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COMPUTER SIMULATIONS I

PART | (Kurt Kremer)
Basics of MC and MD

COMPUTER SIMULATIONS I

PART Il (DF)
Why MD works (?)

Ensembles MC Cluster moves
Thermostats Free energy and Phase equilibria
Polymers Rare events
AND ... Your questions.
Why Simulation?
But first:

Why do simulations at all?

1. Predicting properties of (new) materials

2. Understanding phenomena on a molecular
scale

3. Simulating known phenomena ?
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Example: computing the melting point of ice

Why bother?
This works better.

Why Simulation?

properties of (new) materials

phenomena on a
molecular scale.

Testing simulation models by:
known phenomena.

Testing approximate theories by:

Computer “experiments”

The limits of Simulation

Brute-force simulations can never bridge all the scales
between microscopic (nanometers/picoseconds)
and macroscopic (cells, humans, planets).

Hence: we need different levels of description
(“coarse graining”) - and we need input from
experiments at many different levels to validate our
models.

This is why simulations of Soft
Matter are always coarse-
grained...

...except when molecular details
matter.
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Example: DNA-coated colloids

Why are simulations of Complex Liquids special?

sugar— @@y
QWM iiiii = 1. Time-scales: long (hydrodynamics,

entanglement, ...)

lloid icky end o= -~
collol spacer  sticky en ::I:::,ﬁm’ - 757@‘% . . . .
}J&é}‘ L ﬁa«g’ 2. Interactions: free energies — not just energies
LSRT

———> Algorithms different

Coarse-grained
description OK

Molecular details
matter

In practice, ergodicity problems often occur

Minimal requirements: at low temperatures

a. A “long-enough’ simulation should sample the .
available phase space (MC & MD): “ergodicity’. (glasses’ gels, disordered crystals, )
b. The time evolution of the system should be

well approximated. (MD)
ANALOGY:
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BEFORE GLOBAL WARMIN
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AFTER (a lot off) GLOBAL WARMING

In Statistical Mechanics language:

“Glassy” energy landscapes.

At low temperatures, breaks up into many
“pondS",

At high temperatures: one “ergodic” lake.

Parallel Tempering

COMBINE “ante-diluvial”and “post-
diluvial” in a SINGLE Parallel simulation
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In practice:

System 1 at System 2 at
temperature T, temperature T,
Boltzmann factor Boltzmann factor
exp(—A1U1(rY)) exp(—paU(r))

Total Boltzmann factor

exp(—p1U1 (r)) exp(—BaUa ()

SWAP move
System 1 at System 2 at
temperature T, temperature T,
Boltzmann factor Boltzmann factor
exp(—pBaU1(rY)) exp(—p1U2(rN))

Total Boltzmann factor

exp(—paU1 (™)) exp(=p1 U2 (™))

Ratio

new Boltzmann weight
old Boltzmann weight

exp{—(B1 — B) o (V) — Uy (™))

Systems may swap temperature if their
combined Boltzmann factor allows it.

acc(swap)

min (1, exp{— (81 — B2)[Ua(r") — U1 (+™)]})
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The shaky foundations of Molecular

/ \ V /\W }‘“\ Dynamics
I\"h’ ‘\ ,*‘l \A/Ml\ N //1 /“\\ IP‘V,\ W /\N :\ ...or: why the Verlet algorithm is special.

temperature (kcal/mol)
—l
——
—
—
—
—
r——

1010 ot T oo T But first: INTERMEZZO

103 MC steps

Brownian motion was first reported by

Ingen-Housz (or Lucretius?)
Stigler’s law of Epynomy states:

"Observe what happens when sunbeams are admitted into a
building and shed light on its shadowy places.

No scientific discovery is named after You will see a multitude of tiny particles mingling in a multitude
. . : of ways... their dancing is an actual indication of underlying
its original discoverer. movements of matter that are hidden from our sight... It
originates with the atoms that move spontaneously.

[...] So the movement mounts up from the atoms and gradually
emerges to the level of our senses, so that those bodies are in
and indeed: motion that we see in sunbeams, moved by blows that remain
invisible.”

Lucretius, 60 BC
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The shaky foundations of...

Moleclar Dynamics

Molecular Dynamics

The Basis:

X(t+ At) = X(t) + X(D)At + %X(t)Atz + %5'{(0&3 + %X(t)At“ +..

X(t - At) = X(t) - X()At +%X(t)At2 - %X(t)AtS + %X(t)At“ +o

+

X(t+ At) + X(t - At) = 2X(1) + X()AL* + O(AtY)

or

X(t +At) = 2X(t) - X(t - At) + X(t)At?|  Verlet algorithm

Verlet algorithm has attractive features:
* is time reversible
* does conserve volume in phase space

» does not suffer from energy drift




30/07/2012

...but is it a good algorithm?

i.e. does it predict the time evolution
of the system correctly???

Dynamics of “well-behaved” classical many-
body system is chaotic. Consequence:

Trajectories that differ very slightly in their
initial conditions DIVERGE EXPONENTIALLY

(“Lyapunov instability”) t=1

If MD cannot predict the time
evolution of a system, then

Why should anyone believe
Molecular Dynamics
simulations ??77?

We believe that all is well (probably), because of...

e Soaalewy Ilnsenain
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For any realistic many-body system, the
shadow theorem is merely a hypothesis.

It states that (my words):

Good algorithms generate numerical
trajectories that are “close to” a REAL
trajectory of the many-body system.

Question:

Does the Verlet algorithm indeed
generate “shadow” trajectories?

Take a different look at the problem.

Do not discretize NEWTON’ s equation of
motion...

...but discretize the ACTION

Intermezzo:

Classical mechanics — the Lagrangian
approach.

Newton: Fi = sz‘Z

Consider a system that is

Lagrange: at a point ry, at time t=0
and at point r, at time t=t,
then:

The system follows a
trajectory r(t) such that:
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’ t
;/Odt/ r(t)) isan extremum.
“Lagrangian”

Where the Lagrangian is defined as:

L(x(t)) = Thinetic — Upot(r)

For example, if we use cartesian coordinates:

N
1 .
L) = 3 omiaf —U(ry,ra,,1y)
=1

Scontinuous =ﬁ: dt L(t)

Discretized version

Sdiscrete = At 2 L(tl)

L(ti) = T(ti) - U(ti )
e.g. for one coordinate in one dimension

1 X, -X,)
L(t)At =— mAt —*—12_ _U(X. )At
(t;) > A X;)

and hence the discretized action is

w( mX,, -X,)’
Sdiscrete = 2( ( 12+1At l) - U(X] )At

Now do the standard thing:

Find the extremum for small variations in the
path, i.e. for small variations in all X;.

ani ret :
screte =0 V
T (vi)

1

10
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This will generate a discretized trajectory
that starts at time t; at X, , and ends at
time t, at X,.

“true” trajectory

aSdiscrete _
aX aX‘ 1=1

1

lmax - . 2
J m(Xi+1 Xl) _ U()(1 )At
2At

i+l

aSdiscrete _ - m(X - Xl) + m(X1 - Xi-l) - At aU(X1 )

X, At X,

1 1

And hence:

i+l 'Xi—l -
m JdX.

2
0= m(zxi -X AC VX)) ))
At 1

At* 9U(X.
i+l 'Xi-l - ( l )
m 0X

1

0=[2X,-X

REWRITE AS:

At?

Xin =2X; - X, +—F(X)
m

VERLETI!

The Verlet algorithm generates
trajectory that satisfies the boundary
conditions of a REAL trajectory — both at
the beginning and at the endpoint.

11
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Hence, if we are interested in statistical
information about the dynamics (e.g. time-
correlation functions, transport coefficients,
power spectra...)

...then a “good” MD algorithm (e.g. Verlet) is

fine.

It is not good as a “predictive’ algorithm.

Monte Carlo and cluster moves

N(o)a(o — n) x acc(o — n)

Boltzmann ( Probability Probability
weights to attempt to accept

move move

N(n)a(n — o) x acc(n — o)

Metropolis Monte Carlo:
afo—n)=aln— o)
1. generate trial moves
2. Move if accepted

3. Otherwise, stay where you are

‘ Metropolis, Rosenbluth,Rosenbluth, Teller and Teller:

acc(o — n) = min <1, exp{—Bu™) - L{(rN)]}>

Unsatisfactory?

12
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However: if we do not impose

a(o - n) = a(n — o) ten

acc(o—=n) _ a(n — o)
acc(n —0) alo—n)

In particular, if:

a(n —o0)

m - eXD{_ﬁ[M(O) - u(n)]}
Then

M =1 (100% acceptance)
acc(n — o)

exp{—p[U(n) —U(0)]}.

100% acceptance can be achieved in special cases:
e.g. Swendsen-Wang algorithm

Discrete spin models (Potts, Ising).

[llustration: 2D Ising model:

Parallel nearest neighbor spins: energy —J

Anti-parallel nearest neighbor spins: energy +J

U= —JZSZ'S]'
]

—_— — — —
—_— — — —
—_— — — —
—_ — — —
—_— — — —
—_ — — —
—_— — — —
—_— — — —

Snapshot: some neighbors are parallel,
others anti-parallel

|
I H l

Count number of bonds between parallel neighbors: N,
Number of bonds between anti-parallel neigbors is: N,

Total energy: U= (N,-N,) J

13
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Now, make “bonds”. Bonds only form between parallel
neighbors. The probability to have a bond (red line) between
parallel neighbors is p (as yet undetermined). With a probability
1-p, parallel neighbors are not connected (blue dashed line).

@@

Form clusters of all spins that are connected by bonds. Some
clusters are all “spin up” others are all “spin down”. Let us
denote the number of clusters by M

NS

S
0B 0T

The probability to generate a particular
cluster structure where there are n, bonds
between N, pairs of parallel neighbors is:

Pgen = p"e(1 — p)Np—ne

NN
M)
0B 0T

Now randomly flip clusters. This yields a new cluster
configuration with probability P g, =(1/2)™.

Then reconnect parallel spins

14
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New cluster structure!

Now make it into a Monte Carlo algorithm:

POpclus(O)Pflip(M)PaCC(O —n)

PnPclus(n)Pflip(M)PaCC(n — 0)

exp(—BUo)p"e(1 — p) N1 =e(1/2)M Pye(o — n

exp(—BUn)p"e(1 —p) e (M =7c(1/2)M Pyo(n — o

POpclus(O)Pflip(M)PaCC(O < n)

PnPepys n)Pflip(M) ce(n — o)

exp(—BUo)p"e(1 — p) N1l =e(1/2)M Pyee(o — n

exp(—BUR)p"(1 —p) V() =ne(1/2YM P, (n — o

15
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Moreover, we want 100% acceptance, i.e.:

P‘ACC(O_’“) = Pﬂﬁc(n_’o) = l

eXp(*ﬁUO)y(c(l - p)Np(D)_”C(l 2)MPaCC(O —n

eXD(—BUn)%(]. _p)Np(n)—nc(l%J\/[Pacc(n o

Hence:

exp(—BUo)(1 —p)Np(O) = exp(—BUn)(1 _p)Np(TL)
exp(B8(Un — Us)) = (1 —p)NI‘(”)*NP(O)

But remember:

Un —Uo = J(Na(n) — Np(n)) — J(Na(0) — Np(0))

or

AU = J(ANg — ANp)

But: AN = —-AN,
and therefore
AU = -2JANy
exp(B8(Un — Uo)) = exp(—28J(Np(n) — Np(0)))

Combining this with:
exp(B(Un — U,)) = (1 — p)Ne(m)=Np(o)

we obtain:

p=1—exp(—23J)

100% acceptance!!!

16
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Free energy 1. Free-energy landscapes?

2. Phase coexistence

Simpler question:
What is an energy landscape?

Potential-energy

First question: U(x) “landscape” of a 1-
What IS a free-energy landscape? dimensional harmonic
oscillator
X

17
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2-dimensional potential energy landscape (e.g. surface
potential experienced by an adsorbate atom)

General potential energy landscape:

U(r™N) with £V = (21,1, 21, , T4, Yi 2 - TN, YN, 2N)

High dimensional - not easy to visualise.

Visual aid: “disconnectivity graphs”

X
” “tree” of energy
i minima. Free energy landscape?
70 A LA N
= A A 1 Conformation Space
‘\M“\Mww A A
820 M I u,\ | ﬂ‘””\”\u ‘\
w0 T T
” Topology - not PED*S"“E"
- - distance ESY ‘
WX N Native State

i
5

T

X?

But what are the landscape coordinates?

18
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In or(_:ler to deflne_a free energy it is necessary to What is the probability that the center of mass of the
specify the coordinates of the landscape. . .

system is at a coordinate X?
Other coordinates => other free-energy
landscape” N —U@N)/kT .

P(X):fdz e Vi (X —-N"1Y, )

A
We now define the free energy associated with center-
Statistical mechanics: Boltzmann weight. of-mass coordinate X as:
N e—UEN)/kT
N
P(T‘ ) = T e F(X)/KRT = /dzNer(z )/kT(S(X - N1 Zzz)
i

The free energy is to the “collective” coordinate X,
what the potential energy is to the individual

coordinates. One message:

There is no such thing as the free energy landscape of a

In general, there may be several system.

coordinates, X, Y, Z etc.

We can only define F(X,Y,...) after choosing the relevant
coordinates X,Y,...

They may be complicated functions of rN,
and they may be discrete.

e.g.

X = radius of gyration of a protein

Y = number of native contacts

19
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Note: there may be a landscape but not a road...

Thin, hard wall

Particle in a box with
a wall.

X

o F(@)/ksT _ /dy o~ Uz /kpT

no barrier but... No road!

X

A “funnel” may, or may not contain a “road”.

Conformation Space

Usually, it does.

Potential
Energy

N Native State

Disconnectivity graphs always contain a road (but no
distance).

P00

When does free energy matter?

Phase transitions
Solubility/aggregation/reactions
Substrate binding
Conformational changes/folding
... and much more

Why are free-energy calculations a separate topic?

Pressure
Temperature
Heat capacity

“sampled”

Free energy: not

Observables: can be

20
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Example:

predicting phase coexistence

Free-energy “coordinate” is discrete.

Two values:
1 if system is in phase 1
2 if system is in phase 2

Condition for phase coexistence in a one-component
system:

Ty =15
Pi=P
K1 = K2

J.Willard Gibbs

But if we know F we can compute u and vice
versa:

G F+PV
N N
How to obtain F or u from simulation?

1

1. “normal” thermodynamic integration
2. “artificial” thermodynamic integration

3. “particle-insertion” method
4 ..

How are free energies measured
experimentally?

- =_p
oV

OF/T
o1/T

Vv
F(V) = F(Vp) + /VO (=P)dV

21
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Then take the limit V — 00
Not so convenient because of divergences.
Better:

This approach works if we can integrate
from a known reference state, e.qg.

Fexcess(v) — F(V) - Fz'd.gas(v) Ideal gas (“T=x»"),

v Harmonic crystal (“T=0")
= Fexcess(vo) + /V (_Peascess)dv
0

=0,as Vy=>

Otherwise: use “artificial” thermodynamic integration Consider a system with a mixed potential energy
(Kirkwood) function (1-M)Ug+ A U

Then (2-line derivation skipped):

Suppose we know F(N,V,T) for a system with a simple

potential energy function U,: Fy(N,V,T). w — <Ul — UO>/\
oA
We wish to know F,(N,V,T) for a system with a And therefore

“complex” potential energy function U,.

1
FL(N,V,T) = Fo(N,V,T) + /O (U1 — Up)ydr

Example:

22
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Phase diagram of hard rod-like colloids.

Particle insertion method to compute
chemical potential

Thermo:

dF = -PdV -SdT +udN

Using F=- ksT In Q(N,V,T) we can write:

_(or
o ON vir

_ IQ(N +AN,V,T) —nQ(N, V,T)
—ksT Jm AN

QW +1,V,T)
~helin ( QW V,T) )V,T

For N >>1

Example: ideal gas

VN
Q(N,V,T) = ABNNT
YN+
ASCNHD (N1)!
VN
ASNNT

I A}gnoo —kpT In

v
A3(N +1)
kT In (A%p)

—kpgTIn

Q

with p = (N/V)

The ideal-gas result, we had obtained before.
Now, with interacting particles:

23
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=
|

. QN +1,V,T)
1 —kgTln | ———7—
N P { QN.VT)
= uid + uexcess
We can there write the “excess” part of the chemical
potential as:

ox QN +1,V,T) 1%
v "“BT“‘[ QN V.T) ‘1“(A3<N+1))}

QN + LV T)A¥(N + 1)]
VQN,V,T)

= —kBTln[

Now we use the explicit expression for Q(N,V,T):

1 N UeN
Q(N,V,T):W/dr —AUE")

o T (f drNJrle—ﬁU(rN-H))
= —kp

V [ drNeBUGY)
We define:
AU ey ) = UMY —U(e)

Then

ex _
17 kpTIn < [ N UG

N=BlUEM)+AUEN ey 1)
— kT L drN+1fdr € -
14 fdrNefﬁU(" )

f drN+lefﬁ[U(rN)+AU(FN;I'N+1)] )

o 1 [ drN e BUGEY)g=AAUG  rn 1)
AT = —heTin (V / dr i JdrNe AUGT)

1 N
_ = —BAU(r"5ry41)
kaTln o /dm+1 <e >N
For a homogeneous system, the average does not depend
on the position rn+1. Hence

/Buex = —1In <e—ﬁAU>N

In words: the excess chemical potential is equal to minus the
logarithm of the average Boltzmann factor associated with the
random insertion of an additional particle N+1 in an N-
particle system.

This method to evaluate p is commonly

known as Widom’s “particle-insertion
method”.

EASY TO ADD ON TO ANY MD/MC
PROGRAMME.

Fails at high densities.

Example' excess chemical potential of “hard” particles

24
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Particle insertion continued....

~

- (F(N +1,V,T) — F(N, V,T))

(N+1)—N
therefore
pr g in QN FLVT)
Q(N,V,T)
But also
N Q(N,V.T)
pRARIN N+ L V.T)

3
QS\EJI’ Yg)T) = W +V1)A (exp(+BAU(rN+1,tN)) N41

And therefore

W= lid.gas + kT 1H<9Xp(+ﬁAU(rN+1» rN)>N+1

. Repeat M times ant
“Boltzmann factor”

4. Then

Hexcess

To some, this is very disappointing...

What is wrong?

exp ( +8AU ) is not bounded. The average that
we compute can be dominated by
INFINITE contributions from
points that are NEVER sampled.

What to do?

Consider:

_ Jexp(=BUN)I(AU —Uny1 +Un)

Polan = J exp(—AUN)

25
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And also consider the distribution

Jexp(=BUN41)0(AU — Ung1 + Upn)
S exp(=BUn41)

1 (AU) =

Qn [ exp(=pUN)I(AU —Uny1 +Uy)

= —BAU
exp(=5 )QN+1 QN

SO

P (AD) = exp(—pAT) Y _po(AT)
po and p, are related: QN+1
—BU AU))(AU - U, U

p1(AU) = fexp( A Nt )i N+1 + N) but 7QN = eXD(+IBM) hence

QN+1 QN+1

_ exp(—/ﬁAU)f exp(—BUN)I(AU —Uyy1 + Uyn)
Qn+1 p1(AU) = exp(—BAU) exp(Bu)po(AU)
Rewrite:

In(p1(AU)) = —BAU + Bu+ In(po(AU))

define
f1(AU) = In(p1(AU)) + BAU/2

fo(AU) = In(po(AU)) — BAU/2

Then:

f1(AU) = fo(AU) + Bu

For ALL AU

AU
Diagnostic test:

If the distributions do not overlap, don’ t trust your results for p.

(similar expression for path sampling <> van den Broeck)

26
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Chemical potential
System 0: N-1, V,T, U + 1 ideal gas System 1: N, VT, U

ABF = BF, - BF, = pu™ AU=U1_U0

System 0: test particle energy System 1: real particle energy

Bu< = 1,(AU)- £,(AU)

0+ 4

-10 - ,"l

Does it work for hard
spheres?

consider AU=0

f1(0) = fo(0) + B

f1(0) = In(1) 4+ (constant)
fo(0) = In(Pacc) + (constant)

B = —In(Pacc)

Rare events: crossing free energy barriers.

There exist many techniques to study barrier crossings
(Bennett-Chandler, Transition-Path Sampling, String
Method, Forward Flux sampling, Milestoning etc etc)

| will discuss two:
1. Bennett-Chandler
2. Forward-flux sampling

27
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“reactant” “product”

\gA(q-q*)

H=Ho—egalqg—q")

q — q

0

Common (not best) choice for g,(q-q"):
k - k
94(@—q") =0(q" — q)

If we normalize the total concentration to 1, then

<c,>=<g,>, and hence

Acy = (ca)e —(ca)o = (94)c — (94)0

Linear response theory (next slide)

8ACA _ 2 2
5 =P (<9A>O - <9A>0)

P2 — 5 l{gado (1~ (ado)]} = B (ea) (ep)
Because:

<QB>o =((1- 9A)>o = <CB>0

Intermezzo: linear response theory (part).

28
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Consider the response of an observable A due to an
external field f; that couples to an observable B:

H=Ho— f3B
For simplicity, assume that (A)g=(B)g =0

AA),. = [exp[-p(Ho — fpB)]A

/5= " [exp[-B(Ho — fzB)]

For small f; we can linearize:
exp[-pSHp]BA
(a4) ~ B!
J exp[—BHo]

e (DA) R Bfp(BA)g

Now consider a weak field that is switched off at t=0.

AA

t —

Using exactly the same reasoning as in the static case, we
find:

(AA) () = Bfp (BA(D))g

In the present case,

A=B=gu(q—q")

Time dependent linear response theory:
Acp(t) = Be(Aga(0)Aga(t))
We climinate the external field, using
Acp(0) = e (ca) (cB)

then

Nc(t) = ACA(O)<A9A(O)A9A(75)>

{ca) (cB)

29
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The macroscopic equation was:
Acy(t) = Acy(0) exp(—t/TR)

And therefore

(Aga(0)Aga(t))

PR =0 Y em)

More convenient: consider at time derivative
(94(0)g4(1))
{ca){cB)

(94(0)g4(t))
(ca){cB)

—rzlexp(—t/7R) =

-1 (94(0)g4(®))
i (ca)(cB)

(94(0)ga(t))
{ca)

kA—)B(t) =

: .094(q — q")
gala—q¢") = qAa—
q

using

9ala—q") =0(¢" —q)

kA—)B(t) = <C}5(q(0) —q")0(q(t) — q*)>
{ca)
_ (40(q* — q(0))8(a(t) — *))
(0(q* — @)

30



30/07/2012

This can be rewritten as: Using statistical mechanics (0.5 hour), we can derive
. X X an expression for the barrier crossing rate:
hp = (4(0)é(q* — ¢(0))0(q(t) — ¢*))
7 (3(q* — q(0)))
(6(¢* — q))
o — ) -
¢4 kasp = (0(0)0(a(t) — 4))g(0)=q- P(a")
Now the second term on the right is simply equal to Kinetic prefactor
Jdr exp(=pU)8(q* — q)
For the first term on the right we have:

Computing free-energy landscapes
ko = (4(0)0(a(t) — a))q(0)=¢- P (")

Suppose we have an “reaction coordinate” Q(rN).

The probability that Q(rN) has a value Q is given by
In words:

Rate= equilibrium probability to find system at the top of
the barrier, multiplied by

P(Qo) = [ exp(=pU(r)s(Q(rY) — Qo)
— N
(@(0)0(a(t) = 4))g(0) =" Jexp(=pU(r™))

From this probability we can derive the variation of the free
The “cross-correlation” of the velocity in the energy with Q:
direction of the reaction coordinate at t=0 and the

probability that the system has crossed the barrier
at time t.

F(Q) = —kT In(P(Q)) + constant

31
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This indicates a route to determine F(Q): just
make a histogram of the spontaneous
fluctuations of Q.

Application of biased MC simulation to determine P,(Q)

P, (Qo) = [ exp[=BUEN) + w QNN (QEN) — Qo)
o Jexp[=AU ) + w(Q(rN))]

But this we can rewrite as

g Jexp[-BU(rM)]5(Q(rY) — Qo)
Q Pu(Qo) = exp(—pw(Qo)) Texp[—BUEN) + w(Q(M))]

Problem: F(Q) is very noisy, except near its minimum.

Clearly,

Pu(Qo) = cexp(—pw(Q0))P(Qo)

or

—kTIn(P(Qp)) = —kT In(Pw(Qp))+w(Qo)—kT Inc

F(Qo) = —kT In(Pw(Qo)) +w(Qo) — kT Inc

% 20 40 60 80
i . Cluster size n
We can choose the bias w(Q) such that any desired
range of Q-values is sampled. And we can correct
for the bias.

The only remaining problem is that the different

parts of F(Q) are shifted with respect to each
other.
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Solutions:

1. Fit to a single curve (not very elegant, but effective)

2. Use Ferrenberg-Swendsen scheme to combine
different parts of the histogram (more elegant, but
more sensitive to noise)

Result:

AGK.T+ D,

0 50 100
Cluster size n

150

Simulating rare events: the diffusive limit...

“reactant” “product”

How do concentration fluctuations decay?
Acy(t) = Aca(0) exp(—t/TR)

If the concentration increase on the left side of the
barrier is AC,(0), then the concentration increase on
the top of the barrier is, on the left side:

Ay = Acyexp(—BAG)
And, on the right side: 0 (“absorbing boundary”)

The diffusive flux across the barrier is:

ja = D(Acy/W)
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Therefore

Aéa(t) = —(D/W)Aca(t) exp(—BAG)

The solution is

Acp(t) = Acy(0) exp(—t/TR)

In practice, the expression is only slightly more complex.

To compute the rate of an activated process, we must
compute:

1. The free energy barrier (AG)
2. The diffusion constant at the top of the barrier (D)

3. The “effective” width of the barrier (for a square
barrier, this is W — in other cases it is a bit different)

with
1 D
— = —exp(—BAG)
TR W
Basic idea:
SOLUTION 2: aieidens
. . 1. Define a “reaction >
Use “path sampling” techniques coordinate that distinguishes >
2 71 |7
(transition path sampling, string method etc START from FINISH. 7/1 <
etc etc.) 2. Compute the rate T’ (low, but < r
not very low) to reach surface 1/ 5
- i
- S 3 N
3. Generate many trajectorics i >
from first crossing points and A I
One example: Forward-flux sampling, compute the fraction P(12) R S
that reach 2 (without first T
H
(R.J. Allen et al. Phys. Rev. Lett. 94, 18104(2005)) returning to START).
is that they can be used for NON-EQUILIBRIUM 4. Repeat for all subsequent
systems. planes - and for many -
starting points.
5. Rate=T, P(12)P(23)..P(5F)
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Problems with rare-event simulations:

1. Choice of “reaction coordinate

2. Non-equilibrium effects: crossing is
FAST

3. Non-Markovian effects

4. ... experiments do not measure what
simulations compute...

30/07/2012
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