
Y
ou were probably told in high
school that there are three phases
of matter: solid, liquid, and gas.
In reality, many more phases
exist. But what exactly is a phase

of matter? How can one phase be distin-
guished from another?

Basically, for a large collection of sim-
ilar particles, a phase is a region in some
parameter space in which the thermal
equilibrium states possess some properties
in common that can be distinguished from
those in other phases. That means that
some discontinuity of the properties oc-
curs at the boundary between the phases.

Traditionally, the properties used to
distinguish between phases of a system are
expectation values of local observable
quantities. By “local quantity,” I mean a
function that depends only on the coordi-
nates and momenta of the particles that are
within some finite distance of a particular
point in space. The density at a point is a
local quantity; so is the number of particles
in a small region close to some point.

For example, as water transitions from
liquid to gas by passing through the boiling
point at atmospheric pressure, the particle
density jumps from high to low. For water,
however, other paths in parameter space go
continuously from liquid to gas and evade
the discontinuity in the density. When two phases
cannot be smoothly connected by any path in param-
eter space, the traditional view is that there must be
a difference in their symmetry properties. For exam-
ple, liquid water is translationally invariant on aver-
age, whereas the crystal lattice of solid ice breaks the
translation symmetry—its particle density has a pe-
riodic modulation. That distinction is sharp, and it
has physical consequences: There must be a phase
transition at the boundary between zero and
nonzero modulation.

The same ideas can be applied to distinguish
phases at very low or even zero temperature. In that
regime, quantum mechanical effects are usually im-
portant; one then speaks of quantum phases. As the
temperature is lowered, the particles find their way
into the lowest-energy state. That ground state is
specified by a wavefunction that depends on the po-
sitions of all the particles. Changes in Hamiltonian
parameters, for example the magnetic field, can

cause a quantum phase transition, driving the sys-
tem into one with different symmetry properties
(see the article by Subir Sachdev and Bernhard
Keimer, PHYSICS TODAY, February 2011, page 29).

In quantum mechanics, quantities in general
and observables in particular are described in terms
of operators. A local observable is described by a
local operator, which, as illustrated in figure 1, af-
fects the system only within a finite distance of a
given point, the position of the operator. For two
local operators whose positions are widely sepa-
rated, the order in which they are applied makes no
difference; they commute.

Mind the gap
During the past 30 years, theorists have devised a
paradigm for a different kind of quantum phase—
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and quasiparticle braiding
a topological phase.1–3 Unlike in the traditional
telling, the notion of a topological phase does not
depend on the use of symmetries. Moreover, it in-
volves operations that are not local. 

In describing the phases, I will think in terms of
a system of structureless point particles that could
be moving in free space or, as with electrons in a
crystalline medium, be in the presence of a periodic
background potential. The Hamiltonian determines
both the time evolution of the system and the energy
of its states. It acts locally, meaning that it may be ex-
pressed as a sum of local operators over their posi-
tions; the locality implies that particles have more or
less short-range interactions. Associated with the
Hamiltonian is its energy spectrum, the set of the en-
ergies of all the stationary states of the system.

Application of a local operator to the ground
state typically changes it to some higher-energy ex-
cited state. Physically, applying the operator means
nudging the system as sketched in figure 1, allowing
a photon to be absorbed, or something along those
lines—all of which could be done locally. The result-
ing state contains collective excitations of the parti-
cles, and those are local; at least initially, the state re-
mains unchanged at positions far from the location
of the operator, though the excitations may eventu-
ally propagate away from their point of origin. The
possibility of creating excitations with a local oper-
ator reflects the existence of the system’s micro-
scopic local degrees of freedom.

The minimum energy of a local excitation rela-
tive to the ground-state energy is called the energy
gap. If that gap persists as the size of the system goes
to infinity—say, as the number of particles increases
without bound as the density remains fixed—then
the Hamiltonian, or the system it describes, is said
to lie in a topological phase. The energy gap will de-
pend continuously on the parameters in the Hamil-
tonian. So if a system has an energy gap, that gap
will remain if the Hamiltonian is slightly altered.
According to the definition just given, an ordinary
insulator is a topological phase, but we will see that
not all are so trivial.

Beyond local action
The above discussion leaves unaddressed the issue
of states of the infinite system that cannot be created
by any local operator. Consider the possibility that
such states could have zero excitation energy and so
be degenerate with the ground state. One way that
might occur is if some symmetry of the Hamiltonian
is broken in the ground state. For example, an infi-
nite crystal is a periodic array of particles. Displacing
that array slightly, as in figure 2a, yields a distinct
ground state with the same energy as the original.
But because the translation involves displacing all
the particles, no local operator can effect it.

On the other hand, the two ground states can
be distinguished by the different positions of the

peaks and troughs in their particle densities. Be-
cause the density is a local operator, we can add to
the Hamiltonian a term consisting of a periodic po-
tential, as illustrated in figure 2b, that acts on each
particle. Degeneracies that can be split in that way
are a part of the traditional story, and I will exclude
them from further consideration.

There remains the possibility of degenerate
ground states that cannot be mapped onto one an-
other by application of any local operator and that
cannot be distinguished by the expectation value of
any local operator. In that case a small change in the
Hamiltonian cannot split the degeneracy of the
states.1 In practice, the multiplicity of the degenerate
ground states in a topological phase depends on
both the phase and the boundary conditions, and
there exists a boundary condition for which the
ground state is unique.

Properties that are unchanged throughout a
topological phase are called topological properties.
I have presented two examples so far: the existence,
though not the magnitude, of an energy gap and the
multiplicity of ground states for a given boundary
condition. The multiplicity can differ in distinct
topological phases; if so, that difference provides a
means for distinguishing between the phases. By
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Figure 1. A local operator changes the state of a system only locally—
for example, by moving the positions of a few particles.

Figure 2. (a) A one-dimensional crystal (top) and the same crystal
displaced by less than a period (bottom) are distinct states with the
same energy. (b) If, however, the crystals in panel a are situated in a
potential V with the same period as the crystal, the two states will
differ in energy.
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definition, topological properties don’t change if the
system Hamiltonian is perturbed. Indeed, the term
“topological” suggests an analogy with the field of
topology in mathematics, which studies geometric
properties of an object that are unchanged even as
the numerical parameters that fully characterize the
object’s shape are varied slightly.

If, as I have assumed, the ground-state degen-
eracy cannot be lifted by adding a small local oper-
ator to the Hamiltonian, it follows that all the de-
generate ground states look the same locally. The
states are different over very large scales, but any at-
tempt to capture that difference locally will fail. Like
Macavity the Mystery Cat of T. S. Eliot’s poem, the
difference is always somewhere else at the time. So
topological properties are very much global, collec-
tive effects, but of a much more subtle nature than
the collective effects in traditional phases. Think of
these states as fluids, not crystals, and think of the
wavefunction as a quantum superposition of many
different configurations of the particles, not as dom-
inated by a single one. Their topological properties
rely on some long-range quantum entanglement,
not on conventional correlations. They are like a se-
cretive underground movement whose name is
known to all, whose members are known to none,
and whose influence is long range.

Unerasable excitations
Let us move on to excitations of the topological
phase that cannot be created or destroyed by local
operators and that are not degenerate in energy with
the ground state. Somewhere in space, those states
can be distinguished from the ground state by means
of local operators; otherwise, they would not have a
higher energy. I will assume those regions, often
called defects or cores, are pointlike—as opposed to
strings, for example—and that none of the defects
can be erased using a local operator. In that case I’ll

call them quasiparticles; the nominal position of
each quasiparticle is that of the center of its core. 

Outside each quasiparticle core, the state is lo-
cally indistinguishable from the ground state. Qua-
siparticle positions can be discerned or changed via
local operators. It follows that the quasiparticles can
move around like particles and, in some cases at
least, have a kinetic energy and an effective mass.
They can be attracted to or repelled from any par-
ticular point by including a suitable local term in the
Hamiltonian. They really do behave like particles.

Just as the ground state can be degenerate, so,
too, can be the states for a set of quasiparticles with
fixed, well-separated positions.2 That degeneracy
cannot be split by any local term in the Hamiltonian,
and in particular not by the terms used to control or
change the quasiparticle positions: The distinct qua-
siparticle states cannot be distinguished locally.
Consider the case of a system of n quasiparticles, all
of the same type, and a boundary condition that
yields a nondegenerate ground state. Then, as n be-
comes very large, the multiplicity of the degenerate
quasiparticle states for fixed positions increases ex-
ponentially as dn for some constant d ≥ 1. The value
of d depends on the phase and on the quasiparticle
type. For example, in one simple case to which I will
return, the degeneracy is 2n/2 (whence d = √‾2) for all
even values of n. When d is not an integer, as in that
case, the multiplicity clearly cannot be shared
equally as integral numbers of states per quasipar-
ticle. Thus the degeneracy cannot be attributed to
local degrees of freedom associated with each qua-
siparticle, a result consistent with the nonlocal na-
ture of the degenerate states.

The nature of the degenerate states has impli-
cations for quantum information science.3 Quantum
information is stored as a state of a quantum system;
if it is stored in the space of degenerate quasiparticle
states, then it is stored nonlocally. The virtue of that
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Figure 3. Isotopic equivalence and inequivalence.
The exchange of identical quasiparticles in a topological
phase can be represented by worldlines on a diagram
with two spatial axes and one time direction. (a) In the
diagram to the left, particles at positions 1 and 2 are ex-
changed, with the particle at position 1 passing over the
one at position 2. Then they are exchanged again, with
the particle now at position 2 passing over the particle
at position 1. The two worldlines, differently colored for
ease of visualization, can be separated without passing
through each other to yield the pair of worldlines in the
right diagram. Thus the pair of exchanges to the left is
isotopically equivalent to no exchange at all. (b) In this
variation, both exchanges involve the particle at posi-
tion 1 passing over the particle at position 2. The entan-
gled worldlines cannot be separated, and so the pair of
exchanges is not isotopically equivalent to no exchange.
Evidently, in two dimensions, the exchange in which the
particle at position 1 passes over the one at position 2
(τ12) is not equivalent to the inverse exchange in which 2
passes over 1. In three dimensions, the extra wiggle
room afforded by the z dimension makes the exchange
and its inverse equivalent. (c) This abstract rendering
represents the inequivalence shown in panel b.
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nonlocality becomes apparent when you consider
that the system couples to its environment—for ex-
ample, via the electromagnetic field. The interaction
terms in the Hamiltonian that enforce that coupling
are local, and so a given initial storage state cannot
decohere within the subspace of degenerate states.
In other words, the information stored in the system
by initializing it in one state survives for a very long
time. That long lifetime is an attractive feature, inas-
much as errors due to decoherence are a persistent
problem in other systems.

Exchanges, permutations, and braids
Quantum statistics asks how the wavefunction of a
state changes upon an exchange of identical particles
(or quasiparticles). In older textbook discussions, an
exchange is simply a permutation of the particle po-
sitions in the wavefunction, and only two possibili-
ties are admitted: A transposition (an exchange of
just two particles) either leaves the wavefunction un-
changed, in which case one speaks of Bose statistics
and particles called bosons, or it returns the same
wavefunction multiplied by −1 and one speaks of
Fermi statistics and fermions. The effect of an arbi-
trary permutation of the particles can be found by
compounding transpositions. The net result is a fac-
tor of +1 for bosons or ±1 for fermions, depending on
whether the number of transpositions is even or odd.

The quantum statistics of quasiparticles in a
topological phase can be significantly more compli-
cated and, in fact, is a topological property of the
phase.2 An exploration of the statistics will help
 answer the question of how one can perform oper-
ations, or quantum computation, on the information
stored in degenerate quasiparticle states.

A sufficiently careful and flexible way to get at
the statistics is to move the quasiparticles adiabati-
cally (that is, very slowly) until they have returned
to their original positions, up to a possible permu-
tation.4 Performing the exchange adiabatically en-
sures that the very act of transporting the particles
doesn’t excite the state. The end result of moving the
quasiparticles is to multiply the state by a phase fac-
tor, or Berry phase, if it is nondegenerate, or other-
wise to transform it to another state in the same sub-
space of degenerate quasiparticle states. In the
degenerate case, the transformation is described by
a unitary matrix operation that is independent of
the specific initial state.

It is helpful to picture an arbitrary exchange
process as a diagram showing the paths, or world-
lines, taken by the quasiparticles in spacetime, not
only in space. (Figure 3, which illustrates the con-
cept of isotopy developed in this paragraph, gives a
few examples.) The particles must be exchanged in
such a way that their separations remain large at all
times; in particular, the worldlines cannot intersect.
If the effect of an adiabatic exchange is to be a mean-
ingful notion of quasiparticle statistics, the effect
must be independent of the precise paths. That is,
the resulting phase factor or matrix needs to be the
same if the worldlines are deformed slightly, pro-
vided that the initial and final positions remain
fixed and that the quasiparticles remain well sepa-
rated. Two diagrams of worldlines that can be con-

tinuously deformed from one to the other in that
way are said to be isotopic, or topologically equiva-
lent, and all diagrams that are isotopic are said to be
in the same equivalence class. In sum, the effect of
exchanges carried out by two sets of worldlines in
the same equivalence class should be the same.

To understand how isotopic invariance comes
about in topological phases, first consider adiabati-
cally moving one quasiparticle around a small
closed curve far from the other quasiparticles,
which remain at fixed positions. Such an operation
is tantamount to applying a local operator to the ini-
tial state. The expectation value of that operator
should not suffice to detect the presence of the other
quasiparticles or to distinguish among any degen-
erate states. Thus the only possible result of the cir-
cular excursion is to multiply the state by a phase
factor that is independent of the other quasiparticles
and of the specific degenerate state of the system.
The same is true of the additional effect due to one
quasiparticle circuiting a small curve, instead of
being stationary, as part of a process in which the
other quasiparticles exchange adiabatically. Build-
ing on that kind of argument, one can show that all
isotopic exchanges have the same effect except for
those uninformative phase factors.

In three or more space dimensions, all exchange
processes that effect a given permutation of identical
quasiparticles are isotopically equivalent. In one
space dimension, no exchanges are possible because
the worldlines would necessarily cross. But in two
space dimensions, as figure 3 shows, two worldlines
that make a circuit around one another cannot be
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Figure 4. The braid group. (a) One of the elementary 
exchanges, τ34, that, along with their inverses, generate all
braids. (b) Diagram representing the braid-group relation
τ12τ34 = τ34τ12. (c) Diagram representing the braid-group 
relation τ23τ12τ23 = τ12τ23τ12. Relations like this and the 
commutation property of panel b define the braid group.
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 deformed to two that do not. Consequently, an infi-
nite number of different equivalence classes exists in
two dimensions; those classes are called braids.

Non-abelian statistics
Just as all permutations can be built up from trans-
positions of neighboring particles, all braids can be
built up from elementary exchanges of neighboring
quasiparticles via paths that do not enclose any other
quasiparticle—braids, like permutations, form a
group (see figure 4). Thus the statistics for a given
type of quasiparticle can be specified by the matrices
giving the effects of those elementary exchanges.

In three or more spatial dimensions, the only
possibilities allowed by the assumptions I have spec-
ified are that the multiplicity of an n-quasiparticle
state is 1 for all n and that the effect of any transpo-
sition is to multiply the state by ±1. Thus the quasi-
particles are bosons or fermions. But in two dimen-
sions, the possibilities are much richer. Even if the
multiplicities are 1 for all n, the effect of an elemen-
tary exchange can be any phase factor eiθ, where θ is
the phase angle. Under those circumstances, the
quasiparticles are called anyons or are said to pos-
sess fractional statistics; bosons and fermions are
special cases. Because the phase factors associated
with fractional statistics are ordinary, commuting
numbers, the statistics of anyons is called abelian. 

The effect of an elementary exchange in two di-
mensions could also be a unitary matrix acting in the
space of degenerate quasiparticle states. In that case
the quasiparticle statistics is termed non-abelian be-
cause the matrices for different exchanges do not
generally commute. On the mathematical side, non-

abelian statistics is connected with the topologically
invariant knot polynomials of Vaughan Jones (Uni-
versity of California, Berkeley, and Vanderbilt Uni-
versity) and others, with their interpretation using
Chern–Simons gauge theories,5 and with conformal
field theories in two dimensions.6

Because quasiparticles that have degenerate
states are governed by non-abelian statistics, infor-
mation stored in those states can be manipulated. In
other words, the degenerate states can be used for
topological quantum computation, as proposed by
Alexei Kitaev, now at Caltech.3,7 Box 1 sketches the
basic idea (see also the article by Sankar Das Sarma,
Michael Freedman, and Chetan Nayak, PHYSICS
TODAY, July 2006, page 32). The topological model of
quantum computation is exactly as powerful as con-
ventional models.7,8 As such, suitable topological
phases can serve for a universal quantum computer.

My idealized presentation in this article has
taken the system size to be infinite and the quasipar-
ticles to be always well separated. In the real world
of finite-sized systems, the degeneracy of quasi -
particle states—a cornerstone of my discussion—
generally is not exact. But because of the nonzero
gap for local excitations, the energy splittings be-
tween quasiparticle states approach zero exponen-
tially with increasing quasiparticle separation in
units of a length that is usually microscopically
small. The assumption of degenerate quasiparticle
states is actually rather reasonable in practice.

Real-world examples
The earliest phase of matter in which topological
properties were recognized occurs with the integer
quantum Hall effect (IQHE), which is observed for
a gas of electrons confined to move in two dimen-
sions perpendicular to a magnetic field (reference 9;
see also the article by Joseph Avron, Daniel Osad-
chy, and Ruedi Seiler, PHYSICS TODAY, August 2003,
page 38). In that case the energy gap for local exci-
tations is due to the quantization of cyclotron mo-
tion. There exists a distinct IQHE phase for every in-
teger ν ≠ 0. Those phases are distinguished from the
trivial one, ν = 0, by topological properties I do not
have space to discuss in detail here: a quantized Hall
conductivity proportional to ν and the presence of
chiral gapless edge states in the finite-sized, real-
world system. (In the bulk material far from the
edge, the IQHE phases have an energy gap.)

The fractional quantum Hall effect (FQHE) was
discovered soon after the IQHE, under similar ex-
perimental conditions.10 In those phases, ν is a ra-
tional fraction, and the energy gap is due to inter -
actions between the electrons.11 In addition to
quantized Hall conductivity and gapless edge exci-
tations, those phases possess quasiparticles with
fractional electric charge and admit degenerate
ground states for some boundary conditions. In
many cases those are abelian phases—that is, the
quasiparticles are anyons with abelian statistics.12

In 1991 Gregory Moore (now at Rutgers Univer-
sity) and I described an FQHE state having quasipar-
ticles with non-abelian statistics as well as others with
abelian statistics.2 For the non-abelian variety, the qua-
siparticle-state multiplicity is 2n/2 for n well-separated
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Box 1. Topological quantum computation
In a classical computer, information is stored as a string of bits, each
being either a 0 or a 1. Physically, each bit is stored in the state of a
bistable classical system. In a computation, a set of bits is sent into a
logic circuit built from a sequence of gates. Each gate acts on either one
or two bits and performs one of the elementary Boolean operations
AND, OR, or NOT. The output of the logic circuit is one or more bits that
are easily read. Errors, such as the accidental flipping of a 1 to a 0, are
manageable for macroscopic bistable systems and can be corrected
with additional bits.

One model for a quantum computer uses a quantum version of a bit,
called a qubit. A qubit is a quantum two-state system, such as a spin-1⁄2
particle. A computation is a unitary operation that acts on an initial state
of some qubits. Some set of unitary operations acting on either one or
two qubits at a time forms the analogue of the classical gates. With them
one can construct circuits that perform arbitrary computations to within
any desired accuracy. The output is a quantum state of the qubits, read
by performing measurements. In practice, ordinary quantum systems
have a strong propensity to decohere during the course of the computa-
tion. Thus conventional quantum computation will require many addi-
tional qubits to compensate for uncontrollable errors.

Topological quantum computation replaces the qubits with a space of
degenerate states of non-abelian quasiparticles in a topological phase.
Computations are performed by braiding, with exchange of two neighbors
as the elementary gates. Due to the intrinsic topological protection of the
states from decoherence, the need for error correction is minimal. In a
quantum Hall system, to give one example, the output can be read via
measurements of interference properties of edge-state quasiparticles.3
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quasiparticles. The phase can occur with ν = 5⁄2, and a
state with that ν has been observed.13 Numerical in-
vestigations suggest that the observed state is either
the Moore–Read phase or its particle–hole conjugate,
which is a distinct but similar phase. The nature of the
ν = 5⁄2 state is the subject of intense current experimen-
tal interest (see, for instance, PHYSICS TODAY, June
2008, page 14). It may be the first real-world system
to exhibit non-abelian quasiparticles, but the issue has
not yet been definitively settled.

Topological phases can also be found in systems
that don’t display the quantum Hall effect. One such
system is the two-dimensional p + ip superconductor,
so called because its Cooper pairs have angular mo-
mentum ħ. At weak coupling, the superconductor
has a topological phase with gapless chiral edge
states and also has two types of quasiparticles: Majo-
rana fermions, which are their own antiparticles, and
vortices with a quantum of magnetic flux equal to
hc/2e. At each vortex core is a localized self- adjoint
fermionic zero-mode operator, described in box 2.
The existence of the operators implies that the topo-
logical phase has 2n/2 degenerate states for n well-
 separated vortices, and that the vortices have non-
abelian statistics.14 Using the concept of composite
fermions (see the article by Jainendra Jain, PHYSICS
TODAY, April 2000, page 39), the non-abelian quasi-
particles of the Moore–Read quantum Hall phase can
be understood as being analogous to those vortices.

Other topological phases with properties some-
what like the p + ip superconductor phase occur in
one, two, or three dimensions in so-called topolog-
ical insulators (reference 15; see also the article by
Xiao-Liang Qi and Shou-Cheng Zhang, PHYSICS
TODAY, January 2010, page 33). Topological insula-
tors differ from ordinary ones, which have fermi-
onic quasiparticles and trivial topological proper-
ties. The search for evidence of Majorana zero
modes in a system comprising a topological insula-
tor coupled to a superconductor is currently an
enormous experimental effort; indeed, evidence
may have recently been obtained (reference 16; see
also PHYSICS TODAY, June 2012, page 14). The p + ip
superconductors and topological insulators show
that strong correlations, as in FQHE, are not neces-
sary for a topological phase. What is necessary is
some long-range entanglement in the ground state.
Also fascinating are so-called fractional topological
insulators, which are analogs of the FQHE systems
but without the applied magnetic field, and topo-
logical phases in lattice systems of quantum spins.

By any accounting, ice and water are different
phases. In particular, the solid and liquid have dif-
ferent symmetries. Moreover, the degenerate
ground states of the ice crystal are related by sym-
metries. But the traditional telling that those sym-
metry characteristics are universal is now under-
stood to be incorrect—phases may differ only in
their topological properties, among them ground-
state degeneracy and quasiparticle statistics. When
the quasiparticle states are degenerate, the quasi-
particles are governed by non-abelian statistics, one
of the most bizarre concepts to crop up in studies of
quantum matter, but one that just might change our
approach to quantum computation.

I am grateful to Charles Marcus for his encouragement to
write this article. 
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Box 2. Fermion algebra and zero modes
Quasiparticles that are fermions, including the electrons that underlie
many topological phases, can be created or destroyed at some point 
by an operator located at that point. Fermionic quasiparticles are not,
strictly speaking, local excitations, because the operators ψ†(x) and ψ(x)
that create or destroy them do not commute when applied at different
locations. Instead, they anticommute; the two different orders differ by
a minus sign as, for example, in the relation ψ(x)ψ(y) = −ψ(y)ψ(x). Thus,
for a term in the Hamiltonian to be local, it must contain a product of an
even number of fermion operators.

Fermionic quasiparticles in a superconductor may be their own
antiparticles. That is, two of them may be able to annihilate each other, in
which case they are called Majorana fermions. In some situations, when
one decomposes the fermion operators into parts that change the
 energy of the system by different amounts, those parts include operators
that leave the energy unchanged. Those operators, γj, for j = 1, 2, . . . , n,
are called fermion zero-mode operators. When the quasiparticles are
Majorana fermions, the zero-mode operators are Hermitian (self- adjoint):
γj

† = γj for all j. The zero-mode operators with different indices anti -
commute, γjγk =− γkγj , and for any fixed index j, γj

2 = I (the identity). 
If the zero-mode operators are to be written as matrices, they need

to act on more than one state.14 In fact, if n is even, the minimum num-
ber of states required is 2n/2. That state counting applies in particular to
the zero-mode operators supported on n vortices of a p + ip supercon-
ductor and to similar objects in other situations. It is wrong to call the
vortices themselves Majorana fermions; fermions are particles with
Fermi statistics, but the vortices are non-abelian quasiparticles. Rather
than creating a quasiparticle from the ground state, the role of the
Majorana zero-mode operators is to change the state in the degenerate
subspace of 2n/2 states shared among the  already- existing vortices. The
zero-mode operators also provide a representation of the non-abelian
statistics, because the effect on the space of degenerate states of an
elementary exchange can be written in terms of the zero-mode opera-
tors of the exchanged vortices.17
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