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Abstract

These lecture notes introduce the physics of quantum information scrambling

in local quantum systems, with a special focus on strongly interacting quan-

tum matter and quantum gravity. The goals are to understand how to precisely

quantify the spreading of quantum information and how causality emerges in

complex quantum systems. In an attempt to clarify and strengthen some of the

conjectured relationships between operator growth, information spreading, and

entanglement growth, several new results are included in technical appendices

and discussed in the main text. The lectures were originally delivered at the

Quantum Information Boulder Summer School in Boulder, Colorado, July 2018.

Note: This document is a β version. In particular, many references

are still missing, so check back soon. Please send any issues you notice

to bswingle@umd.edu with subject “boulder notes”. A permanent

version with the same title will be made available on the arXiv at a

later time. Last updated: July 25, 2018.

Survey

How does quantum information spread across a complex system? Are there fun-

damental bounds on quantum dynamics? How does locality emerge in quantum

gravity? These are just a few of the questions that motivate the study of quantum

information scrambling. These lectures are particularly focused on the way quan-

tum information spreads in strongly interacting many-body systems. The ideas

connect to many areas of physics, ranging from practical questions about how to

reliably transmit quantum data to fundamental questions about how causality

emerges from microscopic degrees of freedom in quantum gravity.

My particular goal in crafting these lectures is to explain two related issues.

First, what precisely do we mean when we talk about quantum information
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spreading and how do we quantify it? Second, what happens to information

spreading in a strongly interacting system and how is this related to the emer-

gence of causality in quantum gravity? At first glance, it may not seem that

these topics are closely related, but I hope to convince you that they are.

Somewhat more precisely, I will argue that commutators of local operators

provide a powerful way to diagnose quantum information propagation. These

ideas are connected to recent developments in quantum chaos, particularly the

special correlation functions known as out-of-time-order correlators (OTOCs)

[1,2]. In my opinion, there is some lack of clarity in the field about what precisely

OTOCs measure in local systems, so one goal of these notes is to convince you

that they are tightly related to the spreading of quantum information, at least in

one broad context. In fact, combined with some extensive appendices, I aim in

the main text to construct a physicist’s proof of this claim. (Again, for a broad,

but not completely settled, class of systems.)

As part of the argument, I will explain how the butterfly velocity, defined from

appropriate OTOCs, functions as a speed limit for quantum dynamics. You may

be familiar with speed limits based on the speed of light or Lieb-Robinson bounds,

in which case they can think of the butterfly velocity as a state-dependent, tighter

version of such speed limits. In particular, the butterfly velocity places bounds

on the expansion of entanglement in space and time. In attempting to clarify and

strengthen some claims and conjectures in the literature, I have developed some

results that are, to the best of my knowledge, more general than the existing

analyses.

The notes are roughly structured as three lectures, with the corresponding

original physical lectures being approximately one and a half hours each. I have

a written a companion set of lecture notes that give a quantum information

view of quantum chaos. They are slightly more introductory than these notes

(which assume some familiarity with entanglement entropy, for example), and

cover many related topics.

I thank the organizers of the 2018 Boulder Summer School for the invitation

to give these lectures and for setting up a wonderful school. I also want to thank

my many collaborators with whom I have been exploring this wonderful subject.

Let me mention in particular Shenglong Xu, who co-developed with me most of

the material in the third lecture. As always, any errors in these notes are mine

alone. If you should spot an error, a missing reference, or anything else, please

let me know, and you’ll be acknowledged when I fix it. Support for this work is

provided by the Simons Foundation via the It From Qubit Collaboration, by the

Air Force Office of Scientific Research, and by the Physics Frontier Center at the

Joint Quantum Institute.

Useful feedback and error correction for these notes was provided by ...
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Comments are in gray. They are mostly meant to clarify notational issues,

technical details, and other subtleties that lie outside the main line of devel-

opment.

Exercise 0.1. Exercises are in blue. These are mostly short calculations

that flesh out the main discussion. They are meant to help you check your

understanding of the discussion and to foreshadow subsequent developments.

1 Introduction to quantum information prop-

agation

Our interest here is the propagation and scrambling [3,4] of quantum information

in local quantum many-body systems. This subject has numerous practical as-

pects, including the problem of sending quantum data from one place to another.

It is also relevant in the study of quantum matter, where, for example, measures

of information spreading have been related to electrical and thermal transport

properties. More fundamentally, it is related to the emergence of locality and

causality in quantum gravity. This may not mean much to you right now, but it

should make a lot more sense by the end. These lectures will address all these

topics, mostly focusing on information dynamics in strongly interacting quantum

systems.

Let’s start with information propagation in weakly interacting systems. In-

stead of trying to define this notion very carefully, I will just imagine that we are

discussing the electromagnetic field, or some other system with freely propagat-

ing and weakly interacting waves or particles. For simplicity, consider a discrete

one-dimensional system with some local degrees of freedom. The mathematical

setup consists of a Hilbert space V, a local Hamiltonian H, and some algebra

of operators A. The Hilbert space is formed from the tensor product of local

Hilbert spaces, V =
⊗

r Vr, which can be either finite dimensional (like spins) or

infinite dimensional (like oscillators). The Hamiltonian is a sum of local terms

with each term coupling together a finite number of nearby degrees of freedom.

Modulo issues with infinite dimensional systems (which will we largely sidestep),

the operator algebra A can be taken to be the set of all operators.

To make things tangible, consider two parties, Alice and Bob, who are trying

to communicate. Alice wants to send a bit a ∈ {0, 1} to Bob given that they both

have access to a shared physical system in state |ψ〉. Suppose that Alice and Bob

each have access to some regions A and B of the system with A and B separated

by a distance r. Depending on a, Alice applies a unitary Ua; alternatively, she

can do nothing. Imagine she is exciting some wave designed to move over to Bob.
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Figure 1: Mathematical setup in one dimension. Also shown are schemat-

ics of the regions that Alice (A) and Bob (B) have access to.

The system then evolves for a time t. Finally, Bob makes a measurement Mb of

the system to try to learn Alice’s bit. The probability that Bob obtains output

b = 0, 1 given that Alice sent a is

Pr(b|a) = 〈ψ|U �
ae

iHtMbe
−iHtUa|ψ〉. (1.1)

An important requirement is that if Alice did nothing, then Bob should measure

neither b = 0 or b = 1. This is the statement that

〈ψ|eiHtMbe
−iHt|ψ〉 = 0. (1.2)

Subtracting this form of zero from P (b|a), it follows that the probability to

measure b given a is

Pr(b|a) = 〈ψ|U �
a [Mb(t), Ua]|ψ〉, (1.3)

where Mb(t) = eiHtMbe
−iHt is the Heisenberg operator corresponding to Mb.

If you like, think of Bob as having another measurement setting, ∅, corre-

sponding to no signal from Alice. The measurement operators then obey

M∅ +M0 +M1 = I.

Let’s pause to understand the physics of Eq. (1.3). First, at time zero, any

operator Ua ∈ A(A) and any operator Mb ∈ A(B) commute provided A and B

are disjoint, so information cannot yet be transmitted. More generally, if the

commutator is non-zero but small, then the amount of information that can be

transmitted is small, say as obtained from the classical Shannon formula for

channel capacity. What does small mean? If the commutator is small as an

operator, say in operator norm, then little information can be transmitted in

any case; more generally, if at least the relevant matrix elements, say in state

|ψ〉, are small, then again little information can be transferred. You may also
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be familiar with the role of commutators in the theory of linear response where

they represent the effect of a perturbation in the past. The main take away is

that commutators are intimately connected with information propagation and

causality.

Finally, while this discussion was framed in terms of classical information, the

same analysis applies to the transmission of quantum data. Instead of sending

a single classical bit, Alice can encode a qubit in some two level system, say

the polarization of a photon or two hyperfine levels of an atom, and send the

physical carrier to Bob. Presumably Bob would like to capture Alice’s message

and perform some operation on the quantum data it contains. However, this will

also be unlikely to succeed if Bob’s operators at time t approximately commute

with Alice’s operators.

Exercise 1.1. Assume that Alice’s message qubit is maximally entangled

with a reference R that she continues to hold and that R and A are initially

maximally entangled. Show that the entanglement between R and Bob’s re-

gion B is small at time t if the commutator [OA, OB(t)] is small for all OA
and OB.

l l l

There are many possible behaviors for the commutator of local operators in

a quantum many-body system. For example, one might expect very different

behavior between integrable and chaotic models, between non-interacting and

strongly interacting models, and between localized and delocalized models. A

natural first question is whether there are fundamental bounds on such commu-

tators. You are probably familiar with at least one such constraint, namely the

limitation on communication imposed by the speed of light. In the modern lan-

guage of quantum field theory, this is called microcausality. It states that, given

any two physical local operators W (x) and V (y) located at spacetime points x

and y, their commutator must vanish if x and y are ‘spacelike separated’,

x, y spacelike separated→ [W (x), V (y)] = 0, (1.4)

as illustrated in Fig. In other words, if y is outside of the ‘light cone’ of spacetime

point x, then the corresponding operators must exactly commute. Crucially, this

is an operator statement and hence a state-independent bound on information

propagation. It is a fundamental property of any unitary Lorentz invariant local

quantum field theory.

There is a somewhat analogous property for many lattice models which do

not have relativistic causality built in microscopically. For discrete models with
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Figure 2: Top: Two points are spacelike separated if one lies outside

of the light cone of the other. The commutator of local operators exactly

vanishes for spacelike separated points. Bottom: The commutator of local

operators approximately vanishes (as an operator statement) for points

that are spacelike separated with respect to the Lieb-Robinson light cone.

a local Hamiltonian and a finite local Hilbert space dimension, it is possible to

establish so-called Lieb-Robinson bounds that provide an upper bound on the

size of commutators of local operators. For two local operators W (r) and V (r′)

at (spatial) positions r and r′, one version of the Lieb-Robinson bound reads

‖[W (r, t), V (r′, 0)]‖ ≤ C‖W‖‖V ‖eat−b|r−r′| (1.5)

where ‖ · ‖ denotes the operator norm. Observe that if |r − r′| � at
b , then the

commutator is small as an operator since its norm is small. The ratio a/b is

usually called the Lieb-Robinson velocity, vLR = a/b, and it plays the role of the

speed of light.

Any local operator V (r′) (with bounded norm) outside the ‘Lieb-Robinson

cone’ of W (r, t) will approximately commute with W (r, t) up to small constant

that decays at least exponentially with separation. By analogy with the speed

of light constraint, we will also call this microcausality. I emphasize that this

is a state-independent bound; it is universally applicable but possibly loose in

many situations. As one minor point, one can show that the commutator decays

faster than exponentially with |r − r′| at very large |r − r′|. More physically,

we will see further down in Sec. 1 and later in Sec. 2 that quantum information

can propagate more slowly than what is required by a Lieb-Robinson bound.

Furthermore, in Sec. 3 we will discuss the functional form of one measure of the

size of commutators and Eq. (1.5) is not the general case.
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l l l

We are particularly interested in strongly interacting quantum systems in

these lectures. In such systems, the physics of excitations is typically very dif-

ferent than the nearly non-interacting waves of electromagnetism. In fact, such

systems often cannot sustain any coherent excitation for very long, unless that

excitation has a special reason for being protected, such as a sound mode or a

Goldstone mode associated with a broken symmetry.

One precise manifestation of the lack of coherent excitations can be seen

by looking at commutators (again). Given a system in thermal equilibrium at

temperature T = 1/β and given two non-conserved local operators W (r) and

V (r′) at positions r and r′, one typically finds that

− i〈[W (r, t), V (r′)]〉β = −iTr

(
e−βH

Z(β)
[W (r, t), V (r′)]

)
≈︸︷︷︸
t�τr

0 (1.6)

regardless of the relative separation |r − r′|. Here τr is a relaxation time, some-

thing like the time it takes for the system to return to local thermal equilibrium

after a perturbation. The intuition is that a system which is strongly interacting

typically thermalizes, and a key characteristic of thermalization is the effective

loss of memory of initial conditions. Since the expectation value of the commu-

tator, with the factor of i to make it real, gives the change of 〈W 〉 in response

to a perturbation V in the past, it follows that if a system loses memory of ini-

tial condition after some time τr, then the corresponding commutator must be

small. Shortly after a perturbation, measuring W gives no information about

what happened in the past.

The non-conserved adjective is important because conserved quantities nec-

essarily have much slower dynamics. For example, if W and V where taken to

be the local density of some conserved quantity, say the the charge density, then

the commutator has a form constrained by the fact that charge diffuses. Thus if

the charge density is perturbed at some time, memory of that perturbation lasts

much longer than for a typical non-conserved perturbation.

To get a visceral feel for these effects, let us consider a concrete model called

the mixed field quantum Ising model. It is defined on a Hilbert space of n spin

with the many-body Pauli operators, σαr for r = 1, · · · , n and α = x, y, z, obeying

the algebra {σαr , σ
β
s } = 2δαβδr,sIn and [σαr , σ

β
s ] = 2iεαβγσγr δr,s. The Hamiltonian,

defined with open boundary conditions in one dimension, is

H = −J
n−1∑
r=1

σzrσ
z
r+1 − hz

∑
r

σzr − hx
∑
r

σxr . (1.7)

The first term assigns low energy to configurations with nearest neighbor spins

aligned in the z basis. The second and third terms assign low energy to config-

urations with spins polarized along a particular axis. From the point of the σzr
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basis, the third term generates quantum fluctuations because it causes transitions

between different σzr eigenstates. It is conventional to set the nearest neighbor

coupling J to unity, or in other words, to measure all energies in units of J and

all times in units of 1/J . The model then has two free parameters, hx and hz.

Exercise 1.2. Find the lowest and highest energy states of the Ising Hamil-

tonian for J = 0 and for hx = hz = 0. Show that every product state in which

each spin is in a state of definite y spin has zero average energy. Where do

such states sit in the energy spectrum?

There is an extensive literature on the physics of this Hamiltonian. For our

purposes here, it will suffice to know that, for hz = 0, the model is integrable,

meaning in this case that it is secretly a model of non-interacting fermions in one

dimension. On the other hand, the model with hz non-zero is generically non-

integrable and quantum chaotic and exhibits thermalization. This is visible in

the expectation value of the commutators of local operators. In the free particle

case, hz = 0, there are long-lived excitations that can bounce around the system.

On the other hand, in the non-integrable case, hz 6= 0, there isn’t any signature

of a local perturbation that makes it very far in space or time.

Thus we have arrived at a new problem in the interacting case. It is not plau-

sible that information has stopped spreading, but the expectation value of the

commutator no longer seems to provide a very good way to measure information

spreading. Said differently, it may be very hard to coherently transmit informa-

tion as envisioned in our Alice-Bob exchange above. However, information is still

spreading and we need a way to measure it. One clue, which will come up again

later, is that while the diagonal matrix elements of the commutator might small,

the commutator as an operator need not be. However, before explaining this in

detail, let’s look at a new way to track information spreading.

l l l

Consider two orthogonal initial states, |ψ1〉 and |ψ2〉, which differ by the

application of some local unitary operator W at site r0:

|ψ2〉 = W |ψ1〉. (1.8)

In the Ising spin, the states could be |ψ1〉 = | + y, · · · ,+y〉 and |ψ2〉 = | −
y,+y, · · · ,+y〉 with W = σz1 . Now introduce a new auxiliary system called the

reference R which consists of a single qubit. The Hamiltonian dynamics does not

act on the reference spin, which you may think of as sitting in an isolated box.

Before the isolating the reference, however, prepare the entangled state

|ψ1〉|0〉R + |ψ2〉|1〉R√
2

. (1.9)
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Given this initial entangled state, the idea is to track the entanglement with the

reference as a function of time.

Let us suppose the states are chosen so that the reference is initially uncor-

related with the system away from r0, so that only the site r0 is entangled with

R at time zero. This entanglement can diagnosed using the mutual information

between R and site r0. First define the von Neumann entropy of a set of spins

A,

S(A) = −Tr(ρA log2 ρA). (1.10)

Then the mutual information of A with B is

I(A : B) = S(A) + S(B)− S(AB), (1.11)

where S(AB) is the entropy of the union of A and B. For r0 and R, a quick

calculation gives

I({r0} : R) = 1 + 1− 0 = 2. (1.12)

This is the largest value that I({r0} : R) can take, indicating maximal entangle-

ment between r0 and R.

Note that if A and B are initially entangled, then even acting just on A

conditioned on the state of R can lead to correlation between R and B.

Exercise 1.3. Show that for a pure state of ABR, the mutual information

obeys I(A : R) + I(B : R) = 2S(R) and that I(A : R) ≤ 2S(R). Use this to

establish Eq. (1.12).

Starting from the initially localized entanglement, you should expect the en-

tanglement with the reference to expand out across the system in some fashion.

One possibility is that the entanglement is carried in some coherent wavepacket

throughout the system, remaining localized in space at any given time. This

can occur under the right conditions in weakly interacting systems. But with

strong interactions, the entanglement seems likely to spread and to become more

complex. In other words, while at time zero the reference is entangled with a

single spin in the chain, as time progresses, the reference will instead become

entangled a complex collection of many spins.

This phenomenon of entanglement spreading is clearly visible in Fig. 3 which

shows the dynamics of mutual information in the mixed field Ising chain with

n = 16 spins. These data are obtained using a sparse matrix Schrodinger picture

time evolution based on a Krylov method (which can be pushed to larger size

if desired). Each line is the mutual information between the reference and an

interval [1, x] for various x as a function of time. As time passes, the information

initially contained at the first site leaks more and more into the rest of the chain.
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Figure 3: Mutual information between a reference qubit as subregions

[1, x] for x = 1, · · · , 10 of an n = 16 spin chain. Notice how the mutual

information always begins at 2, but then decays once the entanglement

begins to leak out. However, if x is greater than half the system size, then

the mutual information always remains above one. This is sketched in

Fig. 4.
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Figure 4: Late time value of the mutual information between a reference

qubit as subregions [1, x] for x = 1, · · · , 10 of an n = 16 spin chain. Demon-

strates the transition that happens in the late time value as x is increased

past half the system size. Larger sizes show an even sharper transition.

Correspondingly, the entanglement is first recoverable given at least the first site,

then given at least the first two, and so on. At late time, any region of more

than half the spins is entangled with the reference as shown in Fig. 4.

Exercise 1.4. Given a tripartite pure state RAB with R a single qubit and

I(R : A) = 2, show that there is a unitary on acting on A such one of the

qubits of A is maximally entangled with R. Hint: Given the uncorrelated

mixed state ρBR = ρB ⊗ ρR, cook up two different purifications and use the

fact that different purifications are related by a unitary on the purifier. For

a challenge, work out the fidelity with a maximally entangled state between

R and A in the case where I(R : A) = 2− ε for small ε. Hint: Use Pinsker’s

inequality to bound the trace distance.

As an aside, the approximate vanishing of the mutual information between

the reference and any small subregion A of the spin chain is a consequence of

thermalization. It means that no local operator in the small region A can distin-

guish the time evolved states |ψ1(t)〉 and |ψ2(t)〉. To see this, use the fact that

I(A : R) upper bounds connected correlations between R and A,

I(A : R) ≥ 〈OAOR〉2c
2‖OA‖2‖OB‖2

=
(〈OAOR〉 − 〈OA〉〈OR〉)2

2‖OA‖2‖OB‖2
. (1.13)

11



Figure 5: Top: Schematic of the lightcone structure with information

velocity vI . Note that the setup of the spin chain numerical calculation in

Fig. 3 is slightly different, with the system consisting of a finite interval

with r0 at one end. Bottom: Approximate structure of the time evolution

operator implied by the lightcone structure above. Information initially

localized at r0 is restricted to spread only by an amount vIt. Note that, in

practice, this will only be an approximate equality for the time evolution

operator.

Assume that I(A : R) ≈ 0 in the time-evolved version of Eq. (1.9). Then

Eq. (1.13) with OR = σzR implies

〈ψ1(t)|OA|ψ1(t)〉 ≈ 〈ψ2(t)|OA|ψ2(t)〉. (1.14)

Similarly, Eq. (1.13) with OR = σxR ± iσyR implies

〈ψ1(t)|OA|ψ2(t)〉 ≈ 0. (1.15)

Together these conditions mean that observables in A cannot distinguish |ψ1(t)〉
from |ψ2(t)〉. Physically, this is the effective loss of memory of initial conditions

associated with thermalization.

Exercise 1.5. Prove Eq. (1.13) using Pinkser’s inequality, S(ρ‖σ) ≥ 1
2Tr(|ρ−

σ|2), where S(ρ‖σ) = Tr(ρ log2 ρ−ρ log2 σ) is the relative entropy. Hint: the

mutual information can be cast as a relative entropy. Factor of ln 2 here?
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l l l

Perhaps the key feature visible in Fig. 3 is that the entanglement appears to

spread ballistically. After a time t, we need access to a region of radius roughly

vIt about the initial site to fully recover the entanglement. Here vI is a kind of

information velocity that we will try to constrain and understand. This intuition

is depicted in Fig. 5 which shows at bottom a decomposition of the time evolution

operator which would have the desired information propagation velocity.

Can we show that this decomposition of the time evolution operator is achiev-

able? And what does all of this have to do with commutators, which we earlier

used to diagnose information spreading? We already established that the expec-

tation value of the commutator tends to decay rapidly in strongly interacting

thermalizing systems. However, this decay does not imply that the commutator

as an operator is small. Quite the opposite is true. To make sense of this, consider

the next simplest object built from [W (r, t), V (r′)], the squared commutator,

C(r, r′, t) = 〈[W (r, t), V (r′)]�[W (r, t), V (r′)]〉. (1.16)

Intuitively, it is like a state-dependent operator norm of the commutator. Unlike

the expectation value of the commutator, this object is positive definite and

hence cannot suffer from the same kinds of cancellations that zeroed out the

expectation value of the commutator. However, by the same token, this object

is not so easy to interpret experimentally, for example, it is not obviously related

to linear response. It is possible to measure it, given sufficient control over a

system, but more on that later.

Exercise 1.6. Given a one-dimensional quadratic boson model with momen-

tum space creation b�k and annihilation bk operators obeying [bk, b
�
q] = δk,q

and Hamiltonian H =
∑

k εkb
�
kbk, write an expression for the commutator

[b(x, t), b�(0, 0)] and hence the squared commutator. Does it depend on the

state? Here b(x) =
∑

k
eikx

L bk with L the system size.

Assuming translation invariance for simplicity, C(r, r′, t) depends only on

r− r′. We then introduce two new speeds, a lightcone speed vL such that C ≈ 0

for |r − r′| > vLt and a butterfly speed vB such that C = C0 for |r − r′| = vBt

and some fixed order one constant C0. In Sec. 3 we will understand the precise

relationship between these two speeds, but for now we assume that they are

equal (at least asymptotically, at large time). What is the physical behavior of

C(r−r′, t) in the chaotic spin chain? As usual, as a function of time, it begins at

zero since W and V initially commute, then once |r − r′| ∼ vBt where vB is the

butterfly velocity, it rapidly increases in size until it saturates at late time. For

unitary W and V the late time saturation value is two. What this tells us is that
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while the expectation value is zero, the commutator itself is a highly non-trivial

operator.

To complete this first section, I want to argue that vI = vB. Given a region A

and a velocity v, define the region At to be A expanded in every direction by an

amount vt. For example, if A is an interval A = [a, b] than At = [a− vt, b+ vt].

The precise claim is as follows. Start with a region A that is initially maximally

entangled with a reference R. For any v > vB, the entanglement with the

reference can reliably recovered from At. By contrast, for any v < vB, the

entanglement can be reliably recovered from the complement (At)
c of At. The

key physical claim is that the butterfly velocity functions like a state-dependent

information propagation velocity.

Recovery in At for v > vB: The argument that information can be recov-

ered in At for v > vB is reasonably intuitive. Roughly speaking, if commutators

of local operators are all small, then the circuit should have a decomposition sim-

ilar to that in Fig. 5 which implies that the entanglement can be recovered in At.

More precisely, we can try to construct such a decomposition as follows. Separate

H into two pieces, one localized in At, HAt , and the remainder, ∆H = H −HAt .

Now switch to the interaction picture to write

e−isH = e−isHAt Û(s) (1.17)

where Û(s) obeys

i∂sÛ(s) = eisHAt∆He−isHAt Û(s). (1.18)

The idea is that if Û can be restricted to act non-trivially only on Ac, then we

have the desired decomposition.

Such a restriction is almost certainly too strong as an operator statement,

unless v is taken to be the microcausal limit, but what is reasonable is that Û ,

when acting on a suitable set of states Ω (for example, approximately uniform

states of a certain energy density), can be taken to approximately act only on

Ac. There are many pieces needed to make this argument precise, including

establishing that HAt leads to similar commutators as H far from the boundary

of At, arguing that not too much energy is produced, and so forth. The details

are in App. C. The resulting argument is still not fully rigorous, although I think

it could be made so. The basic idea is that if appropriate squared commutators

are small, then as far as matrix elements within the set Ω are concerned, the

operator eisHAt∆He−isHAt which generates Û can be taken to have non-trivial

support only on Ac.

Recovery in (At)
c for v < vB: The argument that the entanglement can

be recovered only in (At)
c for v < vB is more subtle. In particular, if v is only

slightly smaller than vB, then we still have access to most of the region that we

just argued could be used to recover the entanglement. It turns out, however,

that we really need all the region, for the same reason that we need more than half
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Figure 6: Given the ability to decompose a time evolution operator along a

lightcone, say v = vB, as in Fig. 5, we can always continue the construction.

Supposing the initial state is a product state or some short-range entangled

state, the decomposition shown here implies that, after removing the blue

outer part of the time evolution, the region At is part of a pure state of

size roughly twice the size of At. In other words, assuming a lightcone

decomposition with v = vB, then we would naturally need a region of

radius at least vBt to have access to half the total pure state with which

the reference is entangled.
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the chain to recover the entanglement at late time. The intuition is sketched in

Fig. 6 where we see that, assuming there is some optimal lightcone decomposition

with v = vB (optimal meaning no smaller speed will do), the region At can be

taken to be part of a pure state of roughly twice the size of At (assuming A itself

is order one in size and we started with a short-range entangled state).

But how do we know that vB is optimal? To see that, we turn to what

is called the Hayden-Preskill protocol [3]. The idea, sketched in Fig. 7, is to

consider some scrambling unitary in which one input is a qubit entangled with

the reference R and the remaining inputs are entangled with a memory M . What

the Hayden-Preskill analysis shows is that the entanglement with the reference

can be recovered from just a few qubits of the scrambled output provided we also

have access to the memory. The intuition, again, is that one needs to control

more than half of the total system (output plus memory plus reference). The

spin chain analog is shown in the right side of Fig. 7, where, assuming v < vB,

the memory is (A
(vB)
t )c and the small number of scrambled output bits is the

difference between A
(vB)
t and A

(v)
t . The butterfly velocity appears here because

it determines the size of the output which we can consider scrambled. Hence,

the entanglement can be recovered from the memory plus the difference of A
(vB)
t

and A
(v)
t which taken together is (A

(v)
t )c. This is what we wanted to show, that

the entanglement cannot be recovered in A
(v)
t since it can be recovered in (A

(v)
t )c

(otherwise we violate no cloning).

You may still question whether having large squared commutator is really

sufficient to indicate a fully scrambled output. In the context of Hayden-

Preskill, this was argued for in Ref. [5]. Our setup is slightly different,

for example, the entanglement between the input and the memory is not

necessarily simply Bell pairs (it is generated by the lower orange triangles in

Fig. 6), but presumably after distilling the entanglement into Bell pairs by

acting on the complement of A
(vB)
t one could apply these standard results.

Before moving on, let’s recap what happened. Starting from the problem of

quantum information propagation, we showed how the commutator of local oper-

ators naturally arose as a measure of information spreading. However, in strongly

interacting systems the expectation value of such commutators typically decays

rapidly in time (or expands only slowly, as for a conserved density). Neverthe-

less, by studying the motion of entanglement we found there was still a sense in

which information was spreading, at some definite speed. We then introduced

the notion of squared commutators, which avoid the problem of a vanishing ex-

pectation value, and finally argued that the propagation speed set by the squared

commutator was the same as the information propagation speed defined via en-

tanglement. In this last analysis, the physics of quantum information scrambling

played a crucial role in the argument.
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Figure 7: Left: Schematic of Hayden-Preskill thought experiment. The

blue box is a unitary that scrambles its input while the input consists of

a state that is maximally entangled with a reference R and a memory

M (which are not acted on by the unitary). The result of the Hayden-

Preskill analysis is that the entanglement with reference can be recovered

from the memory plus a small number of additional output qubits B which

may be a very small part of the total output. The intuition is that the

memory M plus a small number of qubits B amounts to more than half

the total system, so R is maximally entangled with it assuming the unitary

scrambles. Right: An analog of Hayden-Preskill in the spin chain. Think

of the region A
(vB)
t as the maximally scrambled output, while the memory

is the part beyond A
(vB)
t , the annulus from radius vBt to radius 2vBt. With

the addition of the memory, the difference between A
(v)
t and A

(vB)
t is the

small number of scrambled output qubits needed recover the information.

Hence the entanglement with the reference can be recovered from (A
(v)
t )c.
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Exercise 1.7. Generalize the preceding argument to higher dimensions.

2 Gravity and information spreading

In this section we are going to revisit the discussion of Sec. 1 in the context

of a particular model of quantum gravity known as the Anti de-Sitter space /

conformal field theory (AdS/CFT) duality or holographic duality. This setting

is interesting because it provides a highly non-trivial check of the previous argu-

ments beyond lattice models and because it gives insight into the way causality

emerges in quantum gravity.

We must begin with a breathtakingly brief review of the necessary bits of

AdS/CFT. The basic statement of the duality is that some quantum system with-

out gravity is equivalent to some seemingly different quantum system with grav-

ity. The non-gravitational system is typically lower dimensional than the grav-

itational system, hence the duality is called holographic. The non-gravitational

quantum system, the ‘boundary’, is associated with the boundary of the space-

time in which the gravitational quantum system, the ‘bulk’, lives. The boundary

is typically a quantum field theory or some quantum many-body system. The

bulk often arises from string theory, but in practice is typically described as a

low energy effective theory coupled to gravity. There are many different versions

of the duality, and we do not have a complete list of all quantum systems with

gravity duals.

Depending on how broadly we define the notion of a gravity dual, maybe

every quantum system has one. However, one might want to reserve the

moniker of gravity dual for special systems with a weakly coupled bulk. Or

maybe any duality that involves gravity deserves the name, even if it looks

nothing like gravity in our universe. In any event, these are probably not

sharp divides.

To get into the details of the duality, we need to define some entries in the

holographic dictionary which relates bulk and boundary. Think of the non-

gravity side, the boundary, as a quantum field theory or as some lattice system

describing a short-distance completion of a field theory. Think of the gravity side,

the bulk, as a quantum field theory weakly coupled to Einstein gravity (meaning

Newton’s constant is small or that the Planck length is small, in appropriate

units). This isn’t the whole story for the bulk, but it is good enough for now.

The first dictionary entry says that states on the non-gravity side map to states

on the gravity side. The latter are described by a background geometry (the

average value of the gravitational field, the metric) and a state of quantum fields

coupled to gravity on that background. This is a kind of semi-classical limit where
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Figure 8: A schematic of AdS. The field theory directions are ~x and t

(blue axes) while the radial coordinate is z (red axis). The asymptotic

boundary of the spacetime, symbolized by the semi-transparent light blue

plane, is located at z = 0.

the geometry is weakly fluctuating and we study small quantum perturbations

(including gravitons, i.e., quantized metric perturbations) on top of the geometry.

Note that this does not mean the geometry is non-dynamical, and different states

can have very different geometries.

The simplest state to consider is the ground state of the boundary. For the

case of a conformal field theory (CFT), the dual gravitational geometry is an

almost empty spacetime suffused with a uniform negative energy density called

the cosmological constant. This negative energy density causes the spacetime

curve, and solving Einstein’s equations, the desired solution is found to be Anti

de Sitter space (AdS). How do we know which solution is the right one? Only

AdS has the same symmetries as the ground state of a CFT, namely conformal

symmetry. Incidentally, this is another dictionary entry, that symmetries must

match on the two sides of the duality. Based on this, one could guess that AdS

was dual to the ground state since it has all the right symmetries.

We will consider the AdS spacetime in the so-called planar limit, in which

case it has a structure as sketched in Fig. 8. The ‘field theory coordinates’ label

space ~x and time t. The ‘radial coordinate’ z labels the emergent direction. The

metric in these coordinates reads

ds2 =
`2

z2
(
−dt2 + d~x2 + dz2

)
, (2.1)

where ` is called the AdS radius and we have set the speed of light to unity. The

boundary of the spacetime is z = 0 while z →∞ describes the deep interior. The
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factor of 1/z2 is an example of what is called a warp factor (no relation to the

Enterprise, unfortunately); it describes the way the gravitational field modifies

the metric away from flatness.

The very coordinate heavy approach we’re using may annoy those with a

relativist’s bent. I sympathize, but unfortunately there isn’t time do better.

The standard interpetation of the z coordinate is as length scale in the bound-

ary. You may roughly imagine that the z = ε surface describes the microscopic

field theory with some short distance cutoff, something like a lattice spacing or

inverse momentum cutoff, of ε. Larger values of z then correspond to studying

the field theory at a more coarse-grained scale. It is necessary to cut off the

spacetime at some small z = ε to get finite answers to many questions, as we

discuss below. The basic reason for believing the identification of z with length

scale comes from the action of the conformal symmetry. The ground state of

the boundary CFT is invariant under dilations which takes ~x→ λ~x and t→ λt.

In the bulk, this symmetry is realized as an invariance (isometry) of the metric

where we also rescale z → λz.

Exercise 2.1. Verify that the AdS metric is invariant under the dilation of

all coordinates by a factor of λ. Show that curves at fixed z have a length

given by the usual Minkowski metric, up to a factor. Show that curves at

fixed ~x and t have a length given by the ` log z2
z1

.

Another particularly important geometry is obtained from the dual of the

thermal state in the boundary CFT. In the planar limit, the geometry is always

an AdS-Schwarzchild black hole. If you have heard something about black holes

having entropy, emitting radiation, and generally being good thermodynamic

systems, this dictionary entry may seem reasonable. The black hole geometry,

in the same coordinates, is

ds2 =
`2

z2

(
−f(z)dt2 + d~x2 +

dz2

f(z)

)
(2.2)

where f(z) = 1−
(
z
zh

)d+1
, d is the dimension of space in the CFT, and z = zh is

the black hole horizon. We will discuss what happens behind the horizon later,

so for now think of this geometry as just describing the exterior of the black hole.

One of its key features is that time, as judged by an external observer far away,

slows way down as the horizon is approached.

Exercise 2.2. Compute the proper distance from z = ε to the horizon at

z = zh. Compute the proper time it takes for a massive particle to fall from

rest at z = ε to the horizon. At what coordinate time t does the particle reach
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the horizon?

l l l

There are now many directions we could go in, including discussing correlation

functions and clarifying the basic setup of the duality. However, in the name

of brevity, I will discuss just two points, bulk causality and the entanglement-

geometry connection. Bulk causality refers to the causal structure of the bulk

metric. Given a parameterized curve {t(s), ~x(s), z(s)|s ∈ [s0, s1]}, the tangent

vector is

uα =
dxα

ds
, (2.3)

where xα runs over all the bulk coordinates. Given a metric ds2 = gαβdx
αdxβ

(with Einstein summation convention in force), a curve is classified as time-like,

space-like, or light-like depending on whether gαβu
αuβ is less than zero, greater

than zero, or equal to zero. The general rule is that causal trajectories must

be time-like or light-like but not space-like, which would correspond to moving

faster than the speed of light.

In the the AdS metric, Eq. (2.1), the causal structure at fixed z is the same

as the flat Minkowski space in which the CFT lives. Presumably the speed of

light limitation in the CFT directions follows from microcausality in the CFT.

For an infalling particle not moving in the ~x directions, the causal limit is still∣∣dz
dt

∣∣ < 1, but it is not obvious what this corresponds to in the CFT. In the black

hole metric, Eq. (2.2), even the causality in the CFT directions is modified by

the factor f(z). Near the asymptotic boundary at z = 0, where f(z) ≈ 1, one

recovers ordinary CFT causality, but near the black hole horizon causality seems

mangled. One of the goals of this section is to explain how bulk causality arises

using the ideas introduction in Sec. 1.

To do this, the other topic which must be discussed is entanglement. This

set of ideas has another interesting history going back to Bekenstein’s realization

that black holes should have entropy. In AdS/CFT in the case of bulk Einstein

gravity, there is a simple prescription known as the Ryu-Takayanagi (RT) formula

to compute the entanglement entropy of any boundary region. The RT formula

is illustrated in Fig. 9. Given a boundary region A, we consider all surfaces of

the same dimension as A which terminate at z = 0 on the boundary ∂A of A.

The entropy of A is the area in Planck units of the minimum area such surface,

S(A) = −Tr(ρA log ρA) =
|γA|
4GN

(2.4)

where γA is the minimal surface and GN is Newton’s constant. Note that we use

the terminology of ‘surface’ and ‘area’ no matter the dimension to speak about

the general case.
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The minimal surface depends on the background geometry. In the case of

AdS with d = 1 boundary space dimensions, the minimal surface corresponding

to a single boundary interval is a semi-circle. At non-zero temperature in the

presence of the a black hole, small intervals have a minimal surface like the one in

AdS, while large intervals have a minimal surface that hugs the horizon from the

outside. This is actually crucial, since the entropy of a black hole is proportional

to its surface area, so the RT surface running along the horizon recovers the black

hole entropy.

Exercise 2.3. Show that the minimal surface in AdS2+1 is a semi-circle and

that its area (length) is proportional to log LA
ε where LA is the length of |A|

and z = ε is a short distance cutoff. For a challenge, do the same thing for

the black hole geometry in three bulk dimensions. It is possible to obtain an

analytical formula.

There is one more complication we have to add to the entanglement story. The

RT formula describes only the leading order term in an expansion in Newton’s

constant. Remember that GN was assumed small, so an entropy proportional

to 1/GN is large. The next term in the expansion is called bulk entropy and is

given by the Faulkner-Lewkowycz-Maldacena (FLM) formula:

S(A) +
|γA|
4GN

+ Sbulk(σA) + · · · . (2.5)

The physical picture is that the bulk region σA contained between γA and A

is associated to the boundary region A. Hence the entropy of A includes the

leading area piece plus the von Neumann entropy of the bulk fields where the

bulk is partitioned into σA and its bulk complement.

More precisely, the claim is that everything in region σA (see Fig. 9) can be

represented or reconstructed in the boundary using only stuff in A. Hence if a

particle in σA is entangled with another particle in the bulk complement of σA,

then A should know about the entanglement. This is the physical origin of the

second term, the FLM term, in the holographic entropy formula. The proposal

that everything in σA is reconstructible in A is called entanglement wedge recon-

struction. It has a covariant spacetime formulation valid for arbitrary geometries

and regions A, but the simple spatial picture just outlined will suffice for now.

One feature worth emphasizing is that everything in σA can be reconstructed in

A and everything in the bulk complement of σA can be reconstructed in Ac, the

boundary complement of A.

l l l

We are now ready to get back to the story of quantum information propaga-

tion. First off, one can check (using a part of the holographic dictionary which
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Figure 9: Ryu-Takayanagi prescription for the von Neumann entropy of a

region A in the boundary, here shown for d = 1 boundary space dimensions.

The time direction is suppressed. Given the region A, one finds the bulk

curve γA of minimal length which terminates on ∂A at z = 0. The entropy

of A (using the natural logarithm) is S(A) = −Tr(ρA log ρA) = |γA|
4GN

where

|γA| is the length of γA and GN is Newton’s constant. The enclosed region

between A and γA is denoted σA. It represents the region of the bulk that

can be reconstructed from the data in A alone.

I didn’t explain) that, at non-zero temperature, the expectation values of com-

mutators of local operators do indeed decay rapidly (excepting, again, conserved

densities). The reason, basically, is that stuff falls into the black hole. However,

we can still study the thought experiment where a local spin is entangled with a

reference and the entanglement is allowed to expand. This process can actually

be implemented very elegantly using AdS/CFT.

Start first with the ground state. The initial condition is a massive particle

located near z = 0. The particle has two internal degrees of freedom, spin or

some hyperfine state or whatever, and this internal degree of freedom is entangled

with a reference (which, again, does not evolve in time). Starting from this initial

condition, you know what happens to the particle from everyday experience: it

falls down (towards the interior) due to the gravitational force. Assuming the

particle is not moving in the ~x direction, it follows a time-like geodesic straight

down as appropriate to a massive particle. As the particle accelerates, it moves

closer and closer to the speed of light. For simplicity, take it to move at the

speed of light on a trajectory z = t.

We use entanglement wedge reconstruction to track the entanglement with the

reference. As long as the entanglement wedge of a boundary region B contains

the infalling particle, the entanglement with the reference can be recovered from

B. Conversely, if the infalling particle is contained in the entanglement wedge

of the complement of B, then the entanglement with the reference can only

be recovered from the complement. These claims are verified by calculating
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I(R : B).

The entropy of R is just one bit, since the reference is maximally mixed on

its own. The entropy of B is given by the RT formula plus the FLM correction

(divided by ln 2 to convert to bits). If the infalling particle is in B, then since the

entropy of B is unchanged by a unitary acting on the rest of the system, we may

as well use that freedom to place the reference in the bulk in the entanglement

wedge of Bc. Then the entropy of B is its value without the particle, S(B)0,

plus one bit for the bulk entanglement carried by the particle. If the infalling

particle is not in B, the entropy of B is just S(B)0. Similarly, for the entropy of

BR, we may as well place the reference inside the entanglement wedge of B. If

the infalling particle is in B, then the entropy is just the entropy of B without

the particle since the bulk entanglement is contained entirely within B. If the

infalling particle is not in B, then the entropy of B is S(B)0 plus one bit for the

bulk entanglement. Putting everything together, the result is

I(R : B) = 1 + [S(B)0 + 1]− S(B)0 = 2 (particle in B) (2.6)

I(R : B) = 1 + S(B)0 − [S(B)0 + 1] = 0 (particle not in B). (2.7)

Hence the question becomes how must B grow as a function of time such

that the infalling particle is always contained in the entanglement wedge of B.

Suppose B is a disk of radius rB. The RT surface is given by specifying the radial

coordinate z as a function of r = |~x|. A little geometry using Eq. 2.1 shows that

the RT surface minimizes the area functional

area = `d
∫ rB

0
dr
rd−1

√
1 +

(
dz
dz

)2
zd

. (2.8)

Studying the corresponding Euler-Lagrange differential equation, one can show

that z(r) =
√
z2max − r2 is a solution for all d. In the RT surface equation, zmax

is the maximum radial coordinate reached. Requiring that z(rB) = 0 shows that

zmax = rB. Hence if a particle is falling into the bulk at the bulk speed of light,

then the radius of B must also expand at the boundary speed of light. A nice

result indeed.

Exercise 2.4. Check that the semi-circle is indeed a solution to the Euler-

Lagrange equations for Eq. (2.8) for any d.

However, empty space or the corresponding ground state are just that, empty,

so it is perhaps not surprising that the microcausal speed limit enters. On the

CFT side, it is interesting to ask what happens when stuff is added to the system

that might slow down motion like moving through a crowded room. On the

gravity side, it is interesting to ask how bulk causality manifests in more complex

geometries. These two questions are holographically dual to each other.
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Consider the case of thermal equilibrium at temperature T . The bulk ge-

ometry is the AdS-Schwarzchild black hole of Eq. (2.2), and although the inter-

pretation of bulk causality is less clear, the entangled infalling particle thought

experiment can still be carried out. The geometry problems we have to solve are

more complex, but an analysis is still possible as discussed in detail in App. D.

Two facts determine the result. First, infalling particles fall towards the

black hole, accelerate to nearly the speed of light, and asymptotically approach

exponentially close to the horizon at late time. Second, RT surfaces of large

boundary regions stick close to the horizon for most of their extent. Combining

these two pieces of physics, it is possible to show that, at large time t, a disk B

whose entanglement wedge just contains the infalling particle must have a radius

that increases with time like

rB =

√
d+ 1

2d
t+ · · · . (2.9)

This growth of the entanglement wedge was first computed in Ref. [6], but with-

out the particular interpretation we have given here.

Interestingly, this speed that is less than the speed of light for d > 1 boundary

spatial dimensions. Moreover, as we anticipated in Sec. 1, it turns out to be

identical to the butterfly velocity vB obtained from OTOCs. I will explain a bit

of the physics of OTOCs in holography below, so for now please just take this

as a fact. The physical interpretation is that at temperature T , the CFT state

consists of some hot strongly interacting relativistic plasma which tends to slow

down the propagation of information.

In fact, App. D solves the aforementioned black hole geometry problems for

a broad class of metrics known as hyperscaling violation metrics. We don’t have

time for the details, but one piece of physics that these geometries capture is a

so-called dynamical exponent z (not to be confused with the radial coordinate)

which allows for space and time to scale differently than in CFTs. For dynamical

exponent z, space scales like ~x → λ~x while time scales like t → λzt. One still

finds that vB extracted from OTOCs gives the information propagation speed,

but now

vB ∼ T 1−1/z (2.10)

at temperature T . In particular, for z > 1 (which is required by microcausality),

the butterfly velocity approaches zero as temperature is lowered. This indicates

that quantum information can spread arbitrarily more slowly than any micro-

scopic speed limit.

Exercise 2.5. Obtain Eq. (2.10) using a scaling argument assuming that

temperature scales like an inverse time and is the only scale in the problem.
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l l l

To explain the physical picture behind OTOCs in AdS/CFT, let us take a

little detour to discuss the thermofield double state. This state is also interesting

because it can be viewed as instantiating a particularly natural kind of reference

system. Roughly speaking, the thermofield double is the minimal thermal bath

that can produce thermal physics within a system. Thermality in a system

coupled to an environment is typically understood as arising due to entanglement

between the system and the environment. However, that entanglement is often

complex and spread out (think infrared photons radiating from the Earth). The

thermofield double is analogous to taking that complex environment and distilling

in down to some kind of minimal form.

Here is the general construction. Given a system with Hamiltonian H and

energy eigenstates |Ei〉, the canonical thermal state at temperature T = 1/β is

ρ =
e−βH

Z
(2.11)

where Z = Tr(e−βH) is the partition function. The thermofield double is a state

defined on two copies of the system Hilbert space, referred to as the system and

the purification. We will think of the systems as being placed side by side, left

L and right R (meant to remind you of the reference), but not interacting. The

thermofield double state is

|TFD〉 =
∑
i

√
e−βEi/2

Z
|Ei〉L|Ei〉R, (2.12)

and its key property is that the state on just L or just R is exactly thermal. It is

also possible to define a generalized time evolution with the left evolved for time

tL and the right for time tR,

|TFD, tL, tR〉 = e−itLHL−itRHR |TFD〉

=
∑
i

e−iEi(tL+tR)

√
e−βEi/2

Z
|Ei〉L|Ei〉R. (2.13)

Because of the special entangled structure of the state, this time evolved ther-

mofield double only depends on the combination tL + tR.

Exercise 2.6. Show that the infinite temperature limit of the thermofield

double state, for a system of N qubits, is simply N Bell pairs connecting the

two sides.

In AdS/CFT, the thermofield double has a nice geometrical dual. If a sin-

gle thermal state is dual to a black hole, then the thermofield double is dual
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Figure 10: A schematic of the eternal AdS-Schwarzchild black hole space-

time.

to two entangled black holes. As an example of the holographic connection be-

tween entanglement and geometry sketched above, these entangled black holes

are represented geometrically by a wormhole which connects their interiors. The

geometry is also called the eternal black hole geometry and can be obtained by

looking for the maximal analytic extension of the single sided black hole geom-

etry. It is depicted in Fig. 10, which shows a so-called Penrose diagram of the

spacetime. This a spacetime picture that distorts lengths and times but preserves

the causal structure so that the diagonal lines remain light-like.

Thinking the left L side as the original system, the previous discussion can

be recast using the other side of the thermofield double as a souped up kind of

reference which is entangled with the system. In this scenario, the entire entropy

of the thermal density matrix is due to entanglement between the two sides of

the thermofield double. Hence a thought experiment analogous to the entangled

infalling particle problem can be instantiated using the thermofield double.

Start from the fact that there is a large amount of initial entanglement be-

tween two identical regions on either side of the thermofield double. At infinite

temperature, where the thermofield double is simply many entangled pairs con-

necting to the two sides, this is particularly clear. As time evolves forward on the

left side, the initially localized entanglement spreads in space. Correspondingly,

the initial left-right mutual information between two identical regions decreases.

However, given access to a region on the left with increasing size set by the

butterfly velocity, the mutual information remains large. In fact, the mutual

information can also be kept large by considering a region on the right of in-

creasing size. Mathematically, Eq. (2.13) shows that time evolution on the left

is equivalent to time evolution on the right. Physically, we use Hayden-Preskill
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to recover the entanglement by expanding our access to the memory instead of

expanding our access to the scrambled output qubits.

Using the tools and arguments discussed towards the end of Sec. 1, these

conclusions can be generalized to a wider class of systems beyond AdS/CFT. In

particular, the thermofield double setup provides what a ‘thermal scale’ gener-

alization of the localized entanglement setup from Sec. 1. The key idea is that

operators localized at the lattice scale typically change the energy of a state by

an amount of order the microscopic couplings. However, at low temperature

much below the microscopic scale, it is desirable to work with smeared operators

which produce lower energy excitations when acting on a state, say excitations

of energy of order the thermal energy T . Working with the thermofield double

instantiates this smearing in particularly clean way and provides a simple tool

to study information spreading at low energy.

l l l

After familiarizing ourselves with the thermofield double state, let me explain

how it is related to OTOCs. Imagine the following fanciful procedure: Evolve

the left side, say, of the thermofield double back in time for a time ∆tL = −tW .

Now apply a simple operator W to the left side. Finally evolve the state forward

in time again for a time ∆tL = +tW . This returns the system to the original

time, albeit with a small perturbation applied in the past. Suppose tW � τr,

the relaxation time of the system. What is the effect of the perturbation from

the distant past? From the point of view of either side alone, nothing much has

happened. The right side remains literally untouched, while the left side has

been perturbed, but the loss of memory due to thermalization suggests that the

effects of the perturbation are not visible to simple probes.

If there is no discernible effect in of the perturbation in either side of the

thermofield, how can we diagnose its presence? To get some intuition, let’s think

about the problem within the context of AdS/CFT. Suppose the perturbation

in the past injected a localized packet of energy into the system, say a particle

for simplicity. If the particle was near the boundary in the distant past, it will

have fallen close to the black hole horizon by the present time. Such an infalling

particle, having experienced a long period of acceleration due to the gravity of

the black hole, will be moving close to the speed of light and will have enormous

energy as reckoned by an observer hovering outside the black hole. Once strong

enough, this energy source begins to significantly warp the geometry near the

horizon as sketched in Fig. 11, leading to a wormhole which is effectively longer.

Since correlations fall off with distance, this means that correlations between the

two sides are weaker after the perturbation.
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Figure 11: A schematic of the shockwave produced by an infalling particle

moving near the speed of light. The shock disrupts the left-right correla-

tions in the unperturbed thermofield double state. In the limit where the

initial input energy is small and tW is large, the shock hugs the horizon

and Einstein’s equations can be solved by patching together two halves of

the eternal black hole geometry with a light-like shift across the shock.
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A particle travelling at nearly the speed of light can be idealized as a light-like

delta function of stress-energy pinned to the horizon of the black hole. This

source creates what is known as a gravitational shockwave which expands

outwards from the source. Passing through the shockwave has the effect

of giving a kick in a certain light-like direction. This extra kick changes

the geometry and leads to a decorrelation of the two sides of the perturbed

thermofield double when the kick becomes strong. The strength of the kick

goes like the proper energy, E ∼ e2πtW /β, which is proportional to the boost

the particle has experienced after falling for a time tW . This exponential time

dependence is one measure of quantum chaos in the system, with λL = 2π/β

being the now infamous quantum Lyapunov exponent of the black hole.

Since the perturbation effects correlations between the two sides of the ther-

mofield double, let us understand these correlations more precisely. The per-

turbed thermofield double is

|W 〉 = e−iHLtWWLe
iHLtW |TFD〉, (2.14)

where for any single sided operator O, OL = O ⊗ I and OR = I ⊗ O. The

correlation between V on the left and V T (T is transpose in the energy basis) on

the right is

〈W |VL ⊗ (V T)R|W 〉 = 〈TFD|W �
L(−tW )VLWL(−tW )⊗ (V T)R|TFD〉. (2.15)

To get intuition for this object, consider, say in a spin model with N spins,

the limit T =∞ where the thermofield double state is just a maximally entangled

state |max〉 between the two sides. The state obeys a so-called operator pushing

property whereby

OR|max〉 = (OT)L|max〉. (2.16)

This allows us to move V T from the right to the left. The two-sided correlation

function then becomes a one-sided correlation function,

〈W |VL ⊗ (V T)R|W 〉T=∞ =
1

2N
Tr
(
W �(−tW )VW (−tW )V

)
, (2.17)

which is nothing but an infinite temperature OTOC at time −tW . The neg-

ative time does not have any deep significance and is expected to lead to the

same behavior as evolving W for positive time. In fact, if the behavior of the

OTOC is generic for different local operators, then the previous claim follows

from 〈W �(−t)V2W (−t)V 〉β = 〈W �V (t)WV (t)〉β, valid for any thermal state.

For general temperature T , the thermofield double still obeys an operator

pushing property of a slightly more complex type,

OR|TFD〉 = (eβH/2OTe−βH/2)L|TFD〉, (2.18)
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where we interpret eβH/2Oe−βH/2 as the Heisenberg operator O(t) with imagi-

nary time t = −iβ/2. Since imaginary time is periodic with period β, the circle

represented by the coordinate τ = it is often called the thermal circle, and evolu-

tion by imaginary time −iβ/2 is called going half way around the thermal circle.

The operator pushing property gives

〈W |VL ⊗ (V T)R|W 〉 = 〈W �(−tW )VW (−tW )V (−iβ/2)〉β (2.19)

or

〈W |VL ⊗ (V T)R|W 〉 = Tr
(√
ρW �(−tW )VW (−tW )

√
ρV
)
. (2.20)

The right hand side of these expressions are called thermally regulated OTOCs

(there are several varieties depending the positions of the operators on the ther-

mal circle). They are generally believed to exhibit the same butterfly velocity

as the non-regulated correlators, but this is not proven in general. At least the

basic intuition still holds that if W (−tW ) approximately commutates with V ,

then the thermally regulated OTOC collapses to something independent of tW .

Exercise 2.7. Verify Eq. (2.18).

Now we see how to calculate thermally regulated OTOCs using AdS/CFT.

Starting from the thermofield double state, we add a localized low energy per-

turbation in the past. This perturbation begins to strongly warp the geometry

when it comes close to the horizon, leading to an expanding gravitational shock-

wave. Technically, one can solve Einstein’s equations in the limit of a null delta

function of stress energy hugging one horizon by patching together two halves

of an eternal black hole geometry displaced by a relative light-like shift. Then

measuring two-sided correlators in the shockwave geometry gives a thermally

regulated OTOC. The butterfly velocity can then be extracted by studying the

deviation of the OTOC from its initial early time value. The resulting velocity

precisely matches the information propagation velocity obtained in Eq. (2.9).

l l l

Before moving on to the final section on the microphysics of operator growth

and OTOCs, I want to tell you about one more important notion of entangle-

ment growth. The setting is different but related to the considerations above.

Consider a uniform initial with no special initial entanglement but which is out

of equilibrium. For the mixed field Ising spin chain, this could be some initial

product like the all +y state. In AdS/CFT, one interesting class of examples is

obtained by starting with empty space and making a uniform perturbation which

increases the energy density of the system [7]. This kind of setup is called a global

quench, because we start with a uniform out-of-equilibrium state and watch it
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thermalize. In this context, one interesting question is how the entanglement

entropy of a localized region increases with time.

Assuming thermalization takes place, the entropy of a region A much smaller

than half the system size should look thermal at late time, S(A) = sT |A|+ · · · ,
where sT is the thermal entropy density at a temperature determined by the

perturbed energy density. After a short initial period of local equilibration,

but well before late time saturation, we expect the entanglement to grow at a

constant rate proportional to the size of the boundary of A. This is because time

evolution only increases the entropy of A thanks to terms in the Hamiltonian

that act simultaneously on A and Ac. Extracting a factor of sT and |∂A|, the

entanglement velocity vE is defined during the period of linear entanglement

growth by
dS(A)

dt
= sT |∂A|vE . (2.21)

As defined, vE seems analogous to a normalized entanglement growth rate, and

although it has the units of a velocity, it is not clear what this velocity corresponds

to physically.

As an aside, the thermofield double can also be used to obtain vE . This may

seem strange, since a single side is always in exact thermal equilibrium, but we

know that the full state can exhibit time-dependence, as measured by two-sided

correlations. The entanglement entropy of the combination of a region and its

twin on the other side is time-dependent, and it exhibits similar phenomenol-

ogy to the global quench entanglement growth. In particular, the entanglement

velocity can be extracted from this setup. In AdS/CFT, this corresponds to

studying the time-dependence of extremal surfaces stretching across the interior

wormhole connecting the two black holes.

How is vE related to vB? I claim that vE ≤ vB, so that vE obeys a causality

bound. The statement that vE ≤ c, with c the speed of light, has been proven in

Lorentz invariant field theories in Refs. [8, 9]. The stronger claim that vE ≤ vB
is plausible and has been conjectured, I am not aware of a careful argument in

favor of it. In App. E I have tried to give a detailed argument for vE ≤ vB
roughly following the strategy of Ref. [9]. Here I will quickly mention the main

idea, which is to compare, via the relative entropy, the out-of-equlibrium state

of A and the thermal state restricted to A. The trick which makes this useful is

using the decomposition shown in Fig. 5 to rewind the time evolution on a A.

The relative entropy is defined as

S(ρ‖σ) = Tr(ρ log ρ− ρ log σ). (2.22)

Think of it as a way to compare two states, with S(ρ‖σ) = 0 if and only if ρ = σ.

Key properties include positivity, unitary invariance, and monotonicity under

partial trace. Given a time evolving state ρ(t) and the thermal state σ with

same energy density, we want to compare ρAt(t) and σAt via relative entropy.
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Here At denotes the expansion of A by an amount vBt and the time evolution

operator U is assumed decompose as U ≈ UAtUAc (recall Fig. 5, but with A more

than one site). The unitary invariance of relative entropy then yields

S(ρAt(t)‖σAt) = S(Tr(At)c(UAcρUAc)‖Tr(At)c(UAcσUAc). (2.23)

The right hand side obeys

S
(
Tr(At)c(UAcρUAc)‖Tr(At)c(UAcσUAc)

)
≥ S(ρA‖σA), (2.24)

which follows from monotonicity of relative entropy under partial trace and the

fact that UAc does’t act on A.

This chain of reasoning gives the inequality

S(ρAt(t)‖σAt) ≥ S(ρA‖σA). (2.25)

The physical interpretation is that everything that distinguishes ρA from σA also

distinguishes ρAt(t) from σAt since quantum information cannot spread by more

than vBt. Of course, ρAt(t) may be more distinguished from σAt than ρA was

from σA, hence the inequality. Assume that the reduction of the thermal state to

A is approximately σA ∝ e−HA/T with HA the Hamiltonian restricted to A up to

boundary terms. Neglecting the boundary terms, the left hand side of Eq. 2.25

is

− S(ρAt(t)) + S(σAt) + β〈HAt〉ρAt (t) − β〈HAt〉σAt , (2.26)

and the right hand side is

− S(ρA) + S(σA) + β〈HA〉ρA − β〈HA〉σA . (2.27)

Recalling that ρ and σ have the same energy density, the Hamiltonian terms

should cancel, again up to boundary terms that we are neglecting. The inequality

Eq. (2.25) is then

S(σAt)− S(σA) ≥ S(ρAt(t))− S(ρA). (2.28)

Under the intuitively plausible situation that entanglement increases with sub-

region size for regions less than half the system size, it follows that

|∂A|sT vBt ≥ S(ρA(t))− S(ρA). (2.29)

The left hand side is the difference in thermal entropies between A and At (for

vBt small compared to the linear size of A) while the right hand side is the total

change in entanglement of A. The inequality vE ≤ vB then follows from the

definition of vE .

33



Following Grover, strong subadditivity actually implies that entanglement

entropy is an increasing function of subsystem size up to half the system size

for translation invariant systems. This is shown using S(AB) + S(BC) ≥
S(A) + S(C) (which follows from S(AB) + S(AD) ≥ S(A) + S(ABD) with

D a purification of ABC). Working in d = 1 for simplicity, and setting

A = [0, x], B = [x, x+ ε] and C = [x+ ε, 2x+ ε], strong subadditivity gives

2S(x+ ε) ≥ 2S(x).

3 Microscopic physics of operator growth

Having established that OTOCs measure the spreading of quantum informa-

tion, in this section I discuss the microscopic physics of OTOCs in terms of the

growth of Heisenberg operators. This discussion serves at least two functions.

First, we will be able to understand the detailed spatial profile of the squared

commutator C(r, t) of local operators in generic chaotic systems. This has bear-

ing on the question whether contours of constant C have different asymptotic

velocities depending on the value of C. This turns out not the be the case, but

there is a subtlety in that the ballistically expanding wavefront describing C(r, t)

is generically broadened. Second, we will understand better what the squared

commutator and OTOCs have to do with quantum chaos in generic local systems.

As already explained in Sec. 1, the basic physical picture of C(r, t) in a quan-

tum chaotic system is that an initially simple local operator W , when evolved

in time in the Heisenberg picture to W (t), spreads in space and becomes more

complex. However, it is not clear what the precise shape of the operator is, as

diagnosed by C(r, t). Let us first survey some representative examples from the

literature.

We focus on the early growth region where C is still small. In the case of

AdS/CFT, C(r, t) takes the form [10]

Cholo(r, t) =
1

Ndof
eλ(t−r/vB) + · · · . (3.1)

Here Ndof is a measure of the number of onsite degrees of freedom, which is

large in standard holographic models. Eq. (3.1) describes a ballistically travel-

ling waveform with a sharp wavefront, meaning the shape of the waveform as

a function of t − r/vB is independent of t. Many weak coupling calculations in

field theory also find this form, at least near the wavefront. Next consider the

case of a spin chain where the time evolution is taken to consist of alternating

even and odd layers of random two qubit gates. In this random circuit model,

the commutator ahead of the wavefront has the shape [11,12]

Crand(r, t) ∼ e−(r−vBt)2/4DBt + · · · . (3.2)
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In contrast to holography, this ballistically expanding wave has a diffusively

broadened wavefront, meaning the scale over which C varies as a function of

u = r − t/vB goes like
√
DBt. Note that the random circuit model also has a

version with a large number Ndof on each site, but while vB and DB depend on

this number, but the holographic form is never obtained.

The question then arises as to which, if any, of these characteristic shapes

describes the generic case with a finite local Hilbert space dimension. Unfor-

tunately, this question cannot be reliably answered using small sized numerical

simulations. These exhibit ballistic expansion with some kind of broadened wave-

front, but it is not clear if the broadening will vanish in a large system or tend to

the diffusive limit or have some other characteristic form. Non-interacting par-

ticles exhibit ballistic expansion of C with yet another characteristic broadening

of the wavefront (C does not saturate at late time in this model, instead falling

back to zero). You should not expect the non-interacting limit to be generic, but

the spectre of multiple different universality classes is certainly raised.

There seems to be a lot of different possibilities, but it turns out to be possible

to unify them all into a single framework. Shenglong Xu and I argued that the

most general shape consistent ballistic operator growth can be characterized by

one additional number, a broadening exponent p. The proposed general form,

valid for large r and t with r/t greater than but close to vB, is

C(r, t) = exp

(
−λ(r − vBt)1+p

v(vt)p

)
. (3.3)

This form is determined by demanding ballistic operator growth, an exponential

decay with r at fixed r/t, and a finite logarithmic derivative 1
C
dC
dt as r, t → ∞.

The AdS/CFT result fits the form with p = 0 (no broadening) while the random

circuit result fits the form with p = 1 in d = 1 (diffusive broadening). Even the

non-interacting fermion result fits with p = 1/3 in d = 1.

Exercise 3.1. Verify that Eq. (3.3) obeys the three conditions listed just

below the equation.

I will try to convince you that the generic case in d = 1 is actually p = 1,

corresponding to a diffusively broadened wavefront. As part of the story, I will

explain how the p = 0 behavior is lost in a model that captures some of the

features of the holographic case at large Ndof. One can make a corresponding

analysis in higher dimensions, which is very interesting but is beyond what I can

reasonably cover here.

Before moving on, however, I want to comment on the implications of Eq. (3.3)

for the question raised above, whether different contours of constant C have dif-

ferent asymptotic velocities. Given the general shape in Eq. (3.3), the contours
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obey

rC = vBt+

(
v(vt)p

λ
log

1

C

) 1
1+p

. (3.4)

Hence, no matter the value of C, asymptotically one has

lim
t→∞

rC
t

= vB. (3.5)

However, at any finite t, the contour has an extra sub-ballistic time dependence

going like t
p
p+1 which is due to the wavefront broadening. Thus at large time

C(vt, t) is very small for any v > vB and close to saturation (assuming chaos)

for any v < vB. We conclude that it is safe at large t to use vB as both the

scrambling velocity and the light cone velocity.

Exercise 3.2. Derive Eq. (3.4) from Eq. (3.3).

l l l

To gain a more microscopic understanding, it is useful to expand the Heisen-

berg operator W (t) in a complete basis of operators. This expansion is exactly

analogous to the expansion of quantum states in a complete basis for the Hilbert

space. For a system of N qubits, the dimension of the Hilbert space of states

is 2N , and the dimension of the vector space of operators is 4N . For a single

qubit, a complete basis of operators is provided by the Pauli operators plus the

identity, {I, σx, σy, σz}. For N qubits, a complete basis of operators is provided

by Pauli strings PS . Each string is a tensor product of an operator from the set

{I, σx, σy, σz} for each qubit,

PS =
N⊗
r=1

σSrr , (3.6)

where S = (S1, · · · ,SN ), Sr ∈ {0, 1, 2, 3}, and σ0 = I.

Every operator can be expanded as

O =
∑
S
c(S)PS (3.7)

where the coefficients are

c(S) =
1

2N
Tr(OPS). (3.8)

Note that the right hand side can be viewed as an inner product on operator

space. The coefficients c(S) are called operator amplitudes, while their absolute

squares |c(S)|2 are called operator probabilities. They are normalized to∑
S
|c(S)|2 =

1

2N
Tr(O�O). (3.9)

36



Exercise 3.3. Show that (A,B) = 1
2N

Tr(A�B) is an inner product on the

vector space of operators.

Let us see how to calculate the squared commutator using this formalism. For

simplicity and because it will feature below, I will consider the infinite temper-

ature state, but a general formula is straightforward to obtain. It is convenient

that every Pauli string either commutes or anti-commutes with every other,

PS1PS2 = q(S1,S2)PS2PS1 , (3.10)

where q = ±1. The infinite temperature OTOC of an operator O and Pauli

string PS is thus

F =
1

2N
Tr
(
O�PSOPS

)
=
∑
S′
|c(S ′)|2q(S,S ′). (3.11)

l l l

The goal is now to analyze the operator amplitude dynamics in a represen-

tative model known as the Brownian coupled cluster model [13]. The model is

useful because it is tractable and because it combines the relevant features of

both AdS/CFT and the random circuit model. Like the random circuit model,

it features a random time-dependent Hamiltonian, but unlike the random cir-

cuit model, it has an AdS/CFT-like large Ndof limit. Using it, we will be able

to develop a physical picture why p = 1 is generic for one-dimensional chaotic

systems.

The model can be defined in any dimension, but here we continue to focus on

d = 1. The degrees of freedom are arranged in clusters which are then connected

into a one-dimensional array. Every cluster contains N spin-1/2 degrees of free-

dom, and there are L clusters. The Hamiltonian is time-dependent and consists

of two kinds of terms, within-cluster interactions and between-cluster interac-

tions. To avoid mathematical complexities associated with stochastic calculus,

it is simplest to present the model in discrete time.

The time evolution operator is

U(t) =

t/dt∏
m=1

exp

−i∑
r

H(m)
r − i

∑
〈rr′〉

H
(m)
rr′

 , (3.12)

with m a discrete time index. The within-cluster terms and the between-cluster

terms are

H(m)
r = Jαβm,r,a,bσ

α
r,aσ

β
r,b (3.13)

H
(m)
rr′ = gJ̃αβm,r,r′,a,bσ

α
r,aσ

β
r′,b (3.14)
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where α, β ∈ {0, 1, 2, 3}, a, b = 1, · · · , N label spins within a cluster, r, r′ label

clusters (sometimes called sites), and 〈rr′〉 means nearest neighbors. At each

time step, the models contains two sets of uncorrelated random variables J and

J̃ with mean zero and variance 1
8(N−1)dt and 1

16N dt, respectively.

In the limit that dt→ 0, one can formulate a stochastic differential equation

for the time evolution operator. From it, one can derive a master equation for the

operator probabilities |c(S)|2 averaged over circuit realizations, i.e., over realiza-

tions of the couplings J and J̃ . I will not get into the details of these equations

here, but see Ref. [13] for complete details. The only important property we need

is that |c(S)|2 depends only on the total number of non-identity Pauli operators

on each cluster. This is technically an approximation, but it holds after a short

time even if the initial condition does not obey it because the circuit average

erases any distinction between the different Pauli operators. The total number

of non-identity Pauli operators in PS on cluster r is called the weight of the

cluster and is denoted wr(S).

In this model it is convenient to analyze the operator averaged squared com-

mutator,

C(r, t) =
1

3N

∑
a,α 6=0

〈[W (t), σαr,a]
�[W (t), σαr,a]〉T=∞. (3.15)

Using the fact that the identity trivially commutes with W (t), this can be rewrit-

ten using an operator averaged OTOC as

C(r, t) =
8

3
(1− F (r, t)) (3.16)

where

F (r, t) =
1

4N

∑
a,α

〈W (t)σαr,aW (t)σαr,a〉T=∞. (3.17)

Using Eq. (3.11) with W (t) =
∑
S c(S)PS , it follows that the circuit-averaged

OTOC is

F = 1− 1

N

∑
S
wr(S)|c(S)|2. (3.18)

For notational convenience, I will introduce φ(r, t) via

C(r, t) =
8

3
φ(r, t). (3.19)

At early time, φ(r, t) ≈ 0 while at late time it saturates to φ(r, t) = 3
4 , the

fraction of non-identity Pauli operators.

Exercise 3.4. Derive Eq. (3.18) using Eq. (3.11) and the stated assumptions.

When N is small, it can be shown that φ(r, t) obeys a drift-diffusion equation

as in the random circuit model. This leads to a circuit averaged C(r, t) obeying
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the universal form Eq. (3.3) with p = 1. Hence the Brownian coupled cluster

model recovers the result of the random circuit model at small N .

At infinite N , something very different occurs. It can be shown that φ(r, t)

obeys a so-called Fisher-Kolmogorov-Petrovksy-Piskunov (FKPP) type equation

of the form

∂tφ = (3− 4φ)

(
g2

2
∂2rφ+ (1 + g2)φ

)
. (3.20)

Here g is the ratio of the strength of the between-cluster and within-cluster

terms, and we have taken a continuum limit, which is qualitatively accurate.

Although I will not explain its detailed derivation, one can see that this equation

contains three essential pieces of physics: exponential growth in time, spreading

in space, and saturation. The FKPP equation is very well known and describes

a wide variety of physical processes including the propagation of combustion

waves, the dynamics of invasive species, and the physics of certain quantum

chromodynamics processes.

The key physical property of the FKPP equation is that, starting from a

localized source, it supports travelling wave solutions with φ(r, t) = f(r − vBt)
where vB =

√
18g2(1 + g2) is the buttefly velocity. Well ahead of the front at

r = vBt, the waveform is

φ(r, t) ∼ eλL(t−r/vB), (3.21)

which is Eq. (3.3) with p = 0. Hence the Brownian coupled cluster model also

recovers the physics of AdS/CFT at large N . The exponent λL = 6(1 + g2) is an

example of a quantum Lyapunov exponent.

Exercise 3.5. Obtain the butterfly velocity for FKPP by studying the lin-

earized FKPP equation with a delta function source.

l l l

Given the large and small N limits, the next question is how they are con-

nected as N is varied. Physically, the infinite N limit functions to suppress

quantum fluctuations, so that one may view the distribution |c(S)|2 as being

concentrated on a single weight configuration. At finite N , quantum fluctu-

ations occur, meaning that the distribution |c(S)|2 now assigns non-vanishing

probability to different operators weight configurations. Let me emphasize that

these fluctuations are proper quantum fluctuations. They are a consequence of

the fact that W (t) is a superposition of many different Pauli strings of different

weight. In particular, the randomness associated with the couplings J and J̃ has

already been averaged over and no longer enters the description. In essence, the

circuit average serves to dephase the quantum operator amplitudes and convert
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the Heisenberg equation of motion for the operator amplitudes into a master

equation for the operator probabilities.

Following Ref. [13], I will call these quantum fluctuations ‘noise’. In an abuse

of notation where φ(r, t) now represents a noisy field, we obtain a noisy FKPP

equation,

∂tφ = (3− 4φ)

(
g2

2
∂2rφ+ (1 + g2)φ

)
+

√
1

4N
(3− 2φ(r, t)

(
g2

2
∂2rφ(r, t) + (1 + g2)φ(r, t)

)
η(r, t), (3.22)

where η(r, t) is a white noise term representing quantum fluctuations. This noise

term, while suppressed by 1/N , has a dramatic effect on the physics. Notice

also that it multiplicative noise, vanishing when φ = 0, so it respects the causal

structure.

The main effect of the noise term is to make the front position noise depen-

dent. What this means is that the front continues to move with velocity vB, but

it is also randomly buffeted forward and backward as in a random walk. Within

a particular noise realization, the wavefront is sharp and exhibits p = 0. How-

ever, the physical quantity in the quantum problem is the noise averaged value

of φ. Close enough to the physical front at r = vBt, the random walk nature

of front position inevitably manifests and smears the sharp p = 0 front into a

diffusive p = 1 front. Using the noisy FKPP literature, Ref. [13] showed that the

corresponding diffusion constant was D ∼ 1
log3N

at large N , a remarkably large

value relative to standard 1/N corrections.

Given these developments, a conjecture and a corresponding physical picture

naturally present themselves. I claim that, due to the inevitable presence of

quantum fluctuations, generic one-dimensional quantum chaotic systems always

have squared commutators obeying the universal form in Eq. (3.3) with p = 1.

There is an analogous claim in higher dimensions, where the value of p depends

on the dimension and is related to a random surface growth problem (the Kardar-

Parisi-Zhang universality class). Based on what I have told you so far, the key

pieces of evidence in favor of this claim are the random circuit model and the

Brownian coupled cluster model. Interestingly, FKPP-like equations have also

been obtained in a variety of large N and weak coupling calculations of squared

commutators. These were all noiseless equations, but surely once quantum fluc-

tuations are included, the dynamics will be governed by a FKPP-like equation

with multiplicative noise and a corresponding broadened front.

The implications for quantum gravity are particularly interesting, and I hope

to report on them soon. In short, it seems that the aforementioned quantum

fluctuations lead, in the context of AdS/CFT, to a superposition of different

gravitational shockwaves and a corresponding smearing of two-sided correlators
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and two-sided entanglement. However, this is a preliminary conclusion that

requires further analysis.

l l l

Before wrapping up, I want to mention one final topic. I gave you physical

picture and several pieces of evidence in favor of the claim that p = 1 is generic

for local chaotic systems in one dimension. Still, it would be nice to check this

claim in a quantum spin chain with no randomness in space or time and generic

chaotic interactions. More generally, the preceding discussion did not provide

a method to calculate squared commutators for generic physical systems. You

may wonder if there is any classical method, analytical or numerical, which could

treat generic systems since we are discussing a problem of quantum dynamics.

Nevertheless, I want to briefly explain one recently developed tensor network

method which can be used to access C(r, t) in generic systems within a certain

spacetime region [14].

It may surprise you to learn that a tensor network method can be useful here.

Indeed, one typically expects that exact tensor network methods are restricted to

early time in chaotic systems, since the dynamics produces entanglement rapidly.

This is true in general, but it need not be the end of the story. The idea we

will discuss involves switching from the Schrodinger picture to the Heisenberg

picture. This is a useful switch because an initially local Heisenberg operator

has an effective light cone. Outside the light cone, the operator is nearly the

identity and so has limited operator entanglement. Hence it makes good sense to

represent time-evolving Heisenberg operator W (t) as a ‘matrix product operator’

(MPO), with the expectation that the representation will be accurate outside the

light cone.

There are two important points to make about this approach. First, one

can show rigorously, at least at infinite temperature, that if appropriate squared

commutators are small beyond some distance r, then the corresponding Heisen-

berg operator has low entanglement across a cut located at r. Second, while an

MPO with low entanglement can accurately capture the operator ahead of the

front, it certainly cannot do so within the light cone. One should then worry

about the possibility that truncation errors inside the lightcone might spoil the

rest of the picture. However, the light cone saves us, since errors within the light

cone should be unable to escape to spoil the dynamics outside. Hence we expect

the MPO method will be valid for nearly the entire spacetime region outside the

light cone, including the region where Eq. (3.3) is supposed to hold, so that both

vB and p can be extracted.

It is also worth pointing out that the time-evolving Heisenberg operator can

be viewed as a state by acting it on a maximally mixed state or, more generally,

on a thermofield double state. The operator entanglement discussed above is
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Figure 12: Separation between different contours of constant C as a func-

tion of time. The inset shows a log-log plot of the same data. The asymp-

totic approach to a slope of 1/2, corresponding to p = 1, is clearly visible

in the data.

just the entropy of the combination of a region and its twin on the other side

of the thermofield double. In AdS/CFT, this construction yields the shockwave

geometries considered in Sec. 2. Using those geometries, one can verify that at

large N , the operator entanglement is small outside the light cone determined

by the OTOC.

Fig. 12 shows data obtained from this MPO approach for the mixed field Ising

model studied in Sec. 1 at infinite temperature. The simulation is performed for

n = 201 spins out to quite long time, several hundred 1/J . It has been checked

that the results are converged in bond dimension with a bond dimension as low

χ = 32. What is plotted are the contours of constant squared commutator. The

inset shows the difference between different contours as a function of time on a

log-log plot. Eq. (3.4) predicts that the difference between contours should go

like t
p
p+1 , so on a log-log plot the data should approach a straight line of slope

p
p+1 . This is precisely what occurs with an asymptotic slope of 1/2 corresponding

to p = 1. Hence we verify that for a large, non-random chaotic spin chain, the
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operator growth dynamics is ballistic with a diffusively broadened front exactly

as predicted.

Epilogue

In these notes, I showed you to measure the spreading of quantum informa-

tion using commutators of local operators. In generic chaotic systems, we found

that information spreads ballistically, with a butterfly velocity vB, and that vB
provides a speed limit to quantum dynamics, including entanglement growth.

We showed that the butterfly velocity can be less than microscopic speed lim-

its, sometimes dramatically so, and that this slowing down was essential for the

emergence of causality in quantum gravity. Finally, we discussed the microscopic

physics of operator growth, including a universal shape for squared commuta-

tors arising from quantum fluctuations and a tensor network method to study

commutators in generic systems.

Still, this is all only the beginning. One crucial question is how to measure vB
in experiments. The simplest way is to directly measure C(r, t), which is a hard

but not impossible task. I and others have proposed a variety of experimental

methods to measure OTOCs and squared commutators, all of which require some

degree of quantum control often including the ability to effectively rewind time.

Remarkably, several early experiments have already been carried out. So far, the

experiments have probed regimes amenable to exact numerical simulation on a

classical computer, but it seems plausible that the next generation of experiments

will push beyond this threshold. Much more about these experiments can be

found in my quantum chaos notes.

There many interesting directions for further theoretical work. One is in-

formation propagation in systems with long-range interactions. To the best of

knowledge, it is still open whether power-law interactions always lead to super-

ballistic information propagation. For example, existing Lieb-Robinson bounds

cannot rule this out even for rapidly decaying power-law interactions. Other di-

rections include proposed connections between chaos and transport of heat and

charge and the interplay between the story here and the chaos bound at finite

temperature [2] (Ref. [13] has a preliminary discussion). There is also much to

understand about the breakdown of locality in quantum gravity.

In my opinion, we are only just starting to explore this exciting field of quan-

tum information scrambling. With the many connections discovered so far and

the prospect of new large-scale experiments on the horizon, I hope you consider

getting into the field and bringing a new point of view.
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A Further reading

� Scrambling:

� Microcausality:

� Entanglement growth:

� AdS/CFT:

B Lieb-Robinson bound

This appendix reviews an elementary proof of a Lieb-Robinson bound for a simple

one-dimensional spin to give a sense of how it works. The analysis follows a

discussion of Osborne. Let’s assume the Hamiltonian can be written as a sum of

terms hr that act on sites r and r + 1. This can always be done coarse-graining

any finite range interaction. Let the operator norm of hr be J , which measures

the local energy scale of the Hamiltonian.

Consider an operator W located at site r0. The goal of Lieb-Robinson is to

upper bound how far from r0 this operator can spread after time t. The rough

idea is to consider a series of approximations to W (t) which involve truncat-

ing more and more distant terms in the Hamiltonian. These truncations then

converge, roughly speaking, to W (t) while also giving bound on the spreading.

Denote the restriction of H to the interval [r − `, r + `] by H`, which means

keeping only terms from H that are fully supported on the interval. The re-

stricted Hamiltonian reads

H` =

r0+`−1∑
r=r0−`+1

hr (2.1)

with the dependence on r0 suppressed. Using the H`, define the sequence of

Heisenberg operators W` via

W` = eiH`tWe−iH`t. (2.2)

To quantitatively estimate how these terms differ from each other, define the

norms α` by

α` = ‖W` −W`−1‖ (2.3)
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with α0 = ‖W‖. In terms of these, it is possible to upper bound objects of the

form ‖W` −W`′‖ as

‖W` −W`′‖ ≤
∑̀

j=`′+1

αj (2.4)

by repeatedly adding and subtracting W`′′s and using the triangle inequality.

The α`s are determined using a differential equation,

d

dt
α` ≤

∥∥∥∥d(W` −W`−1)

dt

∥∥∥∥ . (2.5)

Using the invariance of the norm under unitary transformations, the right hand

side can be equivalently written as∥∥∥∥ ddt(U`+1W`U
�
`+1 −W )

∥∥∥∥ (2.6)

which is

‖[−iH`+1,W`] + [iH`,W`]‖ = ‖[H`+1 −H`,W`]‖ . (2.7)

The next step identifies H`+1 − H` with hr0+` + hr0−`, since these are the

only new terms in H`+1 fully supported on [r0 − ` − 1, r0 + ` + 1] but not fully

on [r0 − `, r0 + `]. We also use the fact that W`−1 has no non-trivial support on

r0 ± ` or r0 ± (`+ 1) and hence commutes with H`+1 −H`. Thus the right hand

side of the α` differential equation can be taken to be

‖[H`+1 −H`,W` −W`−1]‖ ≤ 4J‖W` −W`−1‖ = 4Jα`−1. (2.8)

Using ‖AB‖ ≤ ‖A‖‖B‖ and the triangle inequality, one has

dα`
dt
≤ 4Jα`−1. (2.9)

The factor of four is a crude upper bound that takes into account both hr0+` and

hr0−` which both appear twice due to the commutator.

Now we solve the upper limit of this system of differential equations with the

initial condition that α0 = ‖W‖ and α`>0(t = 0) = 0. The result is

α`(t) ≤ ‖W‖
(4Jt)`

`!
. (2.10)

This result is almost the end of the calculation. The remaining thing to do is to

estimate the difference between W` and the true W (t). This is

‖W (t)−W`‖ ≤
∞∑

j=`+1

αj ≤
∞∑

j=`+1

‖W‖(4Jt)j

j!
. (2.11)

There are various ways to treat this infinite sum. For ` � 4Jt, the simplest

estimate is to say that it cannot by much larger than its first term, which is
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quite small. More precisely, the ratio of term j to term j + 1 is 4Jt
j+1 ≤

4Jt
`+2 , so

making even a crude approximation using a geometric series in 4Jt
`+2 converges to

something order one times the first term. After using Stirling’s approximate for

large `, the first term is

‖W‖(4Jt)`+1

(`+ 1)!
≈ ‖W‖

(
4eJt

`+ 1

)`+1

. (2.12)

This result corresponds to roughly the `th order in perturbation theory when

expanding W (t) in a Taylor series. Physically, it will describe the commutator

dynamics for sufficiently small t and large `.

Neglecting the difference between ` and `+1, the first term is order one when

` = 4eJt. Setting `0 = 4eJt, the first term can be written as

e` log
`0
` . (2.13)

Using −1 ≥ −1 + log `0
˜̀ (valid for ˜̀≥ `0) and integrating both sides from `0 to

`, it follows that

− (`− `0) ≥ ` log
`0
`
. (2.14)

The left hand side is the first order expansion of the right hand side in ` − `0,
so the inequality states that going beyond first order only decreases the value.

Hence

e` log
`0
` ≤ e−(`−`0), (2.15)

or, using `0 = 4eJt,

‖W (t)−W`‖ ≤ ‖W‖f(t)e4eJt−`. (2.16)

Here f(t) is a polynomial prefactor that I wasn’t careful about because it doesn’t

affect the basic exponential scaling. Note that the bound is definitely not tight

at very large `, since 1/`! decreases faster than e−`. The bound is also trivial

once ` < `0 because the right hand side is growing exponentially while the left

hand side is bounded by 2‖W‖.
Having established that W` is close to W (t) for ` � Jt, remains to upper

bound the commutator. The idea is straightforward: If an operator V is a

distance r from W , then an upper bound on the commutator ‖[W (t), V ]‖ is

obtained by approximating W with W`=r−1 since Wr−1 exactly commutes with

V . First add and subtract Wr−1 inside the norm to give

‖[W (t), V ]‖ = ‖[W (t)−Wr−1 +Wr−1, V ]‖ , (2.17)

and then use [Wr−1, V ] = 0 and the bound on ‖W (t)−Wr−1‖ to obtain

‖[W (t), V ]‖ ≤ 2‖V ‖‖W (t)−Wr−1‖. (2.18)

Using the upper bound above, this is

‖[W (t), V ]‖ ≤ 2‖V ‖‖W‖f(t)e4eJt−r, (2.19)

which is Eq. (1.5) in the main text.
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C Effective light cone velocity and squared

commutators

This appendix gives one formalization of the idea of an effective light cone velocity

vL valid for a restricted set of states. The main idea is as follows. Given some

region A and its complement Ac, the first step is to define a time evolved region

At which is obtained by expanding every direction by an amount vLt+ `0. The

physical effect is encapsulated in the vLt term, which corresponds to information

spreading at speed vL. The `0 offset is technical device that simplies some of the

analysis by giving us a little workspace. We then say that vL is an approximate

light cone velocity for some set of states if, for any region A, the time evolution

operator U can be factorized as U ≈ UAtUAc as sketched in Fig. 5 and Fig. 6.

More precisely, consider a collection (not necessarily a linear space) of states

Ω such that, for every state |ψ〉 ∈ Ω the time evolution operator obeys

‖(U − UAtUAc)|ψ〉‖ < ε (3.1)

for all normalized states |ψ〉 of interest. As an example of the sort of set I have

in mind, take all translation invariant states with a given energy density (within

some small window that decreases with system size) plus their time evolved

versions plus states obtained from these by acting with a finite number of local

operator (including at different times). This kind of set is meant to describe states

within a given energy window but where we rule out states with very unbalanced

energy density by demanding translation invariance up to a small number of local

perturbations which cannot add a macroscopic amount of energy.

Now let us see how this relates to the commutators. Take an initial state |ψ〉
and two local operators W and V such that |ψ〉, W |ψ〉, and V |ψ〉, and so forth,

are all in Ω. For simplicity, take W and V to also be unitary, so that the squared

commutator C(t) = 〈[W (t), V ]�[W (t), V ]〉 reduces to the OTOC,

F (t) = 〈W (t)�V �W (t)V 〉. (3.2)

If the supports of W and V are separated by more than vLt + `0, then there is

region A such that V is contained in A and W is contained in (At)
c. Then it

follows that

|F (t)− 〈Ũ �WŨV �Ũ �WŨV 〉| < 4ε, (3.3)

where Ũ = UAtUAc .

Now by assumption W is contained in (At)
c, hence U �

At
WUAt = W . In the

same way, V is contained in A, so UAcV U
�
Ac

= V . Note the similarity to the

logic of the Lieb-Robinson bound. The second term in the absolute value above
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is

〈Ũ �W �ŨV �Ũ �WŨV 〉 = 〈U �
Ac
W �UAcV

�U �
Ac
WUAcV 〉 (3.4)

= 〈U �
Ac
W �V �WUAcV 〉 (3.5)

= 〈U �
Ac
V �UAcV 〉 (3.6)

= 1. (3.7)

Hence the actual OTOC obeys

|1− F (t)| < 4ε, (3.8)

and the squared commutator obeys

C(t) = 2− F − F ∗ ≤ 8ε. (3.9)

It is natural to suspect that the implication goes in the opposite direction

as well. We could hypothesize that if one had a suitable set of states such that

OTOCs of simple local operators were small outside some effective butterfly cone

vBt, then the time evolution operator would factorize as above on these states.

It is possible to demonstrate this conjecture with the assumption that OTOCs

for all operators (not just local ones) on the appropriate regions are small, but

it more challenging to make the argument using only OTOCs of local operators.

Below I give a non-rigorous heuristic argument in favor of this conclusion.

C.1 Heuristic argument for vL = vB

Let’s again work in one dimension for simplicity. The Hamiltonian is written

H =
∑

r hr. Given some region A and any speed v > vB (the butterfly speed

from OTOCs), the idea is to approximate the time evolution operator U by

U ≈ UAtUAc when acting on states in a set Ω. At is again the expansion of A by

an amount vt+ `0 in every direction. To produce this decomposition, a natural

idea is to break H into two pieces, with one piece, HAt , supported on At, and

the remainder, ∆H = H − HAt , supported on (At)
c. Going to the interaction

picture with respect to HAt , the time evolution for time s (the target final time

is t) is

U(s) = e−iHs = e−isHAt Û(s) (3.10)

with

i∂sÛ(s) = eisHAt∆He−isHAt Û(s). (3.11)

As long as eisHAt∆He−isHAt can be well approximated by an operator acting on

Ac, then the desired decomposition holds. One wants to show that since A is a

distance vt+ `0 from (At)
c, the operator eisHAt∆He−isHAt is never appreciably

supported on A.
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Denote the HAt time evolution of ∆H by ∆Hint,

∆Hint = eisHAt∆He−isHAt . (3.12)

Choose a site r ∈ A and consider

〈ψ1|qαr ∆Hintq
α
r |ψ2〉 − 〈ψ1|∆Hint|ψ2〉 = 〈ψ1|qαr [∆Hint, q

α
r ]|ψ2〉, (3.13)

where |ψi〉 are states in Ω and qαr ∈ {I, σxr , σ
y
r , σzr}. The absolute value of this

quantity can be upper bounded by a squared commutator using Cauchy-Schwarz,

|〈ψ1|qαr [∆Hint, q
α
r ]|ψ2〉| ≤

√
〈ψ2|[∆Hint, qαr ]�[∆Hint, qαr ]|ψ2〉. (3.14)

Assuming that HAt leads to similar OTOCs to H (we will argue for this below),

then since qα is a simple local operator, it must be that its squared commu-

tator with ∆Hint is small for any |ψ2〉 ∈ Ω. Hence the matrix elements must

approximately agree,

〈ψ1|qαr ∆Hintq
α
r |ψ2〉 ≈ 〈ψ1|∆Hint|ψ2〉. (3.15)

To continue, expand ∆Hint in the qαr basis,

∆Hint =
∑
α

Oβqβr . (3.16)

Introduce cαβ via

qαr q
β
r = cαβqβr q

α
r (no sum), (3.17)

so that

〈qαr ∆Hintq
α
r 〉 =

∑
β

cαβvβ (3.18)

where

vβ = 〈ψ1|Oβ|ψ2〉. (3.19)

The constraint, using a matrix-vector notation, is

cv ≈ v0


1

1

1

1

 . (3.20)

Given the vector identity

c−1


1

1

1

1

 =


1

0

0

0

 , (3.21)
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it follows that vα ≈ v0δα,0. This indicates that, at least as far as matrix elements

within the set Ω are concerned, the Oβ 6=0 operators all approximately vanish. In

other words, ∆Hint is approximately proportional to the identity for any site

r ∈ A.

This result already makes it plausible that ∆Hint can be effectively restricted

to Ac when acting on states in Ω. To argue for this more carefully, we would like

to show that the action of ∆Hint is close to the action of DA(∆Hint) where DA
is the depolarizing channel on A which zeros out all non-identity operators in A.

Working with qubits for simplicity, the action of the channel is

DA(∆Hint) =
1

4|A|

∑
QA

QA∆HintQA, (3.22)

where QA run over all Pauli strings in A which are identity on Ac. The difference

is

DA(∆Hint)−∆Hint =
1

4|A|

∑
QA

QA[∆Hint, QA], (3.23)

so one might hope to again bound the commutator using OTOCs as above.

However, there is a subtlety because the QA need not be simple and can add

considerable energy to the state, so we cannot guarantee that OTOCs between

∆Hint and QA cannot be guaranteed to be small.

An alternative approach is to argue as follows. Within A, ∆Hint can in

principle contain both large Pauli strings with many non-identity Pauli operators

and small Pauli strings with few non-identity Pauli operators. Because strings

with many non-identity Pauli operators typically change the energy of a state by

a lot, there matrix elements between states in Ω should be correspondingly small.

Hence even if such operators are present, they can be dropped from ∆Hint in so

far as matrix elements in Ω are concerned. It remains to rule out Pauli strings

with a small number of non-identity Paulis. However, this is what our previous

argument accomplishes, with the technical assumption that dropping the high

weight Pauli operators from ∆Hint doesn’t change the OTOC very much.

Since ∆Hint acting on states in Ω can be well approximated by the action of

an operator with non-trivial support only in Ac, it follows that U also has the

desired decomposition when acting on states in Ω. One applies the evolution

equation for Û to an arbitrary state in Ω, then one truncates the action of ∆Hint

on the state to be non-trivial only in Ac. The desired operator is obtained by

setting to zero the coefficients of all Pauli strings in the expansion of ∆Hint with

non-zero weight in A.

C.2 Estimating energy production

It was implicitly assumed above that HAt leads to the same butterfly velocity as

H, at least far from the boundary of At. This is reasonable precisely because of

51



the light cone, since it takes time for information from ∂At to propagate deep

into At. However, one thing which is not clear is how much energy is produced

by the truncation. More precisely, U exactly conserves energy, but UAtUAc can

in principle create energy when applied to some state. If it creates too much,

then it could carry a state out of the set Ω which is undesirable. In particular,

making a sharp cut in the Hamiltonian between HAt and ∆H is a very violent

lattice scale operation.

The solution is to make the split between HAt and ∆H is a smooth way.

Given a function 0 ≤ fr ≤ 1, consider two modified operators,

Hf =
∑
r

hrfr (3.24)

and

H1−f =
∑
r

hr(1− fr). (3.25)

If f is chosen to be unity deep inside At, zero far outside, and varying smoothly

over a length scale ξ, then Hf is a smoothed version of HAt and H1−f is a

smoothed version of ∆Hint.

The next question is, given an infinitesimal time-step δt, how much energy

does Hf add to the system. To gain some intuition, note that if fr is uniform

then Hf adds no energy. Hence the change in energy should be proportional to

the gradient of fr. The mathematical expression is

δ〈H〉 = −iδt〈[Hf , H]〉. (3.26)

Crucially, because energy is conserved locally, the commutator of hr with H

must be the lattice divergence of some energy current jE . In one dimension this

is [hr, H] = jEr,r+1 − jEr−1,r. This guarantees that if fr is uniform, then∑
r

frj
E
r,r+1 −

∑
r

frj
E
r−1,r = f

∑
r

jEr,r+1 − f
∑
r

jEr−1,r = 0. (3.27)

Since fr is supposed to vary slowly, consider a continuum limit of the lattice

formula,
∂E

∂t
=

∫
ddx f(x)~∇ · 〈~jE〉(x), (3.28)

where we generalized to d spatial dimensions. It still remains to determine 〈~jE〉.
The natural guess is that 〈~jE〉 ∝ ~∇f , since in thermal equilibrium the energy

current should vanish. Therefore, we should have

〈~jE〉 = µ~∇f + · · · , (3.29)

where · · · vanish relative to the first term in the limit of constant f .
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The energy production, for a slowly varying f , is thus

∂E

∂t
= µ

∫
ddx (~∇f)2. (3.30)

Assuming the variation in f occurs on the scale ξ, the gradient is of order 1/ξ

and the region of space in which the gradient does not vanish is of order |∂At|ξ
(recall that f approaches one deep inside At. Hence the total energy produced

is of order

∆E =

∫
dt
∂E

∂t
∼ µ|∂At|t

ξ
. (3.31)

In a chaotic system, the produced energy will diffuse away from its production

location. It will spread over a length scale order
√
DEt with DE the energy

diffusion constant. Hence the final energy density is of order

∆E

|∂At|
√
DEt

∼ µt

ξ
√
DEt

. (3.32)

Hence if we take ξ to scale like t1/2+δ for a target time t, then the final energy

density is arbitrarily small at late time. Moreover, although such a ξ is quite

large relative to microscopic scales, it can always be taken to be a small correc-

tion relative to vLt (for the purposes fitting the slowly varying ξ scale into the

expanded part of At).

D Growth of entanglement wedge

This appendix contains the details of the growth of the entanglement wedge

calculation. This calculation was already carried out for AdS-Schwarzchild black

holes in Ref. [6] where they observed that the rate of growth of the entanglement

wedge matched the butterfly velocity as obtained from OTOCs. In the main

text we argued in Sec. 1 that this had to be case. Here we check this claim

for a much wider class of the bulk geometries known as hyperscaling violation

black holes. From a physical point of view, this class of geometries is interesting

because it includes the possibility of a different scaling of space and time and

includes phenomena that bear some resemblance to more conventional materials

with a finite density of electrons.

The hyperscaling violation metric in the planar limit is

ds2 =
`2

u2

(
u

u0

)2θ/d(
−f(u)

dt2

(u/u0)2z−2
+

du2

f(u)
+ d~x2

)
(4.1)

where f(u) = 1 − (u/uh)d−θ+z. The constant u0 is a length that ensures the

various quantities appearing in the metric have their engineering dimensions.

We have replaced z → u relative to the coordinates in the main text. The

symbol z in this appendix denotes the dynamical exponent, which relates the
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scaling of length and time via ~x → λ~x and t → λzt. The parameter θ is called

the hyperscaling violation exponent. It measures the deviation of the scaling of

the entropy density relative to the CFT value. Note that the limit z → 1 and

θ → 0 recovers the AdS-Schwarzchild metric, Eq. (2.2), provided we identify u

with the z-coordinate there.

As in the main text, a particle released near boundary will fall towards the

black hole and quickly approach the near horizon region. In this region, where

the particle asymptotically approaches the horizon, it is possible to perform a

analysis that is independent of much of the details of the problem. To carry out

the analysis near the horizon, it is useful to rewrite the metric in terms of the

proper radial distance to the horizon. The proper distance ρ is defined by

dρ = − `
u

uθ/d

u
θ/d
0

du√
f
. (4.2)

Expanding f(u) near the horizon gives

f ≈ (d− θ + z)(uh − u)/uh, (4.3)

so the proper distance near the horizon is

ρ = `
u
θ/d
h

u
θ/d
0

2
√

1− u/uh√
d− θ + z

. (4.4)

In terms of ρ, the near horizon metric is

ds2 = −
(
d− θ + z

2

uz−10

uzh

)2

ρ2dt2 + dρ2 +
`2

u2h

(
uh
u0

)2θ/d

d~x2. (4.5)

Analytically continuing t→ −iτ , periodicity in imaginary time, τ ∼ τ+β, makes

the geometry a cone. Demanding regularity of the cone at ρ = 0, i.e., requiring

that if the metric is dρ2 + ρ2dθ2, then θ must be periodic with period 2π, fixes

the inverse temperature to be

β =
4π

d− θ + z

uzh
uz−10

. (4.6)

The next step is to determine the near horizon geodesics. Defining the coor-

dinate η via t = β
2πη and suppressing the transverse directions, the near horizon

metric takes the simple form

ds2 = −ρ2dη2 + dρ2. (4.7)

You may recognize this as Rindler space, the part of a flat spacetime associated

with a uniformly accelerating observer. All these coordinate transformations

were useful because the geodesics in this geometry are simple (after one more
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coordinate transformation). Since Rindler space is just a part of flat Minkowski

space, one can determine geodesics in it by changing variables to Cartesian co-

ordinates, X = ρ cosh η and T = ρ sinh η. In X,T coordinates, geodesics are

straight lines, X = X0 + V T . In the Rindler coordinates this is

ρ =
X0

cosh η − V sinh η
. (4.8)

Hence, at late times when η = 2πt/β is large, the trajectory obeys

ρ(t) ≈ 2X0

1− V
e−2πt/β. (4.9)

This means that, according to Eq. (4.4), the infalling particle gets exponentially

close to the horizon at late times.

The second part of the calculation is to determine the minimum size of a

boundary region whose entanglement wedge just contains ρ(t). It is easy enough

to solve this problem in special cases numerically, but a general analysis is pos-

sible when a boundary region A is large compared to the thermal scale. In this

case, the RT surface of A hugs the horizon for much of its extent, and the es-

sential physics can be understood from the shape of the RT surface in the near

horizon region.

Let A be a d-dimensional disk of radius rA. We may specify the RT surface

by giving ρ as a function of ~x in A. Because the RT surface hugs the horizon for

a large part of its extent, it is useful to expand the area functional to quadratic

order in ρ in the near horizon region. The full near horizon spatial metric, to

second order in ρ, is

ds2 = dρ2 +
`2

u2h

(
uh
u0

)2θ/d (
1 +m2ρ2

)
d~x2 (4.10)

where m2 is

m2 =
2(d− θ)

d

(d− θ + z)u
2θ/d
0

4u
2θ/d
h `2

. (4.11)

Changing variables to yi =
`u
θ/d
h

uhu
θ/d
0

xi, the area is

area =

∫
ddy det

(
∂iρ∂jρ+

(
1 +m2ρ2

)
δi,j
)
. (4.12)

Using det(1 +X) ≈ 1 + tr(X) valid for small X, the small ρ expansion reads

area ≈
∫
ddx

(
1 + dm2ρ2 + (∇ρ)2

)
(4.13)

where ∇ stands for a spatial derivative.
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Varying the area with respect to ρ, the RT surface obeys the equation

∇2ρ− dm2ρ = 0. (4.14)

The solutions to this equation grow or decay as e±
√
dm2|~y|. The growing solution

is the physical one, corresponding to the RT surface heading away from the hori-

zon. Given an initial value ρmin, after a distance |~y| ∼ log ρmin√
dm2

, the RT surface

is an order one distance from the horizon and the small ρ expansion is invalid.

After it has significantly separated from the horizon, the RT surface is expected

to reach the boundary after a further distance in ~y that is roughly independent

of its extent on the horizon. Hence, for the purposes of determining the min-

imum size boundary region needed to include a point ρ(t) near the horizon, it

suffices to account just for the extent near the horizon since the minimum size

boundary region is large but the part away from the horizon doesn’t give a large

contribution.

Since ρ(t) is exponentially small for large t, setting ρmin = ρ(t) gives a way to

determine the minimum extent of A of balancing the exponential growth of the

RT surface with the exponentially small initial condition. As discussed in the

previous paragraph, taking the radius rA of the disk A to be roughly the value

of |~x| (not ~y) needed to escape the near horizon region, the balance is

√
dm2

`u
θ/d
h

uhu
θ/d
0

rA =
2πt

β
. (4.15)

The right hand side can be simplified to give√
(d− θ)(d− θ + z)

2

rA
uh

=
2πt

β
, (4.16)

which gives ballistic expansion with a velocity

rA
t

=
2πuh
β

√
2

(d− θ)(d− θ + z)
. (4.17)

Converting uh to a temperature gives

rA
t

=

√
8π2

(d− θ)(d− θ + z)

(
d− θ + z

4π

)1/z
(
uz−10 β

)1/z
β

. (4.18)

Comparing to the holographic OTOC calculation, the rate of growth of the

entanglement wedge is indeed the given by the butterfly velocity, which for these

geometries is also

vB =

√
8π2

(d− θ)(d− θ + z)

(
d− θ + z

4π

)1/z
(
uz−10 β

)1/z
β

. (4.19)

56



In the limit θ → 0 and z → 1, which is the CFT limit, the butterfly velocity is

vB →
√
d+ 1

2d
. (4.20)

This is the value reported in the main text. It is interesting to compare this to

the speed of sound, which in a CFT is vs =
√

1
d and which obeys vs ≤ vB.

E Entanglement growth bound

In this appendix we present a more detailed argument, following the one sketched

at the end of Sec. 2, for vE ≤ vB. The idea, again, is that the region At contains

all the information in A if the velocity defining At is the butterfly velocity (plus a

buffer that grows that takes care of details like the broadened wavefront discussed

in Sec. 3). In terms of relative entropy, we expect something like S(ρAt‖σAt) ≥
S(ρA‖σA) where σ is a thermal state. Such a statement can then be used to show

vE ≤ vB. For convenience, I have highlighted all the non-trivial assumptions

made in the argument. Most are technical and can be shown to hold in some

restricted settings.

The system is d-dimensional and defined by a Hamiltonian which is a sum of

local terms

H =
∑
x

hx. (5.1)

The local Hilbert space dimension, dimVr, is assumed to be finite, although it

could be large. We consider a set Ω of uniform states which have a given energy

density; we also include small perturbations by local operators in Ω provided

they do not substantially change the energy density. The light cone physics is

instantiated as follows: For any two states |ψ1〉 and |ψ2〉 in Ω, the time evolution

operator obeys

|〈ψ1|U |ψ2〉 − 〈ψ1|UAtUAc |ψ2〉 ≤ ε, (5.2)

where for any region A, At is the expansion of A by δ` = vLt in every direction.

Note that we expect based on App. C that we can take vL = vB (up to a buffer

region) [Assumption 1], where vB is obtained from OTOCs in a thermal state

with the same energy density as states in Ω. For convenience in the argument,

we will set vL = vB + δv, so that the result will be vE ≤ vB + δv for any δv > 0.

The linear size of A is denoted ` and we work in the regime where ` � δ`.

Since At is the expansion of A by δ` = vLt + `0, it overlaps with Ac. Using the

form in Eq. 3.3, we expect that the squared commutator evaluated at r = vLt+`0
is

C(vBt+ δvt+ `0, t) ∼ exp

(
−λ (δvt)1+p

vB(vBt)p

)
= exp

(
−λ (δv)1+p

vB(vBt)p
t

)
. (5.3)
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Hence for any δv > 0, the OTOC decays at least exponentially in time. We

therefore expect, following App. C, that ε may be taken to decay exponentially

with time [Assumption 2].

Let Ũ = UA′UAc and let ρ0 = |ψ0〉〈ψ0| be the initial state of the whole

system. For convenience in the argument, ρ0 is taken to be pure. We also assume,

following the analysis in App. C, that Ũ does not substantially increase the energy

density, so that both U |ψ〉 and Ũ |ψ〉 are in Ω for all |ψ〉 ∈ Ω [Assumption 3].

We next compute the trace distance between Uρ0U
� and Ũρ0Ũ

�. Since these

states are pure, it follows that

‖Uρ0U � − Ũρ0Ũ �‖1 = 2− 2|〈ψ0|U �Ũ |ψ0〉|2. (5.4)

Since Ũ |ψ0〉 and U |ψ0〉 are in Ω, the inner product can be bounded as

|〈ψ0|U �Ũ |ψ0〉 − 1| ≤ ε. (5.5)

Hence the trace distance is bounded by

‖Uρ0U � − Ũρ0Ũ �‖1 ≤ 4ε. (5.6)

To set up the relative entropy calculation, define σ0 = e−H/T /Z to be the

thermal state of the whole system at temperature T . The temperature is chosen

to match the energy density of state ρ0. The thermal state is independent of

time,

σ = Uσ0U
� = σ0, (5.7)

and it is contained in Ω. It is also useful to define σ̃ = Ũσ0Ũ
�. Because Ũ is not

the exact time evolution, the state σ̃ is not exactly time-independent and is not

exactly equal to σ = σ0, but it is close almost everywhere. Defining H̃ via the

equation

σ̃ =
e−H̃/T

Z̃
, (5.8)

we assume that H̃ is close to H with the difference concentrated near ∂At [As-

sumption 4]

The tilde variables are useful because the approximate time evolution opera-

tor Ũ can be reversed on At to reveal the original state on A. Defining ρ̃ = Ũρ0Ũ
�

and recalling that Ũ = UAtUAc , unitary invariance and monotonicity of relative

entropy give

S(ρ̃At‖σ̃At) ≥ S(ρ0,A‖σ0,A). (5.9)

To use this equation, we need to know the physical content of − log σ̃A′ and

− log σ0,A.

The operator − log σ0,A is assumed to be approximately equal to HA/T +

constant, the physical Hamiltonian truncated to region A divided by the tem-

perature. The difference between HA/T and − log σ0,A is localized near the
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boundary of A [Assumption 5]. We write

σ0,A =
e−(HA+δHA)/T

ZA
(5.10)

where ZA = Tr(e−(HA+δHA)/T ).

Now consider the relative entropy of ρ0,A relative to σ0,A. We have

S(ρ0,A‖σ0,A) = Tr(ρ0,A(HA/T + δHA/T )) + logZA − S(ρ0,A). (5.11)

Using the thermodynamic identity

logZA = S(σ0,A)− Tr(σ0,A(HA/T + δHA/T )), (5.12)

the relative entropy is

〈(HA/T + δHA/T )〉ρ0,A − 〈(HA/T + δHA/T )〉σ0,A − S(ρ0,A) + S(σ0,A). (5.13)

Recall that T was chosen so that the thermal state had the same energy density

as state ρ0,A. Hence the average of HA/T approximately cancels between σ0,A
and ρ0,A. Similarly, we expect that S(σ0,A) will be approximately equal to sT |A|
where sT is the thermal entropy density provided A is large [Assumption 6].

These remainder terms can be combined with the δHA terms to write

S(ρ0,A‖σ0,A) = sT |A| − S(ρ0,A) + δsξ|∂A| (5.14)

where ξ is some length scale that does not depend on the details of ρ0,A and δs

is an entropy density.

The physics is that the various remainder terms in the relative entropy scale

like the surface area |∂A| ∼ `d−1 times a thickness ξ up to some constant δs

which measures the number of relevant degrees of freedom. For lattice models

that are well described at long wavelengths by a quantum field theory, ξ might

be of order the thermal length and δs might be of order the thermal entropy. In

this case, we would also expect that ξδs is not UV divergent, but for the purposes

of the argument this is actually not crucial.

Now we apply the same logic to S(ρ̃At‖σ̃At). Since H and H̃ are close, the

extensive term 〈H̃At〉 still approximately cancels between ρ̃At and σ̃At . The ε

suppressed corrections can be encapsulated by writing

S(ρ̃At‖σ̃At) = sT |At| − S(ρ̃At) + δs̃ξ̃|∂At|+O(ε|At|). (5.15)

As indicated above, we will be taking δ` large enough so that ε|At| is small, even

if the prefactor is UV sensitive. We can make ε|At| small while maintaining the

limit δ` = vLt� ` because t need only be at least d log `+O(`0) in size to make

ε|At| small.
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Assembling all the pieces, the monotonicity statement Eq. (5.9) translates to

sT |At| − S(ρ̃At) + δs̃ξ̃|∂At|+O(ε|At|) ≥ sT |A| − S(ρ0,A) + δsξ|∂A|. (5.16)

This can be rearranged to give

sT (|At| − |A|) + δs̃ξ̃|∂At| − δsξ|∂A|+O(ε|At|) ≥ S(ρ̃At)− S(ρ0,A). (5.17)

In a translation invariant state, one can show that the entropy S(ρ0,A) is an

increasing function of the region size up to half the system size. Using S(ρAt) ≥
S(ρA) gives

sT (|A′| − |A|) + δs̃ξ̃|∂A′| − δsξ|∂A|+O(ε|A′|) ≥ S(ρ̃A)− S(ρ0,A′). (5.18)

The right hand side is the entropy of region A at time t under the Ũ dynamics

minus the entropy of region A at time zero. Since we want the entropy growth

under U instead of Ũ , we use the Fannes-Audenaert inequality to write

|S(ρ̃A)− S(ρA)| ≤ 4ε|A| log dimVr. (5.19)

Absorbing the remainder 4ε|A| log dimVr into the O(ε|At|) term gives

sT (|At| − |A|) + δs̃ξ̃|∂A′| − δsξ|∂A|+O(ε|At|) ≥ S(ρA′)− S(ρ0,A′). (5.20)

Note that we did need finite local Hilbert space dimension, but the extra time

we need to ensure that ε log dimVr is small only grows logarithmically.

By construction we have |At| − |A| = |∂A|δ`[1 + O(δ`/`)]. Also, |∂At| =

|∂A|[1 +O(δ`/`)]. Now we divide both sides of Eq. (5.20) by t to give

sT vL|∂A|

(
1 +O(δ`/`) +

δs̃ξ̃ − δsξ +O(δ`/`, ε|At|)
sT vLt

)
≥
S(ρA)− S(ρ0,A)

t
.

(5.21)

By taking t large enough such that the term in parenthesis is close to one, we

conclude that the average rate of change of the entropy of A is bounded as,

sT vL|∂A| ≥
S(ρA)− S(ρ0,A)

t

∣∣∣∣
t large

. (5.22)

To be precise, we need vLt much larger than (δs/sT )ξ and (δs̃/sT )ξ̃ and we need

t large enough so that ε|At| is small. This must be achieved while maintaining

vLt � `. Of these conditions, the requirement that ε|At is likely the most

stringent. In particular, it involves microscopic data of the system like the local

Hilbert space dimension. However, because ε decreases exponentially with t,

taking t of order d log `+ log(microscopic constants) should suffice to guarantee

ε|At| is small. The hierarchy

`� vLt� d log `+ constant (5.23)
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can always be achieved for sufficiently large `. Hence for sufficiently large regions

we can show that the average rate of entropy increase is bounded by sT vL|∂A|.
Physically, we might be interested in the rate of increase of entropy in a low

energy state of a lattice model whose low energy dynamics is approximated by a

conformal field theory, for example. In this case, scaling symmetry dictates that

vE is independent of region size, hence we can use a very large region to prove

the entropy growth bound and then be confident that it applies also to smaller

regions. Thus vE ≤ vL in this case, as claimed.

It is worth commenting that this bound is much tighter than the naive lattice

bound in which the microscopic Hamiltonian appears. For example, if a is the

lattice constant and J is the typical interaction strength, then the microscopic

bound on the rate of change of entropy scales like J |∂A| log dimVr
ad−1 . The Lieb-

Robinson speed will be of order vLR ∼ Ja, so the microscopic bound can be

written vLR|∂A| log dimVr
ad

. The factor of log dimVr/ad is of order the thermal

entropy density at infinite temperature. Hence the improved bound amounts to

replacing s∞ → sT and vLR → vB.

Let me also make a few comments concerning the main assumptions. As-

sumptions 1, 2, and 3 are all related to the decomposition of U into UAtUAc

based on App. C. The arguments there are physically plausible and careful but

not entirely rigorous. Assumptions 4, 5, and 6 are technical assumptions about

the structure of thermal states. They are also physically plausible, at least for

chaotic systems, but there is work to be done is they are to be proved in general

or from some simpler assumption.
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