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COMPUTER SIMULATIONS II 

PART I (Kurt Kremer) 
Basics of MC and MD  

Ensembles 

Thermostats 

Polymers 

COMPUTER SIMULATIONS II 

PART II (DF) 
Why MD works (?) 

MC Cluster moves 

Free energy and Phase equilibria 

Rare events 

 

AND … Your questions.  

But first: 

Why do simulations at all?  

Why Simulation? 
 
1. Predicting properties of (new) materials 
 
2. Understanding phenomena on a molecular 

scale  
 
3. Simulating known phenomena  
 

? 
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Example: computing the melting point of ice 

Why bother? 

This works better. 

Why Simulation? 
 
1.  Predicting properties of (new) materials 
 
2.  Understanding phenomena on a 

molecular scale.  
3.  Reproducing known phenomena. 

Testing simulation models by: 
Reproducing known phenomena. 
Testing approximate theories by: 
Computer “experiments” 

The limits of Simulation 
 
Brute-force simulations can never bridge all the scales 

between microscopic (nanometers/picoseconds) 
and macroscopic (cells, humans, planets). 

 
Hence: we need different levels of description 

(“coarse graining”) - and we need input from 
experiments at many different levels to validate our 
models. 

This is why simulations of Soft 
Matter are  always coarse-
grained… 

 
 

…except when molecular details 
matter. 
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Example: DNA-coated colloids 
 
 
 
 
 
 
 
 
 

   colloid      spacer    sticky end 

Coarse-grained 
description OK Molecular details 

matter 

Why are simulations of Complex Liquids special? 
 
1. Time-scales: long (hydrodynamics, 

entanglement, …) 
 
2.  Interactions: free energies – not just energies 
 

  Algorithms different 
 

Minimal requirements: 

a.  A `long-enough’ simulation should sample the 
available phase space (MC & MD): `ergodicity’.  

b.  The time evolution of the system should be 
well approximated. (MD) 

In practice, ergodicity problems often occur 
at low temperatures 

 

(glasses, gels, disordered crystals, …) 

 

ANALOGY: 
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BEFORE GLOBAL WARMING AFTER (a lot of)  GLOBAL WARMING 

In Statistical Mechanics language: 

 

“Glassy” energy landscapes. 

At low temperatures, breaks up into many 
“ponds”, 

At high temperatures: one “ergodic” lake. 

Parallel Tempering 

 

 

COMBINE “ante-diluvial”and “post-
diluvial” in a SINGLE Parallel simulation 
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In practice: 

System 1 at 
temperature T1  

System 2 at 
temperature T2 

Boltzmann factor Boltzmann factor 

Total Boltzmann factor 

SWAP move 

System 1 at 
temperature T2  

System 2 at 
temperature T1 

Boltzmann factor Boltzmann factor 

Total Boltzmann factor 

Ratio 
Systems may swap temperature if their 
combined Boltzmann factor allows it.  
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The shaky foundations of Molecular 
Dynamics  
 
…or: why the Verlet algorithm is special. 

But first: INTERMEZZO 

Stigler’s law of Epynomy states:  
 
 
No scientific discovery is named after 
its original discoverer. 
 
 
 

and indeed: 
  
 

Brownian motion was first reported by 
Ingen-Housz (or Lucretius?) 
 
The Stokes-Einstein relation was first presented 
by  
Sutherland 
 
The Verlet algorithm was first (?)  proposed by  
Størmer 
 
The Metropolis algorithm was invented by 
Teller & Rosenbluth 
 
And Stigler’s law was first formulated by 
Merton! 

"Observe what happens when sunbeams are admitted into a 
building and shed light on its shadowy places.  
 
You will see a multitude of tiny particles mingling in a multitude 
of ways... their dancing is an actual indication of underlying 
movements of matter that are hidden from our sight... It 
originates with the atoms that move spontaneously.  
 
[…] So the movement mounts up from the atoms and gradually 
emerges to the level of our senses, so that those bodies are in 
motion that we see in sunbeams, moved by blows that remain 
invisible.” 

Lucretius, 60 BC 



30/07/2012 

7 

The shaky foundations of… 

Molecular Dynamics 

The Basis: 
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Verlet algorithm has attractive features: 

•  is time reversible  

•  does  conserve volume in phase space  

•  does not suffer from energy drift 
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...but is it a good algorithm? 

 

i.e. does it predict the time evolution 
of the system correctly??? 

Dynamics of “well-behaved” classical many-
body system is chaotic. Consequence: 

Trajectories that differ very slightly in their 
initial conditions DIVERGE EXPONENTIALLY 
(“Lyapunov instability”) 

t=0 

t = τ 

If MD cannot predict the time 
evolution of a system, then 

Why should anyone believe 
Molecular Dynamics 

simulations ??? 

We believe that all is well (probably), because of… 
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For any realistic many-body system, the 
shadow theorem is merely a hypothesis. 

It states that (my words): 

Good algorithms generate numerical 
trajectories that are “close to” a REAL 
trajectory of the many-body system. 

Question: 

Does the Verlet algorithm indeed 
generate “shadow” trajectories? 

Take a different look at the problem. 

Do not discretize NEWTON’s equation of 
motion... 

...but discretize the ACTION 

Intermezzo:  

Classical mechanics – the Lagrangian 
approach. 

Newton: 

Lagrange: 
Consider a system that is 
at a point r0 at time t=0 
and at point rt at time t=t, 
then: 

The system follows a 
trajectory r(t) such that: 
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is an extremum. 

Where the Lagrangian is defined as: 

For example, if we use cartesian coordinates: 

“Action” 

“Lagrangian” 

L(t) dt  S 1
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Discretized version 
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This will generate a discretized trajectory 
that starts at time t0 at X0 ,  and ends at 

time t1  at X1. 

Discretized trajectory 

“true” trajectory 
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VERLET!!! 

The Verlet algorithm generates 
trajectory that satisfies the boundary 

conditions of a REAL trajectory – both at 
the beginning and at the endpoint.  
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Hence, if we are interested in statistical 
information about the dynamics (e.g. time-
correlation functions, transport coefficients, 
power spectra...) 

 

...then a “good” MD algorithm (e.g. Verlet) is 
fine. 

 

It is not good as a `predictive’ algorithm. 

Monte Carlo and cluster moves 

Boltzmann 
weights 

Probability 
to attempt 
move 

Probability 
to accept 
move 

Metropolis, Rosenbluth,Rosenbluth, Teller and Teller: 

Metropolis Monte Carlo:  

 

1.  generate trial moves 

2.  Move if accepted 

3.  Otherwise, stay where you are 

↵(o! n) = ↵(n! o) Unsatisfactory? 
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In particular, if: 

Then 

(100% acceptance) 

However: if we do not impose  

then 100% acceptance can be achieved in special cases: 
e.g. Swendsen-Wang algorithm   

Discrete spin models (Potts, Ising). 

Illustration: 2D Ising model:  

Parallel nearest neighbor spins:  energy –J 

Anti-parallel nearest neighbor spins:  energy +J 

Snapshot: some neighbors are parallel, 
others anti-parallel 

Count number of bonds between parallel neighbors:  Np 

Number of bonds between anti-parallel neigbors is:   Na 

Total energy: U = (Na-Np) J 
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Now, make “bonds”. Bonds only form between parallel 
neighbors. The probability to have a bond (red line) between 
parallel neighbors is p (as yet undetermined). With a probability 
1-p, parallel neighbors are not connected (blue dashed line).  Form clusters of all spins that are connected by bonds. Some 

clusters are all “spin up” others are all “spin down”.  Let us 
denote the number of clusters by M. 

The probability to generate a particular 
cluster structure where there are nc bonds 
between Np pairs of parallel neighbors is: 

Now randomly flip clusters. This yields a new cluster 
configuration with probability P(flip) =(1/2)M. 

Then reconnect parallel spins 
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New cluster structure! 

Now make it into a Monte Carlo algorithm: 
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Moreover, we want 100% acceptance, i.e.: 

Pacc(o→n) = Pacc(n→o) = 1  

Hence: 

But remember: 

Combining this with: 

we obtain: 

100% acceptance!!! 
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Free energy 1. Free-energy landscapes? 

2. Phase coexistence 

 

First question: 
What IS a free-energy landscape? 

Simpler question: 
What is an energy landscape? 

U(x) 

x 

Potential-energy 
“landscape” of a 1-
dimensional harmonic 
oscillator 
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2-dimensional potential energy landscape (e.g. surface 
potential experienced by an adsorbate atom) 

x 

y 

General potential energy landscape: 

High dimensional - not easy to visualise. 

Visual aid: “disconnectivity graphs” 

U 

“tree” of energy 
minima. 

X? 

Topology - not 
distance 

Free energy landscape? 

But what are the landscape coordinates? 
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In order to define a free energy it is necessary to 
specify the coordinates of the landscape. 
 
Other coordinates => other free-energy 
landscape” 

Statistical mechanics: Boltzmann weight. 

What is the probability that the center of mass of the 
system is at a coordinate X? 

We now define the free energy associated with center-
of-mass coordinate X as: 

The free energy is to the “collective” coordinate X, 
what the potential energy is to the individual 
coordinates. 

They may be complicated functions of rN, 
and they may be discrete. 
e.g.  
X = radius of gyration of a protein 
Y = number of native contacts 

In general, there may be several 
coordinates, X, Y, Z etc. 

One message: 
 
There is no such thing as the free energy landscape of a 
system. 
 
We can only define F(X,Y,…) after choosing the relevant 
coordinates X,Y,… 
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Note: there may be a landscape but not a road… 

no barrier but… 
F(x) 

x 

No road! 

1 2 y 

x 

Particle in a box with 
a wall. 

Thin, hard wall 

e�F (x)/kBT =
Z

dy e�U(x,y)/kBT

A “funnel” may, or may not contain a “road”. 

Usually, it does. 

Disconnectivity graphs always contain a road (but no 
distance). 

 When does free energy matter? 
 
a.  Phase transitions  
b.  Solubility/aggregation/reactions 
c.  Substrate binding 
d.  Conformational changes/folding 
e.  … and much more 

Why are free-energy calculations a separate topic? 

Pressure  
Temperature 
Heat capacity 
… 
Observables: can be 
“sampled” 

Free energy: not 
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Example:  

predicting phase coexistence 

Free-energy “coordinate” is discrete. 
 
Two values: 
1 if system is in phase 1 
2 if system is in phase 2 

Condition for phase coexistence in a one-component 
system: 

J.Willard Gibbs 

How to obtain F or µ from simulation? 

1.  “normal” thermodynamic integration 

2.  “artificial” thermodynamic integration 

3.  “particle-insertion” method  

4.  … 

But if we know F we can compute µ and vice 
versa:  

How are free energies measured 
experimentally? 

P
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Then take the limit  

Not so convenient because of divergences.  

Better: 

⇒ 0, as V0 ⇒ ∞ 

This approach works if we can integrate 
from a known reference state, e.g.  

Ideal gas (“T=∞”),  

Harmonic crystal (“T=0”) 

Otherwise: use “artificial” thermodynamic integration 
(Kirkwood) 

Suppose we know F(N,V,T) for a system with a simple 
potential energy function U0: F0(N,V,T). 

 

We wish to know F1(N,V,T) for a system with a  
“complex” potential energy function U1. 

Consider a system with a mixed potential energy 
function (1-λ)U0+ λ U1: 

Then (2-line derivation skipped): 

And therefore 

Example: 
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Phase diagram of hard rod-like colloids. 

Particle insertion method to compute 
chemical potential 

Thermo: 

Using F=- kBT ln Q(N,V,T) we can write: 

For N >> 1 

dF = -PdV -SdT +µdN 

Example: ideal gas 

with ρ ≡ (N/V) 

The ideal-gas result, we had obtained before. 
Now, with interacting particles: 
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We can there write the “excess” part of the chemical 
potential as: 

Now we use the explicit expression for Q(N,V,T):  

We define: 

Then 

For a homogeneous system, the average does not depend 
on the position rN+1. Hence 

In words: the excess chemical potential is equal to minus the 
logarithm of the average Boltzmann factor associated with the 
random insertion of an additional particle N+1 in an N-
particle system.   

This method to evaluate µ is commonly 
known as Widom’s “particle-insertion 
method”. 
 
EASY TO ADD ON TO ANY MD/MC 
PROGRAMME. 
 
Fails at high densities. 

Example: excess chemical potential of “hard” particles 

ΔU=∞ ΔU=0 
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Particle insertion continued…. 

therefore 

But also 

And therefore 

Interpretation: 

1.  Evaluate ΔU for a random REMOVAL of a 
molecule in a system containing N+1 molecule. 

2.  Compute  

3.  Repeat M times and compute the average 
“Boltzmann factor” 

4.  Then  

To some, this is very disappointing… 

What is wrong? 

 
is not bounded. The average that 
we compute can be dominated by 
INFINITE contributions from 
points that are NEVER sampled. 

What to do? 

Consider: 
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And also consider the distribution 

p0 and p1 are related: 

so 

but hence 

Rewrite: 

define 

Then: 

For ALL ΔU 

ΔU 

f1 

f0 

βµ 

Diagnostic test:  

If the distributions do not overlap, don’t trust your results for µ 

(similar expression for path sampling  van den Broeck) 
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Chemical potential 
System 1: N, V,T, U System 0: N-1, V,T, U + 1 ideal gas  

exFFF βµβββ ≡−=Δ 01

( ) ( )UfUfex Δ−Δ= 01βµ
System 0: test particle energy System 1: real particle energy 

01 UUU −=Δ

Does it work for hard 
spheres? 

consider ΔU=0 

Rare events: crossing free energy barriers. 

There exist many techniques to study barrier crossings 
(Bennett-Chandler, Transition-Path Sampling, String 
Method, Forward Flux sampling, Milestoning etc etc) 

I will discuss two: 
1. Bennett-Chandler 
2. Forward-flux sampling 
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“reactant” “product” 

A 
B 

q q* gA(q-q*) 

1 

0 

Common (not best) choice for gA(q-q*): 

If we normalize the total concentration to 1, then 

<cA> = <gA>, and hence  

Because: 

Linear response theory (next slide) 

Intermezzo: linear response theory (part). 
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Consider the response of an observable A due to an 
external field fB that couples to an observable B: 

For small fB we can linearize: 

For simplicity, assume that 

Hence 

Now consider a weak field that is switched off at t=0. 

fB 

ΔA 

0 
t 

Using exactly the same reasoning as in the static case, we 
find: 

In the present case, 

Time dependent linear response theory: 

We eliminate the external field, using 

then 
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The macroscopic equation was: 

And therefore 

More convenient: consider at time derivative 

using 

We get 
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This can be rewritten as: 

Now the second term on the right is simply equal to 

For the first term on the right we have: 

Kinetic prefactor 

Using statistical mechanics (0.5 hour), we can derive 
an expression for the barrier crossing rate: 

In words: 

Rate= equilibrium probability to find system at the top of 
the barrier, multiplied by 

The “cross-correlation” of the velocity in the 
direction of the reaction coordinate at t=0 and the 
probability that the system has crossed the barrier 
at time t.  

Computing free-energy landscapes 

Suppose we have an “reaction coordinate” Q(rN). 

The probability that Q(rN) has a value Q is given by 

From this probability we can derive the variation of the free 
energy with Q: 
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This indicates a route to determine F(Q): just 
make a histogram of the spontaneous 
fluctuations of Q.  

P(Q) 

Q 

F(Q) 

Problem: F(Q) is very noisy, except near its minimum. 

Application of biased MC  simulation to determine Pw(Q) 

But this we can rewrite as 

Clearly, 

or 

We can choose the bias w(Q) such that any desired 
range of Q-values is sampled. And we can correct 
for the bias. The only remaining problem is that the different 

parts of F(Q) are shifted with respect to each 
other. 
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Solutions: 

1.  Fit to a single curve (not very elegant, but effective) 

2.  Use Ferrenberg-Swendsen scheme to combine 
different parts of the histogram (more elegant, but 
more sensitive to noise) 

Result: 

Simulating rare events: the diffusive limit… 

“reactant” “product” 

A 
B 

q 

q* 

W 

How do concentration fluctuations decay? 

If  the concentration increase on the left side of the 
barrier is ΔCA(0), then the concentration increase on 
the top of the barrier is, on the left side: 

And, on the right side: 0 (“absorbing boundary”) 

The diffusive flux across the barrier is: 
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Therefore 

The solution is 

with 

In practice, the expression is only slightly more complex. 

 

To compute the rate of an activated process, we must 
compute: 

1.  The free energy barrier (ΔG) 

2.  The diffusion constant at the top of the barrier (D) 

3.  The “effective” width of the barrier (for a square 
barrier, this is W – in other cases it is a bit different) 

SOLUTION 2: 

Use “path sampling” techniques 

(transition path sampling, string method etc 
etc etc.) 

 

One example: Forward-flux sampling, 

(R.J. Allen et al. Phys. Rev. Lett. 94, 18104(2005)) 

 is that they can be used for NON-EQUILIBRIUM 
systems.  

Basic idea: 
1.  Define a “reaction” 

coordinate that distinguishes 
START from FINISH. 

2.  Compute the rate Γ0 (low, but 
not very low) to reach surface 
1. 

3.  Generate many trajectories 
from first crossing points and 
compute the fraction P(12) 
that reach 2 (without first 
returning to START). 

4.  Repeat for all subsequent 
planes   - and for many 
starting points. 

5.  Rate= Γ0 P(12)P(23)..P(5F) 

1
2

3
4

5
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Problems with rare-event simulations: 

1. Choice of “reaction coordinate 
2. Non-equilibrium effects: crossing is 

FAST 
3. Non-Markovian effects 
4. … experiments do not measure what 

simulations compute… 


