Quantum Mechanics of Vortices: Duality and Fractionalization

with Matthew Fisher (ITP, UCSB)
Chetan Nayak (UCLA)
T. Senthil (ITP)

Outline

- 1. Vortices and Duality for Bosons
- 2. Conventional physics from unconventional Vortex field theory
- 3. Fractionalization, vortex pairing, and spin liquids
- 4. Z_2 gauge theory
- 5. Fermionic quasiparticles

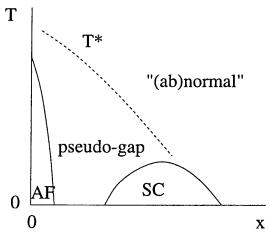
References:

- 1. L. Balents, M. P. A. Fisher and C. Nayak, Int. J. Mod. Phys. B, (1998);
- 2. L. Balents, M. P. A. Fisher, and C. Nayak, Phy. Rev. B 60, 1654 (1999);
- 3. L. Balents, M. P. A. Fisher, and C. Nayak, Phys. Rev. B, 61, 6307 (2000);
- 4. M. P. A. Fisher, cond-mat/9806164
- 5. T. Senthil and M. P. A. Fisher, cond-mat/9910224

Particle-Wave Dualism

- At the heart of quantum mechanics are uncertainty relations, which prescribe the competition between the wave and particle nature of matter
 - Momentum-position [x, p] = i
 - Number-phase $[n, \phi] = i$
- Usually take particle viewpoint:
 - Superconductor = condensate of Cooper pairs
 - Superfluid = condensate of Helium atoms
 - Solid Helium = array of Helium atoms
- In "wave" picture, the phase is fundamental, and the "quanta" are vortices
 - Superconductor/superfluid = vortex vacuum
 - Solid Helium = ???
- Advantages of wave viewpoint:
 - Emphasizes delocalization of charge: strongly quantum view
 - Convenient for studying vortices
 - We will see that vortex variables provide a simple means to study exotic fractionalization
- Disadvantage of wave viewpoint:
 - Vortex Hamiltonian is not microscopically known
 - Hard to do precise quantitative calculations

• Cuprates – Phase Diagram:



- Quantum Antiferromagnets ⇒ "Spin Liquid"?
 - = Mott Insulator with other than an even number of electrons (e.g. odd) per unit cell without any broken symmetries
 - = Non-magnetic ground state of a half-integer spin model without any broken symmetries.
- Pseudo-gap = strange insulating state
 - * apparent gap for quasiparticle excitations *outside* the superconducting state
 - * quasiparticle peaks are not "sharp"
- Non-Fermi Liquid behavior in "normal" state
- Theoretical why vortices?
 - Want to describe "(ab)normal" states in which quasiparticle spectrum is very similar to that in superconductor.
 - Most significant change in quasiparticle spectrum on departing the superconductor is *width* of spectral features.
 - Pursue quantum analogs of Kosterlitz-Thouless transition.
 - Only truly accepted two-dimensional state with "anomalous" excitations is the Laughlin liquid in FQHE vortices pay a crucial role

Superfluids

- Consider bosonic superfluid
- Dualism evident from Kosterlitz-Thouless transition (c.f. Girvin)
 - $-T < T_{KT}$: No mobile vortices \Rightarrow superfluidity = Cooper pairs mobile
 - $-T > T_{KT}$: Lots of vortices \Rightarrow normal fluid = Cooper pairs diffuse
- example: ⁴He

Normal
Superfluid
Crystal

p (pressure) Q: why is the S-C boundary vertical at T=0? What is its shape?

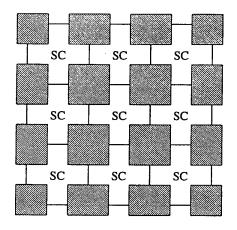
Uncertainty principle: $[N, \phi] = i$

- Superfluid: bosons are condensed $\rightarrow \phi$ is fixed, density N is spread out
- Crystal: bosons are $localized \rightarrow N$ is fixed, ϕ is uncertain

Crystal is indeed a state of strongly fluctuating phase

- Goal: develop a dual view of the quantum superfluid-insulator transition
 - Focus on phases, not critical phenomena

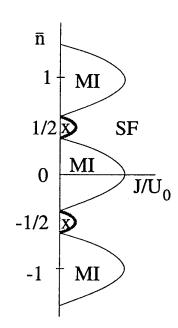
• Developed for Josephson junction arrays:



• Hamiltonian:

$$H = \sum_{ij} \frac{U_{ij}}{2} (n_i - \overline{n})(n_j - \overline{n}) - \sum_{\langle ij \rangle} J \cos(\varphi_i - \varphi_j)$$

- Commutation relation: $[\varphi_i, n_j] = i\delta_{ij} \Rightarrow e^{-i\varphi}|n\rangle = |n+1\rangle$.
- Schematic Phase Diagram (nearest-neighbor interactions):



Duality

• There are many formulations of duality (c.f. Sudbø)

- Lattice (Villain) duality

- Here: Continuum "field theory" duality

• Physical basis: Feynmann world-line formulation of QMs:

$$Z = \int e^{-\int \mathcal{L}}$$

• Lagrangian:

$$\mathcal{L} = T - V = \frac{m}{2\overline{n}} |\vec{J}|^2 - \frac{(n - \overline{n})^2}{2\kappa_0}$$

• Continuity equation:

$$\partial_t n + \vec{\nabla} \cdot \vec{J} = 0$$

• Solution:

$$J^{\mu} = (n, \vec{J}) = \epsilon^{\mu\nu\lambda} \partial_{\nu} a_{\lambda} / 2\pi \equiv \partial \times a / (2\pi)$$

• Dual "electromagnetism"

$$\mathcal{L}_{\mathrm{em}} = \frac{1}{8\pi^2 \kappa_0} \left[|\vec{e}|^2 - (b - \overline{n})^2 \right] - A_{\mathrm{ext}} \cdot \partial \times a/2\pi$$

– "electric" field $e_i = v_c^{-1} [\partial_i a_0 - \partial_0 a_i] = 2\pi \sqrt{\kappa_0 m/\overline{n}} \epsilon_{ij} J_j$

– "magnetic" field $b = \epsilon_{ij} \partial_i a_j = 2\pi n$

• Charge discreteness:

$$\int d^2 \mathbf{r} \, n(\mathbf{r}) = \frac{1}{2\pi} \int d^2 \mathbf{r} \, \vec{\nabla} \times \vec{a} = N$$

• Flux quantization! $\mathcal{L} = \mathcal{L}_{em} + \mathcal{L}_{\Phi}$:

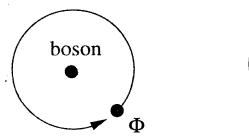
$$\mathcal{L}_{\Phi} = \frac{1}{2} |(\partial_t - ia_0)\Phi|^2 - \frac{v_c^2}{2} |(\vec{\nabla} - i\vec{a})\Phi|^2 - V_{\Phi}(|\Phi|)$$

• Ginzburg-Landau potential

$$V_{\Phi}(X) = -rX^2 + uX^4$$

- Want r > 0 to make lines discrete but fluctuations could still drive system into "disordered" phase of Ginzburg-Landau model.
- Detailed form of \mathcal{L}_{Φ} (e.g. V_{Φ}) determined by short-distance physics of interaction potential of bosons and lattice potential
- Physical meaning of Φ
 - \mathcal{L}_{Φ} looks like the Lagrangian for a relativistic "charged" particle (and anti-particle!) in a "magnetic field" b.
 - The original charges (bosons), appear as fluxes, since $b(\mathbf{r}) = \delta(\mathbf{r} \mathbf{r}')$ for a boson located at \mathbf{r}' .
 - The Φ particles thus pick up an Aharonov-Bohm phase of $\oint \vec{a} \cdot d\vec{l} = 2\pi$ upon encircling a boson:

boson



- \Rightarrow Boson phase winds by 2π upon encircling Φ particle
- $-\Phi$ particles are vortices!

Dual Formulation

• World-lines

- Lagrangian
$$\mathcal{L} = T - V = \frac{m}{2\overline{n}} |\vec{J}|^2 - \frac{(n-\overline{n})^2}{2\kappa_0}$$

– Gauge field
$$J^{\mu}=(n,\vec{J})=\epsilon^{\mu\nu\lambda}\partial_{\nu}a_{\lambda}/2\pi\equiv\partial\times a/2\pi$$

- Dual theory
 - Lagrangian $\mathcal{L}_{dual} = \mathcal{L}_{em} + \mathcal{L}_{\Phi}$
 - Dual "electromagnetism"

$$\mathcal{L}_{\rm em} = \frac{1}{8\pi^2 \kappa_0} \left[|\vec{e}|^2 - (b - \overline{n})^2 \right] - A_{\rm ext} \cdot \partial \times a/2\pi$$

- Vortices:

$$\mathcal{L}_{\Phi} = \frac{1}{2} |(\partial_t - ia_0)\Phi|^2 - \frac{v_c^2}{2} |(\vec{\nabla} - i\vec{a})\Phi|^2 - V_{\Phi}(|\Phi|)$$

- Fields:
 - * "electric" field $e_i = v_c^{-1} [\partial_i a_0 \partial_0 a_i] = 2\pi \sqrt{\kappa_0 m/\overline{n}} \epsilon_{ij} J_j$
 - * "magnetic" field $b = \epsilon_{ij}\partial_i a_j = 2\pi n$
 - * Ginzburg-Landau potential $V_{\Phi}(X) = -rX^2 + uX^4$
 - * "dual phase" $\Phi = |\Phi|e^{i\theta}$
- Table

Original	Dual
· charge ± 1 boson	
$\bigcirc \Delta \varphi = \pm 2\pi \text{ vortex}$	\cdot dual charge ± 1 Φ boson
$\text{current } J^{\mu}$	flux $(\partial imes a)^{\mu}/2\pi$
logarithmic vortex interaction	logarithmic 2D Coulomb potential
superfluid	insulator (dielectric)
insulator (crystal)	superconductor (vortex lattice)
Meissner effect	charge gap

Superfluid phase

- Fundamental properties of superfluid phase are:
 - Meissner effect: external electromagnetic flux (rotation) is expelled
 - Off-Diagonal Long-Range Order (ODLRO) how is this recovered in dual picture?
 - Vortex excitations cost finite core energy and logarithmic cost for long-range currents
- Expect to recover these in disordered phase of GL theory = vortex vacuum $r = -m^2 < 0 \Rightarrow \text{can "integrate out" massive } \Phi \text{ field}$
- Meissner effect:
 - (electro)magnetic response of superfluid:
 - * $\mathcal{L}_{\mathrm{sf}} = -\frac{\kappa_0 v_c^2}{2} |\vec{\nabla} \varphi \vec{A}|^2$.
 - * Equation of motion: $\varphi = \vec{\nabla} \cdot \vec{A}/\nabla^2$

$$\Rightarrow \mathcal{L}_{\text{eff}} = -\frac{\kappa_0 v_c^2}{2} |P_T \vec{A}|^2$$

- dual response:
 - * $\mathcal{L}_{\mathrm{dual}} = \frac{1}{8\pi^2\kappa_0} |\vec{e}|^2 \vec{A} \cdot v_c \vec{e}/2\pi$
 - * equation of motion: $\vec{e} = -2\pi v_c \kappa_0 P_T \vec{A}$

$$\Rightarrow \mathcal{L}_{\text{eff}} = -\frac{\kappa_0 v_c^2}{2} |P_T \vec{A}|^2$$
 identical to superfluid response!

- Vortex excitations:
 - Vortex spectrum can be read off from \mathcal{L}_{Φ} :

$$\omega_v^2(k) = m^2 + v_c^2 k^2$$

- \Rightarrow minimum energy "gap" m for vortex
- Vortices experience 2+1-dimensional fictitious Coulomb force due to "electromagnetic" gauge field a
 - * logarithmic Coulomb force in two dimensions!

Vortex dynamics

• For low-energies, $vk \ll m$, have non-relativistic limit. Recall

$$m rac{d ec{u}}{dt} = q(ec{E} + rac{ec{u}}{c} imes B\hat{z})$$

- Rewrite:
 - $-q \rightarrow 1$
 - no normal fluid $\Rightarrow \vec{E} \rightarrow \hat{z} \times \vec{J} = \overline{n} \hat{z} \times \vec{V}_s$
 - $-B/c \rightarrow \overline{n}$

$$m rac{d ec{u}}{dt} = \overline{n} \hat{z} imes (ec{V_s} - ec{u})$$

- In superfluid literature, the total force is known as Magnus force.
- In superconductivity, the first and second terms are called Hall and Lorentz forces, respectively.
- Additional dissipative and non-Galilean invariant terms arise from other degrees of freedom (normal fluid, quasiparticles) and coupling to the lattice.
 - Can study these phenomena via current-current couplings:

$$\mathcal{L}_{\rm int} = -gj_n \cdot \partial \times a.$$

Insulating phase

- Fundamental properties of insulator
 - charge gap (commensurate boson density)
 - dielectric electromagnetic response (commensurate)
 - spontaneous spatial periodicity
 - single-particle gap
- Expect insulator has lots of vortices (c.f. Girvin: vortices disrupt phase)
 - At T=0, these should Bose condense $\langle \Phi \rangle = \Phi_0 \neq 0$
 - Note: needn't have non-zero vorticity, since $V = \text{Im}(\Phi^*(\partial_t ia_0)\Phi) = 0$ is consistent with $\Phi = 0$
- Charge gap: consider extreme case of $\overline{n} \in \mathcal{Z}$ in QPM
 - Zero dual flux $\bar{b} = 0 \Rightarrow$ Meissner state
 - chemical potential \rightarrow dual external field h
 - \Rightarrow Meissner effect is charge gap $\overline{b}(h < h_c) = 0!$
- Dielectric response: in dual SC, choose Φ_0 real gauge
 - $-\mathcal{L}_{\mathrm{eff}} = \frac{1}{2}M^2(a_0^2 v_c^2|\vec{a}|^2) A_{\mathrm{ext}} \cdot \partial \times a/2\pi$
 - integrate out $a^{\mu} \Rightarrow$

$$\mathcal{L}_A = \frac{\epsilon_0}{2} |\vec{E}|^2 - \frac{B^2}{2\mu_0}$$
 $\epsilon_0 = (2\pi M v_c)^{-2}, \mu_0 = (2\pi M)^2$

- Spatial periodicity: $\overline{b} = \overline{n} \Rightarrow$ Abrikosov lattice (minimal unit cell = one boson)
- Single-particle gap:
 - Consider single-boson correlation function $C(\tau) = \langle a(0,\tau)a^{\dagger}(0,0)\rangle$
 - In imaginary time $(\tau = it)$, expect $C(\tau) \sim e^{-\Delta_1 |\tau|}$, with $\Delta_1 = \text{SPG}$.
 - In dual picture, $C(\tau) = e^{-S_{\rm eff}(1 \, {\rm vortex})}$
 - flux confinement $\Rightarrow \Delta_1 = \text{dual fluxon core energy}$
- Appears that $\langle \Phi \rangle \neq 0$ is an XY order parameter for the insulator
 - Does this mean that there is a finite-temperature phase transition separating the insulator from the "normal" state? (assume the density $\overline{n} \in \mathcal{Z}$)

Conventional vs. unconventional insulators

- Most fundamental property of insulator is charge quantization
 - c.f uncertainty principle
 - Formally, there exists a excitation with a given momentum and the minimal (but non-zero) charge: "quasiparticle"
 - e.g. in band insulator, quasiparticles have charge e
- In ordinary Bose solid, expect the quasiparticles are bosons with the fundamental (single) boson charge
 - i.e. the smallest boson number is 1 helium atom!
- How to see this in vortex theory?
 - Charged excitations are dual vortices in Φ :

$$-\langle \Phi \rangle = \Phi_0 e^{i\theta(\mathbf{r})}$$

- London
$$a^{\mu} = \partial_{\mu}\theta \Rightarrow N = (2\pi)^{-1} \int b \, d^2 \mathbf{r} = (2\pi)^{-1} \oint \vec{\nabla}\theta \cdot d\vec{\ell} \in \mathcal{Z}$$

- $-\Delta\theta = \pm 2\pi$ vortex vortices carry boson number ± 1
- What if vortices condensed in pairs? unbroken Ising symmetry
 - Formally, $\Phi_2 = \langle \Phi^2 \rangle \neq 0$ but $\langle \Phi \rangle = 0$
 - Energetics? Come to this question of "mechanism" later focus now on phenomenology (c.f. GL theory of SC is independent and more general than BCS theory)
 - Gauge invariance "halves" the dual flux quantum:

$$\mathcal{L}_2 = \kappa_{\mu} |(\partial_{\mu} - 2a_{\mu})\Phi_2|^2 + \cdots$$

- New topological defects $\Phi_2 = \Phi_0 e^{i\theta}$
 - fractional charge $N = \frac{1}{4\pi} \oint \vec{\nabla} \theta \cdot d\vec{\ell} = \pm 1/2$ "chargons"
- General "Dirac quantization condition": $Q_c Q_v = \frac{Q}{e} \frac{\phi}{(hc/e)} = 1$
 - FQHE Laughlin $Q_v = 3 \Rightarrow Q_c = 1/3$
 - BCS $Q_c = 2 \to Q_v = 1/2 \ (\phi_0^{sc} = hc/2e)$

Spin-1/2 XXZ Model

• Hamiltonian:

$$H = \sum_{\langle ij \rangle} \left[-J_{xy} \left(S_i^x S_j^x + S_i^y S_j^y \right) + J_z S_i^z S_j^z \right]$$

• Hard-core bosons:

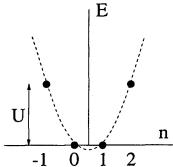
- ops:
$$S^z = a^{\dagger}a - 1/2$$
, $S^+ = (S^x + iS^y) = a^{\dagger}$, $S^- = a$

- Hamiltonian:

$$H = \sum_{\langle ij \rangle} -\frac{1}{2} J_{xy} (a_i^{\dagger} a_j^{} + a_j^{\dagger} a_i^{}) + J_z (a_i^{\dagger} a_i^{} - 1/2) (a_j^{\dagger} a_j^{} - 1/2)$$

• Rotor approximation:

$$\begin{split} a &\rightarrow e^{i\varphi} \\ a^{\dagger} &\rightarrow e^{-i\varphi} \\ a^{\dagger}_i a_i &\rightarrow n_i \end{split}$$



- Hamiltonian:

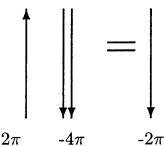
$$H = \sum_{\langle ij \rangle} -J_{xy} \cos(\varphi_i - \varphi_j) + J_z(n_i - 1/2)(n_j - 1/2) + U \sum_i n_i(n_i - 1)$$

- Zero magnetization $\Rightarrow \overline{n} = 1/2$
- Duality:
 - Lattice: vortices sit on plaquettes
 - $-\overline{n} = 1/2 \Rightarrow \pi \text{dual flux per site (dual plaquette)}$
 - Fully-frustrated XY gauge model: $H = H_{xy} + H_g$ $H_{xy} = -\sum_{n} \tilde{J}_n \sum_{\langle ij \rangle} \cos[n(\theta_i \theta_j a_{ij})] + \tilde{U} \sum_{i} V_i^2$ $H_g = K \sum_{n} |\nabla \times a_{ij} \pi|^2 + \frac{1}{4\pi\kappa_0} \sum_{\langle ij \rangle} e_{ij}^2$

Spin-1/2 XXZ Model – Phases

- Vortex vacuum: $\langle e^{in\theta_i} \rangle = 0$
 - superfluid $\langle a \rangle = \psi \neq 0 \leftrightarrow \langle S^- \rangle = \psi$ XY magnet
- Single-vortex condensate $\langle e^{i\theta} \rangle \neq 0$
 - "insulator" $\langle a \rangle = 0$
 - Dual vortex lattice $n(\mathbf{r}) \sim (-1)^{x+y} \Rightarrow S_i^z \sim (-1)^{i+j}$ Ising antiferromagnet
- Double-vortex condensates? $\langle e^{2i\theta} \rangle \neq 0$
 - XY paramagnet $\langle a \rangle = 0$
 - Dual flux quantum halved $\Rightarrow 2\pi$ flux/plaquette \Rightarrow Spin liquid $\langle S^z \rangle = 0$
 - vortex-vortices carry spin-1/2: "spinons"
- Real phase diagram of XXZ model?
 - $-J_{xy} > J_z$: XY (anti-)ferromagnet
 - $-J_z > J_{xy}$: Ising anti-ferromagnet
 - $-J_{xy}=J_z$: Heisenberg antiferromagnet (SU(2))
- Additional interactions are needed to access spin liquid!
 - will return to these later if there is time

• Apparently, $\pm 4\pi$ vortices cannot "screen" $\pm 2\pi$ vortex



• Treat vortex pairing by "BCS" theory

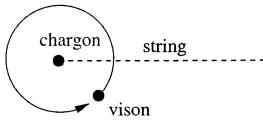
$$\mathcal{L} \sim \kappa_{\mu} |(\partial_{\mu} - ia_{\mu})\Phi|^2 + m^2 |\Phi|^2 - u \left[\Phi_2(\Phi^*)^2 + \Phi_2^*\Phi^2\right] + \cdots$$

- Similar to Bogoliubov deGennes Hamiltonian
- "Pair field" Φ_2 mixes vortices and anti-vortices!
- "Neutralize" the $\pm 2\pi$ vortices:
 - Amplitude and phase: $\Phi_2 = |\Phi_2|e^{i\theta_2}$
 - Rescale $\Phi = \tilde{\Phi}e^{i\theta_2/2}$
 - Important: exponential factor is double-valued for "chargon" $\oint \vec{\nabla}\theta_2 \cdot d\vec{\ell} = \pm 2\pi$
- After tranformation, get Ising fields $\tilde{\Phi} = \Phi_a + i\Phi_b$

$$\mathcal{L} \sim \kappa_{\mu} |(\partial_{\mu} - ij_{\mu})\tilde{\Phi}|^{2} + m^{2}|\tilde{\Phi}|^{2} - u|\Phi_{2}|(\Phi^{2} + (\Phi^{*})^{2})$$

$$\mathcal{L} = \kappa_{\mu} [(\partial_{\mu}\Phi_{a})^{2} + (\partial_{\mu}\Phi_{b})^{2}] + (m^{2} \pm u|\Phi_{2}|)\Phi_{a/b}^{2} + \text{ints.}$$

- $\Phi_{a/b}$ represent (real) massive Ising excitations
 - "Ising vortex" = vison
 - vison and chargon have statistical interactions!

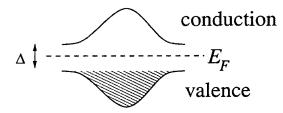


Quasiparticles and vortices in s-wave superconductors

- There are many interesting issues (c.f. Franz+Tesanovic) regarding spectra of quasiparticles with *static* vortices within the Bogoliubiv deGennes approach
 - Quasiparticle states of vortex and STM spectra
 - "Zero modes" of vortices in unconventional SCs (e.g. $p_x + ip_y$)
 - Excitation spectra of vortex lattice
 - Vortex damping by quasiparticle motion in unconventional SCs
 - Localization of quasiparticle states by disorder
- Focus here on general structure
 - What are the fundamental properties of quasiparticles, viewed as elementary excitations of a SC
 - * statistics, interactions with vortices?
 - * spectral functions
 - Try to extend the dual description of *insulators* as vortex condensates to understand the nature of insulating quasiparticles

From band insulator to SC

- Consider a 2D system of electrons in a periodic potential with 2 electrons per unit cell and attractive interactions
- strong crystal potential and weak attraction \Rightarrow band insulator:



- weak interactions cannot destroy band gap
- excitations:
 - * electrons : $Q = \pm e$, s = 1/2, fermion
 - * excitons: Q = 0, s = 0, 1, boson
 - * pairs: $Q = \pm 2e$, s = 0, 1, boson
- Increased attractive interaction ⇒ lower energy of pairs
- Get transition to superconductor (could analyze using BCS theory)
- How does this work in reverse using duality
 - Cooper pairs = bosons \Rightarrow can use duality
 - Elementary $(2\pi = hc/2e)$ vortex condensation
 - * Indeed gives insulator
 - * Gives charge of 1 boson/unit cell = 2 electrons/unit cell
 - * Charge excitations have $Q = \pm 2e$ (single boson)
 - * Where are the electrons?? $(Q = \pm e, s = 1/2)$
 - If condensed $4\pi = hc/e$ vortices, get $Q = \pm e$ "chargons"
 - But for spin, need to consider quasiparticles

• Spin-1/2 quantum XY model (rotors):

$$H = -J \sum_{\langle ij \rangle} \cos(\varphi_i - \varphi_j) + U \sum_i (n_i - 1/2)^2$$

- Split the boson:
 - Spin operator $S_i^+ = e^{i\varphi_i} \equiv \left(e^{i\phi_i}\right)^2 \equiv \left(b_i^{\dagger}\right)^2$
 - Number operator $N_i = 2n_i$

$$H = -J\sum_{\langle ij\rangle}\cos(2\phi_i - 2\phi_j) + \frac{U}{4}\sum_i(N_i - 1)^2$$

- Constraint N_i is even
- Path integral $Z = \operatorname{Tr} e^{-\beta H} = \operatorname{Tr} (e^{-\epsilon H})^{\beta/\epsilon}$
 - Partition function $Z = \int \frac{d\phi_i(\tau)}{2\pi} \sum_{N_i}' e^{-S}$
 - Action

$$S = \sum_{\langle ij \rangle \tau} -\epsilon J \cos(2\phi_i - 2\phi_j) + \frac{U\epsilon}{4} \sum_{i\tau} (N_{i\tau} - 1)^2 + iN_{i\tau}(\phi_{i\tau+\epsilon} - \phi_{i\tau})$$

- Implement constraint: $\sum_{N_{i\tau}}' = \sum_{N_{i\tau}} \frac{1}{2} \sum_{\sigma_{i\tau} = \pm 1} e^{iN_{i\tau} \frac{\pi}{2}(1 \sigma_{i\tau})}$
- Split cosine: $e^{J\epsilon\cos(2\phi_i 2\phi_j)} \approx \sum_{\sigma_{ij} = \pm 1} e^{t_{x/y}\sigma_{ij}\cos(\phi_i \phi_j)}, \quad t_{x/y} \approx \sqrt{2J\epsilon}$
- Sum boson numbers:

$$\sum_{N_{i\tau}} e^{-\frac{U\epsilon}{4}(N_{i\tau}-1)^2} e^{iN_{i\tau}\left[\frac{\pi}{2}(1-\sigma_{i\tau})+\phi_{i\tau+\epsilon}-\phi_{i\tau}\right]} \approx e^{-S_B^{(i\tau)}} e^{t_{\tau}\sigma_{i\tau}} \cos(\phi_{i\tau+\epsilon}-\phi_{i\tau})$$

- Berry's phase $S_B^{(i\tau)} = -i\left[\frac{\pi}{2}(1-\sigma_{i\tau}) + \phi_{i\tau+\epsilon} \phi_{i\tau}\right], \qquad t_\tau \approx 1/\epsilon U$
- Final gauge theory $Z \propto \int [d\phi_{i\tau}/2\pi] \sum_{\sigma_{i\mu}=\pm 1} \exp(-S_{Z_2})$

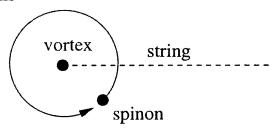
$$S_{Z_2} = -\sum_{i\mu} t_{\mu} \sigma_{i\mu} \cos(\phi_{i+\mu} - \phi_i) + S_B - K \sum_{\square} \prod_{\square} \sigma_{ij}$$

Quasiparticles and vortices in s-wave superconductors

- BCS reduced Lagrangian: $\mathcal{L} = \mathcal{L}_{qp} + \mathcal{L}_{\varphi} + \mathcal{L}_{int}$
 - Quasiparticles: $\mathcal{L}_{qp} = c_{\alpha}^{\dagger} [i\partial_t \nabla^2 + U_p(\mathbf{r}) \mu] c_{\alpha}$
 - Phase: $\mathcal{L}_{\varphi} = \frac{\kappa_{\mu}}{2} (\partial_{\mu} \varphi)^2$
 - Interaction: $\mathcal{L}_{\text{int}} = |\Delta| e^{i\varphi} c_{\uparrow} c_{\downarrow} + \text{h.c.}$
- Spinons: $f_{\alpha} = e^{i\varphi/2}c_{\alpha}$

$$\mathcal{L} = \mathcal{L}_f + \mathcal{L}_\varphi + \frac{g}{2} J_\mu \partial_\mu \varphi$$

- spinon lagrangian $\mathcal{L}_f = f_{\alpha}^{\dagger}[i\partial_t \nabla^2 + U_{\mathrm{p}}(\mathbf{r}) \mu]f_{\alpha} + |\Delta|(f_{\uparrow}f_{\downarrow} + \text{h.c.})$
- "quasiparticle current" $J_0 = f_{\alpha}^{\dagger} f_{\alpha}, \qquad \vec{J} = i f_{\alpha}^{\dagger} \vec{\nabla} f_{\alpha} + \text{h.c.}$
- bare "Doppler shift" interaction g = 1
- Statistical interactions



- ordinary flux $\pm hc/2e$ vortex: $\frac{1}{2} \oint \nabla \varphi \cdot d\ell = \pm \pi$
- spinon ψ obeys antiperiodic boundary conditions around vortex
- spinons and vortices are relative semions
- $\pm hc/2e$ vortex condensation \Rightarrow confinement