Nano-Magnetics Lecture Topics, Dan Ralph (but I probably won't cover everything)

A. Torques on Magnets from Spin-Polarized Currents
(A new way to manipulate magnets without magnetic fields)
"Taking a spin with Newton's 3rd Law"
B. Magnetic Wires and Point Contacts

- Domain walls and resistance
- Spectroscopy with point contacts
- "Ballistic Magnetoresistance"?
- Manipulating single domain walls
C. Coulomb Blockade and Tunneling in Small Magnets
- The electrochemical potential can depend on magnetic field
- Effects of electron interactions
- Surface Effects
- Quantized States in Magnetic Quantum Dots
- Probing Individual Magnetic Molecules

	To vaderstand fully the reculting dynemics, one muat conoiden all the torgucs acting on the fiee loyer \rightarrow Magnetic ficid and damping too
	Picture frot - will discus, London-Lifohitz-G.1bert equation hater Assume effectivi fiele and the poleriser point in the same diriction $\uparrow<$ Effection field directus
momend Torpe dhe to effectur field causes precersom of free layer Damping - gives torque towned the field directeni to lower enengy	
Sp,in tronsth: If current is in the correct direction.gives a torque thet points opposite to the demping	
Con give effectuely a kegeture domping - spiral away from the applied field directeon.	
3 posorble typer of regimes	
(1) switching - free layer filps 180°, antrpurallel to polarizer (reveroes curront cen flip it back)	
	(2) dynamucal equilibriven - at some anale daminy balences spin tronsth torgu. $D C$ current drives stady. state precesscoin
	(3) siogle-domain agproximation fill, - spatiotempend chaos?
experimental evidence for all 3 regimes	
switchicy - Low applied magnetic fields. stendy-state precession - langen fields current not too high	
	not siapte domain - probahly for large ficles, large currents

Spin-Transfer-Driven Magnetic Reversal

Switching at Room Temperature Displays Randomness

$\mathrm{P}(\mathrm{t})=$ distribution of switching times at a fixed current
-Distributions fit well to exponential decay $\mathrm{P}(\mathrm{t})=\mathrm{e}^{-\mathrm{t}} \square$
-Switching times strongly current-dependent

Distributions in Critical Currents

How cam spin-trunsfu-dervin switching be thermally activated?

Dynamics at 2000 Gauss

Precession begins

Magnetic-Field and Current Dependence of Precessional Resonance

(sample 1)

Peak frequency is consistent with Kittel formula.

$$
\mathrm{f}=\frac{\square}{2 \square} \sqrt{\left(\mathrm{H}+\mathrm{H}_{0}\right)\left(\mathrm{H}+\mathrm{H}_{0}+4 \square \mathrm{M}\right)}
$$

from preliminary fit: $4 \square \mathrm{M}=8.0 \pm 0.5 \mathrm{kOe}$

$$
\mathrm{H}_{0} \sim 1.18 \pm 0.04 \mathrm{Oe}
$$

Signal from precessional resonance grows with current, but then the dynamics switch to a different regime beyond 2.4 mA .

Minimum detectable precession angle is about 10 degrees.

$\mathrm{P}=$ parallel
AP = antiparallel
S = small-angle precession
$\mathrm{L}=$ large amplitude signal
$\mathrm{W}=$ small microwave signal, not P or AP

Comparing to Single-Domain LLG Simulations

Signal size in the large-amplitude regime and the dependence of frequency on current are consistent with large-angle in-plane precession.

State W is not predicted by single-domain simulation. Dynamical instability to a non-uniform state?

