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II. Electrolyte solutions

A. Poisson-Boltzmann equation

Let ®(¥) = electrostatic potential at T

4 _
Vio(r)=- —ﬂep(r) Poisson
&
where p(f)=z,n, (f)-z n_ ()
valency A
of + charges # density of - charges

But n, (f) = ni g Pzt

n_(F)=n’ e Boltzmann (mean field approximation)
So
p (f) =z, ng e—Bz+e<I>(f) —z n? e pz_ed(r)
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B. Debye-Hiickel equation

Linearize the Poisson-Boltzmann equation (assume electrostatic energy is weak compared to kT)

Vo= _% e {Z+ n’ e _z n° (1 + eBZ*“D(_r))}

2 __4_77 0 _ 0y _ 2.0 2.0 = 1
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but z.n! —z.n’ =0 due to electroneutrality, so
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ekT
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ekT
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Where k' = Debye screening length---multivalent ions screen more effectively.



Thus, we have

Vo='d Debye-Hiickel equation

1. Free energy of Debye-Hiickel equation

Consider hard spheres of diameter a with charges z,.  What is potential around a
sphere of charge q, whose center is at the origin?

VO=x>O r<a
VD=0 r<a

B.C.’s: ®(r=0)=0
CD(r) 1s continuous atr = a
o9

86_ is continuous at r = a (electric field)
r
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Solution: CD(r) = sﬂr - - (lcj—KKa) r<a

< qsf K(r-a)

= >
er (1+1<a) r-a

Yukawa
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Exclude the self-energy term 2 Then $(0) due to all the other changes is
er

g

v(r=0)= er(l+xa)

The electrostatic free energy satisfies

dF,, = Z\Vidqi

where y, = potential acting on charge q; due to all the other charges, because v, and q, are
thermodynamic conjugates.
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-
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So F, :ZIO \Vi(}\‘)d(}\‘qi)

potential on ion i when all ions have charges Aq;.
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So we have

K.3
f, =— o f(xa)

where
3 1 22
f(Ka):T{ln(l+Ka)—Ka+—K a }
K a 2

Note that f(ixa) — 1 as ka —0.

So, for dilute solutions

3
f,=- 2 This is negative: attractive interactions between opposite charges
V4
predominate.
3
Osmotic pressure: pp = nf +n’—
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Note that there is no second virial coefficient due to long-ranged interaction.
2. Correlations in Debye-Hiickel theory: Poor Person’s version.

Look at charge distribution around a central ion g,

—4—: p(r)=V?o(r) Poisson
=< o()
So p(r)= ==K §(r)
4r
& e—rc(r -a)

Tt er(l+xa)

So the charge q, is surrounded by a screening cloud of opposite sign that decays exponentially
and monotonically with screening length.



III.  Polymer Solutions — the random phase approximation
Suppose we have N chains, each M monomers long, in a box of volume V.

Define the number density of monomers:

n(F)= i [[ds oG-t

A. What are the interactions?
1. There are interactions that hold the chain together.
(o)

BH0:+i2IMdS .
262 70 \gs)

This is a continuous version of

M

3 _
BH 0 =+ 2_b2 ;(I‘s_rs—l)2

So, this corresponds to a bead-spring model of a chain:

I N

This has an average bond length
(7*)=b".
2. In addition, we can include a short-ranged interaction between monomers:

for good solvent
1 _ 2
ﬂH2=+5v'|.dr(p(r)) v>0

3. Finally, allow for a chemical potential p(r) (in units of kT). This will allow us to
examine the average density and density correlations.

BH , =—] dru(®)e(r).

B. The partition function is

1 _ gy Ods) _ _
Z:ﬁJ.DriseBZHO eBHleﬁHZ
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this is the hard one because it is a two-body interaction term.

Hubbard-Stratanovich transformation (complete the square)

Note that
—V_[ dr (p(r)) - —_[ dt J(r)—lvp(r - —j dr(J(r ) +i) dFI(E)p(¥)

So
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IDJe 2.[ (())e_[d‘l()p()

= I Dle
or

i & 30yp(1)-== [der
*IZVJ.dFP(f) J- Dle Jasewen 2VI '
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So, the partition function is

——[dr@MY ¢ _,p0 [dru@)rivmler
| jDr oA ej (4 (N)+3(N)]p(M)

is

Z_WEIDJ

~Llaramy
where Q, = [ DJe s foreo)

The advantage of the Hubbard-Stratanovich transformation is that we have replaced a two-body
interaction with a one-body interaction with a chemical potential iJ(r). This reduces the

problem to one of non-interacting chains in a spatially varying chemical potential.

Note that p(F) = Z p, ()

Where p (T) =_[ ds 5(F -T,)

So, we can rewrite Z:

VIdT(J(T))Z
N'Q jDJ(z [4+i3]) e 2

where Z, [u+iJ] is the partition function of a single chain in chemical potential p(r)+iJ(r).

Let i=p+1J. Then we have



2 1] fore " .

*Digression on Fourier transformations:
I will use the convention

f =) dre™ f(r)
1 —ik-r
f(r)=— f
O-§Xe,
6(r _ r,): iz efik-(rfl") fk
VE
5 ,=lJ.d r—:e+i(k—k’)~r
k, k Vv

RV | ~
So [ dFiF)p(F) =5 D i
k
Note: we are fixing p,_, so u,_, =0. Also, {p,) =0 for k 0.

Now expand the exponential in Z;.

V‘Zﬁkp,k 1. 1 L
e’ :1+v%ﬂkp—k+F%ﬂkﬂk’p—kp—k’+'“

AE Z 1+ Zuk“ k(pkp k> }

Define Mg, = <pk p_k> . This is the form factor of the chain.

Re-exponentiate:

ngﬂk# Kt

z,[i]=2"e" "
. . NM .
Substitute back into Z: let C =V be the monomer density.

Then the partition function for the many-chain system is

_( ) _J' DJe --chk(#wwk) +e _EVZI J
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Solve by saddlepoint approximation:

argument of exponential has zero derivative when
(1

i = +—J

1C g, My chk A

C g

= I =i 1 M

cg+—
v

Evaluate argument at saddlepoint:

ly €0 1lsyCQ Iy ©g,
V4 cgk+1/vﬂ"ﬂ‘k 2V 4

The free energy is

11w cg
=-1InZ =stuff -—— .
a i 2 Vzk: 1+vcg, HicHk

The correlations functions satisfy

o W cg
(pkp—k> == 2 = —.

H O, 1+veg,
So we have

1 .. ) )
(pk p_k> = 1 This is the RPA result for the correlation function.

vt —
C g

Recall that Mg, = (pk p_k> for a single chain, where g is the form factor.
g, =Mf(k’Mb’/6)=Mf(k’Rg’)

2 . . .
where f(x)=—5 (e~ 1+x) is the Debye function (see Doi & Edwards, pp. 22-23).
X
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f(x)zl——;x x—0

~2[x X—>00

g

~1 kRg

v

Increasing v just flattens the curve out.

RPA is a good way to derive mean-field free energies and correlation functions.

10



IV. Field theoretical derivation of Debye-Hiickel theory.

Consider N ions of valency Z, } N.Z, =N Z
N. ions of valency Z_ by electroneutrality

N,
v

I+

Let n

H+ ©

average density of each species

N,
n, (r)= Z S(F—r) local density of each species
i=1

pl)=2.n, ()-zn ()

1 ¢ =, p(0)p(()
and SH :EEBJ- er‘ dr W

2

where / , = is the Bjerrum length.

Rewrite this in matrix form:

let ()= (n+(r§

n_(r

4

- 72 —z.7
V(r—r’):h Bf'l(—z +Z Z+z J
Z_

Then

M = n(r)-V (r—r')- n(r')

1
ﬂHep:%jdFdeWKU-V(r—W)nGQ

In Fourier space:

11
ﬂHeI :Ev;nk'vk'nfk

4/ Zi —Z,7_
where V, = 1722 B( J

z,z z
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In addition, we can introduce u(r)= [ ri) and BH | =— J dt u(r)n(r) in order to calculate

correlation functions.

The partition function is then given by

N—IJN—I_' _[D I, ID r_efBH re P e

Carry out the Hubbard-Stratanovich transformation:

%jiV*d

1w [D3 Dyl

1 JIvlg

[pr[pie>

1)

Note that iJ, (r) is like #3e®(r)
Pl

potential acting at r due to other charges

€

As before,

1 1 vt 10 cusinyn
Z:_—jDL e 2 an e 2] e
N,_!N_! : *

(@, [+ )™

where
7 . I J peng .
[nu+iJ,]=)Dr, e for a +/- ion.
Again, define zz= u+iJ and examine the single particle partition function.

377 2 (09,004, (ks HOT

Z, [,ui]: Z.e / where g.(k) is the form factor of the +/- ion.

truncate in Debye-Hiickel theory. This is equivalent to assuming electrostatic
energy is weak compared to kT.

1N N N
ERR

@[] =2z
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11 N N
E

S, @[] @] =zr2ve

njg, 0
where G = 0 .
0 ng

Substitute back into Z:

11 11

== D (urid)G(u+id) —<=D IV
zN-z ™ IDJieZV ¢ e VT

N.! N_.!

+

Z

1

11
——DJv g
Ve

IDJi e

Carry out the Gaussian integrals (see Doi and Edwards appendix 2.I)

11 ZJ Vg
. 2V
Denominator: IDJ e

1 1

-1

= g2 |||V |2
k

. 11 -
tz”'G‘J —EV;J»(GJrV ')

Numerator: IDJi e e
_ J.DJi e—j ;,LLGA(G+V*1)—|,G.# . ﬂéf HlG ) V,llf}/z
k
So Z= A eﬁz; Tle +V_1|_}/2|V_]r/2
N,!' N.! 3
where é=G-€—(G JrV_l)_l-G):G.(prv.Gyl

or equivalently,

N, 11
ZZEM_L 2vZ Hll V. GI -1/2

N, IN_!

For point particles, Z, =V, g,(k)=1.

> uGou

rﬂ1+\/ o[ f et

To get the free energy, we can set pn, =0.
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F InZ o 0. o 11
=f—=-——=n"Inn’ +n’Inn’+==> |l +V -G

Now take the thermodynamic limit:

1 dk
f=n’lnn’+n"Inn’+— In|[l+V-G
ﬁ + n + I 2J‘(27Z_)3 nl I
(1+ 4;(‘:53 nzz -nz,z 4:;53\
[1+V - G| = det ) 4nt, ant. .
-N,z, 7 % 1+ % n_z:

+4—ZB( z:+n’z’)

K2

= l+k—2.

So for point particles,

dk [ ) K
(272_) LIH[IJF

subtract self-energy

Bf=n'Inn]+n’Inn’ +—I

Ao

let X

Bf=n'Inn+n’Inn’ + K I(z;;) [ ( i)_

So the final answer is:

3

Bf = ni lnnf +n’ Inn’ L
12w

Same answer as before from standard approach!

Look at correlations:

(n. ()n_ (K)) = - 5j§ﬂ_

k=0

14
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The free energy contribution from p, # 0 terms is ALY G-,
v

k

where G=G-(1+V-G) .

The advantage of this approach is that we can now write down the Debye-Hiickel free energy for
particles of arbitrary structure.

Recall

Af=n"lnn’+n’Inn’ +—j 1n(1+V-G)

27 2y

where

(1+ A7e o n! z; g, (k)

2
|14V - G| = det k
—n+z+z_% (k) 1+4—i:€ﬁn 2g.(k)

2
|1+V-G|:1+Kk—(2k)

where K*(K)=4xl,(n) 2} g,(k)+n’ 2’ g_(k))
For example, suppose the ions are spheres of diameter a.
Then x*(K)=x’g,

sinka—kacoska
(ka)’

is the form factor of a sphere.

where g, =

So a more general expression for the free energy is

[1+ ()< K)]
KK

Bf=n'Inn’+n’Inn’ +—J‘

()L

For the general case, the FT of the charge correlation function is

(PP =1 (k) ————[ng ()+n’g k)]
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V. Field-theoretical derivation of Poisson-Boltzmann theory

Suppose there are fixed charges with some distribution & (r)< 0.

Assume that the N counterions are point charges of valency z.

Then the partition function is
1 L -pH
Z,= N _[ Die™
where
| R
SH = > i Idrjdr’ n(r)Vv (r- r’)n(r)+z€BIdrIdr’ n(r)V(r-r)o(r)
1
2 KBJ.er. dr'o(r)V(r- r’)a(r)—jd rn(r)u(r)
= %ZBIdrIdr’ [zn(r)+o () (r- r’)[zn(r’)+a(r’)]—_[n(r)y(r)d re
let n(r) =zn(r)+o(r).
then
ﬁH:%fB.[dr.[dr’ ﬁ(r)V(r—r’)ﬁ(r')—jdrn(r),u(r)

Introduce the Hubbard-Stratanovich transformation:

J'Jv J

—-( gV IDJ oo _NB

1
— vl

jDJ e e

e’

So
L J.JV’IJ

z—— Dr — ,fDJ 0o glreg =

— JV’IJ

j DJe *="  [DF, s

—JDJ Z(B W I"JJ'DFieJ”;‘
where  u(r)= u(r)+izJ(r).
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Note that V™' (r—r") = —%Vz s(r—r)
T

Is the inverse operator for the Coulomb interaction. Why?

By definition, the inverse operator satisfies
I dr'v ' (r=r'V(r—r)= s(r-r")
From Poisson’s equation
lVZV(r):—4—7[ 5(r)
g &£
~ _Lvy (r-=r)=6@-r")
4r
So _[dr’V’l(r—r')V(r—r"):—ivzv(r—r")
4
So V‘l(r—r’):—iv2 S(r—r")
4
Now look at

2 ) Jore 0"

. Id r__ej.dr&(r—rI )i (r)
- 1

— J dfl eﬂ(rl)

so we have

1 Rl
1 1 —~J.JV‘] ilo(r)J(ndr R N4izd(r
ZN:——jDJe 2o o/ fer® [[dre“() X )T
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1 V1 +i.[o:] ﬂje”””dr

jDJe 2

=- L
==3
Look at
Javia=fdrfd r’J(r)[—fﬂvz)a(r—w)J(w)

:—ij‘d rJ(rv: (')

= +ijd r(VI(r))

So the grand canonical partition function is

1 1

=_ iIDJEGAWB
Q,

[y +i[ o342 [er

From the partition function, we can find the average local density:

0lnE
dp(r) o

_ /1<ein(r)>

Now carry out the saddle point approximation for the integral over J. (set p=0)

(n@)=

1
8l

let F= (VIY —io(r)I(r)-2e*""

Then we have
1 ~[Fdr
== L [pye ™
Q,

The argument of the exponential is extremized when

OF OF OF
—=0 > —-V——=
8 IR )
- - +iz J(r) 1 2
= —io(r)-izle = vJ
7l

V:=dnly[Hio(n)-ize =4zt [-io(r)-iz(nr)]
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But recall that iJ(r) is the effective electrostatic potential due to all of the other charges.

= iJ=+Pecd
= VZCD:—4—T[G(r)+zn(r)]
- _4:"’ G )+ 2(n )]

This is the Poisson-Boltzmann equation.
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