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We analyze pairing of fermions in two dimensions for fully gapped cases with broken fRriand time
reversal(T), especially cases in which the gap function is an orbital angular mome(ijueigenstate, in
particularl = —1 (p wave, spinless, or spin tripleandl = —2 (d wave, spin singlet Forl+# 0, these fall into
two phases, weak and strong pairing, which may be distinguished topologically. In the cases with conserved
spin, we derive explicitly the Hall conductivity for spin as the corresponding topological invariant. For the
spinlesgp-wave case, the weak-pairing phase has a pair wave function that is asympototically the same as that
in the Moore-ReadPfaffian quantum Hall state, and we argue that its other propeftigge states, quasihole,
and toroidal ground stateare also the same, indicating that nonabelian statisticge&naricproperty of such
a paired phase. The strong-pairing phase is an abelian state, and the transition between the two phases involves
a bulk Majorana fermion, the mass of which changes sign at the transition. Fdiwthee case, we argue that
the Haldane-Rezayi state is not the generic behavior of a phase but describes the asymptotics at the critical
point between weak and strong pairing, and has gapless fermion excitations in the bulk. In this case the
weak-pairing phase is an abelian phase, which has been considered previouslypiwathe case with an
unbrokenU (1) symmetry, which can be applied to the double layer quantum Hall problem, the weak-pairing
phase has the properties of the 331 state, and with nonzero tunneling there is a transition to the Moore-Read
phase. The effects of disorder on noninteracting quasiparticles are considered. The gapped phases survive, but
there is an intermediate thermally conducting phase in the spiplesse case, in which the quasiparticles are
extended.

[. INTRODUCTION that d-wave pairing occurs in heavy fermion and high-

Most theories of superconductivity, or more generally ofsuperconductors. Some nonzefkgaired states generally
superfluidity in fermion systems, depend on the concept of &ave vanishing energy gap at some points on the Fermi sur-
paired ground state introduced by Bardeen, Cooper, anfhce (for weak coupling, while others do not. While the
Schrieffer (BCS) in 195712 The ground state may be absence of a transition is well known in teavave case, it
thought of loosely as a Bose condensate of pairs of particleseems to be less well known that in some of these other
since such a pair can be viewed as a boson. Within BCS$ases, there is a phase transition as the coupling becomes
mean-field theory, such a state forms whenever the interaecnore strongly attractive. One reason for this is that the
tion between the particles is attractive. For weak attractivestrong-coupling regime must have a gap for all BCS quasi-
interaction the elementary excitations are fermidBCS  particle excitations. But even when the weak coupling re-
quasiparticles which can be created by adding or removing gime is fully gapped, there may be a transition, and these
particles from the system, or in even numbers by breakingvill be considered in this paper, in two dimensions.
the pairs in the ground state, and the minimum excitation In the paired states with nonzefkdhere are many exotic
energy occurs at fermion wavevector ndar, the Fermi  pheneomena, especially in thevave case, due to the break-
surface that would exist in the normal Fermi-liquid state ating of spin-rotation and spatial-rotation symmetries. These
the same density of particles. There is also a collective modénclude textures in the order parameters for the pairing, such
which is a gapless phononlike mode in the absence of longas domain walls, and quasiparticle excitations of vanishing
range interactions between the particles. This mode wouléxcitation energy on these textur@ero modek (these are
also be present if one considered the pairs as elementargviewed in Ref. 3 In transport, there may be Hall-type
bosons, and would be the only elementary low-energy excieonductivities for conserved quantities, such as spin and en-
tation in that case. If the attractive interaction becomesergy, which are possible because of the breaking of both
strong, the energy to break a pair becomes large, and at giarity (P) and time reversalT) symmetries. The breaking of
lower energies the system behaves like a Bose fluid of pairshese symmetries, and topological aspects of the paired state,
In the original BCS treatment, each pair of particles was in are more crucial for the ocurrence of these effects than is the
relativeswave (=0) state, and the minimum energy for a angular momentum of the pairing; the pairing need not be in
fermion excitation is then always nonzero. No phase transia definite angular momentum state. Many of these effects
tion occurs as the coupling strength is increased to reach tHeave been discussed in remarkable papers by Volovik, of
Bose fluid regime. which a few are Refs. 4—-8. These are related to effects we

Not long after BCS, the theory was generalized to non-will explore in this paper. We will make an effort to separate
zero relative angular momentu¢h) pairing, and after a long the effects related to breaking continuous symmetries spon-
search p-wave pairing was observed in B2 It is believed taneously, which leads to familiar Goldstone mode physics,
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from those connected with topological effects, quasiparticldermions in zero net field if the particles obey Fermi statistics
zero modes, and Hall-type responses for unbroken symmemd'g is even,(or if the particles obey Bose statistics agd
tries. _ _ is odd and v=1/¢. Note that we will consistently use the

In this paper, we will make extensive use of the methodserm “particle” for the underlying particles, and “fermion”
for BCS paired states, and consider the transitions betweegy the CS or composite fermioribound statels Some state-
the weak- and strong-coupling regimes in two dimensions. Ifinents apply also when the transformed particles are bosons
the weak-coupling regime, exotic phenomena are possiblgybtained by interchanging the words “even” and “odd” in
when parity and time reversal are broken. The results aréhe preceding definitionsin which case we refer to compos-
applied to the fractional quantum Hall effe@tQHE) by us- ite particles. It is generally more important to keep track of
ing the composite fermion approach, to be reviewed belowthe statistics and net magnetic field seen by the composite
We also consider effects of disorder on the phases and traparticles than those of the underlying particles. Recent work
sitions, also within BCS mean-field theory. In each sectionhas formalized the bound state picture, and improved our
we try to make the initial discussion general and accessiblgnderstanding’~**However, the results of the CS approach
for workers in many-body theory and superconductivity, be-remain valid, and because that approach is simple to use, and
fore specializing to applications to the FQHE. In the remain-we Will mainly require only a mean field picture here, we
der of this Introduction we will give an overview of the assume that that is the approach we are implicitly using.
background and of the results of this paper. The Laughlin states can be viewed as Bosezcondensates of

We now review some background in the FQRHEhe  Composite bosons in zero net magnetic fiété’ ! Because
original Laughlin staté€ occur at filling factors)= 1/q, with  the bosons are coupled to a gauge figfdthe CS approach,
q odd (the filling factor is defined as=nd,/B, wherenis  the CS gauge field vortex excitations cost only a finite en-
the density in two dimensions is the magnitude of the €rgy, but there is still an effective Meissner effect for the CS
magnetic field, and,=hc/e is the flux quantur An early ~ 9auge field. Because the flux of the CS gauge field is related
idea of HalperiA® was to generalize the Laughlin states by 0 the particle density, a vortex carries a fractional charge
assuming that under some conditions, the electrons couf@nd corresponds  to  Laughlin’s  fractionally-charged
form pairs, which as charge-2 bosons could form a LaughlirfluasiparticleS’ (we refer to such excitations as FQHE qua-
state. A variety of such states were proposed? Since the ~ Siparticles. Hence the Meissner effect in the superfluid be-
Laughlin states for bosons occur at filling factors for thecomes the incompressiblity of the FQHE stétiere is of
lowest Landau leve({LLL) »,=1/m, with m even, and the COUrse no Melssngr ejfect 'or.superflwdlty m_t.he response to
filling factor for the electrons is related to that for the bosonsthe €lectromagnetic field Similarly, when pairing of com-

by v=4u,, the electron filling factor is either of the form POSité fermions occurs in zero net magnetic field, the state
=1/ (q an integey, or »=2/q, g odd. In particular, these becomes incompressibt&In contrast, the Fermi liquid state

values includer=1/2, 1/4, ... , which do not correspond to ©f Halperin, Lee and one of the authBthas no Meissner

incompressible states in the usual hierarchy schiénbe-  €ffect for the CS field and is compressiBfe.
cause the filling factors in the latter always have odd de- "€ wave function proposed by Haldane and Reddf)
nominatorstwhen common factors have been remdved in Ref. 13 is a spin-singlet paired state, which can be inter-

The relation of the paired states in the FQHE to those irfPréted as ad-wave paired state of composite fermidis.

superfluidity theory becomes much closer once one introMoore and Read (MR) proposed g-wave paired statéthe

duces the notion of composite particlés3°A simple, direct “Pfaffian state”) of spinless electrons with a structure analo-

formal approach is to use a flux attachment or Chern-Simongous to the HR state. Both states can occur for filling factors
transformatior(see, e.g., Ref. 25 in particu)awhich repre- ¥~ 1/2,1/4,... .. The HRstate was proéqosed. as an explana-
sents each particle s the case of most interést fermion ~ tioN for the observedv=5/2 QH state’, which collapses

plus an integer numbéb of s-function flux tubes. After the when a parallel component of the magnetic field is applied,

transformation, the system can be represented by an actiop), ggesting that it is a spin singlet. However, it was also

that includes a Chern-Simons term foll{1) gauge field proposed later that the 5/2 state is the MR statm both

that couples to the Fermi field. We refer to this as the C roposals, the LLL is filled with electrons of both spins, and

fermion approach. The net magnetic field seen by the fermi-he paired FQHE state describes only the electrons in the first

X ; ! excited LL. The latter proposal is supported by recent nu-
ons is the sum of the external field and #éunction fluxes merical work®3 The collapse of the state under a parallel

on the other_ partlcles_. In a mean-fleld treatment, given Ei‘nagnetic field must then be due to another mechanism, in-
uniform density of particles, this produces~a net average f'elgolving the effects of the finite thickness of the single-
that vanishes when the filling factor is=1/¢. In this case, particle wave functions in the direction perpendicular to the
the fermions can form a Fermi s&apr they could form a two-dimensional layer, which is poorly understood at
BCS paired state. Some of the existing paired FQHE triajyresent. Another paired state with a similar interpretation is
wave functions can be interpreted this way, as pointed out ifhe 331 staté! which can be viewed asmwave-paired state
Ref. 14, and others can be constructed by anatdgy. of two-component composite fermiofs>>=®lt is likely that

A more physical way of looking at the formation of the thjs s closely related to a FQHE state observed in double-
composite particles, particularly when they are considered a3yer and single-thick-layer systemsiat 1/23738
the elementary excitations of the system, is as bound states pjgore and Read suggested that nonabelian statistics
of one of the underlying particlgsr particles for shoit and  might occur in QH states, and the Pfaffian state was pro-
& vortices in the particle wave functidh?® The bound posed as an example. Nonabelian statistics means that the
states, which correspond to the CS fermions, again behave gpace of states for a collection of quasiparticles at fixed po-
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sitions and quantum numbers is degenerate, and when qube addressed in this paper, by a direct and simple analysis of
siparticles are exchanged adiabaticdligr which we need the paired states using BCS mean field theory, and develop-
the system to have an energy gap for all excitatiptise ~ ments such as the Bogoliubov-de Gennes equatfbige
effect is a matrix operation on this space of degenerate statefind that the nontrivial paired FQHE states are related to the
This generalizes the idea of fractional statistics, in which theveak-coupling regiméor more accurately, the weak-pairing
effect of an exchange is a phase factor and the states @hase; in particular the MR and 331 states have wavefunc-
specified are nondegenerate; when the phase for an elemdiens that contain the generic long-distance behavior in spin-
tary exchange is- 1, one has bosons or fermions. The argu-less and spin-triplep-wave weak-pairing phases, respec-
ments in MR that this would occur were based heavily on thdively. In contrast, the strong-coupling regimes, or strong-
identification of the many-particle wave functions in the pairing phases, lead in the FQHE to the Halperin type
FQHE as chiral correlatorgconformal blocks in two- behavior. There is a similar picture in the spin-singlet
dimensional conformal field theory, which possess similaid-wave case, except that the HR state, which might have
properties under monodromianalytic continuation in their been expected to represent the weak-pairing phase, is in fact
arguments It was expected that an effective field theory at the phase transition, and therefore is gapless in the bulk.
description of these effects would be based on nonabeliahhe weak-pairing phases are topologically nontrivial, and
Chern-Simons theories, which are known to be connecteBossess edge states and nontrivial quantum numbers on the
with conformal field theory, and to lead to nonabelianVvortices (FQHE quasiparticlés the spinlessp-wave case
statistics®® In the MR state, and other paired states, there ared MR phasg is nonabelian, while the spinfyt-wave case
apart from the usual Laughlin quasiparticles which contain dWith unbroken W1) symmetry, and the spin-singlet-wave
single-flux quantum, also finite energy vortex excitationsCase are abelian states, which we characterize. We also con-
containing a half-flux quanturf,and it is these which, in the sider the effect of tunneling on the double layer system
MR state, are supposed to possess nonabelian statistics praphich is the best candidate for realizing the 331 state, and
erties. show that the phase diagram includes a MR phase. The
Evidence for nonabelian statistics in the MRfaffian theory also leads to a description of the critical theories at the
state accumulated in later wotk;* which investigated the transitions, at least within a mean-field picture. The role of
spectrum of edge states, quasiho]e states, and ground Sta{bg:tuations, and the full effective field theories at these tran-
on the torus(periodic boundary conditiopsall of which  sitions, remain to be understood.
were obtained as the zero-energy states for the three-body We also consider disorder within the same approximation,
Hamiltonian of Greiteret al, for which the MR state is the Mmaking use of recent results on noninteracting BCS quasi-
exact unique ground staté.The states found agreed pre- particles with disorde }_58 and in particular we find that in
cisely with the expectations based on conformal field theorythe spinlesp-wave case, there can be an intermediate phase
There was also evidence for similar effects in the HRWith the thermal properties of a metal, between the two lo-
state**24however the interpretation was problematic be-calized phases that correspond to the w@dR) and strong-
cause the natural conformal field theory for the bulk wavePairing phases of the pure case. A disordered version of the
functions is nonunitary and therefore cannot directly describR phase still exists in the presence of disorder, though its
the edge excitations, as it does in other cases such as the MRoperties, including nonabelian statistics, may become more
state. Some solutions to this were propo&etf. Explicit ~ subtle.
derivations of nonabelian statistics and of effective theories One further issue that we discuss is the transport coeffi-
have been obtained later for the MR st#té” The 331 cients of Hall type for various conserved quantities, espe-
staté! is an abelian state, which can be viewed as a geneially spin and energy. Concentrating on the quantities that
alized hierarchy stat&*°as is evident from the plasma form are related to unbroken symmetries, we derive explicitly the
of the state, and these two descriptions are related by ¥alues of these conductivities in the spin case, for spin-
bosonization mappint$** The hierarchy states and their singlet and triplet states, and show that they are quantized in
generalizations possess abelian statistics properties, whiéRe sense of being given by topological invariafits the
can be characterized by(Bravai$ lattice*®*° Thus, incom-  disordered cases, we do not prove this dirgcflihere have
pressible FQHE states in general can be divided into twd€en claims that, in some sense or other, the ordinary Hall
classes, termed abelian and nonabelian. It is clear that igonductivity for charge(particle numbeyr transport takes
Halperin’s picturé® of bound electron pairs, which form a @ nonzero quantized value in a Héim in the A phasé®
Laughlin state of charge-2 bosons, the properties will be abeand in ady2_,2+idy, (i.e., P and T violatingd wave
lian and are simply described by a one-dimensional lattice, isuperconductot>®° It seems unlikely to us that these claims
the language of Ref. 48hey are the simplest examples of a are correct, if the Hall conductivity is defined in the usual
class of abelian states in which the objects that Bose conway, as the current response to an extefoalbetter, to the
dense contain more than one electron plus some vorticeptal) electric field, taking the wavevector to zero before the
while the hierarchy states, and all generalizations considereflequency. While one can set up a detailed calculation, using
in Ref. 48, have condensates involving single electrons  a conserving approximation as in the Appendix, which duly
In spite of the work that has been done, one may still askncludes the collective mode effect in this case where the
guestions such as what is the microscopic mechanism, isymmetry corresponding to the transported quantity is bro-
terms of composite fermions, for the degeneracies of FQHEen, we prefer to give here a more direct and appealing ar-
quasiparticle states that is the basis for nonabelian statisticgument. This works in the case where pairing is assumed to
and whether it is robust against changes in the Hamiltoniamoccur in a system of interacting fermions of maaswith
A similar question is about the effects of disorder. These willGalilean invariance in zero-magnetic field, as in most models
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of pairing. If one considers the linear response to an imposedlicit calculations of the Hall spin conductivity, in the pure
uniform but finite frequency®) electric field, then there are systems, are given in the Appendix.

well-known arguments that the conductivity is simply A brief announcement of our results for pure systems was
gw(w)zne25w/(mw+i 7) (m,v=Xx, y, andy is a positive ~ made in Ref. 61. Some of the results have also been found
infinitesima). This arises from the so-called diamagneticindependently by othef$.

term, and the contribution of the two-point current-current

function vanishes in this limit. This is independent of inter- Il. COMPLEX p-WAVE PAIRING OF SPINLESS

actions, and hence also of whether the interactions produce OR SPIN-POLARIZED FERMIONS

p_airing or not. The result can b_e understood as the contribu- In this section, we first set up the BCS effective quasipar-
tion of the center of mass, which is accelerated by the apg o Hamiltonian, and review its solution by Bogoliubov

plied uniform electric field, while the relative motion of the transformation. We show that this leads to the existence of a
particles is unaffected, as a consequence of Galilean invarizansition between distinct phases, which we label weak and
ance. There is clearly no Hall conductivitg-lowever, the strong pairing. They are distinguished topologically. The
similar calculation in a magnetic field produces the Standaf(\’}veak-pairing phase is tentatively identified with the MR
Hall conductivity, and is an aspect of Kohn’s theoreMe  phase because of its behavior in position space. This is ex-
may be curious about non-Galilean invariant models, andended to the torugeriodic boundary conditionswhere we
whether a paired state could have a quantized Hall condudind three ground states fod even, one folN odd, in the
tivity as claimed. But if it were quantized, it would be in- weak-pairing phase, in agreement with the MR state. In Sec.
variant under any continuous change in the Hamiltonian thall B, we show that the BCS quasiparticles at long wave-
preserves the gap. Hence, in the ground state of any modkingths near the transition are relativistic Majorana fermions,
that can be continuously connected to the Galilean-invariareand use this to analyze the Bogoliubov-de Gennes equations
models, the Hall conductivity must either, if quantized, van-for domain walls(edge$ and vortices, again arguing that the
ish, or else vary continuously and not be quantized. Refertesults agree with those obtained for the MR state. In Sec.
ence 60 agrees that the Hall conductivity vanishes in thél C, which may be omitted on a first reading, we show how

q/w—0 limit, but finds a nonzero result agw—c (with ~ P-wave pairing on a general curved surface can be handled
g, smal). mathematically, and that the ground states agree with con-

The plan of the remainder of this paper is as follows. Informal blocks, as expected from MR.
Sec. Il, we first consider the ground state in a system of N
spinless fermions witlp-wave pairing, for the infinite plane A. Weak- and strong-pairing phases
and for periodic boundary conditioria torug. We show that First, we recall the relevant parts of BCS mean field
a transition occurs between weak and strong-pairing phasetheory? The effective Hamiltonian for the quasiparticles is
which can be distinguished topologically in momentum
space, or by the number of ground states on the torus for
even and odd particle number. In Sec. Il B, we consider the
system in the presence of edges and vortices. We argue that
there are chiral fermions on an edge, and degeneracies duewhereé,=e,— u ande is the single-particle kinetic energy
zero modes on vortices, when these occur in the weakandA, is the gap function. For the usual fermion problems,
pairing phase. In Sec. Il C, we show how the results foru is the chemical potential, but may not have this meaning in
ground states can be extended to other geometries, such ti® FQHE applications. At smallk, we assume gy
the sphere. Section Il as a whole shows that the properties e£k?/2m* where m* is an effective mass, and sou is
the weak-pairing phase, the ground-state degeneracies, chikimply the smalk limit of &,. For complexp-wave pairing,
edge states, and degeneracies of vortices agree with thoge takeA, to be an eigenfunction of rotations knof eigen-
expected in the MR phase in the FQHE. The strong-pairingyalue (two-dimensional angular momentinh=—1, and
phase has the properties expected in the Halperin paireghus at smalk it generically takes the form
states. In Sec. Ill, we consider the case of spin-triplet pairing,
with applications to the double-layer FQHE system. There is Akzﬁ(kx_ iky), 2
a weak-pairing phase with the properties of the 331 state, and R
also a distinct phase with the properties of the MR state. InwhereA is a constant. For larde, A, will go to zero. Thecy
Sec. IV, we consider spin-singlekwave pairing. In Sec. obey{cy ’CI'}: S ; we work in a square box of sidg and
IV'A, we argue that the HR state corresponds to the transiconsider the role of the boundary conditions and more gen-
tion point between weak- and strong-pairing, and so has gagral geometries later.
less fermions in the bulk. Then, we analyze the generic The normalized ground state &f.¢ has the form
weak-pairingd-wave phase, and argue that it corresponds to
an abelian FQHE state, with a spin-1/2 doublet of chiral , -
Dirac fermions on the edge, which has also been constructed [Q)=11" (u+vicic’ p]0), 3
previously. We also discuss hefi@ Sec. IV Q general ar-
guments for the existence of the edge states and other effectshere|0) is the vacuum containing no fermions. The prime
based on Hall-type conductivities and induced CS actions imn the product indicates that each distinct pair-Kk is to be
the bulk, for all the paired states. In Sec. V, we discuss théaken once(We will later consider the precise behavior at
effects of disorder on all the transitions and phases. The ex=0.) The functionsu, andv, are complex and obely, |2

1
Keﬁ=§k: gkclckJrE(Al’(‘c,kcﬁAkcEcik), (1)
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+|vy|?=1 to ensure(Q|Q)=1. They are determined by andP runs over all permutations & objects.(For fermions

considering the Bogoliubov transformation

ak:ukck_UkCih

(4)

al=ufcl—vic_y,
o) that{ak,al,}= S anday |Q)=0 for all k. By insisting
that[ ay ,Kest] = Exay for all k, which implies that

(5

Keff: 2 EkaEak-i- const.
k

with E,=0, one obtains(the simplest form of the
Bogoliubov-de GenneBdG) equations,

— *
Exu= U — A vy

(6)
Ewvi=—&vi— AUy
These imply that

Ex= V&A%, (7)
vilug=—(Ex—&J)1AY (8)

1 &k

2_" =%
|uk| _2 1+ Ek ’ (9)

1 &k

2 _>r
=5 1- &) 10

The functionau, andv are determined only up to an overall

phase for eack, so they can be multiplied byledependent
phaseu,— €' %ku,, v,—€'%uv, without changing any phys-
ics. One may adopt a convention that oneipéindv, is real

and positive; in either case the other must be odd and of*
p-wave symmetry under rotations. We do not use such Y
convention explicitly because there is no single choice that is

convenient for all that follows.
Because of Fermi statistics, which implyclozzo, we
can rewrite the ground statap to a phase factpas

1
=TT ludexs 5 3 i’ |0,

wheregy=uv /uy.
nent of the state wittN fermions (N even is, up to an
N-independent factor,

13

W(ry, ... IN=—7—— sgnP
(2 v 2N2(N/2)! ; 9
N/2
Xiﬂl d(rpi-n—reey), (12
whereg(r) is the inverse Fourier transform gf,
g(n)=L"?X e*gy, (13
K

Then the wave function for the compo-

with spin, this appears on p. 48 in Ref) Zhe right-hand
side of Eq.(12) is a Pfaffian, which for a generdl XN
matrix with elementdvl;; (N even is defined by

N/2

W >, sgnP H Mpei-1p@ei), (14
or as the square root of the determinantMRf \/detM, for
M antisymmetric.

We now consider the form of the solutions to the above
equations. In the usual BCS problem, the functidnsand
g are found self consistently from the gap equatimelud-
ing Hartree-Fock effecjs and u would be determined by
specifying the fermion density. However, we are not inter-
ested in all these details, but in the nature of the possible
phases and in the transitions between them. We expect that
the phases can be accessed by changing the interactions and
other parameters of the problem, but we will not address this
in detail. In particular, some phases may require that the
interactions be strong, while BCS theory is usually thought
of as weak coupling. We will nonetheless continue to use the
BCS mean field equations presented above, as these give the
simplest possible view of the nature of the phases.

From Eqs.(9) and(10), we see that sincE,—|&,]—0 as
k— 0, we will have one of three possibilities for the behavior
at smallk, which will turn out to govern the phases. As
—0, either(i) &0, in which casgu,|—1, |v,|—0, or(ii)
£<0, in which casgu,|—0, |vy|—1, or (iii) &—0, in
which casdu,| and|v,| are both nonzero. We will term the
first case the strong-pairing phase, the second case weak-
pairing, while the third case, in which the dispersion relation
of the quasiparticles is gapless,— 0 ask—0, is the phase
transition between the weak and strong pairing phases. Thus,
for u positive, the system is in the weak pairing phase gfor
negative, the strong-pairing phasand the transition is at

0 within our parametrization. The reason for these names
ill be discussed below.

We now discuss the two phases and the transition in more
detall We expect that the largebehavior ofé, andA that
would be produced by solving the full system of equations
will not be affected by the occurrence of the transition which
involves the smalk’s only. Note that, at largk, v,—0 and
|u|— 1, which ensures in particular that the fermion num-

ber, which is governed byl >Ny, with

(cley =n=|v?, (15)

will converge. Also we assume th&, does not vanish at
any otherk, which is generically the case in tHe=—1
states. Thus, within our mean-field theory we can ignore the
dependence of the functiodg and A, on the distance from
the transition, which we can represent hy

In the strong-pairing phas@,<0, we havev,xk,—iky,
as k—0. Then the leading behavior ig,=v/uy is <k,
—iky, which is real-analytic ink, andk,. If g is real-
analytic in a neighborhood d€=0, theng(r) will fall ex-
ponentially for larger, g(r)~e~""o, but even if not it will
fall rapidly compared with the other cases below. Thus we
term this phase the strong-pairing phase because the pairs in
position space are tightly bound in this sense. Note that this
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region is u<<0, which would only be reached for strongly irrelevant. These conditions imply that they can be viewed as
attractive coupling of the fermionave disregard the possi- spinor (or “homogeneous) coordinates for a 2-sphei®?,
bility of other nonpairing phases for such couplingBe-  for which two real coordinates are sufficient for a non-

causen,=|v|?, there is little occupation of the smadlval- redundant parametrization of any neighborhood. As usual,
ues in this phase. we viewu=1, v =0 as the north polg/; u=0, v=1 as the
In the weak-pairing phasey =k, +ik, for k—0, and so south poleS. We can alternatively parametrize the sphere
gk>= U(ks+iky), which gives using the unit vecton,=(ReA,,—ImA,&)/Ey, and this
agrees with the parametrization foy, vy . This is essen-
g(r)=llz (16) tially the “pseudospin” point of view of Andersof? who

described the-wave BCS state as a spherical domain wall in

for large r, wherez=x+1iy. This long tail ing(r) is the  the pseudospin ik space, of radiugr. Becausa,—0 as
reason for the term “weak pairing.This is exactly the be- k—o in any direction, we can add a point at infinity kn
havior of o(r) in the Moore-Read (MR) Pfaffian state in the space and view it also as topologically a 2-sphere, with the
FQHE. In the latter this form, ¥, is valid for all distances. point at infinity at/V. The functionsu,, v, thus describe a
We will therefore try to argue that all the universal behaviormapping fromS? (k-spacé to S? (spinor spacg with A
associated with the MR state is generic in the weak-pairingalways mapping tdV. Such maps are classified topologically
phase, when the theory is applied to the paired FQHE statefto equivalence classes, called homotopy classes, such that
Notice that in the weak-pairing phase, the occupation nUmmaps in the same class can be continuously deformed into
bers of the smak states approaches 1. Of course, this is als@ach other. The special cases of maps f@mn=1,2, ...,
the behavior of the Fermi sea. When the attractive couplingo any spaceX define the homotopy groups,(X) (using a
is weak, one would expect the weak pairing phase. If wegeneral method of producing a group structure on the equiva-
imagine that only the magnitude of the coupling is varied,lence classes with base points, which here &fbe In our
then when it is small and negative, the BCS weak-couplingcase, 7r,(S?) = Z, the group of integers. By inspection, we
description is valid, anéy has a minimum akg . Thisisnot  find that in the strong-pairing phase, the map is topologically
the weak-strong transition. Close to the latter transiti®p, trivial. In this phase the map can be deformed to the
has a minimum ak= 0. As the coupling weakens, a point is topologically-trivial map that takes ak to V. In any topo-
reached at which the minimum moves away frem0, and  |ogically nontrivial map, ak varies over the plane plus point
eventually reachegk|=ke when the coupling strength is at infinity, u, v (or n) range over the whole sphere. Indeed,
zero and the transition to the Fermi se& Fermi liquid  the number of times that a given poist\, such asS, is
phas¢ takes place. Thus, the wegpkiring phase does not taken byu, v must be at leastm|, for a map in the class
require that the coupling be weak, but is continuously con{abeled by the integem. In our case, in the weak-pairing
nected to the weakeupling BCS region. phase the map passes througat least once, namely when

At the weak-strong transitiony =0, we find at smalk k=0, and possibly(most likely) only once, and we can
thatE,=|A], uil?, [vy|*>—1/2, andg,= (ky—iky)/|k|. The  choose to identify the class with=1. This nontrivial topol-
singular behavior of leads to ogy in k space associated with neawave weak-pairing
ground states in two dimensions was pointed out by
Volovik.* We also note that thp-wave weak-pairing phase
map is a topologically nontrivial texture of the pseudospin
that is also familiar in physics as a two-dimensional instan-
for larger. This behavior is intermediate between those ofton, or a skyrmion in a 2 1-dimensional system, iposition
the two phases. Because, like the strong-pairing behavior, 8pace, in the () nonlinear sigma model. Since it is impos-
is not a rational function of, it does not correspond to a sible to pass smoothly between=0 andm=1, the map
“nice” LLL FQHE wave function. Also asu—0, the length  y, , v, must be discontinuous at the transition, which is what
scale on which the asympototics of the two phases is valigye found. In fact,|u|? and|v|? tend to 1/2 ak—0 at the
(ro on the strong-pairing sidediverges. This length should transition, which corresponds to points on the equator. The
not necessarily be identified with the coherence lerdgtbf  simplest form of such a map is one that covers just the north-
the paired state. If the latter is viewed as “the size of a pair,”ern hemisphere, centered &
it may be better associated with the decay of the inverse The topological distinction between weak- and strong-
Fourier transform of c,c_y)=ugv=—A/E,, which de-  pairing phases is typical for the fully-gapped complex non-
velops long-range behavior only at the transition. Also, fors-wave paired states, and not only when the gap function is
some purposes the relevant function mayMg which is  an angular momentum eigenstate. For contrast, note that any
always nonsingular &&=0, and does not vanish at the tran- s-wave state yields a topologically-triviah(=0) map. For
sition. For the purpose of making contact with the existingthe s-wave case, it is well known that, and v, can be
FQHE wave functionsg(r) is the appropriate quantity. chosen real, and continuously interpolate between the weak-

The distinction between the two phases, which we carand strong-coupling limits without a phase transition. Also,
view as requiring the existence of the phase transition, doeig three dimensions, the relevant homotopy group for the
not lie in symmetries, unlike many phase transitions; insteadpresent spinless case ig(S?)=Z, and so nontrivial states
it is topological in naturé.Within the mean-field treatment, do exist in principle, the simplest of which is the Hopf tex-
this can be seen in terms of the topology of the functisps  ture ink-space. The usuatwave state is again topologically
vk, or of E, A,. We recall thatuy, vy obey|u,|?+|v,/?>  trivial. Note that in the usual BCS model with a separable
=1, and that multiplying them both by the same phase ignteraction, the gap function vanishes outside a thin shell

1
g(r)ec (17)

2|2
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around the Fermi surface, which makes the maps slightly,is is entirely consistent with the limiting behavior of
discontinuous. We consider only interactions that are con= ;|2 ask—0 in the two phases. At the transitiop.=0

are continuous except at the transition. _ We conclude that in either the weak- or strong-pairing
~ To close this subsection, we consides promised ear- phases, there is a total of four ground states, three for bound-
lier) the effect on the ground states of the boundary condizry conditions+ —, —+, —— which are linear combina-

tions and the total fermion number. That is, we use a twotjons of states with even values of the fermion number in

dimensional(Bravaiy lattice, and consider a system on a poth phases, but for- + boundary conditions the ground
plane with points differing by a lattice vector identified, gen- state has odd fermion number in the weak-pairing phase,
erally described as periodic or generalized periodic boundangyen fermion number in the strong-pairing phase, because of
conditions, or by saying that the system is a torus. the occupation of th&=0 state. In most cases, the ground

To obtain a low-energy state in a translationally invariantstate is as given in Eq3), but in the weak pairing phase for
system when itself is viewed as a dynamical parameter, we  + poundary conditions, it is

will assume that\ is position independent, and thus we can
still use Ay in the quasiparticle Hamiltonian ik space. To , b4t
be consistent with this, the fermions must obey either peri- |Q>=k1;[0 (Ukt+vkCC1 ) Co|0). (18)
odic or antiperidic boundary conditions for each of the two
primitive directions of the latticgor fundamental cycles on The ground states specified, whether Kbeven or odd, will
the torug. For a rectangle withx andx+L,, y andy+L,  have the same energy in the thermodynamic limit just
identified, this means the boundary conditions fortleady  the same energy densityNote that if thek=0 state is oc-
directions. These choices of boundary conditions are weltupied in the strong-pairing phase, or unoccupied in the
known in the description of flux quantization in supercon-weak-pairing phase, this costs an enefgy o, which we are
ductors(see, e.g., Schrieffér We may imagine that either assuming is nonzero, and all states where quasiparticles are
zero or one half of the flux quantuimc/e threads either of created on top of our ground states cost a nonzero energy,
the “holes” (fundamental cyclgsin the torus. The half-flux since we assume thd, is fully gapped in both phases.
quanta could be represented either by a vector potential, withlowever, at the transitiop. =0, the ground states fot +
peridic boundary conditions on the fermions in both direc-with odd and even particle number are degenerate, and there
tions, or by no vector potential and an antiperiodic boundaryis a total of five ground states.
condition for each direction that wraps around a flux, or by a  |f we now compare with results for the MR state on the
combination of these. The different choices are related byorus®?4* which were derived as exact zero-energy ground
gauge transformations. We choose to use boundary condétates of a certain Hamiltonian, then we see that the weak-
tions and no vector potentials, so thitis always position-  pairing phase foevenfermion number agrees with the exact
independent. We should be aware that if the gauge fieldesult that there are three ground states. On the other hand, it
(fluxes are viewed as external, they are fixed as part of thavas stated in Ref. 44 that there are no zero-energy ground
definition of the problem, and there will be a single groundstates foN odd. Unfortunately, that result was in error; there
state for each of the four possible choices of boundary coris just one such state for + boundary conditions, which
ditions, + +, + —, —+, and— —, in a notation that should can be constructed by analogy with that for the 331 state in
be obvious. However, if the gauge field is viewed as part oRRef. 44. Before turning to the wave functions of these states,
the internal dynamics of the system and can fluctuate quarwe also mention that the behavior found in the present ap-
tum mechanicallyas in highly correlated systems, including proach in the strong-pairing phase agrees with that expected
the FQHE, where it is not interpreted as the ordinary elecin the Halperin point of vieW on the paired states, as
tromagnetic field, and also in the usual superconductorsaughlin states of charge-2 bosons. That point of view pre-
where it i9 then the four sectors we consider correspond tddicts four ground states fot even, none foN odd. Note that
four ground states of a single-physical system, in a singlein comparing with FQHE states, we factor out the center of
Hilbert space, albeit treated within a mean-field approximamass degeneracy, which is always the denomingtof the
tion. The latter is the view we will take. filling factor v=p/gq (where p and q have no common

For each of the four boundary conditions for the fermions factorg.®* The remaining degeneracy in a given phase is in-
the allowedk values run over the usual setg=2mv, /L, dependent o¥ in the sense that it does not change under the
for +, 2mw(vy+1/2)/L, for —, wherew, is an integer, and operation of vortex attachment, which maps a state to an-
similarly for k. In particular,k=(0,0) is a member of the other in which 17 is increased by 1, and for generic Hamil-
set of allowedk only in the caser +. For a large systeng,  tonians this degeneracy is exact only in the thermodynamic
andA will be essentially the same functionslofor all four  limit. We note that Greiteet al3 claimed that the special
boundary conditions, but evaluated only at the allowed valHamiltonian for which the MR state is exact should have
ues. In the paired ground stat&sand —k will be either both  four ground states on the torus fsreven, though they found
occupied or both unoccupied, to take advantage of the paienly three. They did not distinguish the weak- and strong-
ing (Ay) term inKg¢. Whenk=0is in the set of allowed, pairing phases, and by assuming that the Halperin point of
k=0, and—k=0 cannot both be occupied, because of Fermiview is always valid, they in effect ascribed the properties of
statistics. HoweverA, vanishes ak=0, so k=0 will be  the strong-pairing phase to the MR state. In fact, there is a
occupied or not depending solely on the signépf,. That  total of four ground states in the weak-pairing phase, but the
is, it will be occupied foru>0 (in the weak-pairing phage fourth is at odd fermion number. They also claimed that the
and unoccupied fop <0 (in the strong-pairing phaseand  statistics would be abelian, even though they considered the
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MR state, and suggested that the prediction of nonabelia@hich is a relativistic dispersion with| playing the role of
statistics by Moore and Re#dwould hold only at some the speed of light. Further, using the same approximation,

special point. N . the BAG equations become in position space
If we consider the position-space wave functions of the

paired states on the torus, then for evVdnin the weak- . du P

pairing phase we once again find exact agreement of the 'E:_MUJFA ! 5“ @ v,
long-distance behavior @f(r;—r;) with that which holds for 23)
all distances in the eigenstates of the special J 9
Hamiltonian®?44Here, long-distance meaggr) wherer is il &—)U,

not close to a lattice pointnfL,,nLy), m, n integers. The y
long-distance formg~1/z in the plane is replaced by an which is a form of the Dirac equation for a spinar,{). The
elliptic function (or ratio of Jacobi theta functiop&** for BdG equations are compatible with(r,t)=v(r,t)*, and

v LA
i—= i
a M

+—, —+, ——. The ground state foN odd with + + this is related to the existence of only a single fermion exci-
boundary conditions can be written, similarly to one fér tation mode for eack. Thus the quasiparticles are their own
even in the 331 cas¥,as antiparticles; Dirac fermions with this property are known as

Majorana fermions. Near the transition, the BCS quasiparti-

1 cles make up a single Majorana fermion quantum field, and

>, sgnP at the mean field level the critical theory is a single massless

Vg r,...In)=
++( 1 N) 2(N_1)/ﬁ:(N—1)/2]| S

Majorana fermion. There is a diverging length scale at the
(N—-1)/2 transition,~A/| x|, and the diverging lengths mentioned in
X H 9+ +(rpiy—rpi+1))- the last subsection should all diverge proportionately to this,
=1 at least within mean field theory.
(19 Next we wish to consider the behavior near an edge; out-

) ) side the edge the particle number density should go to zero.
Here we can take the torus to have sidgs Ly7 in the | the Hamiltonian, this can be arranged by having a poten-
complex plane (Im>0, andr=iL/L for the rectangle  tjal V(r) that is large and positive outside the edge. In the

and quasiparticle effective Hamiltonian, this can be viewed as
) _ making u large and negative outside the edge, and we will
01(zILy|7)  2miy use this notation.

S 5@ T Lam 20

In general, the problem with the edge should be solved
self consistently, which involves solving the gap equation for
where ¢, is a Jacobi theta function, andi(z[7) A in the presence of the edge. We are interested in the ge-
=d#,(z|r)/dz. g, .(r) is periodic because of properties of neric properties of the solution, and wish to avoid the com-
the functiong, mentioned for example in Ref. 44, and has aplexities. Accordingly, we will consider only a simplified
simple poleg, ,=1/z asz—0. For the ground state witN  problem, which is the effective Hamiltonian with a given gap
odd, the norcomplex-analytic dependence onin g, . function. Sinceu becomes negative outside the edge, it must
cancels. Notice that the unpaired fermion with P(1) in  change sign near the edge if it is positive inside the bulk of
the terms in¥ ., occupies the constark=0 single-particle  the system. But in the bulk at least, a change in sign across a
state. When used as part of a wave function in the LLL, thdine represents a domain wall between the weak- and strong-
present function is the zero energy state fot boundary pairing phases, since =0 is the point at which the transi-
conditions on the torus fad odd, which was omitted in Ref. tion occurs in our treatment. Thus, we are arguing that the
44, weak-pairing phaséwhere u is positive must have a do-

main wall at an edge, while the strong-pairing phase need

B. Majorana fermions, edges and vortices not. We will consider a domain wall in the bulk as a model
for the edge of the weak-pairing phase. In the latter the re-
. X o= 0(f]ion of strong pairing between the domain wall and the ac-
vortices (which correspond to FQHE quasipartiole®n 5 edge may be extremely narrow and we might say there is

which we argue there are chiral fermions and zero modes,, \ye||-defined strong-pairing region. But the point is the
respectively, in the weak-pairing phase. Again, this supportg,o|ggical distinction between the phases. The strong-

the identification with the MR state. , pairing phase has the same topology as the vacuum, and can
We begin by considering in more detail the low-energype continuously connected to it. The weak-pairing phase is
spectrum near the transition at=0. Whenx andk are  nhtrivial and the generic properties of an edge should be
small, we can use captured by a domain wéif.
We consider a straight domain wall parallel to theaxis,

In this section, we consider the problems of edges and

k=~ My with w(r) = w(x) small and positive fox>0 and small and
A (21)  negative forx<0, and also varying slowly such that the
A=A(ky—iky), above long-wavelength approximation can be used, with
R now x dependent.
whereA can be complex, and find We can consider solutions with definig, which at first

we set to zero. Then, we have a+1-dimensional Dirac
Ev=V|A|k|2+ u?, (22)  equation. We assume thpt|— wo, a constant, afx|— .
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At E=0 there is a normalizable bound state solution firstthere is only a single fermion mode, shared between the two
obtained by Jackiw and Reb#iThe equations arénvith A~ domain walls, not one on each. For nonzégq the eigen-

real and>0) functions forE>0 become concentrated on one wall or the
other, depending on the sign &f,. Thus, the set of low-
Aidvlax=u(x)u, energy states can be viewed as a single nonchiral Majorana
(24) fermion theory, with the left-moving modes on one wall, the
Aigulox=— w(X)v. right-moving modes on the other, and tye=0 mode shared

] ) ] ) . ~ between the twoThis agrees precisely with the results of
By puttingv=iu, we find the unique normalizable solution Ref. 42 on the edge states of the MR state on the cylinder
We next consider the quasiparticle spectrum in the pres-
(25) ence of vortices of the order parameter; in two dimensions
vortices are point objects. These necessarily contain an inte-
where the phase was inserted to retainu* . Solutions at ger number of half—fl'u'x quanta in_the gauge field; without the
finite E should exhibit in the b Ik.' ith h gauge field the vortl_czlty is quantlzed but the total_energy of
Inite £ should exnibit a gap, as In the bulk In either phase. 5 jsplated vortex diverges logarithmically. We will not see

: 1 (x
u(x)oce” ™exp— Zf w(x)dx,

At finite k, the equations become these effects in the energy here because we only consider the
o quasiparticle excitation spectrum in the presence of a given
Eu= _MU"'Ai ——kyv), gap function and gauge field configuration. Up to now, we
IX have ignored th&J(1) gauge field except in discussing the
(26)  boundary conditions on the torus and cylinder. It could be
Ev=pu+Aj ‘9_U+k ul. the standard electromagnetic field in a superconductor, or the
ax Y CS field in the FQHE. We will only consider vortices of the

« . minimal flux, namely a half-flux quantum, because addition
For E=—AKk,, these have solutions that are bound to the y d

q , I d clearly th . directi of any integer number of flux quanta can be viewed, on
omain wall, and clearly they propagate in one direCtiong.|aq |arger than the penetration depth, as a gauge transfor-
along the wall. There is only one fermion mode for e&gh

. ) _ mation, which does not affect the spectrum. Outside the vor-
and so we have a chiral Majorariar Majorana-Weyl fer- oy core, which we assume is small, the covariant derivative
mion fI9|d on the domain wall. . . _ of the gap function must vanish. As in the case of the torus,

It will be |mportant to conS|_der also a pair of dc?ma'” we will choose a gauge in which the gap function is single
walls. We consider two walls, lying at=0 andx=W, with 5,64 and independent of the angle relative to the position
#=>0in 0<x<W and u<0 outside. Again, we assum& ¢ the nearby vortex, but the Fermi fields are double valued
=0 initially. This time® there are n&E=0 modes for finite going around the vortex.

W. Clearly aswW—o we expect to find ale=0 mode on The basic idea is to consider a vortex as a small circular
either wall, so we expect bound solutions for sntalvhen  o4ge with vacuuntvanishing densityat the center. Accord-

Wis large but finite. For non-zerig we can replace the pair g1y we expect that nothing interesting happens at suffi-
of first-order equations with a single second-order equatloQienﬂy low energies for vortices in the strong-pairing phase.

for either ofu=iv, (with ky#0 for generality, But a vortex in the weak-pairing phase must include a con-
2 5 centric circular domain wall to separate the vacuum at the

(Ez—ﬁzkz)(utiv)= _Az_JeriA_:“ (Uxiv). ce_nter _from the w_eak-pamng _phase ou_t5|de. We now stud_y

Y Ix? this using the Majorana fermion equations near the transi-

(27) tion, assuming that the wall has large enough radius; the
vortex core(whereA vanisheg can be taken to have negli-
gible size and the boundary condition rat-0 is unimpor-
tant. With our choice, the BdG equations for a single vortex
and forE=0 becomes in polar coordinatesé

When p varies slowly compared with its magnituge, far
from the walls, we may study the equations by the WKB
method. We may view the equation fartiv as a Schro-
dinger equation with potential

A AT
Vi(x)=uztﬁi—§. (29) S P ao)”_”““'
. (29
If duldx has extrema ak=0, W, as is reasonable, then Rje-i0 Jd 1 ay
V_(x) has minima ax=0, W, but that atx=0 is deeper '© G T vt T TR

than that atx=W. The reverse is true fo¥,(x). As W .
uobeysu(r,+2m)=—u(r,d), and similarly forv. We can

— o0, there will be ak,=0 solution forE?, which —0 ex- h
ponentially and which corresponds to a normalizable eigen@SSUMex— >0 asr—=, u——puq asr—0. The nor-

function for u—iv that is concentrated at=0 with negli- ~ malizable solutions have the form
gible weight atx=W, and similarly an eigenfunction fax —

—(i7\ 12
+iv concentrated at=W. The subtle but important point is u=(iz)= " (r),
that these solutions are not independent, because they are (30)
related by the original first-order system, for any nonzero v=(—iz)"Y(r)=u*

There is only a single normalizable solution for the paiv
for E small positive, and another f&E<0. Consequently, wheref(r) is a real function. The equations reduce to
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df/dr= —,u(r)f(r)/&, (31) fermion zero-mod(_e functions found in Ref. 44, once the fac-
tors associated with the charge sector are removed, though
with solution the factorsf (r) are not. However, the most appropriate com-
parison to make is that between theany-fermionwave
r . functions, as we already made for the ground states on the
f(f)“eXF< - f m(r ')df'/A)- (32 plane and torus. We will not consider this further here for the
vortex or the edgéor domain wall states, though we expect
Thus, we find just one normalizable bound state at zero erihat these should correspond at long distances to those found
ergy. Again we expect this to persist as we relax our assumph Refs. 43, 44, and 42, as for the ground states. However,
tions, as long as the bulk outside the vortex is in the weakwe are able to find the ground states on other geometries,
pairing phase. We point out that our result should benamely the sphere and Riemann surfaces of génumber
contrasted with the known result for a vortex in swave  Of handleg greater than onégthe sphere is genus zero, the
superconductor, which has bound quasiparticle modes at eiPrus genus oneWe consider this briefly in Sec. Il C below.
ergies that are low in the weak-coupling limit, but not gen-
erally zero as ours are heteSince we mainly work at mod-
erate or strong coupling, analogous modes are not important ) ] ] .
for our purposes. We note that a zero mode on a vortex in an [N this section, we briefly introduce some general connec-
A-phasep-wave paired state was first found in Ref. 68. tions of pairing theory for p-wave states to relativistic fermi-
For the case of @ well-separated vortices, we have not ©nS, which enables us to discuss geometries other than the
obtained analytic solutions for the bound states. HoweveRlane and torus, such as the sphere, and to make more ex-
we can give a simple argument. The problem is analogous tghcn. connections V\_/lth conformal field t_heory ide¥sThis
a double-well potential. We take a set afi Z=0 solutions ~ Section can be omitted on a first reading, but some of the
like Egs.(30) and(32) centered at each vortex, and use thesdormalism is mentioned again later.
as a basis sefwe must introduce additional branch points  In the preceding section, we used the fact that the BdG
into each basis state to satisfy the boundary conditions at afiguations at long wavelengths become the Dirac equation,
the other vortices at finite separation there is mixing of the With a reality condition so that the Fermi field is a Majorana
states, and the energies split away from zero. Since the sé&rmion. We also mentioned the coupling of the gap function
lutions to the Dirac equation are either zero modesEpr and Fermi fields to aJ(1) vector potentialwhich in the
—E pairs, we expect to obtain E>0 solutions,n E<0 FQHE context would be the.CS vector. potentiathich |s_of
solutions. In general, eacE>0 solution of the Dirac or @ ;tandard form. But the interpretation of the fermion as
BdG equation corresponds to a creation operator, and tH¥@jorana would seem to raise a problem, because for a
relatedE<O solution to the adjointdestruction operator, ~Single Majorana there is no continuous symmetry of the
while anE=0 solution would correspond to a re@r Ma- Yang-Mills type, and so apparently no way to minimally
jorana fermion operator. In our case, this means that ther&ouple it to a vector poter)tlal. We will see that there is none-
aren modes in which we may create fermions, with energiedhel€ss a natural way to incorporate the vector potential and
E tending to zero as the separation diverg@ssimilar pic- st|.II give an interpretation in terms of the Dirac equation, and
ture applies for 2 domain walls) This is in agreement with this will also enable us to discuss the ground states on curved
the results for the special Hamiltonidf This result is cru-  Surfaces. o
cial for the nonabelian statistics we expect in the FQHE case, 1h€ most general form for thp-wave gap function in
since by occupying the zero modes one obtains a total' of 2|four|er space, retaining once again only the long-wavelength
degenerate states, of 2 for either even or odd fermion Part can be written
number N, when there are 12 vortices f>0); this was
found for the special Hamiltonian in Refs. 43 and 44. A=AKk—iAKy. (33
We may also consider here the edge states of a system in
the form of a disk of radiuR, by studying a large circular Here,A, , are two complex coefficients, or equivalently four
domain wall enclosing the weak-pairing phase, and strongreal numbers, which we will arrange into &2 matrixe. In
pairing phase or vacuum outside. In this case, there is no fluyosition space, th& can be replaced by-iV. Then in a

enclosed by the wall, and andv are single valued. One general coordinate systex), with corresponding partial de-
does not findE=0 states, but instead there is a set of chiralrivatives g, , (i=x, y), the BdG equations become
fermion modes with angular momentumquantized to half-
integral valuesme Z+1/2, andExm/R (this fixes the defi-
nition of m=0). These are just the modes expected for the
chiral Majorana fermion on such a domain wall with the
ground state inside, since an antiperiodic boundary condition . . :
is natural for the ground state sector. If a half-flux quantumWher.e we use a spinog=(uv,u), and m=g in previous
is added at the center of the disk, the quantizatiom &z, notation. The indices, b, ¢ take th? values, y, and the
and this extends the result for the zero made0 of a  Malrices arax=oy, ay=0y,, f=0,; We use the summa-

single vortex.These results agree with the results of Refs. 4d|on cqnventlorl(.y Here, we have also remstated th? vector
and 42 for a disk of the MR state. potential A, = w’’/2 (Whereu=t, X, y), using the matrix

We also note that the form of the modes near a vortex,
containingz™ 2 or its conjugate, is similar to the form of the =03 (35

C. Other geometries and conformal field theory

(o + %i w?czbc) o+ eiaaa(&i+ %iwibczbc)w"'iﬁm‘p: 0,
(34
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The equation is therefore invariant undeflJgauge trans- large, and locally the solution to the gap equation should
formations l//_>eiAXy2xyl/,, and a corresponding transforma- resemble that in flat space, which we assume is ofl the

tion of w,,, with a real scalar parametdr, (x*). —1 form. In order to minimize the energy density, we expect
If we multiply through by 8, then we obtain the more that the gap function should be as constant as possible. In
covariant form of the Dirac equation, more invariant language, this means that the vielbein should
be covariantly constarihote that the covariant derivative of

J+Himy=0, (36) the vielbein must be covariant under both coordinate and
U(1) gauge transformatiofysand there should be no vorti-
with e#t= 8, in our case. This has the form of the general €S- Since the Riemannian geomeitiie metric and the
Dirac equation suitable for use in general coordinate systems€Vi-Civita or metric connectionof the manifold are as-
on general curved spaces or spacetifiles. similar form ~ Sumed given, this condition relates the spin conneciicio
was obtained in Ref. 7. In generat,is a Dirac spinofwith derivatives of the vielbein, a result analogous to the usual
two components in the 2 and+2L cases of interest here requirementfor s\wave pairing, in flat spage¢hat the vector
w=1,2,...d is a spacetime index, whilabc=1,2,...d potential be the gradient of the phase of the gap function.
is an internal “local Lorentz” index; the vielbeiris a ten-  This covariant-constancy condition also appears when for-
sor with indices as showny, are a set of Dirac matrices Mmulating general relativity?
satisfying { ¥a, Yo} =27ap, Where » is the Minkowski or This condition can be satisfied globaliwe assume the
Euclidean metric, and ,,= 3i[ va,75] are the generators of surface on which we are working is compeatly if the field
SO(d—1,1) Lorentz transformatiori®r simply SO(d) rota-  strength in theSQ(2) vector potential is related to the Rie-
tions, in the Euclidean cakethe spin connectionw is a  mann curvature of the manifold. The integral of the latter
tensor field with one spacetime and two internal Lorentz in-over the surface, divided by is a topological invariant,
dices, and is antisymmetric in the latter. Spacetime indiceshe Euler invariant, equal to 2¢1g) for a Riemann surface
are raised and lowered usirg#” and g,,, while internal  of genusg (one withg handle$. In our usual units for flux
Lorentz indices are raised and lowered usifff and 7ap.  quanta, the number of flux quanta in t8€X2) or U(1)
This form of the Dirac equation is covariant under coordinateyector potential must bg— 1. Otherwise, we will have vor-
transformationgdiffeomorphismg under which the spinor
is viewed as transforming as a scalar function of position
and e and w as tensors. It is also covariant unde(d
—1,1) [or SO(d)] local Lorentz transformations, which act . ) . . :
like gauge transformations, with transforming in the spinor underlying .pfa\rt|cles is one less than in the La_ughlln state at
representation, the vielbein transforming as a vector irathe the same filling factor, so the composite fermions see a net
index, andw transforming inhomogeneously as a nonabeliarf!uX of —1. Physically, the nonzero angular momentum of
vector potential or connection for the gauge transformationsth€ pairs causes them to see the curvature of the manifold on
This formalism(also known, in four dimensions, as the vier- Which they move as a gauge field, the field strength of which
bein or tetrad formalisincan be used to reformulate, for is cancelledlocally, not just globally by the imposedJ (1)
example, general relativity in a form equivalent to the usuali.e., SO(2)] gauge field, so that a uniform condensate is
one involving Christoffel symbols; this involves imposing possible, much like the condition of vanishing field strength

a
€“%va

1
b
8M+ EwMCEbC

tices somewhere on the surface, at whiclyoes to zero. In
particular, for the sphere, this agrees with the familiar fact
for the MR state that the number of flux, seen by the

relations for uniform sswave condensates in ordinary superconductors.
a It can be shown that the long-wavelength wave function
€.Cva=09pur: involves the inverse ofor Green’s function forpart of the
w (37 (covarianj Dirac operator we have discussed, namely the
€a€ub= 7ab- part AT, whereA is the part of the Dirac operator, including

On the other hand, it is the only known way to couple Diracthe vector potential, that acts @n and maps it ta (like the
fields to curved spacetime; more details can be found in Refarlier gap functionin the Dirac equationA™ contains de-
69. In our case, we have a distinguished choice of time corivatives like d/9z in local coordinates. On the sphere, in
ordinate, we consider only the restricted form wigh' stereographic coordinates the Green’s function is known to
=6,, and require covariance under only tHeO(2) be essentially 14 —z;) for particlesi andj. For any surface,
=U(1) subgroup that describes “internal spatial rotations.” this description in terms of inverting the massless Dirac op-
Then the Dirac equation becomes precisely the BdG equaerator is identical to the problem of finding the correlators of
tion. This relation with the vielbein formalism suggests thattwo-dimensional chiral Majorana fermion§n Euclidean
the vector potential will play a natural role when we considerspacetimg and so it is not surprising that this agrees with
pairing of nonrelativistic fermions on a curved surface. the conformal block folN two-dimensional massless fermi-
The problem of spinlesg-wave pairing of nonrelativistic ons on the sphere in conformal field theory. We note that the
fermions moving on a general curved manifold should bepaired ground state on the sphere can be described in angular
formulated as follows. The manifold has a metric and a corinomentum space, in terms of single-particle angular-
responding Riemann curvature tensor, which for two dimenmomentum eigenstates with eigenvaljesn (and j=1/2,
sions reduces to a curvature scalar. We will consider only th&/2, ... , due to the single flux quantyynas BCS pairing of
case in which this curvature is constant on the manifold, ang, m with j, —m; antisymmetry and vanishing total angular
we will also introduce &J(1) or SO(2) gauge potential. For momentum for each pair require that ths be half-odd
a large system, the radius of curvature of the manifold igntegral, as they are fqu wave.
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We may also consider the cases of Riemann surfaces afiteractions that transfer electrons between layers, the num-
genus greater than one. Here, the explicit functions, whiclberN,—N, is conserved, and since this quantity is twice the
again are built out of ', are more difficult to find, but total S, of the isospin, there is & (1)=SQ(2) symmetry
certainly exist and describe the MR state on these surfacethat rotates the isospin about thaxis. Also interchange of
The required number of flux seen by the fermiongisl. the two layergor reflection in the plane midway between the
The only aspect we wish to discuss further here is the numtwo layers is a Z, symmetry. Together these make up an
ber of distinct ground states fag>1. When handles are O(2) symmetry. We also consider the effect of a tunneling
present, the vector potential is determined only up to additerm —to, for each patrticlet is the tunneling amplitude and
tion of a pure gauge piece describing holonomy around ther,, etc, denote the Pauli matrices. Nonzeboeaks the sym-
2g fundamental cycles of the surface. The holonomy, ometry to theZ, of layer exchange.
phase picked up when a fermion is parallel transported The FQHE system at=1/2 has a possible ground state
around a cycle, can only be& 1, since it comes from the that is a 331 state, which can be viewed as compl@&ave
double cover ofSQ(2) by Spir(2), the group, which pos- pairing of composite fermion. The pairing and the effec-
sesses the spinor representation. This effect, which is a reéive quasiparticle Hamiltonian are best considered in terms
statement of flux quantization, agrees with and generalizesf isospin states which are eigenstatesogf, namely e
the discussion of boundary condition sectors for the torus=(1+ |)/\2, o=(1—)/\/2, which are respectively even,
There is thus a set of?2 possible boundary condition sec- odd under the,. As in the earlier work on this problem, we
tors, which in the present differential geometry setup areassume that th&, symmetry, and fot=0 the O(2) sym-
known as spin structures. The spin structures on a ggnus metry, are not broken spontaneously. Then, symmetry dic-
surface can be divided into two sets, known as the even- angites that the effective quasiparticle Hamiltonian has the
odd-spin structures. The difference between these, for oubrm
purposes, is that the odd-spin structures possess a single zero
mode for the Dirac operator, and the even spin structures t 1, + ot
possess none. Then the BCS ground states in the weak-Keff:; (6= CeCret 5 (AjeC—keChe AkeCheC - ke)
pairing phase will include one fermion occupying the zero
mode when one exists, and since the other fermions are all T 1, M
paired, we conclude that the odd-spin structures give rise to (&t DCkoChot 5 (AioC-koCho AkoCkoC- ko) |-
ground states witiN odd, and the even-spin structuresNo
even, and these ground states will be degenerate in the ther- (38)

modynamic limit. It is known that there areg21(29+ 1) We have taken the same kinetic te@‘rr(]zk2/2m*—’u for
even spin structures, and2'(29—1) odd-spin structures, poth e and o since a difference here is unimportagand
so these formulas give the number of ground statesNfor forbidden by symmetry when=0). Fort=0, A=A,
even and odd, for al§=0. These numberéand the long-  and in general we assume both haweave symmetry, with
distance wave functionsgree with the conformal blocks for

a correlator on the genus surface withN Majorana fields Ake:Ae(kx_iky) (39
inserted. All of this is in beautiful agreement with the CFT o

picture of Ref. 14. We note that thé(1) charge sector that at smallk, and similarly forA,, . We have also neglected the
is present in the FQHE states gives another fagfoin the ~ Possibility of many-body renormalization of the splitting 2
degeneracy for filling factow=p/q, in the thermodynamic Detweene ando (such as an exchange enhancement

limit, ° which generalizes the center-of-mass degenegafy We see that the unbroketfy symmetry has led to decou-
the torus’® pled e and o Hamiltonians. These are the same as for the

spinlessp-wave case. Consequently, we see that separate
transitions from weak to strong pairing are possible when
1. SPIN-TRIPLET COMPLEX p-WAVE PAIRING #0. Fort=0, these coincide. The pairing functigy{r) in
the wave function is now a four-component object because
e%f the isospin variables. We write it as a vector in the tensor

Since the general classification of such states is complicat .
(compare the three-dimensional version in Ref.\@e con- product space of the two spinors. When at least one of the
wo components is in its weak-pairing phase, the pairing

centrate on a particular case directly related to the FQHE]E ; | i has the f
The FQHE system we have in mind is the double-layer sys-unCtIon at long distances has the form
tem atv=1/23" This is assumed to be spin polarized, but the

In this section we consider spin-triplgtwave pairing.

cog 0— ml4)e;e;+ sin( 60— m/4)0;0;

layer index of the electrons plays the role of a spin, which we (40)
refer to as isospin, to avoid confusion with the pseudospin Zi—Z
discussed in the previous section. Thevalues of the isos-  Thjs s the form that was assumed for all distances in Refs.
pin will be denoted, | for the two layers. 36, 71, and 44. For=0, we would putd=0, in which case
In the double-layer FQHE system, as in the other systemg reduces to
we discuss, we go to a CS fermion representation by using
layer-independent fluxes attached to the CS fermions. Be- Tili+ 1l
cause interactions between electrons in the same and in dif- E— (41)

. Zi—Z;
ferent layers are differerthough the two layers are on an b

equal footing, the Hamiltonian will not havesU(2) sym-  which is the form in the 331 state. Asncreases, neglecting
metry. However, in the absence of a tunneling term and ofhe likely change inA,., A, momentarily, a point is
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FIG. 1. Schematic phase diagram for thevave phases, as
discussed in the text. The A-phase with unbrokdd)lymmetry
appears as the vertical axis- 0, with the regionu>0 being the
331 phase. Similarly, the Fermi-liquid phase in which pairing dis-
appears is identified with the line=Eg, since that is the value of
u there at fixed density, neglecting Hartree-Fock corrections.

reached at which the spins have an effective chemical po-
tential u—t=0, and undergo a transition to strong pairing.
Then the long distance behavior &e;/(z—2z), so 6

= /4 at the transition and remains at that value thereafter?
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=0 form a Dirac relativistic fermion spectrum, which has
two distinct but degenerate particle and antiparticle excita-
tions. These are eigenstates of thel) symmetry of eigen-
values+1, —1, respectively, so the particle is associated
with one layer, the antiparticle with the other. A Dirac fer-
mion field is equivalent to two Majorana fields, which can be
thought of roughly as its real and imaginary components. For
t#0, these Majorana fermions have different massesl

different velocities if A,#A,), and the transitions occur
when one or other mass changes sign.

The ground-state degeneracies, edge state, and vortex
(quasiparticle properties in the different phases can now be
read off from the above and the results for the spinless
p-wave case. Fou>0 andt=0, we find the same results as
for the 331 staté>** The FQHE state is abelian and can be
described in Coulomb plasma language because of the
Cauchy determinant identity, as explained in Refs. 42 and
44. The equivalence of the results for the neutral edge exci-
tations, or for the quasihole states, in terms of bosonic fields,
or the two-component plasma mapping, and Dirac fermion
fields, corresponds to bosonizatéfi* and will not be re-
peated here in full. We will mention only an instructive ex-
ample, consisting of a pair of vortices in the weak pairing
phaseu>0. Given that there is a single=0 mode for the
air, which can here be occupied by either type of fermion,

The resulting phase is expected to have the statistics propef€n there are four states. Since the fermions in #Hiebasis

ties of the MR state, unaffected by the strong-pairong
pairs present in the ground state.

When u is decreased, there will be a transition from the
MR phase to strong pairing in both components whehnt

=0. Thus, we obtain the phase diagram shown in Fig. 1. W&

have also included labels of the analogous phases it He
He®, the roles ofe, o are played by, |, and that oft is
played by the Zeeman splitting due to a fiddchlong thez
direction. In Hé, there is fullSU(2) symmetry of spin ro-
tations wherh=0, that is broken spontaneously in any spin-

triplet phase, but this distinction is unimportant here. The

state fort=0 has the structure of the ABM state Aiphase,
adapted to two dimensions, while fo#0, we expect that

self-consistent solution of the gap equation would g&@

>A,, and this state has the structure of the A2 phase éf He
As t increases, a point may be reached at whigh=0 for

all k, which gives theAl phase(we ignore intermediate
possibilities in whichA,, vanishes only in some region kf
space. For u—t>0, which would be the case in Flethe

haveS, quantum numbers 1/2, the four states havs, val-

ues 1/2, 0, 0,—1/2 (half of these states have odd total
fermion numbeiN). These states must be interpreted as say-
ing that each of these elementary vortices cargiesf + 1/4,

o there is a fractionalization of tf& quantum number. For

N even we have only two states, both wh=0, if there are

no other excitations of the system, due to global selection
rules related to the total quantum numbers. This agrees with
the two-component plasma description for the 331 states, on
including the charge degree of freedom in the incompressible
FHQE systenf?**In the latter formulation, the fraction&,

is analogous to the fractional charge of the Laughlin quasi-
particles.

For t+#0, the U(1) symmetry is lost, and the quantum
field theories, whether the massive theory in the bulk or the
chiral theory on the edge or at the vortices, in the phase
labeled “weak-pairing abelian” must be described as two
Majorana fermions. However, the counting of the edge exci-
tations, or of the vortex states just discussed, will be the
same[though unimportant degeneracies among edge excita-

Al phase is a distinct phase, which would have a Fermiions, that previously were due to thé&(1) symmetry, may

surface foro spins. On the other hand, far—t<0, no ex-
citations become gapless at the point wharg vanishes,
and the change is merely the disappearanazogbairs from

be losi, and the universal statistics properties in this phase,

which are abelian, are the same as intthd) symmetric or

Dirac fermion case. As already mentioned, when the transi-

the ground state, so this is not a true phase transition; this igon to strong pairing occurs for the spins, the system en-
indicated by the dashed line in Fig. 1. The position of thisters the MR nonabelian phase, and whenelspins are also

boundary, if it occurs at all, is very uncertain. We simply
wish to emphasize that the boundaries betwaeA2, and
Al in general donot coincide with the weak- to strong-

pairing transitions. However, for the wave functions that are

of the form Pfg with g given by Eq.(40) for all distances,

in the strong-pairing phase, the FQHE system has the rather

trivial abelian statistics of the Laughlin state of charge-2

bosons.
Ideas of HA&' involving a two-body pseudopotential
Hamiltonian, the ground state of which interpolates between

the transition at#= w/4 to the MR state can also be consid- the 331 state a#=0 and the MR state ai= w/4 were dis-

ered as thé\2-A1l transition. We discuss this further below.
For t=0, the quasiparticle excitations nelar=0 and u

cussed critically in Ref. 44. The model Hamiltonian contains
a parameter corresponding ty which directly determines
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the 6 that describes the ground state wave function. Except at A. Weak- and strong-pairing phases,
6= m/4, the results of the model agree with the above dis- and the Haldane-Rezayi FQHE state

cussion of the abelian phase, though we do not now believe The pasic structure of the problem is once again similar to
that theU(1) symmetry is “reappearing in the low-energy the spinlesp-wave case, ofsince it is spin singlétto the
properties.”* At 6= m/4, Ho's model is pathological, and original BCS treatment, except for beidgvave. The quasi-
the upshot of the discussion was that if the three-body interparticle effective Hamiltonian is

action of Greiteret al. is also added as a isospin-independent
interaction, then this pathology of Ho’s model is removed,
and the ground state is nondegenetatethe sphere, without
quasiholesfor all # between 0 andr/4. It was noted that, .
even for this model, there are still peculiarities of the WhereA,=A(k,—ik,)? at smallk. The structure of the so-
=x/4 point. In fact, there are unexpected degeneracieé&ltioﬂ is _similar to the spinless case. However, the dispersion
larger than those of the 331 o<¥< /4 states, in the edge, relation is now
guasihole and toroidal ground stateséat /4. These arise =
because the zero modes can be occupied by eéhmro Ey= V(k2/2m* — )2+ &, 24, (43)
ferrmons, even though t_here are 09 in the ground state. In so at the tansiton point K=0), Ek:k2[|A|2
particular, on the torus in theé + sector, there are degener- +(2m*)~21Y2 For 4 nonzero

ate states that differ only in the presence or absencekof a ' K '

Kefr= kE (EkClyCkot AF C_y Chp + AkClIcikl)y (42)
g

=0 o fermion (these extra degeneracies in this model at this 2
point were overlooked in Ref. 44, but can be obtained by the Ev=|u|l— sgny, (44)
same methods used thgr&his clearly suggests that the dis- 2m*

persion relatiork,, for theo Majorana fermions is gapless at
this pﬁint, anﬁ seems to confirm E)hhts mod(:]I ath= 7|r(/4 i; __the weak-pairing phase,>0.

agtl“:a y at dtl\/?RtranS'téoT. pomrt] e_ts\l/qv'ee.n the wea -pa_lrr;ng The position-space wave function fdd particles, of
abelian an nonabelian phasernis is consistent with  nich N/2 have spint, N/2 have|, has the form

the result of the analysis here that when the leading long-

distance part og 'is despribed byo= /4, the' system i; ei- Wodetg(ri;—r;,), (45)
ther at the transition or in the MR phase. This is certainly not ) , ) ,
the case for< /4, as indicated by the degeneracies foundVNereg is the inverse Fourier transform gf=u,/uy (this
for the Ho Hamiltonian plus three-body in Ref. 44. However, 'S equivalentto a re_sultzln Ref. 2, p. 8n the strong-pairing
the fact that the ground state of the modebatr/4 contains ~ PNasevi/u~ (kc—iky)®, andg(r) falls ["’zlp'dly withr. In
no o fermion pairs at all, suggests that this point is at theth® weak-pairing phase,/u,~ (kc+iky) %, we find
A2-Al boundary as well as at the weak-MR transition. In the —
quasiparticle effective Hamiltonian, this would correspond to g(r)=z/z (46)

vanishingA, as well asu, and therefore we would expect for larger. Thus,|g|~ constant, ang is very long-range. At
the dispersion relation for the fermions to beE,|k|  the critical pointo, /u,~|k|% (k. +ik,)? (with a coefficient

_Clearly this is nongeneric behavior. When tunneling also that depends od andm*, unlike thep-wave caspand

included, the value ob in the ground state cannot be read

off the Hamiltonian in general, but we expect that the weak g(r)«1/z2. (47)

to MR transition, which should now be generic, is pushed to ] )

another value of the parameter in the Hamiltonian, so thdNis is the same behavior as in the Haldane-Rez8j?)

region in the MR phase withd=m/4 widens, while the State, when the latter is interpreted in terms of pairing of
1 . . 4

A2-Al boundary is still at the value corresponding o COmPposite fermions? Therefore, we suggest thaite HR

— /4 originally, where the ground state is known exaéfly, State is precisely at the weak-strong pairing transition point,

and again contains no fermions. and has gapless excitations in the hulk
Further evidence for the criticality of the HR state comes

from the ground states on the torus. For the quasiparticle
effective HamiltonianK ¢, the presence of two spin states
means that thk= 0 states, which occur only for + bound-

In this section, we considér= —2 complexd-wave pair-  ary conditiongsee Sec. )| can be unoccupied in the strong-
ing of fermions, and more generally=d 2 +id,,, which are  pairing phase, and doubly-occupied in the weak-pairing
necessarily spin-singlet. This has been considereghase. Thus there is a total of four ground states, all With
recently®®>5-58 We argue that the Haldane-RezafiR)  even, and none witN odd, in both phases. However, at the
state'® which has this symmetry, iat the transition from critical point, E,_,=0, and thek=0 state can be occupied
weak to strong pairing. The weak-pairing phase, like thezero, one, or two times, with no energy penalty. Hence, for
strong, is abelian; we work out its properties and its lattice+ + boundary conditions, there are two ground stated\for
description from the pairing point of view, and identify the even, and two folN odd. The latter pair, in whiclk=0 is
universality class as one that has been obtained before tsingly occupied, form a spin-1/2 doublet. Thias including
various methods, including a trial wave-function approachthe three ground states in the other segttrere is a total of
by Jain?%"2-"*We relate these properties to the Hall conduc-five ground states foN even, two forN odd. This is exactly
tivity for spin, which we calculate explicitly in an Appendix. what was found for the ground states of the hollow-core

at smallk, which implies there is a minimum at nonzecan

IV. COMPLEX d-WAVE SPIN-SINGLET PAIRING
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model of HR® (for which the HR state is the exact ground is fully gapped as far as the quasiparticles are concerned, it
state on the sphereboth numerically®**and analytically**  should not change any physical properties. Howeveh,f

The long-distance behavior of the wave functions implied byis large and dominated 4 for all k, then the system is
the present approach agrees with that in Ref. 44, as in earligissentially in ars-wave state, which must be topologically
cases. Also, we cite the energy spectrum of the hollow-corgrivial. This is the same phase as the strong-pairing d-wave
model, which was obtained numerically fof=8 particles phase, even though the rotational symmetry is different;
on the sphere in Ref. 44. No clear gap can be seen in thgese limits can be connectedg,, Ay, andu are varied,
spectrum. In view of these results, other numerical work orwithout crossing another transition. Therefore, there must be
this model should also be reconsidered. Analytical results oa phase transition d4 /A 4| varies at fixedu>0, similar
zero-energy “edge” and “quasihole” states of the hollow to those discussed above. In this case, the dispersion relation
core modef>** remain valid, but the earlier interpretation £, vanishes linearly at two points k, at the transition, and
assumed a fully-gapped bulk ground state, and so if the bullhe map fromk to u,, vy is discontinuous at these two

is gapless, the questions about the conformal field theorgoints. These will be points wherg =k?/2m* — =0, as
pictures of the bulk wave functions and the fermionic edgeyell as A, =0, and so occur at some=>0. As u—0, ko

excitations****?“°are presumably moot. It is actually quite _,0, and these points coalesce to give the previous discus-
interesting that the hollow-core modélike the Ho plus  sjon in whichA, =0 for all k.

three-body model in Sec. )lis critical. In this it resembles The two points=k, at whichE, has a conical form give
also certain other special Hamiltonians for which the exach spectrum similar to a spin-1/2 doublet of Dirac fermions.
ground states are knowffi;’’ the latter cases involve pairing Thjs is similar to behavior well known in other condensed-

of composite bosons. matter models, including fermions on a lattice in a magnetic
field, andd-wave pairing with ad,2_2 structure(perhaps
B. Structure of the weak-pairing abelian phase induced by a square lattice’ By concentrating on the de-

grees of freedom near these points, and shifting therk in

It is now of interest to find the properties of thewave space to the originwhich produces oscillating factors in
weak-pairing phaséthe strong pairing phase has the same b 9 P 9

rather trivial properties as the others discussed previmuslyreal'Space correlation functions of the fermiprte fermion

. . . excitations can be mapped onto a comple&., Dirac, not
This phase has been discussed recefitijere we wish to Majorana spin-1/2 doublet of relativistic fermions for each

consider its application as a paired state in the FQHE. Thereair of such points ifk space. Near the transition point, or by

are differences in the symmetry here compared with Ref. 57? . . .
which necessitate a certain amount of discussion. As we wilf &Y'""Y parameters in the. other models mentioftbe .%
8rt of the gap function in the second mgdehe Dirac

see, the method of analysis of the edge and vortex states usEermions ain a mass. If we now aoplv to this a similar
previously does not seem satisfactory in the present cas 9 ' pply

Therefore, it seems necessary to use a more devious a halysis for edges to that we used previously when the
proach, which we now describe.

inima were ak=0, then we find that the edge excitations

It is not difficult to see that, in the weak-pairing phase, the::.c:arlr(?sg‘ﬁf‘7 2?]'(;]'1/(32 C(;?]ub!e; (;f sc'rr:'rlzlr gggfpsr-s\,/\égfbthfgm;mes
map fromk to Uy, vy is topologically nontrivial and has | Fo,r our l\JA: oses ng\\//e are Iintlerested )i/nlunbrokenvrot;tiorial
=2, that is, it wraps around the sphere twice. Because of thig mmetr ﬁ] tr?e buII’< so the preceding remarks do not seem
and itsd-wave (=—2) symmetry, it has double zeroes at y y ' P 9

k=0 andk= . While such behavior at can be regarded as to apply directly. However, if we analyze the edge excita-

fixed by requirements of convergence and finite particletlons using the method of previous sections applied to the

number, as mentioned earlier, that lat0 is nongeneric ﬁwi\i/ennc])?ldglldgyn:ir:EI)\I/Z\ITOVCS?j?)nr?gttﬁﬁdegﬁcueﬁc:czar?%des
from the topological point of view. More generically, the g sl9 ' y €dg |

map could pass over the south paein Anderson pseu- But we are suspicious of this result because of the nonge-

dospin space at two differektvalues, but this would require neric forr_n Ofuy, vy, and previously we were relying on the
. assumption that the results are robust because of the topo-
that the rotational symmetry be broken.

. . oo logical nature of the phenomena. In the present case, the
It will be useful to analyze such generic behavior in order . ; .
. : . results should be the same as if we examine a domain wall
to find the properties even of tletwave case, as we will

; . caused by varyind\,; so as to cross the transition, because
argue below. A convenient way to break rotational symmetry,
) ; . the phases are the same, and therefore the edge state and
is to introduce ars-wave componend . of the gap function

A, . in addition to thed-wave partA ., (swave is the sim- vortex properties should be those of the Dirac fermion dou-
ko : Partaq . : blet. We expect that what happens, even if the bulk phases
plest choice, and the gap function must remain evek, ito

. N are rotationally invariant, is that the edge or domain wall
Le(:ﬁ:\/ig;eisspln-smglet ground stateThen at smallk the breaks rotational symmetry, and induces a splitting of the

zeroes ofA,, in so far as this function itk space is mean-

. ingful. With the symmetry broken, the previous analysis can
A=A+ A(k—iky)?, (48 pe applied. Of course, what should be done in all cases is a
R full solution of the BAG equations with the reduced symme-
andAg andA are both complex. In this case, whapg is a  try, and of the gap equation self-consistently. This is clearly
sufficiently small perturbation on the weak-pairidgvave  difficult, though it has sometimes been attempted, and a
phase, the effect is th&t, has a minimum at just two non- deeper analysis that explains why arguments of the type we
zero values ok, of the form £k, by symmetry. This does have given yield the correct results would be preferable. We
not change the topology of the, vy, and since the system will attempt to give such an argument below. We note that, if
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we consider perturbations analogous to $a@ave compo- excitations on the edge, and there are fractional charge sec-
nent in the cases in earlier sections, we do not find anyors for each edge, though the total charge must be integral,
change in those results. and the total chargéor particle numberis correlated with

A feature of the Dirac-like nature of the fermion edge the fermion excitations through its parity, as already ex-
spectrum is that there are two doublets of fermion modesplained.
particles and antiparticles. These correspond to the two The quantum numbers of the vortices FQHE quasipar-
points + K, in k space from which they arose. This can peticles) correspond closely to the possible quantum numbers
described by saying that there isJg1) quantum number or for the edges, anq are obt.ained in a similar way. As a simple
“charge,” which we will call M, and that the particle and €xample, we again consider two vortices. The situation is
antiparticle carry opposite values M. It may be that the €quivalent to the existence of a single fermion zero mode for
additionalU(1) symmetry, which must not be confused ei- the pair, which can be occupied by any of four types of
ther with any part of th&U(2) of spin, or with theU (1) of fermions. Thus there is a total of 16 states, of which half
underlying particle-number conservation, which is already’@veN even, half haveN odd. These should be analyzed as
broken spontaneously by the pairing, is in fact broken by theét product of four states possible for each vortex. The states
dynamics, since there seems to be no symmetry to protect Or & vortex transform as (1/2,@)(0,1/2) undelS((4), that
However, as in the case of the 331 state plus tunneling, evel they either carry spin 1/2 and 1, or vice versa. These
when the symmetry is broken, the counting of edge excitacorrespond to the states for two edges with a half flux quan-
tions, and the statistics properties, etc, should be unchangem through the cylinder, in which the zero mode shared by

If we continue to assume thg(1) symmetry exists, for the two edges can be occupied by any_of the four types of
the sake of the latter analysis, then the doublet of chiral Diradérmions. For any even number of vortices, the results are
fermions on an edge in fact has a larger symmétnote that similar, and the counting of degenerate low-energy states is
there are no interactions to consider in the thedFpe fields ~ fully accounted for by the four states for each vortex, and
are equivalent to four Majorana fermions, and there ig1€nce there is no nonabelian statistics. Thusweave paired
SO(4) symmetry. We note that, as Lie algebr&Q(4)  State,or even a superconductor, in two dimensions, possesses
=SU(2)X SU(2), andhere the firs8U(2) can be identified vortlt_:es_ that may carry spin _1/2, but not simply because a
with the spin-rotation symmetry group, while the secongférmionic quasmartlcle can sit on the vortex. In the FQHE,
contains theJ (1) symmetry just discussed as a subalgebratn€se vortices also have well-defined charge-df(2q) for
generated by, say, rotation about thexis in the second f!llmg factor v=1/q, whereq must be even when the par-
space. Thus the Dirac field and its conjugate can be vieweHCles are fermiongsuch as electropsThis is also true in all
as carrying spirM = + 1/2 under the secong8U(2). Alter- qther cases discussed in this paper. It arises from the effec-
natively, viewing the theory just as two Dirac fields, thesetive half quantum of flux that_the vortices carry, and they can
can be bosonized, and we obtain two chiral bosons. Th&XiSt only in even numbers if the system has no edges.
allowed “charge” states for the edge, which take values in W€ hope that the above discussion gives a sufficient im-
the Cartan subalgebra &O(4), lie on atwo-dimensional ~ Pression of t.he quantum numbers of the vortex states. For
lattice. This lattice is a direct product of two copies of the féaders familiar with the general theory of abelian FQHE

weight lattice ofSU(2). Points in the lattice simply describe states, we will now give a precise definition of the structure

the totalS, of spin and the totaM on the edge. The same ©f the state, using the Grafor K) matrix language, which
desciption applies to a vortex, since we can view it as a pecifies the lattice formed by the possible quantum numbers

edge rolled up into a small circle. In the latter case, thelincluding chargg of the FQHE quasiparticles, as well as

half-flux quantum we assume in the vortex corresponds tdheir statistics, and the order parameters and chiral algebra of

49,78,42
changing to periodic boundary conditions for the fermionsth€ €dge theory: _
The full lattice of possible quantum numbers of a vortex,

on the straight edge, for all components of the fermions. In i X )
addition to these different boundary condition sectors, ther@" the to“i' quantum numbers of a set of multiple vortices, is
are also selection rules from the global quantum numbergienotedA _(assln Ref. 48 We will describe it first as a set
These are similar to the rules described in detail in Ref. 4207 vectors inR®, using an orthonormal basis with the stan-
Specifically, forN even, one can have the ground state withdard inner product. TheA™ consists of the set of vectors of

no edge excitations, or one can create fermions on the edgt'e form

but only in even numbers. In the present situation, each of

these fermions can be in any of the four states in the repre- v=(r1/\/§,r2/\/§,r3/[2\/a]), (49
sentation of sping1/2,1/2 underSU(2)x SU(2). For odd

total fermion number, there must be one unpaired fermionwherery, r,, rz are integers obeying; +r,+rz;=0 (mod
which we can put on the edge to obtain a low-energy state2). Also the statistics of the excitation & m=v?, where# is
Then the chargéor particle numberdiffers by one from the the phase picked up by exchanging two identical such qua-
ground state, in addition to the nontrivi8iO(4) quantum  siparticles, and the conformal weight of the corresponding
numbers. Additional fermion pairs can be excited in this cas@perator in the edge theory ¥/2. The basis has been cho-
also. If we consider two parallel edges, as for a system on aen so that the three quantum numbers carried by the excita-
cylinder, then we build up the full spectrum by applying tions are proportional to the components in this basis. In fact,
these rules to the two edges together, and there will be difthe spinS,=r1/2, M=r,/2, and the charge iQ=r3/(20q).
ferent sectors corresponding to the presence of either zero érom these rules we see that the smallest possible v@hex
one half of a flux quantum threaded through the cylinder. Inone with the smallest nonzewd) carries eitheS,= +1/2 or

the FQHE application, there are also chiral bosons for charghl = +1/2, and charget1/(2q), as stated above, and has
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statisticsd/ w=1/2+ 1/(4q) (mod 2). It is easy to verify that we find that there are four, in agreement with the analysis
the full lattice A* is obtained as the set of all linear combi- based on the quasiparticle effective Hamiltonian. The Gram
nations, with integer-valued coefficients, of the vectors dematrix, together with distinguished vectors that specify the

scribing the quantum numbers of the ba@mallest vorti-  chargeQ and spinS, quantum numbers, is sufficient infor-
ces, and thus represents the possible quantum numbers mftion from which to reconstruct the latticAsand A*, and
any collection of vortices. hence the universal aspects of the phase, such as ground-state

The excitation lattice\ * is the dual lattice to the conden- degeneracies, quasiparticle statistics, and the theory of the
sate latticeA, and A is a sublattice ofA*. In the present edge states. In this context, the Gram matrix is often called
case,A is the set of vectorsv that are linear combinations the K matrix.
with integer coefficients of the vectors=(1/\2,+1/\/2, This completes the analysis we will give of the phase. It is
+/q) (with all three signs independenwhich represent the @ generalized hierarchy state in the sense of Ref. 48, and
underlying particles. These represent possible states for lgsembles the 331 phase. The latter lacks3hi2) of spin
particle (electron tunneling into an edge, and these electronand hence has a two-dimensional lattice; its structure was
operators, as we may term them in spite of the emerlyent described in detail in Refs. 42 and 44.
quantum number, are usually part of the condensate lattice, We may now compare the universal properties of this
as they are in the hierarchy theoAn exception to this is state with others analyzed previously. We find that several
the strong-pairing phases, where only operators of charge @her constructions of this spin-singlet phase have already
multiple of two appeay.The fact thatA and A* are dual been given. In Ref. 48, this was mentioned briefly as the
means that for anye A*, we havev-we Z for all we A, structure of both a spin-singlet state foe= 1/2 proposed by
and vice versa. It suffices to check this for this represent-  Jairt’_(see also Ref. 72 and one proposed by Lee and
ing the electron operators. Kane’* A more detailed analysis was given in Ref. 73,

Both lattices possess neutral sublattices, that is lattices d¥here it was also identified with a hierarchical construction.
vectors such thaD=0. The neutral sublattice of, denoted In the latter, one starts with the Halperin spin-singlet 2/5
A', consists of vectors with, andr, even. Thus these form State;* which is a 332 state in the Coulomb plasma language,
a direct sumzeZ of one-dimensional lattices. Each of the and then one makes a finite density of spinless quasielectron
latter can be viewed as the root lattice 81J(2) in Lie ~ €xcitations of that state, each carrying charge 2/5. The
algebra theory, and\* is the root lattice ofSO(4). The  duasielectrons are then putin a Laughlin 1/2 state, to obtain
neutral sublattice oA *, denotedA**, is the set of vectors @ Singlet state withy=1/2. The hierarchical step implies that
with r;=0, and sa ;+r,=0 (mod 2. This is a sublattice of the resulting state has a three-dimensional lattice. In Ref. 73,

the weight lattice oS O(4), which would be the dual oA " this and the Jain construction were shown to coincide. Un-
as a two-dimensional lattice. The simplest nontrivial neutrafortunately, the formulas there contain a small mistake: the

vector is of the form ¢ 1/y2,+1/12,0) (with independent final basis vector in Eq(4.8) in that reference_ shpuld bg
plus and minus sighsand these represent the neutral fermi-reduced by a factor of two, as sho_ulql the entries in the first
ons, that is the BCS quasiparticles considered in this papefoW @nd column of the Gram matrix in E¢.9) there. The
These cannot be created individually on a single edge; onl{£Sulting matrix is then identical @ above, withq=2, after
excitations lying inA, such as even numbers of such fermi- ermuting the basis vectors. This basis is the natural one for
ons, can bé? the hierarchy approach. In o@ above, the top left X2

An integral basis for a lattice is a set of vectors in thePlock (with g=2) describes the Halperin 2/5 state, and re-
lattice that are linearly independefaver R), such that all 1€CtS its origin.(The 2/5 state itself has the sareas the
vectors in the lattice can be written as linear combinations ofPin-polarized hierarchy 2/5 state, which descends from
those in the set, with integer coeffecients. Such a basis can- /3 as reflected by the+1=3 at the top lef. _
not be an orthogonal set of vectors, unless the lattice is a 1he Jainv=1/q spin-singlet state was proposed as a trial
direct sum of one-dimensional lattices. In our case, a conveave function, namely
nient integral basis foA (other than a suitable set of three of
the electron operators abdves e=(1/y2,112,\q), e Y= x{ "xax11- (51
=(4/2,0,0),8,=(0,42,0). The Gram matrix of the lattice is

the set of inner products of these vectdgs,=¢ €, and in Here, x, stands for the wave function fan filled Landau

levels of spinless particlegso y; is the Vandermonde de-

this case is ; ¢ -
terminant or Laughlin-Jastrow facoand y, ; is the lowest
g+l 1 1 Landau level filled with particles of both spins. We ignore
the Gaussian factors in these wave functions, and have omit-
G=| 1 2 0. (50 ted the projection to the LLL. The filling factor is againyl/
1 0 2 This wave function can be loosely viewed as a Coulomb

plasma of particles carrying charge, spin and another quan-
The diagonal structure of the lower-righk2 block reflects  tum numbemV =+ 1/2 to represent the two Landau levels in
the direct product nature of tHe((4) root lattice. The de- y,. The exponents in the wave function correspond to inner
terminant ofG, detG=4q, determines the index ok as a products of corresponding vectors, which are just those of
subgroup ofA*, that is the number of equivalence classes ofthe four electron operators witQ=1. This establishes the
vectors inA* modulo A. It gives the number of ground equivalence, as for the hierarchy states in Ref. 48. In fact, the
states of the system on a torus, or the number of sectors efxtraSU(2) that appears here acts on the LL indicegrin
edge states. Factoring off the center-of-mass degenegacy Jain’s function, just like the SUW() that appeared fon Lan-
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dau levels in the spin-polarized Jain stafesnd the corre- conductivity?® and also for the existence of a Hopf term and
sponding hierarchy states withlevels in the hierarchy. The of a nonabelian CS term, in the two-dimensional A-phase
state is a combination of the Halperin spin-singlet structurevith SU(2) symmetry broken spontaneouslin this paper,
with the spinless composite-fermion/hierarchy structure. Wawve restrict ourselves to the Hall conductivies for conserved
should point out that the number of flux for Jain’s state onquantities for which the corresponding symmetry is not bro-
the sphere idl ,=q(N—1)—2, the same as for the HR state, ken spontaneously in the paired state, such as spin and en-
which follows from our analysis, and was noticed ergy. For quantities for which this is not true, such as charge,
previously’? This is of course essential in order for it to be we do not find quantized Hall conductivities in supercon-
possible to vary parameters smoothly to reach the transitiorductors(though of course we do find quantized Hall conduc-
Thus the samev=1/2 (more generally,v=1/q) spin- tivity in the QHE systems Since our point of view differs
singlet phase has arisen in four different ways. We want tsomewhat from that in, for example, Ref. 5, we give a self-
emphasize that the equivalence of the universal long-distana®ntained discussion.
properties does not mean that the trial wave functions in To be precise, for the Hall spin conductivity in a spin-
different approaches are the same. For example the pairesinglet paired state, we find that if the particles are viewed as
wave function found here and Jain’s above do not look alikecarrying spin 1/2we usually sef. =1), the Hall response to
It may be that one is a much better descriptibas a much an applied spin analog of the electric field, such as a gradient
larger overlap with an exact ground stafer medium size in the Zeeman splitting, is
systems than the other, even though they describe the same
phase. The equivalence found here is analagous to that be- s (h12)?
tween the 331 state and the A-phaswave state, however Ty=Mo 5
in that case there was an exact equivalence of certain wave
functions through the Cauchy determinant identity. We maywherem is the winding number, which is2 in a d-wave
still expect some equivalence in the long-distance form ofweak-pairing phase. We have written the Hall spin conduc-
the wave functions. tivity in this form to emphasize the similarity to the usual
e?/h, with e replaced byi/2 here. Inf=1 units, we obtain
_ _ in our d-wave weak-pairing phase§y= 1/47r. We chose the
C. Induced Chern-Simons actions + sign, since in the FQHE applications of the — 2 state,
and analogs of the Hall conductivity the edge modes propagate in the same direction as the charge
The arguments given so far for the edge states and fonodes. This agrees with Refs. 56 and 57, where different
zero modes on vortices, on which the identifications of thearguments were used. For thavave case, we view the fer-
weak-pairing phases have been based, may appear not to Béons as carrying isospirt 1, and hence the Hall spin con-
very well founded, as they have been based on analyzing théuctivity we obtain is
BdG equations for special forms of the gap function and
variation of the paramete, though we did argue by conti- S 1
nuity that the states found must persist as the equations are ny:mm’ (59
varied while staying in the same phase. In this Section, we
argue that the results we have obtained are in fact very roahere the winding numbem is +1 in the weak-pairing
bust, because the edge states, and the form of the bulk theopywave phases, again with=1 for thel=—1 case.
described by the Gram matrix of the condensate lattice, are These results agree with the descriptions we have already
required as a consequence of transport properties of the bugkven of the weak-pairing FQHE phases using the Gram ma-
weak-pairing phases. These transport properties are the quahix or lattice theory. In fact, we should point out that a
tization of the spin and heat analogs of the Hall conductivity,quantized Hall spin conductivity is not unusual in FQHE
which we prove explicitly for the spin case. They imply the systems, though it is not always emphasized. It occurs for
existence of certain edge state structures, just as in the caggample in any spin-polarized state, such as the integer and
of charge transport in the QHE, and when the weak-pairindg-aughlin states withy=1/q, because the electrons carry spin
phases correspond to abelian FQHE states, the Hall spin cod/2 as well as charge, and so the two Hall conductivities are
ductivity is actually a part of the Gram matrix description. proportional. It also occurs in some spin-singlet Hall states
The remainder of this section discusses these points, but ti{gbelian examples were discussed in Ref), Ti&luding the
technical details are relegated to the Appendix. We should=2 state with the LLL filled with both spins, and the Hal-
point out that the form of the argument has already appearegerinmmnstates withm=n+1, m odd, which are a gener-
in Ref. 57 for the cases witBU(2) or U(1) spin symme- alization of they=2 state. In these cases, we obtain the full
tries, though the explicit derivation of the Hall conductivities SU(2) version of the Hall spin conductivity, Withf;y taking
was not given there. the same value as in th&#wave weak-pairing phase. The
For the cases of spin-singlet pairing, andpefvave pair- same quantized Hall spin conductivity was also found in
ing with an unbrokerJ (1) symmetry, we derive in the Ap- certain spin-liquid states for lattice antiferromagn@t3he
pendix the Hall spin conductivityriy, and show that in any wave functions of these states are the same as that of the
fully-gapped translationally-invariant superconducting phasedalperin state, with the charge degree of freedom removed
it is given by a topological invariant, which within the BCS (i.e., the wave function is 1/2,1/21/2), and the spin-1/2
approximation is proportional to the same winding numberparticles restricted to lattice sites, explaining this result.
we discussed earlier in Sec. Il and subsequently. Some simi- The result that the Hall conductivity, in units @fuantum
lar statements appeared earlier, but were for the charge Halumbej?/h, is a topological invariant given by an integral

(52



PRB 61 PAIRED STATES OF FERMIONS IN TWO DIMENSIONS. . . 10 285

overk space, is similar to one form of the ordinary chargeadditional chiralU(1) degree of freedom, which we argued
Hall conductivity, found originally for a noninteracting peri- €arlier must exist, and calledl. We have therefore repro-
odic system with a rational number of flux quanta per unitduced the claimed results about the edge states, neglecting
cell, as an integral over the Brillouin zof2.In systems the charge degree of freedom.

wherek is not a good quantum number, such as the same We note that, when formulating such arguments for the
system with irrational flux, or when disorder is present, or innature of the chiral edge theories, we can presumably assume

other geometries, including those with edges, that breawat the theories are unitary, conformal fields with local cur-

translational invariance, such a topological invariant is ap_rent ope_rator_s for physical co_nserved quantifias usual_,
) . N Lorentz invariance may be spoiled by the presence of differ-
parently not available. Yet the idea of quantization as result-

ina from the conductivity beina a tonoloaical invariant that ent velocities for different excitations, but this will not mat-
9 nauctivity 9 polog ter for the statistics and other universal properties in which
measures an intrinsic local property of the ground stat

. ) . Sve are interested Previously, we might not have assumed
seems too good to give up. For the noninteracting QHE W'”lhis, because of the example of the Haldane-RefHR)

disorder, the topological invariant has been extended usingisie in particular. But we have learned that the HR state is at
noncommutative geometry, so that the Hall conductivity isy critical point, and previous discussions of the edge and
an integral over a “noncommutative Brillouin zone,” and in guasiparticle properties of that state are irrelevant. Thus, with
this way quantization has been proved even for the physithe demise of the HR state as a bulk phase, it becomes at-
cally relevant case of a nonzero density of localized states afactive to believe that the edge theories of incompressible
the Fermi energ§f" It would be interesting to extend this to FQHE phases are always unitary conformal field theories.
other cases, including the paired states with disorder, whickvith this assumption, in theories wiU(2) Hall spin con-

we discuss in the next section. In the Appendix, we giveductivities, unitarity of the edge theory requires quite gener-
arguments that the form we obtain is exact to all orders in thally that k be an integef?*® and soo},=k/(4) in the
interactions, but only for a translationally invariant system. above conventions.

Now we can use the results on the Hall spin conductivity The preceding arguments do not apply to the spinless
to argue that the edge state properties we have obtained gsavave case, in which there is no continuous unbroken sym-
indeed correct. In the Appendix, we derive the Hall spinmetry. This is unfortunate in view of the great interest in the
conductivities by obtaining the induced action for an externahonabelian properties of the weak-pairing phase. But there is
gauge field that couples to the spin or isospin. The actionanother Hall-type conductivity, which exists in all cases, in-
that result(cf. Ref. 82 are CS terms for a’®U(2) gauge cluding those without a continuous symmetry. This is the
field in the spin-singletd-wave case, and for & (1) gauge Leduc-Righi(LR) conductivity, which is thexy component
field in thep-wave case. Now, using either the Hall conduc- ,, of the thermal conductivity, and is of course related to
tivities and arguing as in the QHE literatfitésee also Refs. the transport of energy, a conserved quantity. Like the Hall
84 and 8%, or using the induced actions and arguing as in theconductivities for charge and spin, this is a nondissipative
field theory literatur€® (quite similar arguments appear in transport quantity that can only be nonzero when parity and
Ref. 87 and references therginve can conclude that on a time-reversal symmetries are broken. In systems with a gap
domain wall between phases with differeriy’s (one of the  for all bulk excitations and with chiral edge excitations, it
phases might be the vacuum outside an edge, wifr-0)  can be argued that the LR conductivity is nonZ&d. Thus,
there must be chiral edge excitations. In the presence of ®is applies to QHE systems, and to supercondudfmased
uniform spin-electric field, a spin current is induced in asystemsif there is no gapless collective charge mode. The
region with o, #0, and the normal component of this at a value of x, can be obtainéd®" by considering a sample
domain wall has a discontinuity, representing a net inflow ofvith two edges and a small temperature difference between
spin onto the wall. To avoid violating the continuity equation the edgegstrictly speaking, the following argument yields
for the spin density and spin current density, there must b&he LR conductance, not the conductivitirhe chiral exci-
chiral modes on the wall, and a “gauge anomaly” in the tations on each edge are excited by different temperatures,
conservation of spin on the wall alone. The tangential field@nd this produces a larger heat current on one edge in one
induces a nonzero divergen@ee., an anomalyof spin cur-  direction than that on the other edge in the other, and hence
rent along the wall, which cancels the net inflow from the@ net heat current. This shows that the current is related to
bulk. Such an anomaly can occur only if gapless chiral exthe heat capacity of each mode on an edge, times the velocity
citations exist on the domain wall. The minimal chiral theory of the mode, summed over modes. It is known that the heat
required to produce the anomaly is the usual chiral Luttingefapacity for each mode is related to the Virasoro central
liquid (or chiral Gaussian modein the U(1) case, with the charge ¢ in the conformal field theory of the edge
value of the coupling that corresponds to a free chiral Dira@Xcitations’ In «,, , the velocities cancel, and the remaining
(Weyl) fermion in 1+1 dimensions, and th8U(2) chiral ~number is proportional to the total central charge of the edge
Wess-Zumino-Witten(WZW) theory’® with k=m/2=1 in  theory(including the charge modes in the FQHRrecisely,
the SU(2) case. All of this applies even within the BCS
mean field framework we used before, and then the edge WzkéT
excitations must be free fermions. In tipewave case, we Kxy=C 6m7h (54)
therefore expect simply a single chiral Dirac fermion to
propagate on the edge. In tdevave case we must have an This is the fundamental relationship governing the LR con-
SU(2) doublet of chiral Dirac fermions, which can be rep- ductivity in all quantum Hall problems-ere, we assumed
resented by thé&=1 chiral WZW model, together with an that all modes on an edge propagate in the same direction; if
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not, thenc should be replaced by the difference of the centralthe underlying system to an arbitrary metric, then using
charges for the right and left-moving theories. Related toWard identities to relate the response to a topological invari-
this, the two-probe thermal conductance of such a system isnt. However, if we assume a spectrum of relativistic fermi-
also equal toc,, (for a case with all edge modes propagatingons at low energies, with a minimal coupling to the gravita-
in the same direction just as the two-probe conductance istional field, then the calculation can be carried out, and is
equal to the quantized,, of the bulk. It has been found that known in the literaturé® The coefficient of the induced
the two-probe thermal conductances of the Laughlin states gravitational CS term again has the form of the same topo-
variousv=1/q are independent df, even though the theo- logical invariant as in the Appendix, but integrated over only
ries of the chiral Luttinger liquids contaipas a parametéf.  half the sphere, as in the similar treatment of the spin cases.
This is because the central chargeisl, independent of. For a single Majorana, this yields the above form with
The formula fork,, is similar in structure to that for the replaced by 1/4 on the two sides of the transition. Inclusion
Hall spin conductivity. However, the central chargeloes  of the contribution of a Pauli-Villars regulator then produces
not have to be an integer, and indeed for a single Majorana=0 on one side¢=1/2 on the other. We expect that for our
fermion, c=1/2% so that for free fermions in generaljs a  nonrelativistic system, where the largebehavior is explic-
multiple of 1/2. Nonetheless, we do expect it to be quantizeditly known, we would obtain such a result also, witlin a
in the sense of invariant under small deformations of thegeneral system of paired fermions being proportional to the
theory (including adding weak disorder same topological invariarivinding numbey we have seen
The argument above for the LR conductivity made use ofalready, andallowing for factors of two associated with spin
the edge states. However, we want to use it to back up outegeneracywe would findc=1/2 in the spinlesp-wave
results on the fermionic edge modes of the MR state, inveak-pairing phase, and alse=1 (2) in the tripletp-wave
analogy with the arguments for the other cases, which usegingletd-wave) cases(These are the results for the paired
the Hall spin conductivities. Hence we need an independerfermions, and in the FQHE would have to be supplemented
argument for the value of the LR conductivity. We believe by addingc=1 for the charge degrees of freedgnihere-
that it should be possible to derive such a result, analogouslfore, we believe that the existence of the edge states and
to the Hall spin conductivities, by considering the system invortex degeneracies in the MR phase can be placed on a firm
externalgravitationalfields. Here the Christoffel symbols, or footing.
the spin connection, play the role of the external gauge fields A somewhat related issue is to obtain effective actions
we used in the spin case, but should be viewed as determinefscribing the weak-pairing phases. We emphasize that the
by the metric of spacetime, which we treat as the indepenES actions discussed in this section ar@éucedactions for
dent variable and set to the usual Minkowski metric afterexternal fields that act as sources, and should not be confused
calculating responses. The role of the currents, to which thevith effectiveactions, which contain fields that should be
vector potentials couple, is played by the energy-momenturfunctionally integrated over, and represent the dynamics of
tensor, which includes the energy flux among its compothe system at low energies and long wavelengths. For the
nents. The significance of changing the metric should bebelian FQHE states, the effective actions fall into the frame-
clear if we recall that equilibrium systems can be representediork of the known theory, based on the Gréi) matrix.”®
in imaginary time, with the imaginary time direction peri- For the MR, and other similar, phases, something different is
odic, the period being kiT. Thus a temperature gradient required. For the abelian phases, there is an evident similar-
might be viewed as changing the geometry of space aniy between the induced and effective actions. For example,
(imaginary time. A more rigorous derivation would avoid in the d-wave case, neglecting the charge degree of freedom,
imaginary time, but should still involve the response toone would expect the bulk effective action to be Sb(2)
changes in the metric. The leading term in the induced actiorx U(1) CS theory, withk=1 for the SU(2) part(here, in
for the external gravitational field in-21 dimensions will in  the effective actionk must be an integer to maintain gauge
general be the gravitational CS term, which can be written irinvariance. This theory is determined by the requirement
terms of the spin connection in close analogy to the usual C$hat it produce the correct edge thedfy{The U(1) part
terms: could possibly be extended to a sec@id(2) withk=1, to
agree with theSO(4) edge theory discussed abavd. is
1 c 3 2 known that such an effective theory also produces the de-
. ﬂf drentr| 0,d,0\+ z0,0,0, (59 sired induced gravitational CS term in all cad®®y anal-
ogy, we are led to expect that the MR phase, where the edge
where we view the spin connection as a 3<3 matrix, theory involves only the=1/2 representations of the Vira-
determined by the metri¢Such a term was also proposed SOro algebra, can be described by an effective theory that is
earlier for HE-A films in Ref. 7) The coefficient contains Some sort of gravitational CS theofgimilarly, there were
c/24, which shows the relation to the central chacgm a  €arlier proposals for gravitational-type effective actions for
corresponding chiral conformal field theory on a bounddry, three-dimensional paired statesQuantization of such a
is needed to cancel the anoma|y in energy_momentum Coﬁheory should yleld Virasoro conformal blocks in the same

servation on the boundary by an infldbR “Hall” current) ~ Way that quantization of CS theory yielded current algebra
from the bulk® as for the charge and spin Hall conductivi- blocks’® and thus be closely related to the wave functions

ties. discussed in Sec. Il and in Refs. 14 and 44. This hope is
We have not completed a calculatiG@nalogous to those encouraged by the identification of the paraméteand the

in the Appendix of the induced action or LR conductivity vector potentialA, which should be functionally integrated

for the bulk from first principles. It would involve coupling over in the full treatment, as the vielbein and spin connection
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of 2+ 1 gravity, or at least as the part relating $1(2) second maps onto the usual noninteracting QHE transition,
rotations of space only, as discussed in Sec. Il. The hope &ind the last includes an unusual intermediate phase where
producing conformal blocks in this manner from a gravita-the heat transport is similar to that in a disordeneetal In
tional analog of CS theory has been around for a long fitne, all cases, we expect the qualitative results to be unaffected
but does not seem to have reached fruition, in spite of afby interactions(or quantum fluctuations around the mean-
interesting attempt by Verlind¥.Such a theory would be an field theories used though the universality classes may be
interesting, possibly more natural, alternative to the *“con-changed.
ventional” approach, along lines anticipated in Ref. 14, of a The problem of the noninteracting BCS quasipatrticles in
CS analog of a coset constructith. disordered paired fermion systems was discussed by Altland
We also wish to comment on whether our results implyand Zirnbauer(AZ),>® where a symmetry classification of
that fractional and nonabelian statistics occur in paired surandom matrix ensembles was proposed, that is analogous to
perfluids, as opposed to FQHE systems. For example, thtae familiar classification for ordinary one-particle Hamilto-
weak-pairing d-wave and spin-triplgt-wave phases have nians into orthogonal, unitary, and symplectic ensemfses
nontrivial Hall spin conductivity, and the smallest possiblesymmetry classesin these ensembles, no particular value of
vortices carry spirfor M) quantum numbers. Hence the spin the energy is singled out as special, so that they apply to
degrees of freedom contribute a fractional amount to thgghenomena near generic ener@y Fermi energy values,
Berry phase on exchanging such vortices. Similarly, exwhere the average density of states is nonzero. The disor-
changing vortices in the weak-pairing spinlgsweave phase dered paired systems differ first in that the fermion number is
should produce a matrix action on the space of degeneratet conserved, because of the pairing terms. The full Hamil-
states we have identified, which we may be tempted to terrtonian of course conserves number, but this involves the col-
nonabelian statistics. However, although these contributionkective response of the condensate. In applying these models
from the spin(or fermion numbersector are well defined, in in the FQHE, this is again true, but leads to the Hall re-
a neutral superfluid the charge degree of freedom is gaplessponse, not a superfluid response. Therefore, we disregard
and the vortices act on the chargmrticle numbervariables  particle number transport, and concentrate on conserved
also, so as with vortices in a simple neutral superfluid, whichquantities carried by the quasiparticles only. The latter quan-
carry no well defined particle number, the contribution to thetities include spin, when this symmetry is not broken spon-
total Berry phase is not well defined, due to the chargeaneously by the pairing. Then the classification of en-
sector’® Nonabelian statistics is still meaningful, modulo sembles by AZ is according to whether time-reversal
phase factors. In the incompressible FQHE phases, this prolsymmetry(T) is broken or not, and whether or not there is an
lem disappears, and the statistics properties have been chambrokenSU(2) spin rotation symmetry; the latter is unbro-
acterized above, in detail for the abelian cases. Also, in &en in spin-singlet paired states. By making certain transfor-
superfluid with a Coulomb interaction, there is again nomations, such as a particle-hole transformation on| tepins
problem, even if the interaction is-1/r, which does not in the cases wherg, (at least is conserved, the quasiparticle
produce a plasmon gap in two dimensions. Vortices are netHamiltonians can be related to number-conserving Hamilto-
tral because of screening, and so nonabelian statistics, @ians, and thus to single-particle or random matrix problems.
fractional statistics in the triplgi-wave case, can occur, with In this way, AZ identified four classes of random-matrix en-
no contribution from the charge sector. There are also “neusembles for disordered paired systems, which they latigled
tral” vortex excitations with no netspin-independentvor- ClI, D, DIl . For the quasiparticle Hamiltonians, the zero of
ticity acting in the charge sector, which would not be subjectquasiparticle energk is a special point, where in most cases
to the problem in compressible superfluids, but these arthe average density of states of the quasiparticles in the dis-
found not to have fractional statistics. Note that a similarordered system vanishes. Thus, these four classes are distinct
problem as for the charge sect@n the compressible case from the usual three mentioned above.
occurs in the spin sector in connection with any subgroup of The case of spin-singlet paired states with disorder was
SU(2) that is spontaneously broken. considered in more detait:>>**The symmetry classes are
Cl (with time reversal symmetjy and C (without time re-
versa). In the particular case of cla&3 it is natural to con-
sider in two dimensions the possibility of a Hall spin con-

In this Section, we discuss the effects of disorder on théluctivity o3, as in the weak-pairingl-wave phas€®®’
phases above, and on the transitions between them. We cohbere are nonlinear sigma model formulations for cl@ss
sider the phase-coherent, zero-temperature case, and neglegher using replicas, which lead to target manifold
all interactions between the quasiparticléacluding the ~ SP(2n)/U(n) (with n—0) in the compact formulatio, or
gauge field fluctuations The problem then reduces again to supersymmetry, which leads to the target supermanifold
the quasiparticle effective Hamiltoniai&, this time with ~ Osp(2n|2n)/U(n|n) (with n>0 arbitrary.>* The Hall spin
& and A, replaced by operators that are local in positionconductivity shows up in that a topological term with coef-
space, with short-range correlations of the disorder. We corficient 6 proportional too, can be included in these models,
sider the problems above in reverse order, starting with thevhen the dimension of space is twbAnalysis of the model,
d-wave case, which has the most symmé®J(2) of spin  and numerical work on a network model with the symmetries
rotationd, thend or p wave with onlyU(1) symmetry, and appropriate to clas€,*® has shown that this system has
finally the spinlesp-wave case, with no continuous symme- phases with quantized;, , which are the same, or multiples
try. The first case has been studied recently in the context aff, those we discussed in the pure system in Sec. IV C. These
disordered superconductor¥s®while we will argue that the phases can therefore be viewed as the disordered analogs of

V. EFFECTS OF DISORDER ON THE TRANSITIONS



10 288 N. READ AND DMITRY GREEN PRB 61

% ; network modeF® and from a mapping of the network model
%) 4 to a supersymmetric vertex model and a superspin
chain®®%85"which was then analyzed numericat§/The re-
sults are in excellent agreement with exact values of some
exponents, which were proposed using the relation of the
supersymmetric vertex model to classical percolatfoRor
example, the localization length exponentvis 4/3, and at
g g the critical point the density of states vanishesEd€. The
effect of interactions on these results is presently unknown.
Inclusion of a Zeeman splitting h, which was neglected
so far, will split the transition, and the phase diagram as a
function of u andh will be similar to Fig. 4 in Ref. 57. There
will be an intermediate phase in Whi(d’f(y is quantized and
0 0 halfway between the quantized values in the phases on either
0 © n 0 © ™ side.(This is somewhat like the intermediate MR phase pro-
(@) class C (b) class D duced by tunneling in the p-wave casg.In the present case,

FIG. 2. Proposed renormalization group flow diagrams(@r ~ the Zeeman term leaves unbrokerUgl) subgroup of the
the unitary ensembldQHE), as irf®, and class C, antb) class D.  SU(2) symmetry present in the spin-singlet paired state; for
The dashed curves represent schematically(toauniversalbare  h parallel to thez axis in spin space, thid (1) is generated
values of the coupling parameters. Other features are univers@lly S,. The pairing is still between spih and spin|, and so
when the renormalized couplings are defined using the as-measurélde symmetry is the same as in thavave case: with disor-
conductivity parameters, as explained in the text, and repeat perger, the distinction betweep-wave andd-wave, and be-
odically in the 6 variable. tween spin singlet and spin-triplet, is lost. Therefore we ex-

pect that in this intermediate phase, there is a single chiral

the weak- and strong-pairing phases. In these phases, th¥rac fermion mode on the edge, and that the statistics prop-
BCS quasiparticléfermion) excitations at low energies have erties are the same as those of the 331 state. Also, the tran-
a nonzero density of states which vanishes quadratically agitions from the weak-pairing abelian phase, in which the
E—0, and these states are localizBdhe situation is thus statistics properties will be unchanged even though the
similar to the usual QHE, in which the low-energy excita- SU(2) symmetry is brokeitsimilar to the effect ot on the
tions are localized and have nonvanishing density of states &31 statg to this phase, and from this phase to the strong-
the Fermi energy. Localization is necessary to obtain theairing phase withr§y=0, are expected to be in the univer-
quantized Hall conductivity. In the weak-pairing phase, wesality class of the usual IQHE >®Here, the unbrokebl (1)
therefore expect thahe results for the edge and statistics of spin is playing the role of the particle number in the usual
properties obtained in SetV are still valid when disorder is IQHE case; the real particle number is of course still not
included We do not expect this conclusion to be affected byconserved in the paired state. The appearance of this symme-
the inclusion of interactions in the analysis. try class in a disordered superconductor was seemingly over-

The transition between these two phases, and the role dboked by AZ; in fact, there are two such possible classes, in
aiy, can be understood via a renormalization-grd®®%)  which there is an unbroked(1) [notSU(2)], and T may be
flow diagram, shown schematically in Fig@ The flows either unbroken or broken. By applying the methods used by
can be thought of as representing the values of the locaAZ in the case of broken T and unbrokéh(1) symmetry,
conductivity parameterss, , oiy that would be measured at one is led back to the usual unitary ensemble, with the $pin
a given length scale, and how they change with this scale. land spin| quasiparticles playing the role of particles and
the nonlinear sigma model, similar parameters appear in thkoles, respectively. It follows that these phases at nonizero
action of the quantum field theory. It is natural to define thepossess a nonvanishing density(tafcalized states for the
renormalized values of these couplings at any scale to be thguasiparticles a@E— 0. In the two-dimensional case, the uni-
conductivities that would be measured at that scale, in whicltary class admits a topological term with coeﬁiciemriy in
case the flows are the same as the RG flows within the fieldur case, and thus an IQHE transition. This is consistent with
theory model. The conductivities should be understood irthe results in Ref. 56. Note that the relevant interaction ef-
this way from here on, instead of as the bare values, witliects in the case of paired states and the IQHE may turn out
which they coincide only when the scale is of order the meano be different, however, so the equivalence might not hold
free path. Quantized values refer to the renormalized valueghen interactions are taken into account.
at very large scales. In the case of cl&she form of the Turning to thep-wave states relevant to the double-layer
flows is identical to that in the IQHE for noninteracting system in the FQHE, for=0 and with nonzero disorder we
electrons’® Similarly to the usual IQHE, the transition oc- are once again in the situation just discussed of broken T and
curs because of a nontrivial fixed point, at Wh'nzﬁl/ ismid-  unbrokenU(1). Hence, for this case, we again expect,
way between adjacent quantized values, afjgd will take  within our model of noninteracting quasiparticles, a transi-
some nontrivial universal value. However, the spin quantuniion between quantizea‘f;y phaseganalogs of the weak and
Hall transition in classC is in a different universality class strong-pairing phasgshat is in the universality class of the
from the IQHE. Recent numerical work has obtained somenoninteracting IQHE. Witht+#0, we saw in the pure case
of the critical exponents for this transition, both from the that the transition splits into two, each in the class of the
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spinlessp-wave case, and the intermediate phase had theusly for classes C and €}>3and for clas®D is mentioned
properties of the MR state. The nonzero tunneling breaks thim Ref. 54. We define the RG beta function as
U(1) symmetry. We consider this case next, and then return
to its application to the double-layer system. ) d(g?)

The symmetry classes of pairing of spinless fermions, or B 9%) = dinL’ (57)
with SU(2) symmetry fully broken by the Hamiltonian, are
denotedDI1l (with unbroken T andD (with broken T by ~ whereg? is the nonlinear sigma model coupling squared, and
AZ. These cases were not analyzed in two dimensions prey’~ 1/k,,, andL is the length scale on which the renormal-

viously, but some of our results have been found indepenized coupling is defined. In two dimensions this has the form
dently in Ref. 97(see also a remark in Ref. bOur interest

is in classD, with broken T. In this case the nonlinear sigma Byx(9%)=ag*+0(g®) (58)
model target(supery manifold isSQ(2n)/U(n) (using rep-
licas in the compact formulation, withn—0), or at weak couplingsmallg?); effects of the topological term
Osp(2n|2n)/U(n|n) using supersymmetry(with n>0 involving ¢, if the model admits one, are nonperturbative in
arbitrary).>? In the supersymmetric formulations, clas€es g2, of order e 99’ and contain thes dependence(Also,
andD differ in that, while the bosonic submanifolds are realthere will be another beta functiof,,=dé/dInL for 6,
forms of SO(2n)/U(n)xXSp(2n)/U(n) in both cases, in which will be entirely nonperturbativeHere a and b are
classC the first factor is noncompact and the second comconstants. In class€sandCl, ais positive>*>3and the flow
pact, and in clasB it is the other way roundcorresponding is towards strong coupling, that is localization, as shown in
to the compact replica formulatip®’ (These statements are Fig. 2(a) for classC. However, in classe® andDIll, ais
for n>1. Forn=1, the first factor is a single point in both negative, and in fact equal to minus its valueCimnd Cl,
cases. In the two-dimensional case, claBsadmits a topo-  respectively’*® The reason lies in the relation of the target
logical term in the nonlinear sigma model, like cl&Ssin  (superymanifolds in the nonlinear sigma models, described
the case of clasB, there is no continuous symmetry in the above. This relation is similar to that between the manifolds
underlying fermion problem. The only candidates for thein the symplectiaspin-orbit scatteringand orthogonalpo-
physical meaning of the couplings in the nonlinear sigmaential scatteringensembles of the usual random matrix or
model are in terms of thermal conductivities, since energy isocalization problems, where tha’s also have opposite
still a conserved quantity. The diagonaldissipative ther-  signs. The origin of this is that theeterm in the beta function
mal conductivityx,,= yy, and the off-diagonal LR conduc- of any nonlinear sigma model is related to the Ricci curva-
tivity «,, have the dimensions ¢ T/h (his Planck’s con-  ture tensor of the target manifold. When we compare these
stant,= 24 in our unit9 at low temperatures. We define for the compact and noncompact versions of the “same sym-
metry,” such asSp(2n)/U(n) (atn a positive integer we

_ WzkéT—« find that they are of opposite sign: the noncompact case has
K= g Kxo negative curvature, the compact positive. These geometric
(56) phenomena for symmetric Riemanni@mon-supern mani-
wzkél folds are discussed by HelgasthThe noncompact space
Kxy= "3 Kxy: Sp(2n,R)/U(n) at n—0 represents clads in perturbation

theory, as does the compact sp&@(2n)/U(n) in the same
where the numerical factor af?/3 is that which arises in the limit, and so their perturbativg8 functions are equal. This
quantized values of,, (see Sec. IV ¢ and so may be con- establishes the result using replicas. Likewise for the target
veniently included here. Then we expect that the sigmégupermanifolds, the factors in the bosonic parts each have
model couplings arésimilarly to the charge and spin trans- Opposite curvature in the two cases, and this presumably ex-
port cases, where no factors &£T are involved 1/g>  tends to the full supermanifold. Consequentyhas the op-
“7<xx- and0=47r7cxy. Since the quantized valueshb)fy are pO.SIt.e sign in the two cases. A similar result also holds in the
~ hich i ltinle of 1/2 f . tormi principal chiral models with target space3p(2n) and
Kxy=C, Which Is a multiple o 1 2 for Majorana fermions, we SQ(2n) in the compact replica approach, with—0, which
have arranged that the quantized value9 oVould be mul-

. . ; X describe classeS| and DI, respectively. Note that in the
tiples of 27r. We expect that if the nonlinear sigma model for

. X ; . . _“lunitary case the target supermanifold 1d(n,n|2n)/
classD is derived microscopically at weak coupling, which [U(n[n)x U(n|n)], and the bosonic part contains just the
we will not attempt here, then the above relation gowill ’

. ; compact and noncompact forms ©Bf(2n)/[U(n) X U(n)],
hold. We note here that in clags, the density of states at g, the model maps to itself under interchange of compact

E—0 in the localizedquantizedk,,) phases is expected to and noncompact, and hence the net coefficieint the uni-

approach a nonzero nonuniversal constant, as one can S@@y case Vanishes, as is well known.

from the random matrix expressions in AZusing an argu- We now try to find the simplest possible flow diagram

ment in Ref. 55. We want to emphasise that the nonlineagompatible with the weak-coupling behavior and some other

sigma model in clas® describes only the case of very ge- simple requirements. In the unitary case, the flows in Fig.

neric disorder, and not necessarily more restricted forms of(a) can be considered to be the simplest possible, on includ-

disorder. We will return to this point below. ing nonperturbative-dependent effects that cause the attrac-
We may now consider the form of the RG flows for classtjye fixed points to be a#=0 (mod 27). These flows are in

D in two dimensions. We begin with perturbation theory atfact obtained if one takes the dilute instanton gas calculations

weak coupling, that is large,, . This was considered previ- of Pruisken, which are the leading nonperturbative effects at
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weak coupling, together with the perturbation theory resuligram. But there is an intermediate set of bare values éear
just discussed, and uses these forms for all coupling vafues.= 7 (mod 27), which flow to weak coupling, and at large

The nontrivial fixed pOint av=m and at some Universalxx scales they map onto the entire intervar;q(fy values be-

controls the transition between the quantized fixed points i'?vveen the two quantized values in question, witk.a that
this case. The picture obtained from these flows seems 10 Bcreases logarithmically with, according to the weak cou-
in qualitative agreement with what is known from numerical pling beta functiond,, above. This is therefore anterme-
W%gk for this transition in the unitary ensemble, and for classgjate phase with metallic behavior of the thermal conductivi-
C. . ties, between the two quantized phas€ke intermediate
For classD we can try to guess the nonperturbative formphase is separated by phase boundaries from the quantized
of the flows without calculation. In view of the weak- phases, and the critical behavior at these transitions is gov-
coupling result, we could try reversing the arrows on theerned by the nontrivial fixed points. At these fixed points,
flows for unitary and clas€. However, we also expect that 7 s equal to the quantized value in the neighboring quan-
the stable, attractive fixed points, which will represent quantized phase. The critical exponents for these transitions are
tized values ofx,, at x,,=0, will be at =0 (mod 2m) unknown at present. Experimentally, one would see plateaus

again, not atr (mod 2m). In particular, this means that an i %, separated by intermediate regions, and the width of
insulating phase with quantized,,= 0 is possible. It seems the latter will stay nonzero as the system size goes to infinity,

reasonable that sufficiently smadl, can produce localiza- and as the temperature goes to zero. In the intermediate re-
tion when }Xy:o, in spite of the flow tox,,= in the  gions,k,y, will vary continuously to interpolate its neighbor-
weak-coupling region, just as in other localization problemsjng quantized values, anl,, will have a peak, the height of
including the case of spin-orbit scattering, and this should bevhich will grow logarithmically with increasing system size
stable against small changesag, . In order to achieve this, Or inverse temperature. We emphasize that the charge trans-
we also shift the flows byr along thed direction. The result Port properties are still either superconducting or quantized
is the flow diagram shown in Fig.(). The interesting non- Hall, depending on the system considered, and unaffected by
trivial fixed points now occur on the line8=0 (mod 27). the transition in the quasiparticl¢there would be a collec-
These flows could be checked in the weak-coupling regioﬁive mode(phonon-likg contribution to thermal transport in
by comparing them with a dilute instanton gas calculation ag neutral superfluid case, such as & filen].
in the unitary case. Indeed, if the latter calculation is as- We should respond to one possible objection to our claim
sumed to give the same form as in the unitary cises is  that there will generically be an intermediate metallic phase
plausible, then the competition with the perturbative termdn the classD problem(this point is raised in Ref. 97 This
will give the flows as shown. objection begins with the pure problem, in whitdince we

In order to use the RG flow diagram to make predictionsassume noninteracting quasiparti¢iéee critical theory is a
about the effects of disorder on the pure transition from weaiajorana fermi field with a mass term that changes sign, and
to strong pairing with T broken and no spin-rotation symme-then CozsiderSTWheaK d_ilsorderb?s a ?ertg_rbati?nldOL thiSb con-
try, we need to know where the bare valuesigf andicy, B SO 8 S O T R e e tor
lie on the diagram. In the usual IQHE unitary case, and als@naly years, gun e
for class C, the values are shown as the dashed curve in Fif.~ 0: ©n€ can consider the problem as a Dirac field in two

2(a). If one uses the self-consistent Born approximation to(=uclidean dimensions. It is then argued that there are only

obtain the values in the IQHE case, for disorder weak com@ W possible random terms that can be included in the

pared with the cyclotron energy, then one obtains a Semit_wo-dimensionaI(ZD) Dirac action that are marginal or rel-

circle in the ooy plane® The precise position of the evant by power counting at the pure fixed point. These terms,

curve is unimportant, but it associates the transition, at whici/nich are bilinears in thg I;:r:i\c field since th_elproglem IS
o4 is half an odd integer, with the middle of the disorder- "Oninteracting, are a randobi(1) vector potential and two

broadened Landau bands. Similar behavior occurs for clad¥Pes Of random mass term. For the random Majorana fer-

C. mion, noU(1) vector potential is possible, and there is a

In the present case of cla&s we again expect the bare unique mass term. It is further known that the mass term is

| & d 1ol h in Fig(t marginally irrelevant for weak disorder; this type of random-
Values Ofikyy anlxyy 10 i€ 0N an arc, as shown In FIgUE. — a54 arises when one considers the 2D Ising model with dis-

These values pass through the quantized point&,@:0  order in the intersite Ising coupling®! If one assumes that
(g?=) and #=0 (mod 2m) (quantizedx,y). This is rea- the disordered paired system we consider here must fall into
sonable, as these are the values in the two phases in the puhés scheme, then the only possible randomness is irrelevant,
case, and disorder that is weak compared with the| géyn and there will be a transition directly between the disordered
the spectrum should produce only small corrections to theseersions of the weak- and strong-pairing phases, with the
values. Connecting these regions with the dashed arc, weritical properties of the pure system, up to logarithmic cor-
always produce a curve of the form shown for topologicalrections, in disagreement with our prediction of an interme-
reasons. This curve intersects the separatrices shown, whiclate phase and a different universality class.

flow into the nontrivial fixed points. We see that the regions There is, however, a form of disorder not considered in
near the quantized fixed points flow into those fixed pointsthis argument. In Sec. Il, we discussed vortices in the gap
so thatthe quantized phases, one of which corresponds to thiinction, and in Sec. Il C related their description in terms of
nonabelian statistics phase in the pure case, still exist in thehe gap function and the vector potential of the underlying
presence of disordeaccording to our proposed flow dia- problem to the vielbein and spin connection that appear in
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the general Majorana action. We should consider the possdual to, and at the critical point has the same scaling dimen-
bility that these are random; indeed, the general analysis dfion as, the Ising spin field. However, in this case the analy-
AZ requires generic randomness, even though the Dirac agis of weak randomness in terms of a random mass is justi-
Majorana actions do not explicitly appear there. Not all offied, because for a low probability of negative bonds the
the random fluctuations of these quantities are necessariljisorder variablegvortices appear only in closely-spaced
relevant. For example, small random fluctuations of the magpairs, not in isolation. In the continuum critical field theory,

nitude of the vielbeir(i.e., of|A|) around its non-zero mean the operator product of two disorder operators, which repre-
are irrelevant by power counting. Also, if the gap function isSents the close pair, produces the Majorana mass operator,
nonzero the vector potentia| can mosﬂy be gauged away b@nd thus the randomness generates the random mass term.
cause the Superconductor is a Meissner phase_ However, t%e see that the distribution of the randomness in the ISing
is clearly not true at a vortex, and for general probab“ityproblem with weak bond disorder differs substantially from
distributions of the disorder, vortices will be present. In thethe problem we wish to consider. While the random bond
FQHE app]ication, there is under|ying potentia| disorderlSing model in~2D does have a direct transition between the
which couples to the particle density, and for unboundedwo quantizedx,, phases, and a multicritical point, there is
distributions of disorder, or for sufficiently strong disorder no reason to suppose that these occur in dass

with a bounded distribution, it will nucleate vortic6SQHE The properties of the disordered version of the MR phase,

quasiparticlesin the ground state, which can occur in isola- which has a nonzero quantize~d(y, are subtle. Since we
tion from other vortices since they have finite energy. It ishave assumed that isolated vortices are possible, which are
not difficult to see, either intuitively or formaIIy, that a small localized FQHE quasipartides ana|ogous to those in the
density of randomly placed vortices will be highly relevant atysyal states on the plateaus in the FQHE, these will carry
the massless Majorana critical point. Intuitively, they intro- zer0 modes, and there will be"2 many-particle states
duce destructive phase interference. Formally, in the 2D Maghen the system containsiortices. These are very nearly
jorana action, the effect is to insert the spin fields of thejegenerate when the vortices are well separated, since the
Majorana theory(so-called because they represent the Isingenergy splittings are expected to decrease exponentially in
spins in the related Ising modekhich (in the same gauge the separation of the vortices. Nonabelian statistics of addi-
choice as earligrcause square-root branch points in the Ma-tional vortex (FQHE quasiparticle excitations should be
jorana field” Such random vortices do not seem to haveconsidered in terms of exchanges of such quasiparticles sepa-
been considered in previous work on random Dirac fieldSyated by many times the typical separation of the vortices in
They are relevant because, while the spin field in the criticaihe ground state. Then the fermion zero modes of the ground
Majorana theory has scaling dimension 1iBhich corre-  state can interfere with those on the added quasiparticles,
sponds to a relevant perturbation even in the non-randomomplicating the nonabelian statistics properties. Further
case, on replicating or supersymmetrizing the system, thestydy of these effects is beyond the scope of this paper.
spin fields act on all the components simultaneously, and Finally, we return as promised to the case of the double-
hence their dimension is thenxdl/8=0. Thus the coeffi- |ayer system with tunneling Then the phase boundaries at
cient with which these fields appear in the action after averngnzerot between the weak-pairing, abelian phase, the MR
aging has scaling dimension 2, showing they are stronglphase, and the strong-pairing phase will be broadened and
relevant’® This will cause an RG flow away from the pure replaced by an intermediate region in which metallic thermal
Majorana fixed point, and we expect the generic behavior oproperties will occur, again with sharp phase boundaries be-
classD, with the intermediate metallic phase, to result. An-yyeen this and the other phases. #As0, this intermediate
other possible form of disorder is that which violates the phase will shrink in width to become a single pointtat0,

= —1 symmetry, that is generaj i p, pairing with random  \yhere we have already explained that a direct transition in
coefficients. If both were completely random, the averagenhe |QHE universality class occurs. Thus this transition
would restore parity, that is the symmetry of reflection in anyproadens to become the intermediate metallic phase at finite
line, and prevent the existence of nonzesg, so this form t. We expect that at sufficiently smat] there is a single

of disorder is not completely acceptable in our physical Sysregion of the metallic phase, which interpolates betwegn

tems; we must allow for a net violation of parity. Thus, the |yes differing by two steps, which are the values in the
generic disorder that defines claBsshould include all of = \weak and strong-pairing phases. tAscreases, a point is
these relevant effects, and randomly placed, isolated vorticer% ached at which another pIateaJd;y appears, which is the

e e ot ot eweHiR-ype phase. Such behaor s lloed by our fow i
P J Y, ' ram, if we plot it from6=0 to #=4, and the initial val-

dom vortices included, the ordered phase we are describin s lie on an arc between the quantized fixed points at those

is no longer a supercon(_juctor in the strict sense, due to th values that avoids the basin of attraction of the quantized
random phases frozen into the gap function. Instead it I . -
ixed point at =27 completely for smallt, but not for

what has been called a gauge glass, since the order in the 98P gert
function is similar to that in a spin glass. gert.
In contrast, in the random bond Ising model subject
also raised in Ref. 97 negative bonds produce frustrated VI. CONCLUSION
plaquettes, and a string of negative bonds produces two frus-
trated plaquettes at the ends of the string. The insertion of a In this paper, we have considered exotic properties of P-
semi-infinite string of negative bonds is the definition of theand T-violating paired states of fermions in two dimensions,
Ising disorder operator of Kadanoff and CéJawhich is  and the relation to the FQHE using pairing of composite
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state in general in charged superfluids, and in neutral super-

fluids moduloU(1) phase factors that arise from the com-  AppenDIX A: QUANTIZED HALL CONDUCTIVITY

pressible charge sectdii) in an A-phase typg-wave phase, FOR SPIN
statistics may be abelian, though tunneling or a Zeeman term
may lead to a transition to a MR phadei) in the d-wave In this Appendix, we provide a detailed derivation of the

spin-singlet case, the HR state corresponds to the transitiddall conductivity in (iso-) spin transport in thed- and
point, and, from now on, may be disregarded in consideringp-wave (A-phase cases. This is equivalent to showing that
generic spin-singlet FQHE systems, which will most likely the induced action for the system in an external gauge field
be in the weak-pairing phase. The latter is abelian, but has that couples to théiso-) spin is a CS term. In the-wave
nonzero Hall spin conductivity, and spin-1/2 chiral Dirac fer- case, the system is spin-rotation invariant, so we obtain an
mions on the edg®’ (iv) disorder does not destroy the SU(2) CS term, while in thep-wave case, there is only a
phases in question, but may modify the MR phase in ard(1) symmetry, so we find &(1) CS term. In both cases,
essential way. In the spinlegswave case, randomly placed the Hall spin conductivity is given in suitable units by a
vortices are a relevant perturbation of the pure transition, antbpological invariant. Within the BCS mean field approach,
there is an intermediate phase with metallic thermal conducdsing a suitable conserving approximation, this topological
tivity properties due to delocalized BCS quasiparticles. invariant is the winding number ofu( ,v,) discussed in Sec.
Issues which remain to be addressed include the full efl, and is therefore an integer, which is the statement of
fective theories for the states, and for the transitions betweequantization. We argue that the quantization in terms of a
them, and the effect of interactions on the random problemsopological invariant is more general than the approximation
Also, a direct derivation of nonabelian statistics in terms ofused.
pairing of fermions in the MR case is desirable. Considering first the spin-singlet paired states, we use the
One further comment on tunneling into the edge is inNambu basis where the symmetries are transparent. Define
order. Such tunneling could provide a useful diagnostic for

the paired states in the FQHE. Since the fermion excitations 1 ( c ) A1)

on the edge in the weak-pairing phases are now always Dirac v E
(or Majorang, their contribution to the exponent is always
the same. Thus, at filling factar=1/q (whereq will be 2, 4,  with

., for fermions such as electronshe current will scale
as |~V* with a=q+1 in all the weak-pairing or MR CZ(‘:T)
phases. In contrast, in the Halperin-type paired states, we c)’
have a=4q.* The former result is the same as in the com-
pressible Fermi-liquid-like staté® Assuming that edge

i t
loyC

(A2)

so thatW transforms as a tensor product of particle-hole and

theories of fully gapped bulk states must always be unitar pin-sp_ace spinors. We consider an intgracting_ system and
y 9app Y fpproxmate it as in BCS theory, then with a minimal cou-

conformal field theories, as argued in Sec. 1V, the exponen?_ . ) o
ling to the gauge field, we use a conserving approximation

for tunneling into an edge on which all modes propagate i : : .
the same direction must in fact always be an odd integer, a% obtain the spin response. In Fourier space, we should note

a consequence of the Fermi statistics of the electrons. For t

5/2 state, thé ~V contribution of the LLL will presumably 1 Ce

dominate. \pk:_< o ) ] (A3)
Note Addedin view of a suggestion which has circulated, V2 \ioyely

that the Fermi-liquid-like phase of Ref. 25 may generically . L .

have an instability to pairing in some channel, albeit at ex-l_n l_t|h_e NNambu basis, the kinetic energy becortagain, K

tremely low energy or temperature scales, we will consider #N)

here the case of a weak-pairing phase of spin-polarized fer-

mions in an arbitrary angular momenturaigenstatel(must Ko=2 &a(chiCii+ i) = &0 l(a,@1)Vy,

be odd. Similar arguments as before show that there will be K K

[l| chiral Majorana fermion modes on an edge, and corre- (A4)

spondingly 2/"~! degenerate states fon2vortices. Since where £)=|k|?/(2m)— u is the kinetic energy, containing

[I] must be odd, this always leads to nonabelian statisticthe bare massn, and the products in the spinor space are

with the same monodromy properties as fer—1 up to  understood. Products like,®| act on the Nambu spinors,

Berry phase factorgbecause each added pair of Majoranaswith the first factor acting in the particle-hole factor, the

makes a Dirac fermion which contributes only abelian ef-second in the spin-space factor. The interaction term, for a

fects. spin-independent interactiov is
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1 ; : functional derivative with respect ®7, , atA% =0, yields the
Kin=2 2 Vi Wiiqo @)WV, (0,0 )Wyt (matrix of) linear response functions. In particular, the spatial
kk'g (A5)  components yield the conductivity tensor in the usual way.
Therefore we consider the imaginary-time time-ordered
Here the colons : . . : denote normal ordering, that is all the function,
c's are brought to the left. In the BCS-extended Hartree-
Fock approximation, the effective quasiparticle Hamiltonian 120 = — (32 (q)3°%(—q)), (A13)
(for later referenceis mr pem
where time-ordering is understood, and from here on we use
Keir= > Wil &(0,01)+ReA(oy®]) a convention thatp, g, etc. stand for three-vectorp
k =(pg,p), and furtherpy=iw is imaginary for imaginary
time. For u=v=i=x or y, an additional “diamagnetic”
term n62/4m is present inl'[f‘ﬁ, which we do not show
This is for singlet pairing, whera _,=A,, and not just for  explicitly. As consequences of the continuity equation and
d-wave. Here g, is &, plus the Hartree-Fock corrections. If the related gauge invariandd,,, must be divergenceless on

wy

we define a vector both variablesq,I1,,=q,I1,,=0. To maintain these when
using the BCS-Hartree-Fock approximation for the equilib-
Ev=(ReA, —ImAy, &) (A7) rium properties, one must use a conserving approximation
then the quasiparticle enerdy=|E,|, and for the response function, which in this case means summing
ladder diagramgcompare the charge case in Ref. 2, pp.
. 224-237.
Keﬁ:; V(B o®1) Wy (A8) One begins with the BCS-Hartree-Fock approximation,

which can be written in terms of Green’s functions (as
In the Nambu notation, it is clear thit=K,+ Ky, and consider only zero temperature, afulp, is along the imagi-

K, are invariant under glob&U(2) rotations that act on Nary Po axis throughout
the spin-space, that is the second factor in the tensor prod-

ucts. The spin density, the integral of which over all space is G Yp)=po—&po,®1 —2(p), (A14)
the total spin and generates such global transformations, and
the spin current densities are given by 3
. 2<p>=if 2y (72 NB0(0: 8 V(k=0).
o
5@ =5 2 Vil 97a) Vicsqr (A9) (A15)

1 K Note thatG(p) andX(p) are matrices acting on the tensor
B(q)== > _i\pl W2 0:00) Vg (A10)  Pproduct space. The equations are solved by
2% m B ’

-1 _ _ .
wherei=x, y is the spatial index, and=x,y,z is the spin- G (p)=Po—Ep o3l, (A16)

space index. Spin conservation implies the continuity equ

a- . .
> . we write 1 forl ®1) as one can also see from the effective
tion, as an operator equation, ( )

quasiparticle HamiltoniarKr, and A, obeys the standard
93219x, =0, All gap equation. ' _
woR (A1 In the response function, the ladder series can be summed
whereu=0,x,y, and the summation convention is in force. and included by dressingne vertex, to obtain(again not
So far we have not introduced a gauge field for spin.showing the diamagnetic te)m
Since the spin is conserved locally, we can turn the symme-

try into a local gauge symmetry by introducing &t(2) d3p
vector potential, and making all derivatives covariant. The HZ"V(q)= —if 3tr[yi(p,p+q)G(p+ q)
effect onK is to add the integral of (27)
1 XT%(p+a,p)G(p)], (A17)
ATt g ATATY (0,0 )W (A12)

where y;, is the bare vertex,

The gauge field is to be used solely as an external source,

with which to probe the spin response of the system, and a 1

then set to zero. Yo(P.p+0)=51®04, (A18)
If we now consider integrating out the fermions, then we

can obtain an action in the external gauge fields, which can

be expanded in powers @f‘; The zeroth-order term is the

free energy density, times the volume of spacetime, and the

first-order term vanishes by spin-rotation invariance. The

second-order term corresponds to linear response: the secoadd Fi is the dressed vertex satisfying

(p+3Q);
yf‘(p.p+q)=—ﬁoz®aa, (A19)



10 294 N. READ AND DMITRY GREEN PRB 61

d3k at the ends, the terms can be summed up into a ladder dress-
I'°(p+q,p)=1(p+q,p)+i f (2—)30'Z®|G(k+ q) inggi each vertex, evaluated @& 0. Hence, we obtain to first
m order

XTP(k+0,k)G(k)o,®IV(p—k). (A20)
3

D % (p.p) 3G (P, p)G(p)

[
At small g, we can obtain useful information about this func- H‘Zt;(q)z - Ef 2m)?
v

tion from the Ward identity that results from the continuity
equation. The particular Ward identity we use here is an

_1a b
exact relation of the vertex function to the self-energy, and Fu(p.p)G(PIT(P.P) G (A25)
the conserving approximatiofthe ladder serigswas con-  Using the Ward identity, this becomes
structed to ensure that it holds also for the approximated
vertex and self energy functions.ﬁt ) &
Following Schrieffer’s treatmeritwe consider the vertex ab, o p 1
function with external legs included: w(A)= g (Zw)str{(l ®0a)(1©0,)G,G
X[Gd,G 1,Ga,G 1. (A26)

AS(ry,ro,r3)=(J5(ra)W(r)wi(ry)),  (A21)

) ) ) Since theG’s are independent of the spin-space indices, the
for spacetime coordinatess;, rp, rs. Applying d/drs, 0 explicit o's factor off, and the result i$2® times a spin-
both sides and using the operator continuity equation, Weydependent part. The latter can be simplified using the BCS-

obtain the exact identity in Fourier space Hartree-Fock form of3, by writing the latter as
q.L5(p+a,p)=3100,G H(p)— 3G (p+q)l@o,. Po+Ep 0!
(A22) Gp)=——7m (A27)
Po— Ep

Since G~ is trivial in the spin-space indices, it commutes
with |® o, . Hence, af—0, the right-hand side vanishes, so The spin-independent factor contaieg,, since it is anti-
['(p+q,p) has no singularities ag—0. This differs from Symmetric in these labels. Keeping track of the signs, we
the charge case, for example, where this calculatiming find for the quadratic term in the induced action

the ladder series approximatjoleads to the discovery of the

collective modé?® Since the spin symmetry is unbroken, no 1 M JAR
collective mode is necessary to restore this conservation law, yp TJ d3rA2 p z €uvns (A28)
and so there is no singularity in the vertex function for spin. ™ M
One can verify that the Ward identity is satisfied using theyith A1 given by the topological invariant
BCS-Hartree-FockG ™! and the ladder series fd?. At q
=0, this yields the important results dzp
M:f Eelep(&lprajEp)/Eg (A29)

ré(p.p)=-34,G Y p)l®o,, (A23)
The right-hand side is exactly the winding numberdis-
cussed in Sec. I, and is an integer as londeds a continu-
ous, differentiable function gp; it is 2 for thed-wave case.

r3(p,p)=3%®0,, To ensureSU(2) gauge invariance, the CS term should
include also a term cubic iA, with no derivatives. For this
term we evaluate the triangle one-loop diagrams with three
ré=—36,G6 Yp)lea,, (A24) insertions of], with each vertex dressed by the ladder series.

Setting the external momenta to zero, the Ward identity can

whereg; and d,, stand ford/dp;, d/dp, from here on, and pe used for all three vertices, and the result can be seen to be

the extra minus in the first relation is consistent because im-

plicitly q,I' ,=dol'o—q;l'; .

or explicitly,

We now calculatdI at smallg. To zeroth order, use of abe 1 d3p 1
the Ward identity shows that th&J function gives zero, 1 (0.0= 24 (27.,)3”[(' ©02)G7,G
except whenu=wv=i. In that case, it reduces to a constant
that cancels the diamagnetic term also present in just that xX{(1©01)Gd,G™ (18 0)GaG™ .
case. Hence, we require only the part first-ordeg.itn the (A30)

expression fodl above, we first shifp—p—3q, so thatq

no longer appears in any bare vertices, but does appear in tHée anticommutatof, } arises since the result must be sym-
Green’s functions on both sides of the ladder, between thenetric under permutations of the index pajis a, etc. The
rungs that are the interaction lines. Hence to first order, we@roducto,o0., when traced over the spin-space indices,
obtain a factort%aMG: F3GdG G in place ofGin one  yields a factor 2e,,., which is antisymmetric, and so the
position in the ladder. Since there may be any number ofemainder must contaia, ,, to maintain symmetry; the rest
rungs(including zerg between this and either of the vertices of the structure is the same as before. Hence, the full result is
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the SU(2) CS term, which we write in terms of thex2
matrix vector potential#\ , = %a’aAz,

K 2
yp f d3XeM,,xtr<A”c9,,A)\+ FAAAL - (A31)

Here, k is the conventional notation for the coefficient of
such a term, in this same normalization;
guantize the theory by functionally integrating ov&r we
would needk= an integer. In our cask= M/2=1 for d
wave.

For the spin-triplet case with an unbroker{1) symme-
try, we must use the fact that_,=—A,. For example, in
the two-dimensionaA phase, as occurs in the 331 state in
the double-layer FQHE system with zero tunneling, dis-
cussed in Sec. lll, the pairs are in the isosBi=0 triplet
statef;|j+/;T;, and theU(1) symmetry generated L, is
unbroken; we recall that the underlying Hamiltonian is not
assumed to have a fuBU(2) symmetry. The effective qua-
siparticle Hamiltoniar(38) becomes, in the Nambu-style no-
tation,

Keﬁ=; V[ &(o,01)+Red (0@ 0,)

The U(1) vector potentialA,, couples toS,, and the vertex
functions containl ® o,, which commutes with the BCS-
Hartree-Fock Green'’s functio®. The tensors appearing in
the three terms it o obey the same algebra as the three in
that for the spin-singlet cadevhere they were trivial in the
second factgr and as in that case commute witk® o,.
Consequently, the derivation for the induced action to qua
dratic order inA, is similar to that for theSU(2) singlet
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At the transition,u=0, the map is discontinuous and covers
exactly half the sphere in thewave case, sd1=1/2, as in
other problems. In the-wave case with rotational symme-
try, the value ofv, /u,| ask— 0 is nonuniversal, as noted in
Sec. IV A, and hence so is the valued, at the transition.
This is a consequence of the nonrelativistic form of the dis-

if we wished topersion relation of the low-energy fermions in this case. We

may also note that for a paired system on a lattice, as in
models of highT; superconductors, a similar calculation will
give an integral over the Brillouin zone, which is a toflfs
instead of thek plane, which can be compactified 8. But
maps fromT? to S? are again classified by the integers, and
the integer winding number is given by the same expression
S0 quantization is unaffected.

We can also argue that the quantization result away from
a transition is exact in a translationally invariant system, at
least in all orders in perturbation theory. For this we use the
form in Eq. (A26) or (A30), where the Ward identity for the
vertex has been used. Diagrammatically, it is clear that the
exact expression can be similarly written, using the exact
(i.e., all orders in perturbatiorGreen’s function and vertex
function. (This is also true when the CS gauge field interac-
tion is included) The Ward identity that relates them is ex-
act, and the result far, is of the same form as shown. The
next step, the frequency integrals, cannot be done explicitly
in this case, because the precise form of the Green’s function
is unknown, and the analogs §f, A, (or of u,, v,) do not
exist. The latter do not exist because in general the poles in
the Green'’s function, which would represent the quasiparti-
cles, are broadened by scattering processes, except for the
lowest energies for kinematical reasons. However, the form
in Eq. (A26) is itself a topological invariant, as we will now
argue. As long as there is a gap in the support of the spectral

case above, and the traces in the Nambu indices can be cdrnction of G, G(p) is continuous and differentiable on the

ried out with the same result as before, to obtain the abelia
CS term

A,
rA,—¢e€

S (A33)

L
ar
and no cubic term. In this casé( is again given by the
winding numbem, which is 0 or=1 in the p-wave strong
and weak-pairing phasésespectively discussed in this pa-
per.
We note that the effect of the vertex corrections we in-
cluded as ladder series is to renormalizedle0 vertices as
shown in Eq(A23) for the spin-singlet case, and use these in

VN 1

{naginary frequency axis, and tends to®1/py as po—
+joo, Thus,G ™! exists and never vanishes. Considering the
spin-singlet case for convenience, the spin-space structure is
trivial, so we may perform the corresponding traces, and then
G or G ! is a 2x2 matrix, with the same reality properties
on the imaginaryp, axis as in the BCS-Hartree-Fock ap-
proximation. (The spin-triplet case should work out simi-
larly, because of the algebraic structure already mentioned.
It thus represents a real non-zero 4-component vector, in
R*—0, which topologically is the same &. S? is obtained

by dividing G by its norm, (t67G)Y? and the normalize®

is a 2X 2 unitary matrix with determinant-1, so it lies in

S°. Thek space can be compactified 4 as before, and the

one-loop diagrams with no further corrections. This corre-frequency variable can be viewed as an element of the inter-
sponds to the minimal coupling—p—A in the action, as valZ=(—1,1), so the integral is ovéd® X 7. However, since
one would expect by gauge invariance. If we assume such the limit of the Green’s function agy— * i for fixed k is
coupling, and treat the low-energy, long-wavelength theoryndependent ok, we can view this as simplg®. Thus, we
near the weak-strong transition as Dirac fermions with relaare dealing with maps frorg® to S°, the equivalence classes

tivistic dispersion and minimal coupling to the external
gauge field, then the expression &t as an integral ovep
covers only half the sphere mspace, and we would get1
(d-wave), *+1/2 (p-wave. The missing part results from the
ultraviolet regulator in the field theory version of the

of which are classified by the homotopy groug(S®)=Z.

The integral we have obtained simply calculates the integer
winding number or Pontryagin index of the map, when prop-

erly normalized G can be normalized to lie iBU(2) with-
out affecting the integral This establishes the quantization

calculation® or from a second fermion with a fixed mass in of af(y in a translationally-invariant system with a gap, at

some lattice mode®° In our calculation, the remainder is
provided by the ultraviolet region, wherg,—0 ask— o,

least to all orders in perturbation theory, and probably can be
made fully non-perturbativéas the Ward identity is alreagly
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