The Random Phase Approximation:

Electrolytes, Polymer Solutions and Polyelectrolytes

I. Why charged systems are so important: they are water soluble.
A. biology
B. environmentally-friendly polymer processing
II. Electrolyte solutions - standard derivation
A. Poisson-Boltzmann equation
B. Debye-Hückel equation

1. free energy
2. correlations
III. Polymer solutions
A. What are interactions
3. chain Hamiltonian
4. monomer interactions
5. chemical potential $\mu(\mathrm{r})$
B. Partition function and free energy
C. Correlations
IV. Field-theoretical derivation of Debye-Hückel theory
V. Field-theoretical derivation of the Poisson-Boltzmann equation
VI. Beyond Debye-Hückel theory
B. Oscillatory charge correlations
C. Ion association
II. Electrolyte solutions
A. Poisson-Boltzmann equation

Let $\Phi(\stackrel{\rightharpoonup}{\mathrm{r}})=$ electrostatic potential at $\stackrel{\rightharpoonup}{\mathrm{r}}$
$\nabla^{2} \Phi(r)=-\frac{4 \pi}{\varepsilon} e \rho(\vec{r}) \quad$ Poisson
where $\rho(\overrightarrow{\mathrm{r}})=\mathrm{z}_{+} \mathrm{n}_{+}(\overrightarrow{\mathrm{r}})-\mathrm{z}_{-} \mathrm{n}_{-}(\overrightarrow{\mathrm{r}})$
valency
of + charges \# density of - charges
But $\quad \mathrm{n}_{+}(\overrightarrow{\mathrm{r}})=\mathrm{n}_{+}^{0} \mathrm{e}^{-\beta z_{+} \mathrm{e}(\overline{\mathrm{r}})}$

$$
n_{-}(\vec{r})=n_{-}^{0} e^{\beta_{z} e \Phi(\vec{r})} \quad \text { Boltzmann (mean field approximation) }
$$

So

$$
\rho(\overline{\mathrm{r}})=\mathrm{z}_{+} \mathrm{n}_{+}^{0} \mathrm{e}^{-\beta z_{+} \mathrm{e} \Phi(\overline{\mathrm{r}})}-\mathrm{z}_{-} \mathrm{n}_{-}^{0} \mathrm{e}^{\beta z_{-} \mathrm{e}(\overline{\mathrm{r}})}
$$

P-B eqn

$$
\nabla^{2} \Phi=-\frac{4 \pi}{\varepsilon} \mathrm{e}\left\{\mathrm{z}_{\mathrm{r}} \mathrm{n}_{+}^{0} \mathrm{e}^{-\beta z_{+} \mathrm{e}(\overline{\mathrm{r}})}-\mathrm{z}_{-} \mathrm{n}_{-}^{0} \mathrm{e}^{\beta z_{-} \mathrm{e}(\overline{\mathrm{r}})}\right\}
$$

B. Debye-Hückel equation

Linearize the Poisson-Boltzmann equation (assume electrostatic energy is weak compared to kT)

$$
\begin{aligned}
& \nabla^{2} \Phi=-\frac{4 \pi}{\varepsilon} \mathrm{e}\left\{\mathrm{z}_{+} \mathrm{n}_{+}^{0} \mathrm{e}^{-\beta z_{+} \mathrm{e} \Phi(\overline{\mathrm{r}})}-\mathrm{z}_{-} \mathrm{n}_{-}^{0}\left(1+\mathrm{e}^{\beta z_{-} \mathrm{e}(\overline{\mathrm{r}})}\right)\right\} \\
& \nabla^{2} \Phi=-\frac{4 \pi}{\varepsilon} e\left\{\left(z_{+} n_{+}^{0}-z_{-} n_{-}^{0}\right)-\beta e\left(z_{+}^{2} n_{+}^{0}+z_{-}^{2} n_{-}^{0}\right) \Phi(\vec{r})+\ldots\right\}
\end{aligned}
$$

but $z_{+} n_{+}^{0}-z_{-} n_{-}^{0}=0$ due to electroneutrality, so

$$
\nabla^{2} \Phi=-\frac{4 \pi e^{2}}{\varepsilon k T}\left(z_{+}^{2} n_{+}^{0}+z_{-}^{2} n_{-}^{0}\right) \Phi
$$

Let $\frac{e^{2}}{\varepsilon k T}=\ell_{B}$ Bjerrum length

Then $\nabla^{2} \Phi=\underbrace{4 \pi \ell_{B}\left(z_{+}^{2} n_{+}^{0}+z_{-}^{2} n_{-}^{0}\right)}_{\kappa^{2}} \Phi$
Where $\kappa^{-1}=$ Debye screening length---multivalent ions screen more effectively.

Thus, we have

$$
\nabla^{2} \Phi=\kappa^{2} \Phi \quad \text { Debye-Hückel equation }
$$

1. Free energy of Debye-Hückel equation

Consider hard spheres of diameter a with charges $z_{ \pm}$. What is potential around a sphere of charge q_{0} whose center is at the origin?

$$
\begin{array}{ll}
\nabla^{2} \Phi=\kappa^{2} \Phi & \mathrm{r}<\mathrm{a} \\
\nabla^{2} \Phi=0 & \mathrm{r} \leq \mathrm{a}
\end{array}
$$

B.C.'s: $\Phi(\mathrm{r}=\infty)=0$
$\Phi(\mathrm{r})$ is continuous at $\mathrm{r}=\mathrm{a}$
$\varepsilon \frac{\partial \phi}{\partial \mathrm{r}}$ is continuous at $\mathrm{r}=\mathrm{a}$ (electric field)

Solution: $\Phi(\mathrm{r})= \begin{cases}\frac{\mathrm{q}}{\varepsilon \mathrm{r}}-\frac{\mathrm{q} \kappa}{\varepsilon(1+\kappa a)} & \mathrm{r} \leq \mathrm{a} \\ \frac{\mathrm{q} \varepsilon^{-\kappa(r-a)}}{\varepsilon r(1+\kappa a)} & \mathrm{r}>\mathrm{a} \\ \text { Yukawa } & \end{cases}$

Exclude the self-energy term $\frac{\mathrm{q}}{\varepsilon \mathrm{r}}$. Then $\phi(0)$ due to all the other changes is

$$
\psi(r=0)=\frac{q \kappa}{\varepsilon r(1+\kappa a)}
$$

The electrostatic free energy satisfies

$$
\mathrm{dF}_{\mathrm{e} \ell}=\sum_{\mathrm{i}} \psi_{\mathrm{i}} \mathrm{dq}_{\mathrm{i}}
$$

where $\psi_{\mathrm{i}}=$ potential acting on charge q_{i} due to all the other charges, because ψ_{i} and q_{i} are thermodynamic conjugates.

$$
\left(\frac{\partial \mathrm{F}_{\mathrm{e} \ell}}{\partial \mathrm{q}_{\mathrm{i}}}\right)_{\mathrm{N}, \mathrm{~V}, \mathrm{~T}}=\psi_{\mathrm{i}}
$$

So $\quad F_{e \ell}=\sum_{i} \int_{0}^{1} \psi_{i}(\lambda) d\left(\lambda q_{i}\right)$
potential on ion i when all ions have charges λq_{i}.
So $\quad \psi_{\mathrm{i}}(\lambda)=\frac{\mathrm{q}_{\mathrm{i} \lambda} \kappa \lambda}{\varepsilon(1+\kappa \lambda \mathrm{a})}$
$\mathrm{F}_{\mathrm{e} \ell}=\sum_{\mathrm{i}} \frac{\mathrm{q}_{\mathrm{i}}^{2} \kappa}{\varepsilon} \int_{0}^{1} \mathrm{~d} \lambda \frac{\lambda^{2}}{1+\kappa \mathrm{a} \lambda}$
But: $\quad \sum_{i} \frac{q_{i}^{2}}{\varepsilon}=\frac{1}{\varepsilon}\left(\mathrm{e}^{2} \mathrm{z}_{+}^{2} \mathrm{n}_{+}^{0} \mathrm{~V}+\mathrm{e}^{2} \mathrm{z}_{-}^{2} \mathrm{n}_{-}^{0} \mathrm{~V}\right)$

$$
=\mathrm{V} \frac{\mathrm{e}^{2}}{\varepsilon}\left(\mathrm{z}_{+}^{2} \mathrm{n}_{+}^{0}+\mathrm{z}_{-}^{2} \mathrm{n}_{-}^{0}\right)
$$

recall that $\kappa^{2}=\frac{4 \pi e^{2}}{\varepsilon k T}\left(z_{+}^{2} n_{+}^{0}+z_{-}^{2} n_{-}^{0}\right)$
$\Rightarrow \sum_{i} \frac{q_{i}^{2}}{\varepsilon}=\frac{k T}{4 \pi} \kappa^{2} V$
$f_{e l}=\frac{F_{e l}}{k T V}=\frac{\kappa^{3}}{4 \pi} \int_{0}^{1} d \lambda \frac{\lambda^{2}}{1+\kappa a \lambda}$
So we have
$f_{e l}=-\frac{\kappa^{3}}{12 \pi} f(\kappa a)$
where
$f(\kappa a)=\frac{3}{\kappa^{3} a^{3}}\left\{\ln (1+\kappa a)-\kappa a+\frac{1}{2} \kappa^{2} a^{2}\right\}$
Note that $\mathrm{f}(\kappa \mathrm{a}) \rightarrow 1$ as ка $\rightarrow 0$.
So, for dilute solutions
$f_{e l}=-\frac{\kappa^{3}}{12 \pi}$
This is negative: attractive interactions between opposite charges predominate.

Osmotic pressure: $\quad \beta p=n_{+}^{0}+n_{-}^{0}-\frac{\kappa^{3}}{24 \pi}$
Note that there is no second virial coefficient due to long-ranged interaction.
2. Correlations in Debye-Hückel theory: Poor Person's version.

Look at charge distribution around a central ion q_{i}

$$
\begin{array}{rlr}
-\frac{4 \pi}{\varepsilon} \rho(\mathrm{r}) & =\nabla^{2} \phi(\mathrm{r}) \quad \text { Poisson } \\
& =\kappa^{2} \phi(\mathrm{r}) &
\end{array}
$$

So

$$
\begin{aligned}
\rho(r) & =-\frac{\varepsilon}{4 \pi} \kappa^{2} \phi(r) \\
& =-\frac{\varepsilon}{4 \pi} \kappa^{2} q_{i} \frac{e^{-\kappa(r-a)}}{\varepsilon r(1+\kappa a)}
\end{aligned}
$$

So the charge q_{i} is surrounded by a screening cloud of opposite sign that decays exponentially and monotonically with screening length.
III. Polymer Solutions - the random phase approximation

Suppose we have N chains, each M monomers long, in a box of volume V .
Define the number density of monomers:
$n(\vec{r})=\sum_{i=1}^{N} \int_{0}^{M} d s \quad \delta\left(\vec{r}-\vec{r}_{i s}\right)$
A. What are the interactions?

1. There are interactions that hold the chain together.
$\beta \mathrm{H}_{0}=+\frac{3}{2 \mathrm{~b}^{2}} \int_{0}^{\mathrm{m}} \mathrm{ds}\left(\frac{\partial \overrightarrow{\mathrm{r}}}{\partial \mathrm{s}}\right)^{2}$
This is a continuous version of
$\beta \mathrm{H}_{0}=+\frac{3}{2 \mathrm{~b}^{2}} \sum_{\mathrm{s}=1}^{\mathrm{M}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{s}}-\overrightarrow{\mathrm{r}}_{\mathrm{s}-1}\right)^{2}$
So, this corresponds to a bead-spring model of a chain:

This has an average bond length

$$
\left\langle\overrightarrow{\mathrm{r}}^{2}\right\rangle=\mathrm{b}^{2} .
$$

2. In addition, we can include a short-ranged interaction between monomers:

$$
\beta \mathrm{H}_{2}=+\frac{1}{2} v \int d \vec{r}(\rho(r))^{2} \quad \mathrm{v}>0
$$

for good solvent
3. Finally, allow for a chemical potential $\mu(\mathrm{r})$ (in units of kT). This will allow us to examine the average density and density correlations.
$\beta \mathrm{H}_{1}=-\int \mathrm{d} \stackrel{\mathrm{r}}{ } \mu(\stackrel{\rightharpoonup}{\mathrm{r}}) \rho(\stackrel{\rightharpoonup}{\mathrm{r}})$.
B. The partition function is

this is the hard one because it is a two-body interaction term.

Hubbard-Stratanovich transformation (complete the square)
Note that
$-\frac{1}{2} v \int d \vec{r}(\rho(\stackrel{\rightharpoonup}{r}))^{2}=\frac{1}{2 v} \int d \stackrel{\rightharpoonup}{\mathrm{r}}[J(\overrightarrow{\mathrm{r}})-\mathrm{iv} \rho(\stackrel{\rightharpoonup}{\mathrm{r}})]^{2}-\frac{1}{2 \mathrm{v}} \int \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{r}}(\mathrm{J}(\stackrel{\rightharpoonup}{\mathrm{r}}))^{2}+\mathrm{i} \int \mathrm{d} \overrightarrow{\mathrm{r}} \mathrm{J}(\stackrel{\rightharpoonup}{\mathrm{r}}) \rho(\stackrel{\rightharpoonup}{\mathrm{r}})$
So

or
$\mathrm{e}^{\frac{-1}{2} \mathrm{v} \int \mathrm{dr} \rho(\mathrm{T})}=\frac{\int \mathrm{DJe}^{\mathrm{i} \int \mathrm{dr} J(\mathrm{~T}) \rho(\mathrm{T})-\frac{1}{2 v} \int \mathrm{~d} \overline{\mathrm{I}} \mathrm{J}^{2}}}{\int \mathrm{DJe}}$
So, the partition function is
$Z=\frac{1}{N!} \frac{1}{Q_{J}} \int D J e^{-\frac{1}{2 v} \int d \bar{r}(J(r))^{2}} \int D \vec{r}_{i s} e^{-\rho_{i} \mathrm{H}_{0}^{(i)}} e^{\int d \vec{r}[\mu(\bar{r})+i J(\bar{r})] \rho(\tilde{r})}$
where $Q_{J}=\int D J e^{-\frac{1}{2 v} \int d \bar{r}(J(r))^{2}}$
The advantage of the Hubbard-Stratanovich transformation is that we have replaced a two-body interaction with a one-body interaction with a chemical potential iJ(r). This reduces the problem to one of non-interacting chains in a spatially varying chemical potential.

Note that $\rho(\vec{r})=\sum_{i} \rho_{i}(\vec{r})$
Where $\rho_{i}(\vec{r})=\int d s \delta\left(\vec{r}-\vec{r}_{i s}\right)$
So, we can rewrite Z:
$Z=\frac{1}{N!} \frac{1}{Q_{J}} \int \mathrm{D} J\left(Z_{1}[\mu+i J]\right)^{N} e^{-\frac{1}{2 v} \int d \bar{r}(J(\vec{r}))^{2}}$
where $Z_{1}[\mu+i J]$ is the partition function of a single chain in chemical potential $\mu(r)+i J(r)$.
Let $\tilde{\mu}=\mu+\mathrm{iJ}$. Then we have
$Z_{1}[\tilde{\mu}]=\int D \vec{r}_{s} e^{-\beta \notin} e^{\left.\int d \tilde{r}_{\mu} \tilde{\mu}\right) \rho(r)}$.
*Digression on Fourier transformations:
I will use the convention

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{k}}=\int \mathrm{d} \overrightarrow{\mathrm{r}} \mathrm{e}^{\mathrm{ik} \cdot \mathrm{r}} \mathrm{f}(\mathrm{r}) \\
& f(r)=\frac{1}{V} \sum_{k} e^{-i k \cdot r} f_{k} \\
& \delta\left(r-r^{\prime}\right)=\frac{1}{V} \sum_{k} e^{-i k \cdot\left(r-r^{\prime}\right)} f_{k} \\
& \delta_{k, k^{\prime}}=\frac{1}{V} \int d \vec{r} e^{+i\left(k-k^{\prime}\right) \cdot r} \\
& \text { So } \int d \vec{r} \tilde{\mu}(\vec{r}) \rho(\vec{r})=\frac{1}{V} \sum_{k} \tilde{\mu}_{k} \rho_{-k} .
\end{aligned}
$$

Note: we are fixing $\rho_{\mathrm{k}=0}$ so $\mu_{\mathrm{k}=0}=0$. Also, $\left\langle\rho_{\mathrm{k}}\right\rangle=0$ for $\mathrm{k} \neq 0$.
Now expand the exponential in Z_{1}.
$e^{\frac{1}{V} \sum_{k} \tilde{\mu}_{k} \rho_{-k}}=1+\frac{1}{V} \sum_{k} \tilde{\mu}_{k} \rho_{-k}+\frac{1}{2 V^{2}} \sum_{k k^{\prime}} \tilde{\mu}_{k} \tilde{\mu}_{k^{\prime}} \rho_{-k} \rho_{-k^{\prime}}+\ldots$
$\mathrm{Z}_{1}[\tilde{\mu}]=\mathrm{Z}_{1}^{0}\left[1+\frac{1}{2 \mathrm{~V}^{2}} \sum_{\mathrm{k}} \tilde{\mu}_{\mathrm{k}} \tilde{\mu}_{-\mathrm{k}}\left\langle\rho_{\mathrm{k}} \rho_{-\mathrm{k}}\right\rangle+\ldots\right\rfloor$
Define $M g_{k}=\left\langle\rho_{k} \rho_{-k}\right\rangle$. This is the form factor of the chain.
Re-exponentiate:
$Z_{1}[\tilde{\mu}]=Z_{1}^{0} e^{\frac{M}{2 V^{2}} \sum_{k} g_{k} \tilde{\tilde{\mu}}_{k} \tilde{\mu}_{-k}+\ldots}$
Substitute back into Z: let $c=\frac{N M}{V}$ be the monomer density.
Then the partition function for the many-chain system is
$Z=\frac{\left(Z_{1}^{0}\right)^{N}}{N!} \frac{1}{Q_{J}} \int \mathrm{D} J e^{\frac{1}{2} \frac{1}{V} \sum_{k} \operatorname{cg}\left(\mu_{k}+i J_{k}\right)^{2}+\ldots} e^{-\left.\frac{1}{2 v} \frac{1}{V} \sum J_{k}\right|_{k} ^{2}}$
Z

$$
Z=\frac{\left(Z_{1}^{0}\right)^{N}}{N!} \frac{1}{Q_{J}} \mathrm{e}^{\frac{1}{2} \frac{1}{V} \sum_{k} c g_{k} \mu_{k} \mu_{-k}} \int \mathrm{D} J e^{\frac{i}{V} \sum_{k} c g_{k} \mu_{k} J_{-k}-\frac{1}{2} \frac{1}{V} \sum_{k}\left(c g_{k}+\frac{1}{v}\right) J_{k} J_{-k}}
$$

Solve by saddlepoint approximation:
argument of exponential has zero derivative when
icg $\mathrm{g}_{\mathrm{k}} \mathrm{\mu}_{\mathrm{k}}=\left(\operatorname{cg}_{\mathrm{k}}+\frac{1}{\mathrm{~V}}\right) \mathrm{J}_{\mathrm{k}}$
$\Rightarrow \quad \mathrm{J}_{\mathrm{k}}=\mathrm{i} \frac{\mathrm{cg}_{\mathrm{k}}}{\operatorname{cg}_{\mathrm{k}}+\frac{1}{\mathrm{~V}}} \mu_{\mathrm{k}}$
Evaluate argument at saddlepoint:
$-\frac{1}{V} \sum_{k} \frac{c^{2} g_{k}^{2}}{c g_{k}+1 / v} \mu_{k} \mu_{-k}+\frac{1}{2} \frac{1}{V} \sum_{k} \frac{c^{2} g_{k}^{2}}{c g_{k}+\frac{1}{V}} \mu_{k} \mu_{-k}=-\frac{1}{2} \frac{1}{V} \sum_{k} \frac{c^{2} g_{k}^{2}}{c g_{k}+\frac{1}{V}} \mu_{k} \mu_{-k}$
$Z=\frac{\left(Z_{1}^{0}\right)^{N}}{N!} \frac{1}{Q_{J}} \mathrm{e}^{\frac{1}{2} \frac{1}{V} \sum_{k} \operatorname{cg}_{k}\left(1-\frac{c g_{k}}{c g_{k}+\frac{1}{v}}\right) \mu_{k} \mu_{-k}}=\frac{\left(Z_{1}^{0}\right)^{N}}{N!} \frac{1}{Q_{J}} \mathrm{e}^{\frac{1}{2} \frac{1}{V} \sum_{k}\left(\frac{c g_{k}}{1+v c g_{k}}\right) \mu_{k} \mu_{-k}}$.
The free energy is
$\beta W=-\ln Z=s t u f f-\frac{1}{2} \frac{1}{V} \sum_{k} \frac{c g_{k}}{1+v c g_{k}} \mu_{k} \mu_{-k}$
The correlations functions satisfy
$\left\langle\rho_{k} \rho_{-k}\right\rangle=-\frac{\partial^{2} \beta W}{\partial \mu_{k} \partial \mu_{-k}}=\frac{c g_{k}}{1+v c g_{k}}$.
So we have

$$
\left\langle\rho_{\mathrm{k}} \rho_{-\mathrm{k}}\right\rangle=\frac{1}{\mathrm{v}+\frac{1}{\mathrm{cg}_{\mathrm{k}}}}
$$

This is the RPA result for the correlation function.

Recall that $\mathrm{Mg}_{\mathrm{k}}=\left\langle\rho_{\mathrm{k}} \rho_{-\mathrm{k}}\right\rangle$ for a single chain, where g_{k} is the form factor.
$\mathrm{g}_{\mathrm{k}}=\mathrm{Mf}\left(\mathrm{k}^{2} \mathrm{Mb}^{2} / 6\right)=\mathrm{Mf}\left(\mathrm{k}^{2} \mathrm{Rg}^{2}\right)$
where $\mathrm{f}(\mathrm{x})=\frac{2}{\mathrm{x}^{2}}\left(\mathrm{e}^{-\mathrm{x}}-1+\mathrm{x}\right)$ is the Debye function (see Doi \& Edwards, pp. 22-23).

$$
\begin{aligned}
f(x) & \approx 1-\frac{1}{3} x & & x \rightarrow 0 \\
& \approx 2 / x & & x \rightarrow \infty
\end{aligned}
$$

Increasing v just flattens the curve out.
RPA is a good way to derive mean-field free energies and correlation functions.
IV. Field theoretical derivation of Debye-Hückel theory.

Consider $\quad N_{+}$ions of valency $\left.Z_{+}\right\} \mathrm{N}_{+} \mathrm{Z}_{+}=\mathrm{N}_{-} \mathrm{Z}_{-}$
N_{-}ions of valency $\mathrm{Z}_{-} \int$ by electroneutrality
Let $\quad n_{ \pm}^{0}=\frac{N_{ \pm}}{V} \quad$ average density of each species

$$
n_{ \pm}(\vec{r})=\sum_{i=1}^{N_{ \pm}} \delta(\vec{r}-\vec{r}) \quad \text { local density of each species }
$$

$\rho(\mathrm{r})=\mathrm{z}_{+} \mathrm{n}_{+}(\mathrm{r})-\mathrm{z}_{-} \mathrm{n}_{-}(\mathrm{r})$
and $\beta \mathrm{H}_{e l}=\frac{1}{2} \ell_{B} \int d \vec{r} \int d \vec{r}^{\prime} \frac{\rho(\vec{r}) \rho\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}$
where $\ell_{\mathrm{B}}=\frac{\mathrm{e}^{2}}{\varepsilon \mathrm{kT}}$ is the Bjerrum length.
Rewrite this in matrix form:
let $\quad \mathrm{n}(\mathrm{r})=\binom{n_{+}(r)}{n_{-}(r)}$
$\mathrm{V}\left(\stackrel{\rightharpoonup}{\mathrm{r}}-\overrightarrow{\mathrm{r}}^{\prime}\right)=\frac{\ell_{\mathrm{B}}}{\left|\overrightarrow{\mathrm{r}}-\overline{\mathrm{r}}^{\prime}\right|}\left(\begin{array}{cc}\mathrm{z}_{+}^{2} & -\mathrm{z}_{+} \mathrm{z}_{-} \\ -\mathrm{z}_{+} \mathrm{z}_{-} & \mathrm{z}_{-}^{2}\end{array}\right)$
Then
$\frac{\rho(\mathrm{r}) \rho\left(\mathrm{r}^{\prime}\right)}{\left|\overrightarrow{\mathrm{r}}-\overline{\mathrm{r}}^{\prime}\right|}=\mathrm{n}(\mathrm{r}) \cdot \mathrm{V}\left(\mathrm{r}-\mathrm{r}^{\prime}\right) \cdot \mathrm{n}\left(\mathrm{r}^{\prime}\right)$
$\beta \mathrm{H}_{e l}=\frac{1}{2} \int d \vec{r} \int d \vec{r}^{\prime} n(r) \cdot V\left(r-r^{\prime}\right) \cdot n\left(r^{\prime}\right)$
In Fourier space:
$\beta \mathrm{H}_{e l}=\frac{1}{2} \frac{1}{V} \sum_{k} n_{k} \cdot V_{k} \cdot n_{-k}$
where $\mathrm{V}_{\mathrm{k}}=\frac{4 \pi \ell_{\mathrm{B}}}{\mathrm{k}^{2}}\left(\begin{array}{cc}\mathrm{z}_{+}^{2} & -\mathrm{z}_{+} \mathrm{z}_{-} \\ -\mathrm{z}_{+} \mathrm{z}_{-} & \mathrm{z}_{-}^{2}\end{array}\right)$

In addition, we can introduce $\mu(r)=\binom{\mu_{+}(r)}{\mu_{-}(r)}$ and $\beta \mathrm{H}_{1}=-\int \mathrm{d} \stackrel{\rightharpoonup}{r} \mu(\mathrm{r}) \cdot \mathrm{n}(\mathrm{r})$ in order to calculate correlation functions.

The partition function is then given by
$\mathrm{Z}=\frac{1}{\mathrm{~N}_{+}!} \frac{1}{\mathrm{~N}_{-}!} \int \mathrm{D} \mathrm{r}_{+} \int \mathrm{D} \mathrm{r}_{-} \mathrm{e}^{-\beta \mathrm{H}} \mathrm{e}^{-\beta \mathrm{H}} \mathrm{e}$

Carry out the Hubbard-Stratanovich transformation:
$e^{-\frac{1}{2} \int_{n \cdot v \cdot n}}=\frac{\int D J_{+} \int D J_{-} e^{i \int_{n \cdot J}} e^{-\frac{1}{2} \int J \cdot v^{-1} \cdot J}}{\int D J_{+} \int D J_{-} e^{-\frac{1}{2} \int J \cdot V^{-1} \cdot J}}$
where $J(r)=\binom{J_{+}(r)}{J_{-}(r)}$
Note that $\mathrm{i}_{ \pm}(\mathrm{r})$ is like $\pm \beta$ e $\Phi(\mathrm{r})$
potential acting at r due to other charges
As before,
$Z=\frac{1}{N_{+}!} \frac{1}{N_{-}!} \int \mathrm{D} J_{ \pm} e^{-\frac{1}{2} \int J \cdot V^{-1} \cdot J} \underbrace{\int \mathrm{D} r_{ \pm} e^{-\frac{1}{2} \int(\mu+i J) \cdot n}}_{\left(z_{1}\left[\mu+i J_{ \pm}\right]\right)^{N_{ \pm}}}$
where
$Z_{1}\left[\mu+i J_{ \pm}\right]=\int D r_{ \pm} e^{\int_{a_{ \pm} n_{ \pm}}} \quad$ for $\mathrm{a}+/-$ ion.
Again, define $\tilde{\mu}=\mu+i J$ and examine the single particle partition function.
$Z_{1}\left[\mu_{ \pm}\right]=Z_{ \pm} e^{-\frac{1}{2} \frac{1}{V^{2}} \sum_{k} \tilde{\mu}_{ \pm}(k) g_{ \pm}(k) \tilde{\mu}_{ \pm}(-k)+\text { H.OTT }}$ where $\mathrm{g}_{ \pm}(\mathrm{k})$ is the form factor of the $+/-$ ion.
truncate in Debye-Hückel theory. This is equivalent to assuming electrostatic energy is weak compared to kT .
$\left(Z_{1}\left[\mu_{ \pm}\right]\right)^{N_{ \pm}}=Z_{ \pm}^{N_{ \pm}} e^{-\frac{1}{2} \frac{N_{ \pm}}{V} \sum_{k} \tilde{\mu}_{ \pm} g_{ \pm} \tilde{\mu}_{ \pm}}$

So, $\quad\left(Z_{1}\left[\tilde{\mu}_{+}\right]\right)^{N_{+}}\left(Z_{1}\left[\tilde{\mu}_{-}\right]^{N_{-}}=Z_{+}^{N_{+}} Z_{-}^{N_{-}-} \mathrm{e}^{\frac{11}{2 V} \sum_{k}^{\tilde{\mu} \cdot \cdot \tilde{\mu}}}\right.$
where $\mathrm{G}=\left(\begin{array}{cc}\mathrm{n}_{+}^{0} \mathrm{~g}_{+} & 0 \\ 0 & \mathrm{n}_{-}^{0} \mathrm{~g}\end{array}\right)$.
Substitute back into Z:
$Z \cong \frac{Z_{+}^{N_{+}}}{N_{+}!} \frac{Z_{-}^{N_{-}}}{N_{-}!} \frac{\int D J_{ \pm} e^{\left.\frac{1}{2} \frac{1}{V} \sum_{k}^{(\mu+i)}\right) \cdot(\mu+i)} e^{-\frac{1}{2} \frac{1}{V} \sum_{k} J \cdot V^{-1} \cdot J}}{\int \mathrm{D} J_{ \pm} e^{-\frac{1}{2} \bar{V} \sum_{k}^{J \cdot \cdot V^{-1} \cdot J}}}$
Carry out the Gaussian integrals (see Doi and Edwards appendix 2.I)
Denominator: $\int \mathrm{D} J_{ \pm} e^{-\frac{11}{2 V} \sum_{k} \cdot \cdot V^{-1 . J}}=\pi^{\frac{1}{2} f} \prod_{k}\left|V^{-1}\right|^{-\frac{1}{2}}$
Numerator: $\int D J_{ \pm} e^{\frac{i}{V} \sum_{\mu \cdot G \cdot J}} e^{-\frac{1}{2} \frac{1}{V} \sum_{k}^{J}\left(G+V^{-1}\right) J}$

$$
=\int \mathrm{D} J_{ \pm} e^{-\frac{1}{2 V} \sum_{k}^{\mu \cdot G \cdot\left(G+V^{-1}\right)^{-1} \cdot G \cdot \mu}} \cdot \pi^{\frac{1}{2} f} \prod_{k}\left|G+V^{-1}\right|^{-1 / 2}
$$

So $\quad Z \cong \frac{Z_{+}^{N_{+}}}{N_{+}!} \frac{Z_{-}^{N_{-}}}{N_{-}!} e^{\frac{11}{2} \sum^{\mu \tilde{G} \cdot \mu}} \prod_{k}\left|G+V^{-1}\right|^{-1 / 2}\left|V^{-1}\right|^{\not / 2}$
where $\quad \tilde{G}=G \cdot\left(1-\left(G+V^{-1}\right)^{-1} \cdot G\right)=G \cdot(1+V \cdot G)^{-1}$
or equivalently,

$$
Z=\frac{\left(Z_{+}\right)^{N_{+}}\left(Z_{-}\right)^{N_{-}}}{N_{+}!N_{-}!} e^{\frac{1}{2} \frac{1}{v} \sum^{\prime \cdot \tilde{G}} \mu} \prod_{k}|1+V \cdot G|^{-1 / 2}
$$

For point particles, $Z_{ \pm}=V, g_{ \pm}(k)=1$.
So
$Z=\frac{V^{N_{+}}}{N_{+}!} \frac{V^{N_{-}}}{N_{-}!} \Pi_{k}|1+V \cdot G|^{-Y_{2}} e^{\frac{11}{2} \sum_{\mu} \mu \dot{\bar{G}} \cdot \mu}$
To get the free energy, we can set $\mu_{\mathrm{k}} \equiv 0$.
$\beta f=\beta \frac{F}{V}=-\frac{\ln Z}{V}=n_{+}^{0} \ln n_{+}^{0}+n_{-}^{0} \ln n_{-}^{0}+\frac{1}{2} \frac{1}{V} \sum_{k} \ln |1+V \cdot G|$
Now take the thermodynamic limit:
$\beta f=n_{+}^{0} \ln n_{+}^{0}+n_{-}^{0} \ln n_{-}^{0}+\frac{1}{2} \int \frac{d \vec{k}}{(2 \pi)^{3}} \ln |1+V \cdot G|$

$$
\begin{aligned}
|1+V \cdot G| & =\operatorname{det}\left(\begin{array}{cc}
1+\frac{4 \pi \ell_{B}}{k^{2}} n_{+}^{0} z_{+}^{2} & -n_{-}^{0} z_{+} z_{-} \frac{4 \pi \ell_{B}}{k^{2}} \\
-n_{+}^{0} z_{+} z_{-} \frac{4 \pi \ell_{B}}{k^{2}} & 1+\frac{4 \pi \ell_{B}}{k^{2}} n_{-}^{0} z_{-}^{2}
\end{array}\right) \\
& =1+\frac{4 \pi \ell_{B}}{k^{2}}\left(n_{+}^{0} z_{+}^{2}+n_{-}^{0} z_{-}^{2}\right) \\
& =1+\frac{\kappa^{2}}{\mathrm{k}^{2}} .
\end{aligned}
$$

So for point particles,
$\beta f=n_{+}^{0} \ln n_{+}^{0}+n_{-}^{0} \ln n_{-}^{0}+\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}}\left[\ln \left(1+\frac{\kappa^{2}}{k^{2}}\right)-\frac{\kappa^{2}}{k^{2}}\right\rfloor$
subtract self-energy
let $\quad x^{2}=\frac{k^{2}}{\kappa^{2}}$
$\beta f=n_{+}^{0} \ln n_{+}^{0}+n_{-}^{0} \ln n_{-}^{0}+\frac{1}{2} \kappa^{3} \underbrace{\int \frac{d^{3} x}{(2 \pi)^{3}}\left[\ln \left(1+\frac{1}{x^{2}}\right)-\frac{1}{x^{2}}\right]}_{-\frac{1}{6 \pi}}$
So the final answer is:
$\beta \mathrm{f}=\mathrm{n}_{+}^{0} \operatorname{lnn}_{+}^{0}+\mathrm{n}_{-}^{0} \operatorname{lnn} \mathrm{n}_{-}^{0}-\frac{\kappa^{3}}{12 \pi}$

Same answer as before from standard approach!
Look at correlations:
$\left\langle n_{+}(k) n_{-}(k)\right\rangle=-\left.\frac{\delta \beta f}{\delta \mu_{k}^{+} \delta \mu_{k}^{-}}\right|_{\mu_{k=0}}$

The free energy contribution from $\mu_{\mathrm{k}} \neq 0$ terms is $\quad-\frac{1}{2} \frac{1}{\mathrm{v}} \sum_{\mathrm{k}} \mu_{\mathrm{k}} \cdot \tilde{\mathrm{G}} \cdot \mu_{-\mathrm{k}}$ where $\tilde{G}=G \cdot(1+V \cdot G)^{-1}$.

The advantage of this approach is that we can now write down the Debye-Hückel free energy for particles of arbitrary structure.

Recall
$\beta f=n_{+}^{0} \ln n_{+}^{0}+n_{-}^{0} \ln n_{-}^{0}+\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}} \ln (1+V \cdot G)$
where
$|1+V \cdot G|=\operatorname{det}\left(\begin{array}{cc}1+\frac{4 \pi \ell_{B}}{k^{2}} n_{+}^{0} z_{+}^{2} g_{+}(k) & -n_{-}^{0} z_{+} z_{-} \frac{4 \pi \ell_{B}}{k^{2}} g_{-}(k) \\ -n_{+}^{0} z_{+} z_{-} \frac{4 \pi \ell_{B}}{k^{2}} g_{+}(k) & 1+\frac{4 \pi \ell_{B}}{k^{2}} n_{-}^{0} z_{-}^{2} g_{-}(k)\end{array}\right)$
$|1+V \cdot G|=1+\frac{\kappa^{2}(\mathrm{k})}{\mathrm{k}^{2}}$
where

$$
\kappa^{2}(k)=4 \pi \ell_{B}\left(n_{+}^{0} z_{+}^{2} g_{+}(k)+n_{-}^{0} z_{-}^{2} g_{-}(k)\right)
$$

For example, suppose the ions are spheres of diameter a.
Then

$$
\kappa^{2}(k)=\kappa^{2} g_{k}
$$

where

$$
\mathrm{g}_{\mathrm{k}}=3 \frac{\sin \mathrm{ka}-\mathrm{kacos} \mathrm{ka}}{(\mathrm{ka})^{3}}
$$

is the form factor of a sphere.
So a more general expression for the free energy is
$\beta f=n_{+}^{0} \ln n_{+}^{0}+n_{-}^{0} \ln n_{-}^{0}+\frac{1}{2} \int \frac{d^{3} k}{(2 \pi)^{3}}\left[\ln \left(1+\frac{\kappa^{2}(k)}{k^{2}}\right)-\frac{\kappa^{2}(k)}{k^{2}}\right]$
For the general case, the FT of the charge correlation function is
$\left\langle\rho_{\mathrm{k}} \rho_{-\mathrm{k}}\right\rangle=\frac{\mathrm{k}^{2}}{\mathrm{k}^{2}+\kappa^{2}(\mathrm{k})}\left[\mathrm{n}_{+}^{0} \mathrm{~g}_{+}(\mathrm{k})+\mathrm{n}_{-}^{0} \mathrm{~g}_{-}(\mathrm{k})\right]$
V. Field-theoretical derivation of Poisson-Boltzmann theory

Suppose there are fixed charges with some distribution $\sigma(\mathrm{r})<0$.
Assume that the N counterions are point charges of valency z .
Then the partition function is
$Z_{N}=\frac{1}{N!} \int D \stackrel{\rightharpoonup}{\mathrm{i}}^{-e^{-\beta H}}$
where

$$
\begin{aligned}
& \beta \mathrm{H}=\frac{1}{2} \ell_{B} z^{2} \int d r \int d r^{\prime} n(r) V\left(r-r^{\prime}\right) n(r)+z \ell_{B} \int d r \int d r^{\prime} n(r) V\left(r-r^{\prime}\right) \sigma(r) \\
& +\frac{1}{2} \ell_{B} \int d r \int d r^{\prime} \sigma(r) V\left(r-r^{\prime}\right) \sigma(r)-\int d r n(r) \mu(r) \\
& \quad=\frac{1}{2} \ell_{B} \int d r \int d r^{\prime}[z n(r)+\sigma(r)] V\left(r-r^{\prime}\right)\left[z n\left(r^{\prime}\right)+\sigma\left(r^{\prime}\right)\right]-\int n(r) \mu(r) d r .
\end{aligned}
$$

let $\tilde{n}(\mathrm{r})=\mathrm{zn}(\mathrm{r})+\sigma(\mathrm{r})$.
then
$\beta \mathrm{H}=\frac{1}{2} \ell_{B} \int d r \int d r^{\prime} \tilde{n}(r) V\left(r-r^{\prime}\right) \tilde{n}\left(r^{\prime}\right)-\int d r n(r) \mu(r)$
Introduce the Hubbard-Stratanovich transformation:
$e^{-\frac{1}{2} \ell_{B} \int \tilde{n} V \tilde{n}}=\frac{\int \mathrm{D} J e^{i \int \tilde{n} J} e^{\frac{1}{-2 \ell_{B}} \int J V^{-1} J}}{\int \mathrm{D} J e^{\frac{1}{-2 \ell_{B}} \int J V^{-1} J}}$
So
$Z=\frac{1}{N!} \int \mathrm{Dr}_{i} \frac{1}{Q_{J}} \int \mathrm{D} J e^{i \int \tilde{n} J} e^{\int n \mu} e^{-\frac{1}{-2 \ell_{\mathrm{B}}} \int J V^{-1} J}$
$=\frac{1}{N!} \frac{1}{Q_{J}} \int \mathrm{D} J e^{-\frac{1}{2 \ell_{\mathrm{B}}} \int J V^{-1} J} \int \mathrm{D} \vec{r}_{i} e^{\int i(z n+\sigma) J+n \mu}$
$=\frac{1}{N!} \frac{1}{Q_{J}} \int \mathrm{D} J e^{-\frac{1}{2 \ell_{B}} \int J V^{-1} J} e^{i \int \sigma J} \int \mathrm{D} \vec{r}_{i} e^{\int \tilde{n} \tilde{u}}$
where $\tilde{\mu}(r)=\mu(r)+i z J(r)$.

Note that $V^{-1}\left(r-r^{\prime}\right)=-\frac{1}{4 \pi} \nabla^{2} \delta\left(r-r^{\prime}\right)$
Is the inverse operator for the Coulomb interaction. Why?
By definition, the inverse operator satisfies
$\int d r^{\prime} V^{-1}\left(r-r^{\prime}\right) V\left(r-r^{\prime}\right)=\delta\left(r-r^{\prime \prime}\right)$
From Poisson's equation
$\frac{1}{\varepsilon} \nabla^{2} V(r)=-\frac{4 \pi}{\varepsilon} \delta(r)$
$\Rightarrow-\frac{1}{4 \pi} \nabla^{2} V\left(r-r^{\prime \prime}\right)=\delta\left(r-r^{\prime \prime}\right)$
So $\quad \int d r^{\prime} V^{-1}\left(r-r^{\prime}\right) V\left(r-r^{\prime \prime}\right)=-\frac{1}{4 \pi} \nabla^{2} V\left(r-r^{\prime \prime}\right)$
So $\quad V^{-1}\left(r-r^{\prime}\right)=-\frac{1}{4 \pi} \nabla^{2} \delta\left(r-r^{\prime}\right)$
Now look at
$Z_{1}[\tilde{\mu}]=\int d \vec{r}_{1} e^{\int n(r) \tilde{\mu}(r) d r}$
$=\int d \vec{r}_{1} e^{\int d r \delta\left(r-r_{1}\right) \tilde{\mu}(r)}$
$=\int d \vec{r}_{1} e^{\tilde{\mu}\left(r_{1}\right)}$
so we have
$Z_{N}=\frac{1}{N!} \frac{1}{Q_{J}} \int \mathrm{D} J e^{\frac{-1}{2 \ell_{B}} \int J V^{-1} J} e^{i \int \sigma(r) J(r) d r}\left[\int d \vec{r} e^{\mu(r)+i z J(r)}\right]^{V}$
Now look at the grand canonical partition function:
$\Xi=\sum_{N} \lambda^{N} Z_{N}[\tilde{\mu}]$
$=\frac{1}{Q_{J}} \int \mathrm{D} J e^{-\frac{1}{2 \ell_{B}} \int J V^{-1} J} e^{i \int \sigma J} \sum_{N} \frac{1}{N!} \lambda^{N}\left(Z_{1}[\mu+i z J]\right)^{N}$
$\Xi=\frac{1}{Q_{J}} \int \mathrm{D} J e^{-\frac{1}{2 \ell_{B}} \int V^{-1} J+i \int \sigma J} e^{\lambda \int e^{\mu+k D_{d}} d r}$
Look at

$$
\begin{aligned}
& \int J V^{-1} J=\int d r \int d r^{\prime} J(r)\left(-\frac{1}{4 \pi} \nabla^{2}\right) \delta\left(r-r^{\prime}\right) J\left(r^{\prime}\right) \\
& =-\frac{1}{4 \pi} \int d r J(r) \nabla^{2} J\left(r^{\prime}\right) \\
& =+\frac{1}{4 \pi} \int d r(\nabla J(r))^{2}
\end{aligned}
$$

So the grand canonical partition function is
$\Xi=\frac{1}{Q_{J}} \int \mathrm{D} J e^{-\frac{1}{2} \frac{1}{4 \pi \ell_{B}} \int(\nabla J)^{2}+i \int \sigma J+\lambda \int e^{\mu+i z J}}$
From the partition function, we can find the average local density:
$\langle\mathrm{n}(\mathrm{r})\rangle=\left.\frac{\delta \ln \Xi}{\delta \mu(\mathrm{r})}\right|_{\mu=0}$
$=\lambda\left\langle e^{i z J(r)}\right\rangle$
Now carry out the saddle point approximation for the integral over J. (set $\mu=0$)
let $F=\frac{1}{8 \pi \ell_{B}}(\nabla J)^{2}-i \sigma(r) J(r)-\lambda e^{i z J(r)}$
Then we have
$\Xi=\frac{1}{Q_{J}} \int \mathrm{D} J e^{-\int F d r}$
The argument of the exponential is extremized when
$\frac{\delta \mathrm{F}}{\delta \mathrm{J}}=0 \Rightarrow \frac{\partial \mathrm{~F}}{\partial \mathrm{~J}}-\nabla \frac{\partial \mathrm{F}}{\partial(\nabla \mathrm{J})}=0$
$\Rightarrow-i \sigma(r)-i z \lambda e^{+i z J(r)}=\frac{1}{4 \pi \ell_{B}} \nabla^{2} J$.
$\nabla^{2} J=4 \pi \ell_{B}\left[-i \sigma(r)-i z \lambda e^{i z J(r)}\right]=4 \pi \ell_{B}[-i \sigma(r)-i z\langle n(r)\rangle]$

But recall that $\mathrm{iJ}(\mathrm{r})$ is the effective electrostatic potential due to all of the other charges.

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{iJ}=+\beta \mathrm{e} \Phi \\
& \Rightarrow \quad \nabla^{2} \Phi=-\frac{4 \pi e}{\varepsilon}[\sigma(r)+\mathrm{zn}(r)] \\
& =-\frac{4 \pi \mathrm{e}}{\varepsilon}[\sigma(\mathrm{r})+\mathrm{z}\langle\mathrm{n}(\mathrm{r})\rangle]
\end{aligned}
$$

This is the Poisson-Boltzmann equation.

