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Particle-Wave Dualism

At the heart of quantum mechanics are uncertainty relations, which
prescribe the competition between the wave and particle nature of matter

— Momentum-position [z, p] = ¢

— Number-phase [n, @] =i

Usually take particle viewpoint:

— Superconductor = condensate of Cooper pairs
— Superfluid = condensate of Helium atoms

— Solid Helium = array of Helium atoms

In “wave” picture, the phase is fundamental, and the “quanta” are vortices

— Superconductor /superfluid = vortex vacuum

— Solid Helium = 77?7

Advantages of wave viewpoint:

— Emphasizes delocalization of charge: strongly quantum view

— Convenient for studying vortices

— We will see that vortex variables provide a simple means to study exotic
fractionalization

Disadvantage of wave viewpoint:

— Vortex Hamiltonian is not microscopically known

— Hard to do precise quantitative calculations



Motivations

e Cuprates — Phase Diagram:
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— Quantum Antiferromagnets = “Spin Liquid”?
= Mott Insulator with other than an even number of electrons (e.g. odd)
per unit cell without any broken symmetries
= Non-magnetic ground state of a half-integer spin model without any
broken symmetries.

— Pseudo-gap = strange insulating state
* apparent gap for quasiparticle excitations outside the superconducting

state

* quasiparticle peaks are not “sharp”

— Non-Fermi Liquid behavior in “normal” state

e Theoretical — why vortices?

— Want to describe “(ab)normal” states in which quasiparticle spectrum is

very similar to that in superconductor.

— Most significant change in quasiparticle spectrum on departing the
superconductor is width of spectral features.

— Pursue quantum analogs of Kosterlitz-Thouless transition.

— Only truly accepted two-dimensional state with “anomalous” excitations
is the Laughlin liquid in FQHE - vortices pay a crucial role



Superfluids

e Consider bosonic superfluid
e Dualism evident from Kosterlitz-Thouless transition (c.f. Girvin)

— T < Tkr: No mobile vortices = superfluidity = Cooper pairs mobile

— T > Tkr: Lots of vortices = normal fluid = Cooper pairs diffuse

e example: “He
T

Normal

Superfluid

Crystal

p (pressure) Q: why is the S-C boundary vertical at
T=0?7 What is its shape?

Uncertainty principle: [N, ¢] =1
— Superfluid: bosons are condensed — ¢ is fixed, density IV is spread out
— Crystal: bosons are localized — N is fixed, ¢ is uncertain

Crystal is indeed a state of strongly fluctuating phase

e Goal: develop a dual view of the quantum superfluid-insulator transition

— Focus on phases, not critical phenomena



Quantum phase model

e Developed for Josephson junction arrays:
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e Hamiltonian:
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e Commutation relation: [p;,n;] =id;; = e~ *°|n) = |n + 1).

e Schematic Phase Diagram (nearest-neighbor interactions):
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Duality

e There are many formulations of duality (c.f. Sudbg)
— Lattice (Villain) duality
— Here: Continuum “field theory” duality

e Physical basis: Feynmann world-line formulation of QMs:
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e Lagrangian:

(n —m)*
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Continuity equation:

8t’fl+<7'j=0

Solution:

JH = (n,J) = é28,a, /21 = 8 x a/(2)

Dual “electromagnetism”

1
Lom =
¢ 87T2I‘|',0

— “electric” field e; = v;}[Biaq — Doa;] = 2m+/kom [Tiei; J;

— “magnetic” field b = ¢;;0;a; = 2mn

[l = (b -n)?] - Aex; -0 x a/2m



Duality - 2

e Charge discreteness:

‘/d2rn(r)=£7—r/d2r§x&’=N

e Flux quantization! £ = Lem + La:

1 . IS _ iz
Lo = 51(0, —ia0)f* = Z|(V — )3 - Va(12)

e Ginzburg-Landau potential

Va(X) = —rX? +uX?
— Want r > 0 to make lines discrete but fluctuations could still drive
system into “disordered” phase of Ginzburg-Landau model.
— Detailed form of Ls (e.g. Vo) determined by short-distance physics of
interaction potential of bosons and lattice potential
e Physical meaning of ¢

— L4 looks like the Lagrangian for a relativistic “charged” particle (and
anti-particle!) in a “magnetic field” b.

— The original charges (bosons), appear as fluxes, since b(r) = §(r — r’) for
a boson located at r'.

— The ® particles thus pick up an Aharonov-Bohm phase of § a - dl = 2m
upon encircling a boson:

boson 1)
® o
o boson

= Boson phase winds by 27 upon encircling @ particle

— & particles are vortices!



Dual Formulation

e World-lines

— Lagrangian L=T -V = Z|J|? - gnz;nfﬁ

— Gauge field J# = (n,J) = e#**8,a, /21 = 8 X a/2n
e Dual theory

— Lagrangian Lgqyal = Lem + Lo

— Dual “electromagnetism”

1 _
Lem = Sn2rg [le1? = (b —7)?] — Aext - 0 X a/27
— Vortices:
1 . 2 vg el . 2
Lo = 510 —1a0)®|" — |(V - id@)2|" — Va(|2])
— Fields:
* “electric” field e; = v;1[d;a0 — Dpa;] = 2m+/Kom [Tie;; J;

* “magnetic” field b = ¢;;0;a; = 27n
* Ginzburg-Landau potential Vp(X) = —r X2 + uX*
* “dual phase” ® = |®|e*

e Table

Original Dual

charge +1 boson ® A6 = £2x dual vortex [bd’r = £2x

© Ay = 27 vortex - dual charge £1 ® boson
current J# flux (8 x a)* /27
logarithmic vortex interaction logarithmic 2D Coulomb potential
superfluid " insulator (dielectric)
insulator (crystal) superconductor (vortex lattice)
Meissner effect charge gap



Superfluid phase

e Fundamental properties of superfluid phase are:
— Meissner effect: external electromagnetic flux (rotation) is expelled
— Off-Diagonal Long-Range Order (ODLRO) — how is this recovered in
dual picture?
— Vortex excitations cost finite core energy and logarithmic cost for

long-range currents

e Expect to recover these in disordered phase of GL theory = vortex vacuum
r = —m? < 0 = can “integrate out” massive ® field

e Meissner effect:
— (electro)magnetic response of superfluid:
2 — -
¥ Lof = —55=|Vp — 4|2

+ Equation of motion: ¢ = V - f_f/Vz

2
KoU -
= Log = — 02 |Pr A2
— dual response :
* Laual = 81r%n0 lé12 —A- ch/QW
* equation of motion: € = —ZWUCROPTX
KOUZ o 2 4. .
= Leg = — 5 |PrA| identical to superfluid response !

e Vortex excitations:
— Vortex spectrum can be read off from Lg:
w2(k) = m? 4 v2k?
= minimum energy “gap” m for vortex
— Vortices experience 2 + 1-dimensional fictitious Coulomb force due to
“electromagnetic” gauge field a

* logarithmic Coulomb force in two dimensions!



Vortex dynamics

e For low-energies, vk < m, have non-relativistic limit. Recall

mfl—zzq(ﬁ+zx32)
e Rewrite:
—qg—1
— no normal fluid = E — 2 x J = 7% x _'s
- B/c—7
m%zﬁéx(ffs—ﬁ)

e In superfluid literature, the total force is known as Magnus force.

e In superconductivity, the first and second terms are called Hall and Lorentz

forces, respectively.

e Additional dissipative and non-Galilean invariant terms arise from other
degrees of freedom (normal fluid, quasiparticles) and coupling to the lattice.

— Can study these phenomena via current-current couplings:
Eint = _gjn M a X a.



Insulating phase

Fundamental properties of insulator
— charge gap (commensurate boson density)
— dielectric electromagnetic response (commensurate)
— spontaneous spatial periodicity
— single-particle gap
Expect insulator has lots of vortices (c.f. Girvin: vortices disrupt phase)
— At T = 0, these should Bose condense (®) = ®g # 0
— Note: needn’t have non-zero vorticity, since V = Im(®*(0; — ia9)®) =0
is consistent with & =0
Charge gap: consider extreme case of 7 € Z in QPM
— Zero dual flux b = 0 = Meissner state
— chemical potential — dual external field &
= Meissner effect is charge gap b(h < h.) = 0!
Dielectric response: in dual SC, choose ®( real gauge
— Leg = 1M?(a} — v2|d]?) — Aext - 0 X a/27
— integrate out a* =
La= %Q|E|2 — 2%2— €0 = (2nMv.)~2, o = (2w M)?
Spatial periodicity: b = @ = Abrikosov lattice (minimal unit cell = one boson)
Single-particle gap:
— Consider single-boson correlation function C(7) = (a(0, 7)a’(0,0))
— In imaginary time (1 = it), expect C(7) ~ e~ 217l with A; = SPG.

~Sefr (1 vortex)

— In dual picture, C(1) =€
~ flux confinement = A; = dual fluxon core energy
Appears that (®) # 0 is an XY order parameter for the insulator

— Does this mean that there is a finite-temperature phase transition
separating the insulator from the “normal” state? (assume the density
n e Z2)



Conventional vs. unconventional insulators

Most fundamental property of insulator is charge quantization

— c.f uncertainty principle

— Formally, there exists a excitation with a given momentum and the
minimal (but non-zero) charge : “quasiparticle”

— e.g. in band insulator, quasiparticles have charge e

¢ In ordinary Bose solid, expect the quasiparticles are bosons with the
fundamental (single) boson charge
i.e. the smallest boson number is 1 helium atom!

How to see this in vortex theory?

— Charged excitations are dual vortices in ®:
—(®) = Ppetd(r)
— London a* = 0,0 = N = (2m)~! [bd’r = (27)" 1 §Vh.-dl c 2

— A@ = £27 vortex vortices carry boson number +1

What if vortices condensed in pairs? unbroken Ising symmetry

— Formally, ®; = (®2) # 0 but (®) =0

— Energetics? Come to this question of “mechanism” later — focus now on
phenomenology (c.f. GL theory of SC is independent and more general
than BCS theory)

— Gauge invariance “halves” the dual flux quantum:
Lo = k,|(0, — 2a,)®s]? + -

— New topological defects ®5 = ®pe??
— fractional charge N = 111; $ Vo -dl = +1 /2 “chargons”

e General “Dirac quantization condition”: Q.Q, = %#)- =1
— FQHE Laughlin @, =3 = Q. =1/3
— BCS Qc =2 = Q, =1/2 (¢§° = he/2e)



Spin-1/2 XXZ Model

e Hamiltonian :

H=> [~Joy (8757 +SYSY) + J.S;S}]
(i5)
e Hard-core bosons:
— ops: % =ala —1/2, St = (8% 4i8Y) = af, S™=a

— Hamiltonian:

1
H= Z—ngy(aja] +ala,) + Ju(ala; — 1/2)(ala; — 1/2)
(i)

i . E
e Rotor approximation:
a — e ;
al — e ® g
ajai — 1 U
n
"ol
-1 01 2
— Hamiltonian:

H= Z —Jzy cos(p; — ;) + Jo(ni —1/2)(n; — 1/2) + UZn,(n, -1)
(i3) i
— Zero magnetization = 7 = 1/2
e Duality:
— Lattice: vortices sit on plaquettes
— . =1/2 = 7 — dual flux per site (dual plaquette)
— Fully—frustrated XY gauge modél H=H,;,+H,

_—_—ZJanos — aij)) +UZV2

n (i4)

1
Hg-”‘—'KZIVXGij—WIZ‘*'— e?
O



Spin-1/2 XX7 Model — Phases

Vortex vacuum: (‘") =0

— superfluid (a) =9 # 0+ (S7) = ¢ XY magnet

Single-vortex condensate (e%®) # 0

— “insulator” (a) =0

— Dual vortex lattice n(r) ~ (—1)**¥ = S7 ~ (—1)**J Ising
antiferromagnet

Double-vortex condensates? (e2¥) # 0

— XY paramagnet (a) =0

— Dual flux quantum halved = 27 flux/plaquette
= Spin liquid (5%) =0

— vortex-vortices carry spin-1/2: “spinons”

Real phase diagram of XXZ model?

— Jgy > Jp: XY (anti-)ferromagnet

— Jy > Jgy: Ising anti-ferromagnet

— Jzy = J,: Heisenberg antiferromagnet (SU(2))

Additional interactions are needed to access spin liquid!

— will return to these later if there is time




What happens to the +27 vortex in the spin liquid?

e Apparently, 47 vortices cannot “screen” +27 vortex

A

YY Y

2 -47 27

e Treat vortex pairing by “BCS” theory

L~ ku|(0y —ia,)®|? + m?|®)2 — u [02(2*)° + 258%] + -+

— Similar to Bogoliubov deGennes Hamiltonian
— “Pair field” ®, mixes vortices and anti-vortices!

e “Neutralize” the +27 vortices:
— Amplitude and phase: ®5 = |®;|e?>
— Rescale ® = ®ef2/2
— Important: exponential factor is double-valued for “chargon”

§V6y - dl =427
e After tranformation, get Ising fields ® = ®, + i®;

L~ k(0 — 17,) @17 + m?| 8 — u|®:|(2% + (7))
L=r,[(0,9.)%+ (0,8)%] + (m?* £ u|<I>2|)<I>(21/b + ints.
o &,/ represent (real) massive Ising excitations
— “Ising vortex” = vison

— vison and chargon have statistical interactions!

chargon

string

vison



Quasiparticles and vortices in s-wave superconductors

e There are many interesting issues (c.f. Franz+Tesanovic) regarding spectra
of quasiparticles with static vortices within the Bogoliubiv deGennes

approach

— Quasiparticle states of vortex and STM spectra

— “Zero modes” of vortices in unconventional SCs (e.g. pz + ipy)
— Excitation spectra of vortex lattice

— Vortex damping by quasiparticle motion in unconventional SCs

— Localization of quasiparticle states by disorder

e Focus here on general structure
— What are the fundamental properties of quasiparticles, viewed as
elementary excitations of a SC
x statistics, interactions with vortices?
x spectral functions
— Try to extend the dual description of insulators as vortex condensates to
understand the nature of insulating quasiparticles



From band insulator to SC

e Consider a 2D system of electrons in a periodic potential with 2 electrons
per unit cell and attractive interactions

e strong crystal potential and weak attraction = band insulator:

/\conduction

A 1 ------------------ EF
.-
\§ valence

— weak interactions cannot destroy band gap
— excitations:

x electrons : @ = +e, s = 1/2, fermion

* excitons: @ =0, s =0,1, boson

x pairs: Q = +2e, s = 0,1, boson

e Increased attractive interaction = lower energy of pairs
e Get transition to superconductor (could analyze using BCS theory)
e How does this work in reverse using duality

— Cooper pairs = bosons = can use duality

— Elementary (27 = hc/2e) vortex condensation

Indeed gives insulator

Charge excitations have Q = +-2e (single boson)

*
* Gives charge of 1 boson/unit cell = 2 electrons/unit cell
*
* Where are the electrons?? (Q = te,s =1/2)

— If condensed 47 = hc/e vortices, get @ = *e “chargons”

— But for spin, need to consider quasiparticles



Zy gauge theory

e Spin-1/2 quantum XY model (rotors):

H=—JZCOS( — ¥; —l—UZ i —1/2)?

(i5)
e Split the boson:

3 . 2
— Spin operator S;” = ei¥i = (e’¢i)2 = (bT>

7

— Number operator N; = 2n;

= —JZcos(Qcﬁi —2¢;) + — Z

(i7)

— Constraint N; is even

e Path integral Z = Tre #H = Ty (e~<H)8/e

/
— Partition function Z = / dei(7) Ze_s

27
Ni'r

— Action

S=) —eJcos(2¢; — 2¢;) + Ue Z(Ni, — 1) + iNir (Gir+e — Sir)

(ig)T iT

Implement constraint: Z Z Z etNir 3 (1=0ir)
N;r N;r Utr—il

Split cosine: e’€c0s(2¢i—2¢;) Z ete/yoii cos(di=¢;) tr)y = V2J€
oij==%1

Sum boson numbers: '

Z e—%(Ni-,——l)2 eiNiT[%(1_0’:T)+¢i7+5_¢i7] ~ e—Sg"")etTo’iT COS(¢ir+e—¢i-r)
Ni‘r

— Berry’s phase S’gT) = —i[5(1 = 0ir) + Gir ye — Dir], tr =~ 1/eU

e Final gauge theory Z / [ddir/27] Z exp(—Sz,)
ai“=:tl

— Z tuoip cos(Giyy — ¢i) + Sp —K Z H Tij
ip O O



Quasiparticles and vortices in s-wave superconductors

e BCS reduced Lagrangian: £ = Lg, + Ly, + Lint
— Quasiparticles: Lgp = cl[i0; — V2 + Up(r) — ey
R

~ Phase: £, = —2—(8 ©)?

— Interaction: Lin, = |Ale*?cyey + h.c.

e Spinons: f, = */2¢,

L=Ls;+L,+ g—]uaﬂﬁp
— spinon lagrangian L5 = fl[i0; — V? + Up(r) — pf, + |A|(f+fL + h.c.)
— “quasiparticle current” Jy = flf,, J=1 f);ﬁ fa +h.c.
— bare “Doppler shift” interaction g =1
e Statistical interactions

string

spinon

- ordinary flux +hc/2e vortex: 1 § Vp-dl = £r
- spinon % obeys antiperiodic boundary conditions around vortex

— spinons and vortices are relative semions

e thc/2e vortex condensation = confinement



