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In this paper the general formalism of Kramers indicating the existence of superexchange interaction has
been reduced, under simplifying assumptions, to the point where actual formulas for the interaction can be
written down directly in terms of spin operators, with certain exchange and transition integrals as param-
eters. Two results of physical interest are the following: (a) superexchange must be expected to show the
directional properties (as far as directional relations of interacting magnetic ions are concerned) of the
orbitals in the outer shell of the non-magnetic connecting ions; and (b) the sign of the effective exchange
integral depends upon the sign of the internal exchange coupling of an added electron on the magnetic ion.

I. INTRODUCTION

N the course of a general study of the phenomenon
of antiferromagnetism! it became clear that in many
substances the atoms which strongly interact magneti-
cally are quite definitely separated from each other by
intervening non-magnetic ions. In such substances as
MnSe and MnTe this can be verified simply by drawing
spheres of ionic radii about the anions, which then
separate practically completely even nearest neighbor
cations. However, the best illustration of this fact is
the substance MnO, in which, by means of neutron
diffraction,?> Shull has been able to actually identify
the pattern of magnetic spins below the antiferro-
magnetic Curie point. This pattern was at first bafiling,
since it showed that the 12 nearest neighbor spins
(MnO is an NaCl structure; the Mn*+ ions are thus in
a face-centered cubic lattice) to a given spin are un-
correlated with this spin; instead, the four separate
simple cubic lattices of which the f.c.c. lattice is made
up are each lined up in a perfect antiferromagnetic
pattern, but entirely uncorrelated one with the other.?
The pattern is indicated in Fig. 1.4

This pattern means that the strongly coupled Mn*+
ions are separated by a supposedly non-magnetic O~
ion directly between them, as we can see from Fig. 1.
The Curie point of MnO is 122°K ; this means that the
exchange coupling between these separated ions is more
than a tenth of ordinary exchange integrals (for in-

1 To be published in a series of papers by G. H. Wannier and
the author.

2 C. G. Shull and J. S. Smart, Phys. Rev. 76, 1256 (1949). Dr.
Shull has kindly given us more recent results as to the most prob-
able actual pattern present.

3 Dr. Shull informs us that the data are not inconsistent with a
pattern suggested by Neél, which has the sublattices not uncorre-
lated but arranged (presumably by weaker forces of some kind)
in such a way as to make all spins parallel in 111 planes, and these
planes antiparallel in succession. Such a pattern is not different
in essentials from Fig. 1, and still requires strong next nearest
neighbor interaction.

4In a later paper of this series we shall show that there is
theoretical as well as experimental evidence for the pattern found
by Dr. Shull. A modified Weiss molecular field treatment indi-
cates that, if 7. is the Curie point and 6 the constant in x=c¢/(T+6),
a value of 6/T.=35, as in MnO, indicates that the next-nearest
neighbor interaction is high and that the pattern is probably that
of Fig. 1. Also, quantum mechanical considerations seem to indi-

cate that possibly no nearest neighbor antiferromagnetism can
exist in the f.c.c. lattice.

stance in Fe), and it seems inconceivable that this
large magnitude can come from “ordinary” or ‘“‘direct”
exchange. Thus we are led to believe that the primary
interaction in MnO, and to a lesser certainty in other
similar antiferromagnets (FeO, MnS, etc.) is a super-
exchange interaction operating through the interme-
diary of the O~ ions.

II. A SIMPLE CASE

Kramers?® first pointed out that it is possible to have
an exchange spin-coupling through the agency of inter-
mediate non-magnetic atoms. The resolution of this
paradox lies in Kramers’ mechanism: his assumption
that “excited states” of the intermediate atoms are
present is equivalent to assigning a weight in the total
wave function to configurations in which the inter-
mediate atoms have some paramagnetism. As an ex-
ample we may take such a crystal as MnOj; in addition
to the totally ionic state Mn*+O~— it is reasonable
from all available evidence to allow a considerable
admixture of the state in which at least one p-electron
from the oxygen has gone into an s or d-state on Mn*+,
and thus the oxygen is paramagnetic and can enter into
“magnetic’’ interactions.
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F1G. 1. Pattern for the MnO structure.
S H. A. Kramers, Physica 1, 182 (1934).
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Let us, to fix our ideas, think of the system of two
magnetic ions, such as Mn*+, separated by an O~ ion.
We shall, for simplicity, consider only two of the elec-
trons on the O~ ion, assuming them to be in the same
p-state; in addition we shall consider the magnetic
ions as possessing one electron each, in (for example) a
d-state. (We always ignore orbital moments, however,
assuming them to be quenched). By hypothesis there is
no direct overlap between the two d wave functions;
also by hypothesis there is a finite probability that an
electron will jump from the O~ ion into (perhaps) an
s-state on one of the magnetic ions. We must think (as
Kramers did not point out) of this s-state as coupled by
some strong spin dependent interaction with the d-elec-
tron already on the magnetic ion; otherwise there is no
superexchange.

Qualitatively it is now easy to see the process in-
volved in superexchange. To the ground state only two
spin-states are available, since the p-state spins are
necessarily antiparallel: a singlet and a triplet. If,
for simplicity, we assume that in the “excited” state
the two electrons, which here occupy one magnetic ion,
are coupled strongly antiparallel by internal inter-
actions there are in this state also a singlet and a
triplet only. The situation is shown schematically in
Table I. We see that in the excited state there is a triplet-
singlet splitting because there can be an appreciable
exchange integral between the remaining p-electron on
the negative ion and the magnetic electron on the mag-
netic ion to which an electron has not been transferred.
Now, we assume that the true wave function is given by

‘ps, t— a‘psr tground+ blPs‘ texcited' (1)

The part of the Hamiltonian causing the ground-ex-
cited transition is not such as to mix singlet and triplet
states. Thus one or the other superscript in (1) holds
and there is a singlet-triplet splitting for the true wave
function of approximately

AEs—t (apparent) = b (AE) s—t(excited)- (2)

This is equivalent to a normal exchange coupling, re-
duced by the quantity b%. Note that the total number of
spins has not changed, and thus that the effective
magneton number will not be altered greatly by super-
exchange coupling.

III. THE KRAMERS FORMULA

In his original paper, Kramers gives a perturbation
treatment of the superexchange problem. His ideas are
applicable to a system for which we define a “‘ground”
state in which: (a) the electron wave-functions are
orthogonal, (b) all “non-magnetic” ions contain only
filled shells, (c) the effect of exchange between atoms is
neglected, although exchange internal to the ions is
included.® The unperturbed Hamiltonian H, is that

6 The assumption (¢) will be justified later simply on the grounds

that the internal exchange splittings are as large as the ground-
excited orbital splittings.

SUPEREXCHANGE INTERACTION 351
TaBLE I. Interaction scheme in superexchange.
Electron number 1 2 3 4
]
:;:“ Electron is on ion magnetici (@ 2t O-- magnetics
O% in orbital state d1 b ? d
Eh .
= . singlet spin up . (antiparallel) spin down
S Magnetic (no splitting because no 1-4 interaction)
O State . i
triplet spin up (antiparallel) spin up
;g Electron is on ion magnetict magnetici o~ magnetica
3 .
6% in state di s1 P da
'8;,}-' . singlet (antiparallel) spin up spin down
=" Magnetic
M State . . (splitting if 3-4 interact)
o triplet (antiparallel) spin up spin up

which this ground state satisfies. He then shows that
one lifts the permutation degeneracy of this ground
state neither by including the exchange terms Hes
(violating (c)) nor by the transition terms H*" (violating
(b)) separately, but that the first terms entering are of
third order in these interactions, containing H*" twice
and H once.”

We shall take Kramers’ final expression for the super-
exchange interaction matrix H,y as given; it is simply
the third-order perturbation under these conditions:

([ H | w)(u|Ho=| ') (' | H" |t
&% (BE—E)(Es—E)

1=

Here ¢ and ¢’ refer to the various initially degenerate
spin states of the ground state, while » and #’ are vari-
ous spin states of the excited orbital state. We have im-
plicitly included the strong internal exchange couplings,
such as that postulated in our simple model between the
d and s-electrons on Mn*, in the unperturbed Hamil-
tonian, so that E, and E,  are not necessarily equal.
H,, is then an effective Hamiltonian due to the third-
order perturbation, acting on the unperturbed states.
So far we have been presenting essentially the ideas
of Kramers. The purpose of this paper is to find a
method of evaluating the sum (3) in such a way that
even in complicated cases we can immediately write
down H. in terms of spin operators referring to the
ground state. These can then be evaluated to give the
spin-dependence of the superexchange coupling.

7 For some applications it is of interest to point out that Htr
contains, besides obvious terms giving the non-ionicity of the
compound (thus violating assumption (b)), some other terms
which result from the physical fact of violation of assumption (a).
If, in the simple model of Table I, the wave-functions “d”’ and
“p” are not orthogonal, there is a splitting in the ground state.
Since we have artificially excluded this possibility by ortho-
gonalizing, there must be terms in H!" restoring the actual
physical state of affairs. These terms will have the order of magni-
tude, (exchange integral) X (overlap integral),2 which is generally
much smaller than the interactions involved in the antiferro-
magnets. However, such terms might go far in explaining the
observed magnitudes of exchange interactions in more magneti-
cally dilute substances.
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IV. EVALUATION OF THE KRAMERS EXPRESSION

A short introductory note on the method to be used
is in order. The basic idea is similar to one Serber® used
in a study of configuration interactions in atomic
spectra: we shall extend the Dirac vector model of spin-
coupling by exchange forces to the problem of the
interaction of two configurations, which we shall call
the ground (ionic) state and the excited state. If this
interaction can be assumed small Kramers’ matrix ele-
ment (3) is the correct form for it, written as a perturba-
tion on the levels of the ground configuration. There is a
second-order effect, but this is necessarily the same for
all parts of the ground configuration and merely changes
the average total energy of the ground state.

We shall treat at first only the four-electron system
with the ground configuration (4) consisting of one
electron on each of two magnetic ions, (orbitals d; and
d,) and two electrons in one orbital (p) of the interven-
ing ion. The excited configuration (B) is that in which
one electron from a p-orbital has gone into an orbital on
one of the magnetic ions (say “s,”’). Later work will
indicate the essentially easy extension to more com-
plicated systems. The Kramers expression (3) involves
three matrix elements, two of which connect A with
B (M 4p) and one of which involves only the excited
configuration (M gg). In order to couple the d; and d»
spins, it is necessary to have fwo spin-dependent factors
in this expression. One of these is always furnished by
M gp, which gives a coupling of p and d,, but in order
also to couple d; with p and “complete the chain” be-
tween d; and d» there must be a second spin dependence
either in M 4 or hidden in the expression (3). There are
three ways in which this spin-dependence can be
achieved: (a) M 45 may be an exchange matrix element
causing the transition. We treat this case in Appendix I,
although we believe it to be secondary. In the other
possibilities we allow M 45 to be spin-independent, but
assume that the energy or the very existence of the
separate multiplets of the configuration B are so spin-
dependent that the denominator terms in (3) provide
the second spin-dependence, either (b) due to strong
internal exchange coupling between s, and di, or (c)
due to the operation of the exclusion principle if s; and
d; happen to be the same orbital, which would give a
result like our “‘simple example.”

Cases (b) and (c) may be treated together. To treat
these two cases we shall, for the time being, assume
that the forces causing the actual orbital transition are
of a one-electron type; we might use a Hartree field
caused by the unperturbed orbitals to determine the
transition probabilities. Since one-electron Hamil-
tonians are spin-independent we shall show that
(¢{| H"|u) can be thrown into a very simple form. For
example, we may choose as our basic wave-functions
for orbitals a, b, c, d, etc. the functions

PY(s1525354° + ) =v(s)
=ALa(1)xs1(1)5(2) xs2(2) - - -etc.] (4)

8 R. Serber, Phys. Rev. 45, 461 (1934)
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where the x’s are the basic spin-function « and 8, and
A is an operator antisymmetrizing these products in
electrons, 1, 2, 3---. Then if the orbital states are

¥e=a(1)b(2)c(3)d(4), - -, )
Yu=0a'(1)b(2)c(3)d(4), - - -,

(tl H”| u) = (a'l H"l al)stu; HtrzHl—electrom (6)

where ¢ and » are taken to represent the sets of spins
s1, So- -+ belonging to the various orbits. One difficulty
is here apparent : if some of the sets abcd- - -, or a’bed - - -,
of orbitals are identical, some of the wave-functions (4)
will vanish identically or become linearly dependent.
For the time being we shall use Serber’s trick of pre-
tending that the orbitals are not identical, and will
later remove the non-existent wave-functions by a
simple strategem.

In our further development it will be necessary to
choose for our upper states, #, not the basic functions
(4) but linear combinations of these chosen in such a
way that part or all of the spin-dependent exchange
Hamiltonian is diagonalized. In this case the new states
are obtainable by means of a unitary (canonical)
transformation from the old states (4) (which we shall
call “s”):

¢u=23(u|3)‘p(s)- (7)

Similarly, it will be necessary to pick definite linear
combinations, ¢, for the lower states (here primarily in
order to choose states which are allowed by the sym-
metries in the orbital function) ; again there is a unitary
transforming matrix (¢|s). Now we can write down a
new form for the transition matrix (¢|H'"|«), in terms
of any such linear combinations:

I H | w)=(a| H"|a") L o (t] $)(sr) (" | )
=(e[H"|a)(t]u). (8)

Thus the matrix causing transitions between the two
sets of orbitals is simply a constant times the appro-
priate canonical transformation of the spin functions.
The step of starting always from (4) means that we
have a 1—1 correspondence among spin functions for
the two states, in spite of the difference in orbitals;
thus the canonical transformation (¢|«) exists.

Now it is necessary to consider the spin-dependent,
or exchange, part of the Hamiltonian. The part of the
perturbation (#|H®*|#') is such a spin-dependent
Hamiltonian. In addition, before superexchange can
occur we showed that it is necessary that the problem
contain a strong spin-dependent coupling (included,
as we pointed out, really in the unperturbed Hamil-
tonian) sufficient to affect appreciably the energy
levels E,. Among such “strong” couplings we include
the infinitely strong coupling involved in the use of
the same orbital for two electrons.

The spin-dependent part of the Hamiltonian, re-
ferred exclusively to upper states #, can be written
down® in terms of operators referring to the spins of

°P. A. M. Dirac, Quantum Mechanics (Clarendon Press,
Oxford, 1930), first edition, p. 216.
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electrons in the various orbitals. If we have orbitals
i, 7, etc. the Hamiltonian is

V=—3 i<;4V:i(14+ 0 0;)+const. 9)

Vi is the matrix element referring to interchange of
orbitals 7 and j. We divide (9) artificially into two parts

V=V+V, (10)

where V', contains all the terms which are included in
E,. In our simple case of Table I, we would have:

V= —%[Vd]sl(l-}—ﬂdl' 0s1)+ Vpd2(1+0p‘ Udg)], (11)
where

V1= %Vd131<1+0d1' 081)
V2=’%Vpd(1+0‘p' (TdQ).

Suppose that we choose our upper spin-states # in such
a way as to diagonalize the operator V. Then the basic
Eq. (3) for the coupling becomes, with (8) (upper and
lower states differ only in the choice of orbital a or o’
for one electron):

(¢} ) (] V2| )] £)
(Eu_"Et)2

Hy=|(a|H|a)|% (12)

If V, is sufficiently strong that we may say that only
those states belonging to the lowest eigenvalue E, in
(12) can occur, the others being completely absent
because of large denominators, it is open to us to modify
V. in such a way as to leave out entirely the high states.
Then we are permitted to “pretend” that E,—E, is
constant for all states.

The method of modifying V, in such a way as to
eliminate the states belonging to higher values of E,
is well known. We simply multiply by the appropriate
projective operator which ‘“projects” V, on the sub-
space belonging only to the lowest eigenvalue of V.

V2,= PV2)
or

(V2’)uu’=Zu”Puu”(V2)u"u’- (13)

At this point it is possible also to take into account
the effect of having pairs of identical orbitals in either
upper or lower states. In the upper states we simply use
a slight modification of the above procedure. That is,
we ignore the states which are not allowed—states
which contain the same pair of orbitals with parallel
spins—by applying the appropriate projective operator
(such as (16) below) to eliminate such states. However,
we shall show in Appendix II that this is not quite
enough to take care of the linear dependences between
states when pairs of orbitals are identical (for example,
thestates A[a(1)a(1)a(2)8(2) Jand A[a(1)8(1)a(2)B(2)]
are identical but for sign.) There we show that, because
the unitary transformation (7) acting on such an “in-
complete” set of states can lead to non-normalized wave
functions, we must multiply the projective operator
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by a factor 2 to take care of a re-normalizing factor
whenever a pair of orbitals are equal.

If pairs of orbitals in the lower state are identical, we
can take care of this fact simply by ignoring such states
in our final result. We shall, later, actually take ad-
vantage of the fact that there is a basic limitation on
the permissible lower states. Again, however, for every
pair of identical orbitals we must multiply our final
interaction by 2 to renormalize the wave functions, as
will be shown in Appendix II. Now that we have a
constant denominator in (12), we can apply the rules
of matrix multiplication and obtain simply:

[(a|H*[a")]?
[(Eu“Et)(lowest)]2
X u(tw) (u| Vo' |) (] ) =02 | V' [#)  (14)

e =

where
(a|H*|d')

-— (15)
(Eu"* Et) (lowest)

We see that we have now written down the super-
exchange interaction operator H, in terms of V.,
which is in general easily obtainable for a particular
case. As it stands in (13), V.’ is an operator working
only on spin states of the “excited” state; however, it
is just the idea of our calculation, and of the simplifica-
tion (8), that we can establish a precise correspondence
among states / and %, and, in the end, simply write V'
as though it pertained to electrons in the lower states.
Physically, this means that since the transition prob-
ability is spin-independent, the electrons retain their
spins on making the transition.

Our example of Eq. (11) will make this clearer. There

are two cases, depending on the sign of the “internal”
exchange integral Va;s:
(A). Vas large, >0. Then parallel spins o4;, os are
favored, and we want to write for P an operator which
eliminates all states for which ¢d; and s are anti-
parallel. Such an operator is

P1=%(3+0d1‘03).
Then in this case (inserting the extra factor 2):
H;p= 62(t[ i(3+ aody 0‘1)1) Vp2d2(1+ Ops fm?) I tl)- (17)

We have simply read ed; for os, this being the electron
making the transition.

(B). Va4, large, <0 (or d and s are same orbital).
Parallel spins for the d and s orbitals are to be elimi-
nated in this case, and the proper projective operator is!’

P2=%(1—6111‘031) (16,)
H/'=50(t| Vpa(1—0ar-ap)(1+0ps-0a0) | ), (17')

(16)

10 We shall hereafter simply understand the factor 2 when P,
is due to a Pauli principle limitation, i.e. d and s are the same
orbital. Since 2 is unknown anyway, this leads to no important
change in the theory.
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TaBLE II. Sign of the interaction.

If internal coupling
favors spin of
added electron

and exchange coupling
of p-electron and then coupling
other atom is is

parallel
parallel
antiparallel
antiparallel

ferromagnetic
antiferromagnetic
ferromagnetic
antiferromagnetic

antiferromagnetic
ferromagnetic
ferromagnetic
antiferromagnetic

G0 o =

where in both cases

(S { Hj electron f p)
p—/ . (18)
E(bonding)_ E(ionic)

To compute the effective coupling we observe that
¢4 ¢, acting on wave-functions in which o5 is the spin
of one of a pair of electrons in the p-orbital gives an
identically zero result, as it must always make an S=1
state out of an S=0 state, and the S=1 wave functions
vanish identically. Then the true coupling is propor-
tional to

(od1-op(1))(0d2- 0p(2))

op(1)+0op(2)=0; thus the coupling is, by a simple
expansion into components,

(0‘(11' ()'p(l))((!’tlg‘ 0‘p(2)) =— ((Idl‘(!'p)((!dg' O'p)
= “(Gdl'cclz)y

(19)

where the cross-product term iop:(0d1X@d) has
vanished, again because o, vanishes identically.
The effective coupling is thus

—Case A

q:ib“)[/pd((]'/ll'ﬂdz)[ .

+Case B

There is an equal term also present due to transitions
to atom 2 and exchange with atom 1. Note that (17) is
correctly isotropic in respect to lattice rotations.

V. GENERALIZATIONS

Various generalizations of this method from the
simple case come immediately to mind. The most ap-
parent is the generalization to the case in which Vi is
not infinitely strong, but instead leads simply to a
finite splitting of the levels E,, sufficient for the energy
denominators in (12) to be somewhat different. For
example, suppose that in Case 4

(AE) parallel

=x, x<1.

(AE)anti-parallel
Then it is necessary to leave in the sum (12) an amount
of the antiparallel states proportional to x*. A “‘partial
projective operator” which will do just this is

P'=1G+os0)+iv(1—0s )

={G+)+(1—2Yos 0], (20)

P. W. ANDERSON

then

H=1bV,[ 3+ 2)+ (1—) (01 op1) ]
X[140d-0p2] (21)

note that if 22=1, or Viong=0, there is no coupling,
since the singlet and triplet averages of H are not then
different.

The reader may object that the splittings caused by
Hund’s rule that internal exchange favors parallel
spins are, in general, quite small (of the order of 2 to 3
ev) compared to normal orbital splittings, and thus
that x should be nearly equal to unity, and the internal
exchange should also be a small perturbation. Then the
terms considered in the main body of the paper would
be fourth-order, and thus small compared to those due
to exchange transitions, which are considered in Ap-
pendix I. These latter are easily worked out but do not
lead to such simply interpretable results as the ones we
are considering. However, it must be remembered that
the very fact that superexchange is so strong indicates
that the energy level representing ionization of the
anion is very low in the antiferromagnetic crystals, as
one could also conclude by noting that O, Te™, etc.,
have large negative electron affinities. BaO, a compound
similar to those considered, has its first exciton level at
roughly 3.8 ev which is certainly nof large compared to
the 2 to 3 ev exchange splittings. We therefore believe
that the terms here considered are probably the
dominant ones.

A second trivial generalization is to the case in which
the ions have spins of greater than one-half. In this
case we must again guess the direction of coupling of an
added electron (perhaps by Hund’s rule) and proceed
essentially as in the simple case. The projective oper-
ators are derived as follows:

(22)
(22))

(S-0)(s+10) =5 +1=S
(8:0) (s 10y =53=—(S+1)

so that in case we wish to eliminate parallel spin —S
cases we use

S-o S
PS(ami-parallel) = (1"'_‘_‘) T (23)
S/ 2541
and in the opposite case
S-oy\ S+1
PS(parallel) = (1+—") — (23,)
S+1/ 25+1

Here again it is possible to apply the argument of
equation (19) and thus the coupling is always propor-
tional to S;-S..

Table II expresses the available information on the
sign of the interaction.

The dependence of the coupling on the sign of the
internal coupling can be verified in some actual cases,
since by Hund’s rule we know that an electron will be
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added most easily with parallel spin for ions with less
than half-filled shells (Crt* for instance) and anti-
parallel for ions with more than half-filled shells
(Mn*+). Indeed, it is observed that chromium tel-
luride is ferromagnetic, although manganese telluride,
analagous in structure and very similar in many ways, is
antiferromagnetic. The dichlorides of these two ions,
and also of V and Fe, show, again, this sign change
although here the crystal structures are not known.!
Many other compound pairs could easily be investi-
gated for this feature.

It is easily seen that the presence of other electrons
in the same shell as that occupied by the “p”” (or transi-
tion-making) electron does not change the mathe-
matics. So long as only one electron leaves O~ at a
time, the electrons in the shell other than the one asso-
ciated with the absent one are represented in Vi by
infinite terms; thus the wave functions in which they
are not antiparallel by pairs are absent. However,
these wave functions are not considered in the ground
state either; thus these electrons have no effect, since
the related projection operator does not enter the true
Hamiltonian. This reasoning has an interesting conse-
quence: if superexchange occurs through p-electrons it
has a p-type of directionality. That is, if the electron
making the transitions is primarily the p-electron, as
one suspects, the remaining p-electron in the same slate
will provide the exchange coupling. However, this
p-state can only couple with the magnetic ion diametri-
cally opposite to the ion to which the transition is made,
and the strongest coupling will thus “look like” a p
wave-function, with maxima at 180° from the O~ ion.
One must realize, however, that the s-electrons of the
outer shell will contribute a smaller direction-inde-
pendent coupling.

This conclusion is interesting in view of the quoted
results of Shull'? on MnO, in which he finds a strong
coupling of next nearest neighboring Mn ions rather
than of nearest neighbors; this indicates that the super-
exchange directly through the O~ ion may be more
powerful than that between locations making angles of
90° with the O~ ions.!* This directionality property is
simply a result of the superexchange mechanism, and it
should be emphasized as being more general than any
of the special assumptions of the theory such as the
perturbation treatment or one-electron transitions.

It can be shown that the general form of the super-

1t Foex, Le Magnetisme 111, (Strasbourg, 1939) p. 222. Also,
one should note that the theory is not here as well founded,
since the main coupling may not be superexchange.

12 Still a further experimental confirmation of our general ideas
can be found in the Weiss molecular field theory mentioned in a
previous footnote applied to a series of compounds MnO, MnS,
MnSe, MnTe. Since the electronegativity of the anion decreases
along this series, one would expect a decrease in ionic character,
and thus an increase in the constant b of Eq. (15). At the same
time, the molecular field theory leads us to expect that the 6/7.
ratio should decrease with increasing superexchange coupling
of the Mn*+ ions and thus should decrease along this series. This
seems to be the case; the values are (Bizette, Thesis, Paris 1946):
MnO: 5.0; MnS: 3.2; MnSe: ~3.0.
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exchange interaction is much the same when the
electronic structure of the entire solid is taken into
consideration. The easiest procedure in this case is to
use the full Hamiltonian for the unperturbed energy
for all but a few atoms surrounding a pair of chosen
magnetic lons; then the exchange and “state-mixing”
Hamiltonians are introduced as simultaneous perturba-
tions on the ground state so defined. This is legitimate
as long as there is only a small probability of two elec-
trons “jumping” to or from the same ion at the same
time; i.e., as long as the perturbation treatment is
valid.

This paper incorporates the results of many helpful
discussions with several of my colleagues, particularly
Drs. G. H. Wannier, C. Kittel, and W. Shockley.
Professor J. H. Van Vleck made several very useful
suggestions.

APPENDIX I

Consideration of Transitions Involving
Exchange

In the text we have always assumed that the potential causing
the transition between orbitals was of the form 2V (r;) involving
only one-electron forces. In case the potential contains important
terms of the form 2V (r;;) one can carry through the same kind of
analysis, but the results are somewhat more complicated and lead
to less clarification of the problem.

Let us confine ourselves to the simple case worked out in the
text. Then the type of exchange integral which is important is

V12=fsl(l)dx(z)ﬁe(3)dz(4)V(hz)dl(l)[h(2)P2(3)d2(4)~ (24)

The essential idea is that the proof of Dirac? for formula (9) does
not break down in this case; the actual transition matrix ele-
ments are matrix elements of the operator

V=%Vin(l+e:-09), (25)

where we have made the same identification of orbitals in ground
and excited states as before:

0 =spin matrix of electron in [gi Egigizgg] orbital
(26)
0y =spin matrix of electron in [f: E;fg;tsg;]
The proof merely follows the lines of Dirac’s proof. First: as an
operator acting on products of spin+-electron wave functions,
V(ri;) is equivalent to

@n

where V;; is simply an orbital exchange matrix element of the type
(24), while Po(zj) is the permutation operator interchanging
orbitals 7 and j. Then Po(ij) on wave-functions forced by the
Pauli principle to be antisymmetric is just equivalent to the same
permutation acting on the spin wave-functions corresponding to
the two orbitals, by the usual argument:

Poy(S) = =P 1P(S) = £Psy(S),

where P71 is the permutation operator acting on both spins and
orbitals. Thus the result of operating with Po(#j) on our basic
wave-functions (4) is the same as that of multiplying by an

ViiPO(ij))

18 R, Serber, reference 8, has also proved the theorem used here,
that (25) is true (except for factors vZ) even for configuration
transitions.
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operator Pg(ij). Ps(if) can then be proved to be:
Ps(ij)=%(1+0:-0)). (28)

Now the steps by which we made it possible to ignore the energy
denominators in (3) can be carried through as before, leaving us
with simple matrix multiplication of the three types of matrix
elements. The transition matrices (¢| H|%) here are simply

$Vi(14-01-02),

which multiply the “modified” exchange matrix (x| Vy'|u).
Let us do an actual example. Suppose that the energy denomi-
nators do not enter, and thus that

Vi =§Vu(l405-0,).

Both exchange and one-electron transitions are assumed to be
important, and thus the matrix element causing transitions is

V(140100 +(a| H|a').
Then Kramers’ expression (3) is

T A )
Zu— L

Viz (1+01'02)] ,}.
x[b+Eu——E, 2

The square of $(1+¢,-0>) is unity, since this is the representative
of a simple permutation operator, and thus, since it commutes
with (14-03-04), the part of this expression involving V2 has no
spin-dependence. Similarly the 2 part has no spin-dependence
since we have left out the spin-dependence due to the denomina-
tor. Only cross-terms between the one-electron and spin transi-
tions remain:

bVlZVM

E,—E;

Hy= X3¢ (1401-02)(1405-0,)1(1)

ViV
E,—E,

We see that here the sign of the coupling cannot be predicted by
Hund’s rule, although our other conclusions are still valid, and
in particular the coupling is still roughly proportional to the
square of the non-ionicity, and is still a (¢1-04) coupling. One
might expect that this type of coupling, which would be roughly
the same for more than half-filled and less than half-filled shells,
in some cases might predominate over the one-electron coupling,
and as a result in some cases the sign of the coupling might not
change between the two cases, although its magnitude could vary
greatly.

Xi(o-0y).

APPENDIX II

Justification of the Factor 2 Due to Pairs
of Identical Orbitals

In this appendix we shall try to indicate the two sources which
lead to an error of a factor of V2 in our transition matrix elements
computed according to the prescription (8) as compared with the
true transition matrix element when identical orbitals are present.
The rigorous proof has been given by Serber (reference 8, pp.
463-464).

First we shall compute the transition probability for a very
simple case. Suppose our configurations are of two orbitals, and
one (A4) has two different orbitals (ab), while the second has two
identical ones (a2). Then transitions will only be possible between
the singlet states

vaS5=3[a(1)5(2)+a(2)b(1) [L(1)8(2) -—a(2)B(1)J} 29)
vS=3v20(1)a(2)[«(1)8(2) —«(2)B(1)].

These are the rigorous nomalized states, and it is easy to see that

ANDERSON

if H=H'(1)4-H'(2)
(WaS|H|y55) = V2[a(1)B(2) —a(2)B(1) I
X[(@()b(2)+a2)b() | H'(1)+H'(2) |a(1)a(2) ]
=V2(a|H'[0) (30)
The result of our prescription (8), however, is perfectly obvious

since both states are singlets, obtained by the same process from
the basic wave-functions (4), and thus

tlu)=1

(31)
and the matrix element is
(a|H'|b). (32)

The first source of error is fairly obvious. The basic wave func-
tions (4) in the case of configuration B are not orthogonal; one is

(1/v2)a(1)a(2)[a(1)B(2) —a(2)B(D)],

and the other is

(A/NV2)a(1)a(2)[«(2)8(1) —a(1)B(2)],

and so the result of the unitary transformation (7) (in this case
simply antisymmetrizing) is

a(1)a(2)[«(1)B8(2) —(2)B(1) ], (33)
which is not normalized, and in fact is too large by a factor of V2.
Thus we predict that the matrix element (32) is too large by a
factor V2 since it is computed on the basis of a non-normalized
wave function. The existence of further orbitals in the configura-
tion does not change this result, and we get the general rule:
“For every pair of orbitals in either configuration which are
identical in one but not in the other, our transition matrix element
must be divided by V2 caused by the linear dependence of the
basic wave functions.”

This factor, unfortunately, is in the wrong direction and makes
the error in (32) now 2 rather than V2.

The other factor of 2 we can find by looking at the steps in
Eq. (30). We notice that the Hamiltonian depends symmetrically
on the coordinates of electrons (1) and (2), and in fact is the sum
of a term for each electron. Thus it happened that a(1)a(2) com-
bined with both a(1)b(2) and a(2)b(1). This is the source of the
missing factor 2. What this means is that Eq. (6) of the text is in
error when orbitals are identical. Actually, there are cases in
which the basic wave-functions combine in case a pair of orbitals
are equal. The wave-function

Ala(D)x1(Da(2)x2(2) - - -] (34)
combines (if x; and x. are different, as they must be), both with

ALa(1)x(1)d(2)x2(2) -+ -], (35)
and, except for a changed sign,
(47-5)  ALa(D)x2(1)b(2)x1(2)- -+ ] 35"

This is due to the fact that (34) is actually identical with the wave-
function with x; and x» interchanged.

Fortunately, since only the singlet wave-function in these two
orbitals can enter due to the fact that there are identical orbitals
in one of the configurations, (35) and (35’) will always enter as an
antisymmetrized linear combination, and the only result of the
failure of formula (6) of the text is the missing factor of 2, due to
the fact that the wave-function with identical orbitals combines
with twice too many wave-functions in the other configuration.

Thus, to take account of these two effects the transition
matrix element must be multiplied by 2/vZ=V2 for each pair of
identical orbitals in either configuration which do not also appear
in the other configuration. We can equally well simply multiply
the total interaction, or if we like the projective operator, by 2.

The separate matrix elements referring only to upper or to
lower configurations are not modified by the presence of identical
orbitals, as was shown by Dirac.® The procedure of the text is
thus shown to be correct.



