus determine that theR-matrix is given by

R̂ |(•, •)1〉 = e−4πi/5 |(•, •)1〉 (132)

R̂ |(•, •)τ 〉 = −e−2πi/5 |(•, •)τ 〉 (133)

i.e.,R1
ττ = e−4πi/5 andRτττ = −e2πi/5. Using theR-matrix,

as well as the basis changingF -matrix, we can determine the
unitary operation that results from performing any braid on
any number of particles. As an example, let us consider three

particles. The braid group is generated byσ1 andσ2. (See Fig.
15) As discussed above, the Hilbert space of three particles
is three-dimensional as shown in Fig. 14. We can use Eqs.
132 and 133 trivially to determine that the unitary operation
corresponding to the braidσ1 is given by





|0〉
|1〉
|N〉




→






e−4πi/5 0 0

0 −e−2πi/5 0

0 0 −e−2πi/5






︸ ︷︷ ︸

ρ(σ1)






|0〉
|1〉
|N〉






(134)
where we have used the shorthand notation (See Fig. 14)
for the three particle states. Evaluating the effect ofσ2

is less trivial. Here, we must first make a basis change
(using F ) in order to determine how the two rightmost
particles fuse. Then we can make the rotation usingR̂
and finally undo the basis change. Symbolically, we can
write ρ(σ2) = F−1R̂F where R̂ rotates the two right-
most particles. To be more explicit, let us consider what
happens to the state|0〉. First, we use Eq. 128 to write
|0〉 = F11|(•, (•, •)1)τ 〉 + Fτ1|(•, (•, •)τ )τ 〉. Rotating the
two right particles then givese−4πi/5F11|(•, (•, •)1)τ 〉 −
e−2πi/5Fτ1|(•, (•, •)τ)τ 〉, and then we transform back
to the original basis using the inverse of Eq. 128 to yield
ρ(σ2)|0〉 = ([F−1]11e

−4πi/5F11−[F−1]1τe
−2πi/5Fτ1)|0〉+

([F−1]τ1e
−4πi/5F11 − [F−1]ττe

−2πi/5Fτ1)|1〉 =
−e−πi/5/φ |0〉 − ie−iπ/10/

√
φ |1〉. Similar results can

be derived for the other two basis states to give the matrix

ρ(σ2) =






−e−πi/5/φ −ie−iπ/10/√φ 0

−ie−iπ/10/√φ −1/φ 0

0 0 −e−2πi/5






(135)
Since the braid operationsσ1 andσ2 (and their inverses) gen-
erate all possible braids on three strands (See Fig. 15), we can
use Eqs. 134 and 135 to determine the unitary operation re-
sulting from any braid on three strands, with the unitary oper-
ations being built up from the elementary matricesρ(σ1) and
ρ(σ2) in the same way that the complicated braids are built
from the braid generatorsσ1 andσ2. For example, the braid
σ2σ1σ1σ

−1
2 σ−1

2 σ1 shown in Fig. 15 corresponds to the uni-
tary matrix ρ(σ1)ρ(σ

−1
2 )ρ(σ−1

2 )ρ(σ1)ρ(σ1)ρ(σ2) (note that
the order is reversed since the operations that occur at ear-
lier times are written to the left in conventional braid notation,
but on the right when multiplying matrices together).

(c) Computing with Fibonacci Anyons: Now that we
know many of the properties of Fibonacci anyons, we would
like to show how to compute with them. First, we need to
construct our qubits. An obvious choice might be to use two
particles for a qubit and declare the two states|(•, •)1〉 and
|(•, •)τ 〉 to be the two orthogonal states of the qubit. While
this is a reasonably natural looking qubit, it turns out not to
be convenient for computations. The reason for this is that
we will want to do single qubit operations (simple rotations)
by braiding. However, it is not possible to change the over-
all quantum number of a group of particles by braiding within
that group. Thus, by simply braiding the two particles around
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each other, we can never change|(•, •)1〉 to |(•, •)τ 〉. To
remedy this problem, it is convenient to use three quasipar-
ticles to represent a qubit as suggested by Freedmanet al.,
2002a (many other schemes for encoding qubits are also pos-
sible (Freedmanet al., 2002a; Hormoziet al., 2007)). Thus,
we represent the two states of the qubit as the|0〉 and|1〉 states
shown in Fig. 14. The additional state|N〉 is a “noncompu-
tational” state. In other words, we arrange so that at the be-
ginning and end of our computations, there is no amplitude in
this state. Any amplitude that ends up in this state is known as
“leakage error”. We note, however, that the braiding matrices
ρ(σ1) andρ(σ2) are block diagonal and therefore never mix
the noncomputational state|N〉 with the computational space
|0〉 and |1〉 (This is just another way to say that the overall
quantum number of the three particles must remain unchanged
under any amount of braiding). Therefore, braiding the three
particles gives us a way to do single qubit operations with no
leakage.

In section IV.C, we will describe a proof that the set of
braids has a “dense image” in the set of unitary operations for
the Fibonacci theory. This means that there exists a braid that
corresponds to a unitary operation arbitrarily close to anyde-
sired operation. The closer one wants to approximate the de-
sired unitary operation, the longer the braid typically needs to
be, although only logarithmically so (i.e, the necessary braid
length grows only as the log of the allowed error distance
to the target operation). The problem of actually finding the
braids that correspond to desired unitary operations, while ap-
parently complicated, turns out to be straightforward (Bones-
teelet al., 2005; Hormoziet al., 2007). One simple approach
is to implement a brute force search on a (classical) computer
to examine all possible braids (on three strands) up to some
certain length, looking for a braid that happen to generate a
unitary operation very close to some desired result. While this
approach works very well for searching short braids (Bones-
teel et al., 2005; Hormoziet al., 2007), the job of searching
all braids grows exponentially in the length of the braid, mak-
ing this scheme unfeasible if one requires high accuracy long
braids. Fortunately, there is an iterative algorithm by Solovay
and Kitaev (see Nielsen and Chuang, 2000) which allows one
to put together many short braids to efficiently construct a long
braid arbitrarily close to any desired target unitary operation.
While this algorithm does not generally find the shortest braid
for performing some operation (within some allowed error),
it does find a braid which is only polylogarithmically long in
the allowed error distance to the desired operation. Further-
more, the (classical) algorithm for finding such a braid is only
algebraically hard in the length of the braid.

Having solved the single qubit problem, let us now imag-
ine we have multiple qubits, each encoded with three parti-
cles. To perform universal quantum computation, in addi-
tion to being able to perform single qubit operations, we must
also be able to perform two-qubit entangling gates (Bremner
etal., 2002; Nielsen and Chuang, 2000). Such two-qubit gates
will necessarily involve braiding together (physically “entan-
gling”!) the particles from two different qubits. The result
of Freedmanet al., 2002a generally guarantees that braids ex-
ist corresponding to any desired unitary operation on a two-

qubit Hilbert space. However, finding such braids is now a
much more formidable task. The full Hilbert space for six Fi-
bonacci particles (constituting two qubits) is now 13 dimen-
sional, and searching for a desired result in such a high di-
mensional space is extremely hard even for a powerful classi-
cal computer. Therefore, the problem needs to be tackled by
divide-and-conquer approaches, building up two-qubit gates
out of simple braids on three particles (Bonesteelet al., 2005;
Hormoziet al., 2007). A simple example of such a construc-
tion is sketched in Fig. 16. First, in Fig. 16.a, we consider
braids on three strands that moves (“weaves” (Simonet al.,
2006)) only a single particle (the blue particle in the figure)
through two stationary particles (the green particles). We
search for such a braid whose action on the Hilbert space is
equivalent to exchanging the two green particles twice. Since
this is now just a three particle problem, finding such a braid,
to arbitrary accuracy, is computationally tractable. Next, for
the two qubit problem, we label one qubit the control (blue
in Fig. 16.b) and another qubit the target (green). We take a
pair of particles from the control qubit (the control pair) and
weave them as a group through two of the particles in the tar-
get, using the same braid we just found for the three particle
problem. Now, if the quantum number of the control pair is1

(i.e, control qubit is in state|0〉) then any amount of braiding
of this pair will necessarily give just an Abelian phase (since
moving1 around is like moving nothing around). However,
if the quantum number of the control pair isτ (i.e, the con-
trol qubit is in state|1〉) then we can think of this pair as be-
ing equivalent to a singleτ particle, and we will cause the
same nontrivial rotation as in Fig.16.a above (Crucially, this
is designed to not allow any leakage error!). Thus, we have
constructed a “controlled rotation” gate, where the state of the
target qubit is changed only if the control qubit is in state|1〉,
where the rotation that occurs is equivalent to exchanging two
particles of the target qubit as shown in Fig. 16.b. The result-
ing two-qubit controlled gate, along with single qubit rota-
tions, makes a universal set for quantum computation (Brem-
neret al., 2002). More conventional two-qubit gates, such as
the controlled NOT gates (CNOT), have also been designed
using braids (Bonesteelet al., 2005; Hormoziet al., 2007).

(d) Other theories: The Fibonacci theory is a particularly
interesting theory to study, not only because of its simplicity,
but also because of its close relationship (see the discussion at
the beginning of section IV.B) with theZ3 parafermion theory
— a theory thought to actually describe (Rezayi and Read,
2006) the observed quantum Hall state atν = 12/5 (Xia
et al., 2004). It is not hard to show that a given braid will
perform the same quantum computation in either theory (Hor-
mozi et al., 2007) (up to an irrelevant overall Abelian phase).
Therefore, the Fibonacci theory and the associated braiding
may be physically relevant for fractional quantum Hall topo-
logical quantum computation in high-mobility 2D semicon-
ductor structures.

However, there are many other non-Abelian theories, which
are not related to Fibonacci anyons. Nonetheless, for arbitrary
non-Abelian theories, many of the themes we have discussed
in this section continue to apply. In all cases, the Hilbert space
can be understood via fusion rules and anF -matrix; rotations



57

FIG. 16 Construction of a two qubit gate from a certain three particle
problem. ime flows from left to right in this picture. In the top we
construct a braid on three strands moving only the blue particle which
has the same effect as interchanging the two green strands. Using this
same braid (bottom), then constructs a controlled rotationgate. If the
state of the upper (control) qubit is|0〉, i.e., the control pair is in state
1 then the braid has no effect on the Hilbert space (up to a phase).
if, the upper (control) qubit is in the state|1〉 then the braid has the
same effect as winding two of the particles in the lower qubit. Figure
from Bonesteelet al., 2005

of two particles can be understood as a rotationR̂ operator
that produces a phase dependent on the quantum number of
the two particles; and one can always encode qubits in the
quantum number of some group of particles. If we want to be
able to do single qubit operations by braiding particles within
a qubit (in a theory that allows universal quantum computa-
tion) we always need to encode a qubit with at least three par-
ticles (sometimes more). To perform two-qubit operations we
always need to braid particles constituting one qubit with the
particles constituting another qubit. It is always the casethat
for any unitary operation that can be achieved by braidingn
particles around each other with an arbitrary braid can alsobe
achieved by weaving a single particle aroundn−1 others that
remain stationary (Simonetal., 2006) (Note that we implicitly
used this fact in constructing Fig. 15.a). So long as the state
is among the ones known to have braid group representations
with dense images in the unitary group, as described in Sec-
tion IV.C below, it will be able to support universal quantum
computation. Finally, we note that it seems to always be true
that the practical construction of complicated braids for multi-
qubit operations needs to be subdivided into more manageable
smaller problems for the problem to be tractable.

C. Universal Topological Quantum Computation

As we have seen in subsection IV.A, even if theν = 5/2
state is non-Abelian, it is not non-Abelian enough to func-
tion as a universal quantum computer simply by braiding
anyons. However, in subsection IV.B, we described Fibonacci
anyons which, we claimed, were capable of supporting uni-
versal topological quantum computation. In this subsection,
we sketch a proof of this claim within the context of the more
general question: which topological states are universal for

quantum computation or, in starker terms, for which topolog-
ical states is the entire gate set required to efficiently simulate
an arbitrary quantum circuit to arbitrary accuracy simply that
depicted in Figure 17 (see also Kauffman and Lomonaco Jr.,
2004, 2007).

The discussion in this section is more mathematical than
the rest of the paper and can skipped by less mathematically-
inclined readers.

FIG. 17 The entire gate set needed in a state supporting universal
quantum computation.

In other words, the general braid is composed of copies of a
single operation (depicted in Figure 17) and its inverse. (Ac-
tually, as we will see, “positive braids” will prove to be suf-
ficient, so there is no necessity to ever use the inverse oper-
ation.) Fibonacci anyons, which we discussed in subsection
IV.B, are an example which have this property. In this subsec-
tion, we will see why.

For the sake of concreteness, let us assume that we use a
single species of quasiparticle, which we will callσ. When
there aren σ’s at fixed positionsz1, . . . , zn, there is an
exponentially-large (∼ (dσ)

n-dimensional) ground state sub-
space of Hilbert space. Let us call this vector spaceVn. Braid-
ing theσ’s produces a representationρn characteristic of the
topological phase in question,ρn : Bn → U(Vn) from the
braid group onn strands into the unitary transformations of
Vn. We do not care about the overall phase of the wavefunc-
tion, since only the projective reduction in PU(Vn) has physi-
cal significance. (PU(Vn) is the set of unitary transformations
on Vn with two transformations identified if they differ only
by a phase.) We would like to be able to enact an arbitrary uni-
tary transformation, soρ(Bn) should be dense in PU(Vn), i.e.
dense up to phase. By ‘dense’ in PU(Vn), we mean that the
intersection of all closed sets containingρ(Bn) should simply
be PU(Vn). Equivalently, it means that an arbitrary unitary
transformation can be approximated, up to a phase, by a trans-
formation inρ(Bn) to within any desired accuracy. This is the
condition which our topological phase must satisfy.

For a modestly large number (≥ 7) of σs, it was shown
(Freedmanet al., 2002a,b) that the braid group representa-
tions associated withSU(2) Chern-Simons theory at level
k 6= 1, 2, 4 are dense inSU(Vn,k) (and hence inPU(Vn,k)).
With only a small number of low-level and small anyon num-
ber exceptions, the same articles show density for almost all
SU(N)k.

These Jones-Witten (JW) representations satisfy a key “two
eigenvalue property” (TEVP), discussed below, derived in this
SU(N) setting from the Hecke relations, and corresponding
to the HOMFLY polynomial (see, for instance, Kauffman,
2001 and refs. therein). The analysis was extended with sim-
ilar conclusions in (Larsenet al., 2005) to the case where the
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Lie groupG is of type BCD and braid generators have three
eigenvalues, corresponding to the BMW algebra and the two
variable Kauffman polynomial. For JW-representations of the
exceptional group at levelk, the number of eigenvalues of
braid generators can be composite integers (such as 4 forG2)
and this has so far blocked attempts to prove density for these
JW-representations.

In order to perform quantum computation with anyons,
there are many details needed to align the topological pic-
ture with the usual quantum-circuit model from computer sci-
ence. First, qubits must be located in the state spaceVn. Since
Vn has no natural tensor factoring (it can have prime dimen-
sion) this alignment (Freedmanet al., 2002a) is necessarily a
bit inefficient9; some directions inVn are discarded from the
computational space and so we must always guard against un-
intended “leakage” into the discarded directions. A possible
research project is how to adapt computation to “Fibonacci”
space (see subsection IV.B) rather than attempting to find bi-
nary structure withinVn. A somewhat forced binary structure
was explained in subsection IV.B in connection with encod-
ing qubits into SU(2)3, as it was done for level2 in subsection
IV.A. (A puzzle for readers: Suppose we write integers out as
“Fibonacci numerals”: 0 cannot follow 0, but 0 or 1 can fol-
low 1. How do you do addition and multiplication?) However,
we will not dwell on these issues but instead go directly to the
essential mathematical point: How, in practice, does one tell
which braid group representations are dense and which are
not, i.e. which ones are sufficient for universal topological
quantum computation and which ones need to be augmented
by additional non-topological gate operations?

We begin by noting that the fundamental skein relation of
Jones’ theory is:

q -1 (q         q   )-1
2

1
2q =

FIG. 18 Jones skein relation. (See (73)

(see (73) and the associated relation for the Kauffman bracket
(77)) This is a quadratic relation in each braid generatorσi and
by inspection any representation ofσi will have only two dis-
tinct eigenvaluesq

3
2 and−q 1

2 . It turns out to be exceedingly
rare to have a representation of a compact Lie groupH where
H is densely generated by elementsσi with this eigenvalue
restriction. This facilitates the identification of the compact
closureH = image(ρ) among the various compact subgroups
of U(Vn).

9 Actually, current schemes use approximately half the theoretical number
of qubits. One findsαlog2(dimVn) computational qubits inVn, for α =

(log2τ
3)−1 ≈ 0.48, φ = 1+

√
5

2
.

Definition IV.1. LetG be a compact Lie group andV a faith-
ful, irreducible, unitary representation. The pair(G, V ) has
the two eigenvalue property (TEVP) if there exists a conju-
gacy class[g] of G such that:

1. [g] generates a dense set inG

2. For anyg ∈ [g], g acts onV with exactly two distinct
eigenvalues whose ratio is not−1.

Let H be the closed image of some Jones representation
ρ : Bn → U(Vn). We would like to use figure 18 to assert that
the fundamental representation ofU(Vn) restricted toH , call
it θ, has the TEVP. All braid generatorsσi are conjugate and,
in nontrivial cases, the eigenvalue ratio is−q 6= −1. However,
we do not yet know if the restriction is irreducible. This prob-
lem is solved by a series of technical lemmas in (Freedman
et al., 2002a). Using TEVP, it is shown first that the further
restriction to the identity componentH0 is isotipic and then
irreducible. This implies thatH0 is reductive, so its derived
group[H0, H0] is semi-simple and, it is argued, still satisfies
the TEVP. A final (and harmless) variation onH is to pass to

the universal coverH ′ := ˜[H0, H0]. The pulled back repre-
sentationθ′ still has the TEVP and we are finally in a situation,
namely irreducible representations of semi-simple Lie groups
of bounded dimension, where we can hope to apply the clas-
sification of such representations (McKay and Patera, 1981)
to show that our mysteriousH ′ is none other thanSU(Vn).
If this is so, then it will follow that the preceding shenanigans

H → H0 → [H0, H0] → ˜[H0, H0] did nothing (beyond the
first arrow, which may have eliminated some components of
H on which the determinant is a nontrivial root of unity).

In general, milking the answer (to the question of which
Jones representations are projectively dense) out of the clas-
sification requires some tricky combinatorics and rank-level
(Freedmanet al., 2002b) duality. Here we will be content
with doing the easiest nontrivial case. Consider six Fibonacci
anyonsτ with total charge= 1. The associatedV6

∼= C5 ∼=
2 qubits⊕ non-computationalC as shown:

CC
4

+dim = 5

+=

τ τ τ
τ τ

FIG. 19 The charge on the dotted circle can be 1 orτ providing the
qubit.

In coordinates,ρ takes the braid generators (projectively) to
these operators:

σ1 7−→
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σ2 7−→
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where[3] = q + q−1 + 1, andσi, for i = 3, 4, 5, are similar.
See Funar, 1999 for details.

The closed image ofρ isH ⊂ U(5), so our irreducible rep-
resentationθ′ of H ′, coming fromU(5)’s fundamental, is ex-
actly 5 dimensional (we don’t yet know the dimension ofH ′).
From McKay and Patera, 1981, there are four 5-dimensional
irreducible representations, which we list by rank:

1. rank = 1:(SU(2), 4π1)

2. rank = 2:(Sp(4), π2)

3. rank = 4:(SU(5), πi), i = 1, 4

Supposex ∈ SU(2) has eigenvaluesα andβ in π1. Then
under4π1, it will have αiβj , i + j = 4 (i, j ≥ 0) as eigen-
values, which are too many (unlessαβ = −1). In case (2),
since 5 is odd, every element has at least one real eigen-
value, with the others coming in reciprocal pairs. Again, there
is no solution. Thus, the TEVP shows we are in case (3),
i.e. thatH ′ ∼= SU(5). It follows from degree theory that
[H0, H0] ∼= SU(5) and from this we get the desired conclu-
sion:SU(5) ⊂ H ⊂ U(5).

We have not yet explained in what sense the topological im-
plementations of quantum computations are efficient. Suffice
it to say that there are (nearly) quadratic time algorithms due
to Kitaev and Solvay (Nielsen and Chuang, 2000) for find-
ing the braids that approximate a given quantum circuit. In
practice, brute force, load balanced searches for braids rep-
resenting fundamental gates, should yield accuracies on the
order of10−5 (within the “error threshold”). Note that these
are systematic, unitary errors resulting from the fact thatwe
are enacting a unitary transformation which is a little different
from what an algorithm may ask for. Random errors, due to
decoherence, are caused by uncontrolled physical processes,
as we discuss in the next subsection.

D. Errors

As we discussed in section II.B.2, small inaccuracies in the
trajectories along which we move our quasiparticles are not
a source of error. The topological class of the quasiparticles’
trajectories (including undesired quasiparicles) must change
in order for an error to occur. Therefore, to avoid errors,
one must keep careful track of all of the quasiparticles in
the system and move them so that the intended braid is per-
formed. As mentioned in the introduction section II.B.2, stray
thermally excited quasiparticles could form unintended braids
with the quasiparticles of our system and cause errors in the

computation. Fortunately, as we mentioned in section II.B.2,
there is a large class of such processes that actually do not
result in errors. We will discuss the two most important of
these.

Perhaps the simplest such process that does not cause er-
rors is when a quasiparticle-quasihole pair is thermally (or
virtually) excited from the vacuum, one of the two excited
particles wanders around a single quasiparticle in our system
then returns to reannihilate its partner. (See Figure 20.a). For
the sake of argument, let us imagine that our initial compu-
tational system is a pair of quasiparticles in statej. At some
time t1 (marked by an× in the figure), we imagine that a
quasiparticle-quasihole pair becomes excited from the vac-
uum. Since the pair comes from the vacuum, it necessarily
has overall quantum number1 (i.e., fusing these particles back
together gives the vacuum1). Thus the overall quantum num-
ber of all four particles isj. (In the above notation, we could
draw a circle around all four particles and label itj). We then
imagine that one of our newly created quasiparticles wanders
around one of the quasiparticles of our computational system
as shown in the figure. UsingF matrices or braiding matri-
cesσ̂ we could compute the full state of the system after this
braiding operation. Importantly, however, the overall quantum
numberj of all four particles is preserved.

Now at some later timet2 the two created particles rean-
nihilate each other and are returned to the vacuum as shown
by the second× in Figure 20.a. It is crucial to point out that
in order for two particles to annihilate, they must have the
identity quantum number1 (i.e., they must fuse to1). The
annihilation can therefore be thought of as a measurement of
the quantum number of these two particles. The full state of
the system, then collapses to a state where the annihilating
particles have quantum number1. However, the overall quan-
tum number of all four particles must remain in the statej.
Further, in order for the overall state of the four particlesto
be j and the two annihilating particles to be1 the two other
(original) particles must have quantum numberj. Thus, as
shown in the figure, the two original quasiparticles must end
up in their original statej once the created particles are re-
annihilated. Similarly, if the original particles had started in a
superposition of states, that superposition would be preserved
after the annihilation of the two excited particles. (Note that
an arbitrary phase might occur, although this phase is inde-
pendent of the quantum numberj and therefore is irrelevant
in the context of quantum computations).

Another very important process that does not cause errors
is shown in Figure 20.b. In this process, one of the members
of a thermally excited quasiparticle-quasihole pair annihilate
with one of the particles in our computational system, leaving
behind its partner as a replacement. Again, since both the cre-
ated pair and the annihilating particles have the same quan-
tum numbers as the vacuum, it is easy to see (using similar
arguments as above) that the final state of the two remaining
particles must be the same as that of the original two particles,
thus not causing any errors so long as the new particle is used
as a replacement for the annihilated quasiparticle.

The fact that the two processes described above do not
cause errors is actually essential to the notion of topological
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quantum computation. Since the created quasiparticles need
not move very far in either process, these processes can occur
very frequently, and can even occur virtually since they could
have low total action. Thus it is crucial that these likely pro-
cesses do not cause errors. The simplest processes that can
actually cause error would require a thermally (or virtually)
created quasiparticle-quasihole pair to braid nontrivially with
at least two quasiparticles of our computational system. Since
it is assumed that all of the quasiparticles that are part of our
system are kept very far from each other, the action for a pro-
cess that wraps a (virtually) created quasiparticle aroundtwo
different particles of our system can be arbitrarily large,and
hence these virtual processes can be suppressed. Similarly,
it can be made unlikely that thermally excited quasiparticles
will wrap around two separate particles of our system before
re-annihilating. Indeed, since in two dimensions a random
walk returns to its origin many times, a wandering quasipar-
ticle may have many chances to re-annihilate before it wraps
around two of the particles of our computational system and
causes errors. Nonetheless, in principle, this process is aseri-
ous consideration and has the potential to cause errors if too
many quasiparticle-quasihole pairs are excited.

The probability for these error-causing processes is naively
∼ e−∆/(2T ) (thermally-excited quasiparticles) or∼ e−∆L/v

(virtual quasiparticles), whereT is the temperature,∆ is
quasiparticle energy gap,L is the distance between the quasi-
particles comprising a qubit, andv is a characteristic velocity.
However, transport in real systems is, in fact, more compli-
cated. Since there are different types of quasiparticles, the
gap measured from the resistance may not be the smallest gap
in the system. For instance, neutral fermionic excitationsin
the Pfaffian state/SU(2)2 may have a small gap, thereby lead-
ing to a splitting between the two states of a qubit if the two
quasiparticles are too close together. Secondly, in the presence
of disorder, the gap will vary throughout the system. Pro-
cesses which take advantage of regions with small gaps may
dominate the error rate. Furthermore, in a disordered system,
variable-range hopping, rather than thermally-activatedtrans-
port is the most important process. Localized quasiparticles
are an additional complication. If they are truly fixed, then
they can be corrected by software, but if they drift during the
course of a calculation, they are a potential problem. In short,
quasiparticle transport, even ordinary electrical transport, is
very complicated in semiconductor quantum Hall systems. A
complete theory does not exist. Such a theory is essential for
an accurate prediction of the error rate for topological quan-
tum computation in non-Abelian quantum Hall states in semi-
conductor devices and is an important future challenge for
solid state theory.

V. FUTURE CHALLENGES FOR THEORY AND
EXPERIMENT

Quantum mechanics represented a huge revolution in
thought. It was such a stretch of the imagination that many
great minds and much experimental information were re-
quired to put it into place. Now, eighty years later, another
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FIG. 20 Two processes involving excited quasiparticle-quasihole
pairs that do not cause errors in a topological quantum computation.
(a) In the process shown on the left, a quasiparticle-quasihole pair
is excited at timet1 (marked by an×), one of these particles wraps
around a quasiparticle of our computational system, and then comes
back to its partner and re-annihilates at a later timet2. When the pair
is created it necessarily has the identity quantum number1 of the
vacuum, and when it annihilates, it also necessarily has this vacuum
quantum number. As a result (as discussed in the text) the quantum
number of the computational system is not changed by this process.
(b) In the process shown on the right, a quasiparticle-quasihole pair
is excited at timet1 (marked by an×), one of these particles annihi-
lates an existing quasiparticle of our computational system at a later
time t2, and leaves behind its partner to replace the the annihilated
quasiparticle of the computational system. Again, when thepair is
created, it necessarily has the identity quantum number1 of the vac-
uum. Similarly the annihilating pair has the quantum numberof the
vacuum. As a result, the two particles remaining in the end have the
same quantum numbers as the two initial quantum numbers of the
computational system.

collaborative effort is afoot to revolutionize computation by
a particularly rich use of quantum mechanics. The preced-
ing information revolution, which was based on the MOS-
FET, rested on the 1-electron physics of semiconductors. The
revolution which we advocate will require the understand-
ing and manipulation of strongly-interacting electron systems.
Modern condensed matter physics has powerful tools to ana-
lyze such systems: renormalization group (RG), CFT, Bethe
Ansatz, dualities, and numerics. Even without the quantum
computing connection, many of the most interesting problems
in physics lie in this direction. Prominent here is the problem
of creating, manipulating, and classifying topological states
of matter.

There is a second “richness” in the connection between
quantum mechanics and computation. The kind of com-
putation which will emerge is altogether new. While the
MOSFET-based silicon revolution facilitated the same arith-
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metic as done on the abacus, the quantum computer will com-
pute in superposition. We have some knowledge about what
this will allow us to do. Select mathematical problems (fac-
toring, finding units in number fields, searching) have efficient
solutions in the quantum model. Many others may succumb
to quantum heuristics (e.g. adiabatic computation (Farhietal.,
2000)) but we will not know until we can play with real quan-
tum computers. Some physical problems, such as maximizing
Tc within a class of superconductors, should be advanced by
quantum computers, even though, viewed as math problems,
they lie even outside class NP (i.e. they arevery hard). A con-
jectural view of relative computational complexity is shown
in Fig. 21.

maximizing

quantum

travelling salesman
problem primality

testing

multiplying
matrices

classically
poly−time

Tc

NP

factoring

poly−time

FIG. 21 A conjectural view of relative computational complexity

But, before we can enter this quantum computing paradise,
there are fundamental issues of physics to be tackled. The first
problem is to find a non-Abelian topological phase in nature.
The same resistance to local perturbation that makes topologi-
cal phases astonishing (and, we hope, useful) also makes them
somewhat covert. An optimist might hope that they are abun-
dant and that we are merely untutored and have trouble notic-
ing them. At present, our search is guided primarily by a pro-
cess of elimination: we have focussed our attention on those
systems in which the alternatives don’t occur – either quantum
Hall states for which there is no presumptive Abelian candi-
date or frustrated magnets which don’t order into a conven-
tional broken-symmetry state. What we need to do is observe
some topological property of the system, e.g. create quasi-
particle excitations above the ground state, braid them, and
observe how the state of the system changes as a result. In
order to do this, we need to be able to (1) create a specified
number of quasiparticles at known positions, (2) move them
in a controlled way, and (3) observe their state. All of these
are difficult, but not impossible.

It is instructive to see how these difficulties are manifested
in the case of quantum Hall states and other possible topologi-
cal states. The existence of a topological phase in the quantum
Hall regime is signaled by the quantization of the Hall con-
ductance. This is a special feature of those chiral topological
phases in which there is a conserved currentJµ (e.g. an elec-
trical charge current or spin current). Topological invariance
andP, T -violation permit a non-vanishing correlation func-

tion of the form

〈Jµ(q)Jν(−q)〉 = C ǫµνλqλ (136)

whereC is a topological invariant. If the topological phase
does not breakP andT or if there is no conserved current
in the low-energy effective field theory, then there will notbe
such a dramatic signature. However, even in the quantum Hall
context, in which we have a leg up thanks to the Hall conduc-
tance, it is still a subtle matter to determine which topological
phase the system is in.

As we have described, we used theoretical input to focus
our attention on theν = 5/2 andν = 12/5 states. With-
out such input, the available phase space is simply too large
and the signatures of a topological phase are too subtle. One
benefit of having a particular theoretical model of a topologi-
cal phase is that experiments can be done to verify other (i.e.
non-topological) aspects of the model. By corroborating the
model in this way, we can gain indirect evidence about the
nature of the topological phase. In the case of theν = 5/2
state, the Pfaffian model wavefunction (Greiteret al., 1992;
Moore and Read, 1991) for this state is fully spin-polarized.
Therefore, measuring the spin polarization atν = 5/2 would
confirm this aspect of the model, thereby strengthening our
belief in the the model as a whole – including its topologi-
cal features (see Tracyet al., 2007 for such a measurement at
ν = 1/2). In the case of Sr2RuO4, thep + ip BCS model
predicts a non-zero Kerr rotation (Xiaet al., 2006). This is
not a topological invariant, but when it is non-zero and the su-
perconducting order parameter is known to be a spin-triplet,
we can infer a non-zero spin quantum Hall effect (which is a
topological invariant but is much more difficult to measure).
Thus, non-topological measurements can teach us a great deal
when we have a particular model in mind.

In frustrated magnets, one often cuts down on the com-
plex many-dimensional parameter space in the following way:
one focusses on systems in which there is no conventional
long-range order. Although it is possible for a system to be
in a topological phase and simultaneously show conventional
long-range order (quantum Hall ferromagnets are an exam-
ple), the absence of conventional long-range order is often
used as circumstantial evidence that the ground state is ‘ex-
otic’ (Coldeaet al., 2003; Shimizuet al., 2003). This is a rea-
sonable place to start, but in the absence of a theoretical model
predicting a specific topological state, it is unclear whether the
ground state is expected to be topological or merely ‘exotic’
in some other way (see below for a further discussion of this
point).

While theoretical models and indirect probes can help to
identify strong candidates, only the direct measurement ofa
topological property can demonstrate that a system is in a
topological phase. If, as in the quantum Hall effect, a sys-
tem has been shown to be in a topological phase through
the measurement of one property (e.g. the Hall conduc-
tance), then there is still the problem of identifying which
topological phase. This requires the complete determination
of all of its topological properties (in principle, the quasi-
particle species, their topological spins, fusion rules,R- and
F -matrices). Finding non-trivial quasiparticles is the first
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step. In the quantum Hall regime, quasiparticles carry elec-
trical charge (generally fractional). Through capacitivemea-
surements of quasiparticle electric charges (Goldman and Su,
1995) or from shot noise measurements (De Picciottoet al.,
1997; Saminadayaret al., 1997), one can measure the mini-
mal electric charges and infer the allowed quasiparticle elec-
tric charges. The observation of chargee/4 quasiparticles by
either of these methods would be an important step in char-
acterizing theν = 5/2 state. Detecting charged quasipar-
ticles capacitatively or through noise measurements necessi-
tates gated samples: anti-dots and/or point contacts. In the
case of delicate states such asν = 5/2, this is a challenge; we
don’t want the gates to reduce the quality of the device and
excessively degrade the robustness of the states. Even if this
proves not to be surmountable, it only solves the problem of
measuring charged quasiparticles; it does not directly help us
with non-trivial neutral quasiparticles (such as those which we
believe exist atν = 5/2).

Again, a particular theoretical model of the state can be ex-
tremely helpful. In the case of the toric code, an excited pla-
quette orZ2 vortex (see Secs. II.D III.G) is a neutral spinless
excitation and, therefore, difficult to probe. However, when
such a phase arises in models of superconductor-Mott insula-
tor transitions,Z2 vortices can be isolated by going back and
forth through a direct second-order phase transition between
a topological phase and a superconducting phase (Senthil and
Fisher, 2001a). Consider a superconductor in an annular ge-
ometry with a single half-flux quantum vortex through the
hole in the annulus. Now suppose that some parameter can
be tuned so that the system undergoes a second-order phase
transition into an insulating state which is a topological phase
of the toric code orZ2 variety. Then the single vortex ground
state of the superconductor will evolve into a state with aZ2

vortex in the hole of the annulus. The magnetic flux will es-
cape, but theZ2 vortex will remain. (Eventually, it will either
quantum tunnel out of the system or, at finite temperature, be
thermally excited out of the system. It is important to per-
form the experiment on shorter time scales.) If the system is
then taken back into the superconducting state, theZ2 vor-
tex will evolve back into a superconducting vortex; the flux
must be regenerated, although its direction is arbitrary. Al-
though Senthil and Fisher considered the case of aZ2 topolog-
ical phase, other topological phases with direct second-order
phase transitions into superconducting states will have a sim-
ilar signature. On the other hand, in a non-topological phase,
there will be nothing left in the insulating phase after the flux
has escaped. Therefore, when the system is taken back into
the superconducting phase, a vortex will not reappear. The ef-
fect described above is not a feature of the topological phase
alone, but depends on the existence of a second-order quan-
tum phase transition between this topological state and a su-
perconducting state. However, in the happy circumstance that
such a transition does exist between two such phases of some
material, this experiment can definitively identify a topolog-
ically non-trivial neutral excitation. In practice, the system
is not tuned through a quantum phase transition but instead
through a finite-temperature one; however, so long as the tem-
perature is much smaller than the energy gap for aZ2 vortex,

this is an unimportant distinction. This experiment was per-
formed on an underdoped cuprate superconductor by Wynn
et al., 2001. The result was negative, implying that there isn’t
a topological phase in the low-doping part of the phase di-
agram of that material, but the experimental technique may
still prove to be a valuable way to test some other candidate
material in the future. It would be interesting and useful tode-
sign analogous experiments which could exploit the possible
proximity of topological phases to other long-range ordered
states besides superconductors.

Even if non-trivial quasiparticles have been found, there is
still the problem of determining their braiding properties. In
the quantum Hall case, we have described in Secs. II.C.3,
III.F how this can be done using quasiparticle tunneling and
interferometry experiments. This requires even more intri-
cate gating. However, even these difficult experiments are the
most concrete that we have, and they work only because these
states are chiral and have gapless edge excitations – and, there-
fore, have non-trivial DC transport properties – and because
charged anyons contribute directly to these transport proper-
ties. Neutral quasiparticles are an even bigger challenge.Per-
haps they can be probed through thermal transport or even, if
they carry spin, through spin transport.

As we have seen in Sec. II.C.3, abelian and non-Abelian in-
terference effects are qualitatively different. Indeed, the latter
may actually be easier to observe in practice. It is strikingthat
quasiparticle interferometry, which sounds like anapplication
of topological phases, is being studied as a basic probe of the
state. The naive logical order is reversed: to see if a system
is in a topological phase, we are (ironically) saying “shape
the system into a simple computer and if it computes as ex-
pected, then it must have been in the suspected phase.” This
is a charming inversion, but it should not close the door on the
subject of probes. It is, however, important to pause and note
that we now know the operational principles and methodology
for carrying out quasiparticle braiding in a concrete physical
system. It is, therefore, possible that non-Abelian anyonswill
be observed in the quantum Hall regime in the near future.
This is truly remarkable. It would not close the book on non-
Abelian anyons, but open a new chapter and encourage us to
look for non-Abelian anyons elsewhere even while trying to
build a quantum computer with a quantum Hall state.

One important feature of non-Abelian anyons is that they
generally have multiple fusion channels. These different fu-
sion channels can be distinguished interferometrically, as dis-
cussed in Secs. II.C.3, III.F. This is not the only possibility.
In ultra-cold neutral atom systems, they can be optically de-
tected (Grosfeldet al., 2007; Tewariet al., 2007b) in the case
of states with Ising anyons. Perhaps, in a solid, it will be pos-
sible to measure the force between two anyons. Since the two
fusion channels will have different energies when the anyons
are close together, there will be different forces between them
depending on how the anyons fuse. If an atomic force micro-
scope can ‘grab’ an anyon in order measure this force, perhaps
it can also be used to drag one around and perform a braid.

Thus, we see that new ideas would be extremely helpful
in the search for non-Abelian topological phases. It may be
the case that each physical system, e.g. FQHE, cold atoms,
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Sr2RuO4 films, etc. . . , may be suited to its own types of mea-
surements, such as the ones described above and in Secs.
II.C.3, III.F, but general considerations, such as topological
entropy (Kitaev and Preskill, 2006; Levin and Wen, 2006),
may inform and unify these investigations. Another diffi-
culty is that, as mentioned above, we are currently searching
for non-Abelian topological phases in those systems in which
there is an absence of alternatives. It would be far better to
have positivea priori reasons to look at particular systems.

This state of affairs points to the dire need for general prin-
ciples, perhaps of a mathematical nature, which will tell us
when a system is likely to have a topological phase. Equiv-
alently, can we define the necessary conditions for the ex-
istence of a topological phase with non-Abelian quasiparti-
cle statistics? For contrast, consider the case of magnetism.
Although there is a great deal which we don’t know about
magnetism, we do know that we need solids containing ions
with partially filled d or f shells. Depending on the effec-
tive Coulomb interaction within these orbitals and their filling
fractions, we understand how various mechanisms such as ex-
change and superexchange can lead to effective spin-spin in-
teractions which, in turn, can lead to ferromagnetism, antifer-
romagnetism, spin-density-waves, etc.. We need a compara-
ble understanding of topological phases. One direction, which
we have described in Sec. III.G, is to analyze models in which
the interactions encode some combinatorial relations, such as
those associated with string nets or loop gases (Fendley, 2007;
Fendley and Fradkin, 2005; Fidkowskietal., 2006; Freedman
etal., 2005a; Levin and Wen, 2005b). However, we only have
a few examples of microscopic interactions which give rise
to these intermediate scale structures. We sorely need more
general guidelines which would enable us to look at a given
Hamiltonian and determine if it is likely to have a non-Abelian
topological phase; a more detailed analysis or experimental
study could then be carried out. This is a particularly im-
portant direction for future research because, although nature
has given us the quantum Hall regime as a promising hunting
ground for topological phases, the energy scales are very low.
A topological phase in a transition metal oxide might have a
much larger gap and, therefore, be much more robust.

An important problem on the mathematical side is a com-
plete classification of topological phases. In this review,we
have focussed on a few examples of topological phases: those
associated with SU(2)k Chern-Simons theory, especially the
k = 2, 3 cases. These are part of a more general class as-
sociated with an arbitrary semi-simple Lie groupG at level
k. Another class is associated with discrete groups, such as
phases whose effective field theories are lattice gauge theo-
ries with discrete gauge group. New topological phases can
be obtained from both of these by coset constructions and/or
tensoring together different effective field theories. However,
a complete classification is not known. With a complete clas-
sification in hand, if we were to observe a topological phase
in nature, we could identify it by comparing it against the list
of topological phases. Since we have observed relatively few
topological phases in nature, we have not needed a complete
classification. If, however, many more are lurking, waiting
to be observed, then a complete classification could be use-

ful in the way that the closely-related problem of classifying
rational conformal field theories has proved useful in under-
standing classical and quantum critical points.

We refer here, as we have throughout this article, to topo-
logical phases as we have defined them in Sec. III (and which
we briefly recapitulate below). There are many other possi-
ble ‘exotic’ phases which share some characteristics of topo-
logical phases, such as the emergence of gauge fields in their
low-energy theories (Wen, 2004), but do not satisfy all of the
criteria. These do not appear to be useful for quantum com-
putation.

Finally, the three-dimensional frontier must be mentioned.
Most theory (and experiment) pertains to 2D or quasi-2D sys-
tems. In 3+1-dimensions, even the underlying mathematical
structure of TQFTs is quite open. Little is known beyond
finite group gauge theories. For example, we do not know
if quantum information can (in the thermodynamic limit) be
permanently stored at finite temperature in any 3-dimensional
system. (By Denniset al., 2002, this is possible in 4+1-
dimensions, not possible in 2+1-dimensions, and is an open
question in 3+1-dimensions.) The case of 2+1-dimensions
has been the playground of anyons for 30 years. Will loop-
like “particles” in 3+1-dimensions be as rich a story 30 years
from now?

Perhaps it is fitting to end this review with a succinct state-
ment of the definition of a topological phase: the ground state
in the presence of multiple quasiparticles or in a non-trivial
topology has a stable degeneracy which is immune to weak
(but finite) local perturbations. Note that the existence of
an excitation gap is not needed as a part of this definition
although, as should be obvious by this point, the stability
of the ground state degeneracy to local perturbations almost
always necessitates the existence of an excitation gap. We
make three comments about this definition before conclud-
ing: (1) incompressible FQH states satisfy our definition and
they are, so far, the only experimentally-established topolog-
ical phases. (2) The existence of a topological phase does
not, by itself, enable topological quantum computation – one
needs quasiparticles with non-Abelian braiding statistics, and
for universal topological quantum computation, these quasi-
particles’ topological properties must belong to a class which
includes SU(2)k, with k = 3, 5, 6, 7, 8, 9, . . ., as we have dis-
cussed extensively in this article. (3) Possible non-Abelian
quantum Hall states, such asν = 5/2 and12/5 are the first
among several possible candidates, including Sr2RuO4, which
has recently been shown to be a chiralp-wave superconductor
(Kidwingira et al., 2006; Xiaet al., 2006), andp-wave paired
cold atom superfluids.

Note added in proof: A measurement of the charge of a
quasi-particle in aν = 5/2 fractional quantum Hall state has
been recently reported by Dolev et al. in arXiv:0802.0930 (to
appear in Nature). In that measurement, current tunnels across
a constriction between two opposite edge states of a Hall bar,
and the quasi-particle charge is extracted from the currentshot
noise. Dolev et al. have found the charge to be consistent
with e/4, and inconsistent withe/2. A quasi-particle charge
of e/4 is consistent with paired states atν = 5/2, including
both the Moore-Read state, the anti-Pfaffian state, and also
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Abelian paired states. Thus, the observation of chargee/4
quasiparticles is necessary but not sufficient to show that the
ν = 5/2 state is non-Abelian.

Note added in proof:
Dolev et al. (arXiv:0802.0930; Nature, in press) have

recently measured the low-frequency current noise (‘shot
noise’) at a point contact in theν = 5/2 state. They find the
noise to be consistent with charge-e/4 quasiparticles, and in-
consistent withe/2. A quasi-particle charge ofe/4 is consis-
tent with paired states atν = 5/2, including both the Moore-
Read (Pfaffian) state, the anti-Pfaffian state, and also Abelian
paired states.

In another recent experiment, Raduet al.
(arXiv:0803.3530) measured the dependence on voltage
and temperature of the tunneling current at a point contact
in the ν = 5/2 state. They find that the current is well fit
by the formI = TαF (e∗V/kBT ) wheree∗ = e/4, and the
exponentα and scaling functionF (x) are at least consistent
with the anti-Pfaffian state, although it is premature to rule
out other states.

In a recent preprint (arXiv:0803.0737), Petersonet al. have
performed finite-system exact diagonalization studies which
find the correct ground state degeneracy on the torus atν =
5/2 and also observe the expected degeneracy between Pfaf-
fian and anti-Pfaffian states. The key new ingredient in their
calculation is the inclusion of the effects of the finite-thickness
of the 2D layer which also appears to enhance the overlap be-
tween the non-Abelian states and the exact numerical finite-
system wavefunction atν = 5/2.

The first two papers provide the first direct experimental
evidence in support of the 5/2 state being non-Abelian while
the third paper strengthens the case from numerics.
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APPENDIX A: Conformal Field Theory (CFT) for
Pedestrians

We consider chiral CFTs in 2 dimensions. “Chiral” means
that all of our fields will be functions ofz = x + iy only
and not functions of̄z. (For a good introduction to CFT see
(Belavinet al., 1984; Di Francescoet al., 1997)).

(a) OPE: To describe a CFT we give its “conformal data”,
including a set of primary fields, each with a conformal di-
mension∆, a table of fusion rules of these fields and a central
chargec (which we will not need here, but is fundamental to
defining each CFT). Data for three CFTs are given in Table II.

The operator product expansion (OPE) describes what hap-
pens to two fields when their positions approach each other.

We write the OPE for two arbitrary fieldsφi andφj as

lim
z→w

φi(z)φj(w) =
∑

k C
k
ij (z−w)∆k−∆i−∆j φk(w) (A1)

where the structure constantsCkij are only nonzero as indi-
cated by the fusion table. (For our purposes, we can assume
that all fieldsφk are primary fields. So called “descendant”
fields, which are certain types of “raising operators” applied
to the primary fields, can also occur on the right hand side,
with the dimension of the descendant being greater than that
of its primary by an integer. Since we will be concerned only
with leading singularities in the OPE, we will ignore descen-
dants. For all the CFTs that we consider the coefficient of
the primary on the right hand side will not vanish, although
this can happen.) Note that the OPE worksinside a correlator.
For example, in theZ3 parafermion CFT (see Table II), since
σ1 × ψ1 = ǫ, for arbitrary fieldsφi we have

lim
z→w

〈φ1(z1) . . . φM (zM )σ1(z)ψ1(w) 〉 (A2)

∼ (z − w)2/5−1/15−2/3〈φ1(z1) . . . φM (zM )ǫ(w) 〉
In addition to the OPE, there is also an important “neutral-

ity” condition: a correlator is zero unless all of the fields can
fuse together to form the identity field1. For example, in the
Z3 parafermion field theory〈ψ2ψ1〉 6= 0 sinceψ2 × ψ1 = 1,
but 〈ψ1ψ1〉 = 0 sinceψ1 × ψ1 = ψ2 6= 1.

Chiral Bose Vertex: (c = 1)

∆

eiαφ α2/2

× eiαφ

eiβφ ei(α+β)φ

Ising CFT: (c = 1/2)

∆

ψ 1/2

σ 1/16

× ψ σ

ψ 1

σ σ 1 + ψ

Z3 Parafermion CFT: (c = 4/5)

∆

ψ1 2/3

ψ2 2/3

σ1 1/15

σ2 1/15

ǫ 2/5

× ψ1 ψ2 σ1 σ2 ǫ

ψ1 ψ2

ψ2 1 ψ1

σ1 ǫ σ2 σ2 + ψ1

σ2 σ1 ǫ 1 + ǫ σ1 + ψ2

ǫ σ2 σ1 σ1 + ψ2 σ2 + ψ1 1 + ǫ

TABLE II Conformal data for three CFTs. Given is the list of pri-
mary fields in the CFT with their conformal dimension∆, as well as
the fusion table. In addition, every CFT has an identity field1 with
dimension∆ = 0 which fuses trivially with any field (1 × φi = φi
for anyφi). Note that fusion tables are symmetric so only the lower
part is given. In the Ising CFT the fieldψ is frequently notated as
ǫ. This fusion table indicates the nonzero elements of the fusion ma-
trix Nc

ab. For example in theZ3 CFT, sinceσ1 × σ2 = 1 + ǫ,
N1
σ1σ2

= Nǫ
σ1σ2

= 1 andNc
σ1σ2

= 0 for all c not equal to1 or ǫ.

(b) Conformal Blocks: Let us look at what happens when
a fusion has more than one possible result. For example, in
the Ising CFT,σ × σ = 1 + ψ. Using the OPE, we have

lim
w1→w2

σ(w1)σ(w2)∼
1

(w1 − w2)1/8
+(w1−w2)

3/8 ψ (A3)

where we have neglected the constantsCkij . If we consider
〈σσ〉, the neutrality condition picks out only the first term in
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Eq. A3 where the twoσ’s fuse to form1. Similarly, 〈σσψ〉
results in the second term of Eq. A3 where the twoσ’s fuse to
formψ which then fuses with the additionalψ to make1.

Fields may also fuse to form the identity in
more than one way. For example, in the correlator
〈σ(w1)σ(w2)σ(w3)σ(w4)〉 of the Ising CFT, the iden-
tity is obtained via two possible fusion paths — resulting
in two different so-called “conformal blocks”. On the one
hand, one can fuseσ(w1) andσ(w2) to form1 and similarly
fuseσ(w3) andσ(w4) to form 1. Alternately, one can fuse
σ(w1) andσ(w2) to form ψ and fuseσ(w3) andσ(w4) to
form ψ then fuse the two resultingψ fields together to form
1. The correlator generally gives a linear combination of the
possible resulting conformal blocks. We should thus think
of such a correlator as living in a vector space rather than
having a single value. (If we instead choose to fuse1 with 3,
and2 with 4, we would obtain two blocks which are linear
combinations of the ones found by fusing 1 with 2 and 3 with
4. The resulting vectors space, however, is independent of the
order of fusion). Crucially, transporting the coordinateswi
around each other makes a rotation within this vector space.

To be more clear about the notion of conformal blocks, let
us look at the explicit form of the Ising CFT correlator

lim
w→∞

〈σ(0)σ(z)σ(1)σ(w)〉 = a+ F+ + a− F− (A4)

F±(z) ∼ (wz(1 − z))−1/8

√

1 ±
√

1 − z (A5)

wherea+ anda− are arbitrary coefficients. (Eqs. A4-A5 are
results of calculations not given here (Di Francescoet al.,
1997)). Whenz → 0 we haveF+ ∼ z−1/8 whereas
F− ∼ z3/8. Comparing to Eq. A3 we conclude thatF+ is
the result of fusingσ(0)× σ(z) → 1 whereasF− is the result
of fusing σ(0) × σ(z) → ψ. As z is taken in a clockwise
circle around the pointz = 1, the inner square-root changes
sign, switchingF+ andF−. Thus, this “braiding” (or “mon-
odromy”) operation transforms

(
a+

a−

)
→ e2πi/8

(
0 1
1 0

)(
a+

a−

)
(A6)

Having a multiple valued correlator (I.e., multiple conformal
blocks) is a result of having such branch cuts. Braiding the
coordinates (w’s) around each other results in the correlator
changing values within its allowable vector space.

A useful technique for counting conformal blocks is the
“Bratteli diagram.” In Fig. 22 we give the Bratteli diagram
for the fusion of multipleσ fields in the Ising CFT. Starting
with 1 at the lower left, at each step moving from the left to
the right, we fuse with one moreσ field. At the first step, the
arrow points from1 to σ since1 × σ = σ. At the next stepσ
fuses withσ to produce eitherψ or 1 and so forth. Each con-
formal block is associated with a path through the diagram.
Thus to determine the number of blocks in〈σσσσ〉 we count
the number of paths of four steps in the diagram starting at the
lower left and ending at1.

(c) Changing Bases: As mentioned above, the space
spanned by the conformal blocks resulting from the fusion
of fields is independent of the order of fusion (which field is
fused with which field first). However, fusing fields together

���
1

σ
���

@@R

1

ψ
���

@@R
σ
���

@@R

ψ

1
���

@@R
σ
���

@@R
. . .

FIG. 22 Bratteli diagram for fusion of multipleσ fields in the Ising
CFT.

φkφjφi

φp

φm

=
∑

[F ijk
m ]pq

q

φi φj φk

φq

φm

FIG. 23 The basis states obtained by fusing fields together depends
on the order of fusion (although the space spanned by these states
is independent of the order). TheF -matrix converts between the
possible bases.

in different orders results in a different basis for that space.
A convenient way to notate fusion of fields is a particular or-
der is using fusion tree diagrams as shown in Fig. 23. Both
diagrams in this figure show the fusion of three initial fields
φi, φj , φk. The diagram on the left showsφj andφk fusing
together first to formφp which then fuses withφi to formφm.
One could equally well have chosen to fuse togetherφi andφj
together first before fusing the result withφk, as shown on the
right of Fig. 23. The mathematical relation between these two
bases is given in the equation shown in Fig. 23 in terms of
the so-calledF -matrix (for “fusion”), which is an important
property of any given CFT or TQFT. An example of using the
F -matrix is given in section IV.B.

(d) The Chiral Boson: A particularly important CFT is
obtained from a free Bose field theory in 1+1 dimension by
keeping only the left moving modes (Di Francescoet al.,
1997). The free chiral Bose fieldφ(z), which is a sum of
left moving creation and annihilation operators, has a correla-
tor 〈φ(z)φ(z′)〉 = − log(z − z′). We then define the normal
ordered “chiral vertex operator”: eiαφ(z) : , which is a con-
formal field. Note that we will typically not write the normal
ordering indicators ‘: :’. Sinceφ is a free field, Wick’s theo-
rem can be used to obtain (Di Francescoet al., 1997)
〈
eiα1φ(z1) . . . e

iαNφ(zN )
〉

= e−
P

i<j αiαj〈φ(zi)φ(zj)〉

=
∏

i<j (zi − zj)
αiαj (A7)

(Strictly speaking thi identity holds only if the neutrality con-
dition

∑

i αi = 0 is satisfied, otherwise the correlator van-
ishes).
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Douçot, B., L. B. Ioffe, and J. Vidal, 2004, Discrete non-Abelian
gauge theories in Josephson-junction arrays and quantum compu-
tation, Phys. Rev. B69(21), 214501.

Du, R. R., H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West,
1993, Experimental evidence for new particles in the fractional
quantum Hall effect, Phys. Rev. Lett.70(19), 2944.

Duan, L.-M., E. Demler, and M. D. Lukin, 2003, Controlling spin
exchange interactions of ultracold atoms in optical lattices, Phys.
Rev. Lett.91(9), 090402.

Dyakonov, M. I., 2006, Is fault-tolerant quantum computation really
possible?, arXiv:quant-ph/0610117.

Eisenstein, J. P., K. B. Cooper, L. N. Pfeiffer, and K. W. West, 2002,
Insulating and fractional quantum Hall states in the first excited
Landau level, Phys. Rev. Lett.88(7), 076801/1.

Eisenstein, J. P., R. L. Willett, H. L. Stormer, L. N. Pfeiffer, and
K. W. West, 1990, Activation energies for the even-denominator
fractional quantum Hall effect, Surface Science229, 31.

Elitzur, S., G. Moore, A. Schwimmer, and N. Seiberg, 1989, Re-
marks on the canonical quantization of the Chern-Simons-Witten
theory, Nuc. Phys. B326(1), 108.

Farhi, E., J. Goldstone, S. Gutmann, and M. Sipser, 2000, Quantum
computation by adiabatic evolution, arXiv.org:quant-ph/0001106.

Fateev, V. A., and A. B. Zamolodchikov, 1985, Parafermioniccur-
rents in the two-dimensional conformal quantum field theoryand
selfdual critical points inz(n) invariant statistical systems, Sov.
Phys. JETP62, 215.

Feiguin, A., S. Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev,
Z. Wang, and M. H. Freedman, 2007a, Interacting anyons in
topological quantum liquids: The golden chain, Phys. Rev. Lett.
98(16), 160409.

Feiguin, A. E., C. Rezayi, E.and Nayak, and S. Das Sarma, 2007b,
Density matrix renormalization group study of incompressible
fractional quantum hall states, arXiv:0706.4469.

Feldman, D. E., Y. Gefen, A. Kitaev, K. T. Law, and A. Stern, 2006,
Shot noise in anyonic Mach-Zehnder interferometer, arXiv:cond-
mat/0612608.

Feldman, D. E., and A. Kitaev, 2006, Detecting non-Abelian statis-
tics with an electronic Mach-Zehnder interferometer, Phys. Rev.
Lett. 97(18), 186803.

Fendley, P., 2007, Quantum loop models and the non-abelian toric
code, arXiv:0711.0014.

Fendley, P., M. P. A. Fisher, and C. Nayak, 2006, Dynamical disen-
tanglement across a point contact in a non-Abelian quantum Hall
state, Phys. Rev. Lett.97(3), 036801.

Fendley, P., M. P. A. Fisher, and C. Nayak, 2007a, Edge statesand
tunneling of non-Abelian quasiparticles in theν = 5/2 quantum
Hall state and p + ip superconductors, Phys. Rev. B75(4), 045317.

Fendley, P., M. P. A. Fisher, and C. Nayak, 2007b, Topological entan-
glement entropy from the holographic partition function, J. Stat.
Phys.126, 1111.

Fendley, P., and E. Fradkin, 2005, Realizing non-Abelian statistics in
time-reversal-invariant systems, Phys. Rev. B72(2), 024412.

Fendley, P., R. Moessner, and S. L. Sondhi, 2002, Classical dimers



68

on the triangular lattice, Phys. Rev. B66, 214513.
Fetter, A., C. Hanna, and R. Laughlin, 1989, Random-phase approx-

imation in the fractional-statistics gas, Phys. Rev. B39, 9679.
Feynman, R. P., 1982, Simulating physics with computers, Interna-

tional Journal of Theor. Physics21, 467.
Feynman, R. P., 1986, Quantum mechanical computers, Foundations

of Physics16(6), 507.
Fidkowski, L., 2007, Double point contact in the k=3 read-rezayi

state, arXiv:0704.3291.
Fidkowski, L., M. Freedman, C. Nayak, K. Walker, and Z. Wang,

2006, From string nets to nonabelions, cond-mat/0610583.
Fradkin, E., M. Huerta, and G. Zemba, 2001, Effective Chern-

Simons theories of Pfaffian and parafermionic quantum Hall
states, and orbifold conformal field theories, Nucl. Phys. B601,
591.

Fradkin, E., and L. P. Kadanoff, 1980, Disorder variables and para-
fermions in two-dimensional statistical mechanics, Nucl.Phys. B
170(1), 1.

Fradkin, E., C. Nayak, and K. Schoutens, 1999, Landau-Ginzburg
theories for non-Abelian quantum Hall states, Nucl. Phys. B546,
711.

Fradkin, E., C. Nayak, A. Tsvelik, and F. Wilczek, 1998, A Chern-
Simons effective field theory for the Pfaffian quantum Hall state,
Nucl. Phys. B516(3), 704.

Fradkin, E., and S. H. Shenker, 1975, Phase diagrams of lattice gauge
theories with Higgs fields, Phys. Rev. D19(12), 3682.

Fredenhagen, K., K. H. Rehren, and B. Schroer, 1989, Superselection
sectors with braid group statistics and exchange algebras,Com-
mun. Math. Phys.125, 201.

Freedman, M., A. Kitaev, M. Larsen, and Z. Wang, 2003a, Topolog-
ical quantum computation, Bull. Amer. Math. Soc.40, 31.

Freedman, M., C. Nayak, and K. Shtengel, 2003b, Non-Abelian
topological phases in an extended Hubbard model.

Freedman, M., C. Nayak, and K. Shtengel, 2005a, Extended Hubbard
model with ring exchange: A route to a non-Abelian topological
phase, Phys. Rev. Lett.94(6), 066401.

Freedman, M., C. Nayak, and K. Shtengel, 2005b, Line of critical
points in 2 + 1 dimensions: Quantum critical loop gases and non-
Abelian gauge theory, Phys. Rev. Lett.94(14), 147205.

Freedman, M., C. Nayak, K. Shtengel, K. Walker, and Z. Wang,
2004, A class ofP, T -invariant topological phases of interacting
electrons, Ann. Phys. (N.Y.)310, 428.

Freedman, M., C. Nayak, and K. Walker, 2006, Towards universal
topological quantum computation in theν = 5/2 fractional quan-
tum Hall state, Phys. Rev. B73(24), 245307.

Freedman, M. H., 2001, Quantum computation and the localization
of modular functors, Found. Comput. Math.1, 183.

Freedman, M. H., 2003, A magnetic model with a possible Chern-
Simons phase, Commun. Math. Phys.234, 129.

Freedman, M. H., M. J. Larsen, and Z. Wang, 2002a, A modular
functor which is universal for quantum computation, Commun.
Math. Phys.227, 605.

Freedman, M. H., M. J. Larsen, and Z. Wang, 2002b, The two-
eigenvalue problem and density of Jones representation of braid
groups, Commun. Math. Phys.228, 177.
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