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GENERAL OUTLINE for LECTURES

Physical complexity of flows on Earth and beyond
Vorticity and helicity dynamics
Kinematics of tensors and methodology
Exact laws, structures and different energy spectra in MHD?
Complexity of phenomenology: beyond Kolmogorov
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Weak turbulence and beyond, towards strong turbulence with closures
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Il — Some results for MHD and for rotation

Il - Modeling: why and how
Il - The Lagrangian averaging model, for MHD and perhaps for fluids

Il - Adaptive mesh refinement with spectral accuracy
Il - Application to the dynamo problem at low magnetic Prandtl number



A Few Issues in Turbulence:

In search of a small parameter
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The theoretically solvable case of weak/wave
turbulence

But is it useful?



Conditions & methodology for weak/wave turbulence
o du=Lou+eN(u,u)

e=0 = d(k,t)=dg(k)e wave of frequency wy

e ¢ < |1 — 3 two different time scales:
i(k,t) = a(k, t)e i«

( Fast variation in time of e "

Slow variation of a(k,t) through wave coupling

.

e S resonances — “kinetic” equations q
For 2" order moments

—+ rigorous closure of the statistical problem
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o du=Lou+eN(u,u)

e=0 = d(k,t)=dg(k)e wave of frequency wy

e ¢ < |1 — 3 two different time scales:
i(k,t) = a(k, t)e i«

( Fast variation in time of ¢~ ' unless w(k)=0,
= < e.g.fork,,,=0 ...

Slow variation of a(k,t) through wave coupling

.

e S resonances — “kinetic” equations q
For 2" order moments

—+ rigorous closure of the statistical problem



% = Lou+eN,(u;u)

with e << 1

Fourier: A(k,t) = [e**u(z,t)dz
w(k) frequency associated with the linear operator Fourier
H(m,n) the Fourier representation of the non-linear operator :

formulation
(O +iw(k) Ak, t) = € [23, H(m,n)A(m, t)A(n, t)
d(k—m —n)dmdn
Ormn = 0(k —m —n) and d,,, = dmdn and H,,, = H(m,n), w; = w(k)
A(k,t) = aze™®)t and
Interaction
Oa L representation
_k = / Hmn A G, 6?,( wk+wm+wn)t 5kmn dmn p

ot




Perform an e-expansion

ag=agy+eayg+e’agy+ ..
and solve order by order iteratively.

Note that ag ¢ is constant.

ay ¢ = / HmnaO,mao,nA(wé,mn)(s(wf,mn)dmn :

with

Wy mn = w(f) —w(m) — w(n)

Awgmn) = /(5j exp [1twg ymn)dt =

Resonance occurs for wy y,, = 0.

exp [iwg mp| — 1

Wy mn

Expand in
small
parameter,
solve at
lowest order
and

1terate



The closure at second order

As is standard in similar computations for ODE’s (see for example, Bender & Orszag, 1978,

Chapter 1I) the terms 5q((]"\') /0T, are chosen to remove secularities. The last step is to realize
that since
=T, TnL << 1

and since we wish to average over many wave periods, we have to evaluate integrals of the form
limy—.oo f FR)A(k, t)dk

where

t .
A(k) = /0 ) gy

contains the time-dependence, and w(k) (i.e. the dispersion relation) is the link with the
(linearized) physical problem. We now use the Lemma:

ity oo / FK)A(k, 8)dk = 7f(0) + iPe / %dk

where P, stands for the Cauchy Principal Value integral. In other words, what we are really
doing here is to replace

. stnwt
limn, .
w

by mé(w) .

This allows you to perform the closure



Fundamental steps in the development

e A closure problem and the problem of cumulants :

0 < ajay >=< a;0;a;" >

8{ < a;a;am = a;a; a;"a;m =

=) < a0y ><apapm >+ < 00500 0m >0 cumulant

7717 )

Closure:

r small ¢, one finds that there is no contribution at lowest order of the 4th order cumulants

No contribution
at lowest order
of 4t order

cumulants

—  resulting equations “like” the random phase approximation

o [t is different from Eddy Damped Quasi Normal Markovian (EDQNM) models where
e e T 0/ B

with p,, a characteristic rate



Traditional Closure schemes

< Q;Q; Q@0 20 M -~ a;ayam >

i, = 0 (Quasi Normal approximation, Ogura; Millioshikov, mid 40’s; Chandrasekhar, mid
50's) leads to negative energy spectra (lack of realisability)

Eddy
pn = po; # 0¥k — energy spectrum E(k) ~ k™ (MRCM)  (and shocks ..y amned
B = Wing (K) — energy spectrum E(k) ~ k=% Quasi
U = Wine(k) + wa(k) — energy spectrum E(k) ~ k%2 < Normal .
Markovian
anisotropic DIA (Nakayama, 1999): E(k) ~ k:s"ﬁz 1(\)/[Odel
r
EDQNM

* Compute U, from an auxiliary problem: Test Field Model (Kraichnan)

e Weak turbulence does it naturally



Traditional Closure schemes
l

< ﬂ‘ia-,"ﬂj’”a-‘i"" >(_'.— —uyn { aja-."'aj" >

ftem = 0 (Quasi Normal approximation, Ogura; Millicshikov, mid 40's; Chandrasekhar, mid
50's) leads to negative energy spectra (lack of realisability)

Eddy
fhy = k‘ﬂﬁ,‘f OVt~ energy spectrum E(k) ~ k7 for i=1 Damped
(MRCM)  (and shocks ...) Quasi
i, = Wine (k) — energy spectrum E(k) ~ k%3 Normal
| Markovian
fim = wine(k) + wa(k) = energy spectrum E(k) ~ k=7 Model
Or
anisotropic DIA (Nakayama, 1999): E(k) ~ k*”"'2 EDQNM

* Compute U, from an auxiliary problem: Test Field Model (Kraichnan)

* Weak turbulence does it naturally



Closure ad hoc hypothesis vs. weak turbulence theory, & how they meet:
8, < ajaya;r >=< aja;apam > or 0:T3=Qi =Y. Ei + Quc

= 2. < ajay >< ajrapr >+ < ajapairapr >

Now, the EDQNM stipulates that the relaxation of triple correlation involves the charac-
teristic times of the problem:

Q‘i.(! = “Hm :r.'!

with
— 1 -1
Hm = TNL * Tyave

And now take the limit of 700 — 0

Henceforth, the fourth order cumulant in the limit of fast waves in the EDQNM goes to
zero as well

Qic — 0

Thus, one may say that the EDQNM closure and the theory of weak turbulence are compatible
in that limit.



a.e’ (k) = % l(L’{ - "‘—) Y (L) — (ﬂ' - ‘-’(—) (k)

) k= L?

Resulting equations ( g2 g2 HW ) o) — (,L P L ) o')
of the simplified e “ o g
dynamics, el e m] Q" (r)B(x Yy xa, . (26)
in the weak
turbulence regime, &Kok = b,. f {“‘ lf . Lm]
for MZID ;fior all Sz R L) [«:}3 «:w:)] ! (A 7k L)
second-order : :
moments, including ~%1 [kz}Q., (R)8(r o
helicity o X S

—Esk‘[k}? PN (B Z — L k)0 (k) s der, (27)

the. eqqatlogs e e ) = 5 / { Lil;k,‘ R
anisotropic, with

expressions in terms +E
of k., and k,

(Z + k')

+ .
I k2

(k) }Q& "}d(x, 10k 1.9k,

+ ;:ss?f {2xtk Z — Lyk) [ (k) + E0° (k)]
)

[(L Z- Ly - kX 1 (k)} Q‘i‘? Guntdst,  (28)



£ B ) 1
Ak Rk = & { [Lﬂz? k,‘ (Z° = X% I'(L)

Nkis it EXTN peag + MY ey + ot
2L._.—~ ')L l} L-;[[I' (]

2k X e i , )
+ e [ZY* (L) — (R Z + kL0 (L)) 2Q, " (K)O(x Maaada.  with

tunt = 8L+ K—K),

-—sn'[w-/—[xz Lyk3) —kA]Q;‘:u)é‘m.dn. dut, = di dL

(2 and
Q" (%) = kg, 7, " (x)
= X k) + X (et - YT+ (Y — ket e (k). (30)

Note that ¢, " does not involve the spectral densities R*(k), because of the sym-

(Simpliﬁed MHD ; page 2) nfetr.w:" proper_tis's of the equations. The geometrical coeflicients appearing in the

kinetic equations are

X=k xK_ ).=k x sinb, (31a)
Y=k -k =k x cost, (31b)
Z=k.-L.=k —k.x cosh
=ki -, (31c)
W= -L =k —L% -k &k, cosf
=Z-L, (31d)
where # is the angle between K and K, and with
dey = x dx df = L,‘ de dl |, (32)
¢ sind
. x: + k- I3
Galtier et al., J. Plasma Phys. 2000 cosf =~ —=. (33)

In (27)-(29), # | means the Cauchy principal value of the integral in question.



ke
LZ+ (2 - X (L)

BRI W) = /{

kY R 5 ' kXY . )
+ — — kT k*+ Ik} + I [V (k) = kD k)

217 - 217

2

+

;_.;.“ (Z¥°(L) — (k17 + K LY )0“:L)|}Qk Rk Warda,  With
) Buxt. = S(L+ K& —K),
dy1. = di dL,

£t “(k\3 ! N, 2,2 .2 32 -8 ()
R uwfgx = (02 - £y - X*] Q" adu

(2 and
Qi J‘[“:' - k"i kl’- QJ\ :r. ’[“:'
= X" (k)= Xkl — e YR+ (Y = kyxT e (k). (30)

Note that @ does not involve the spectral densities B[k}, because of the sym-
metry properties of the equations. The geometrical coeflicients appearing in the
kinetic equations are

X=k xK_ ).=k x,s8nb, (31a)

Question' Y=k, -& =k K, cosb, (31b)
Z=k_ -L_= ki — koK, cosl
=kl -Y, (31¢)

Why can one call W=ry-Ly =k — L —kyx coaf

. . =Z-1L7, (31d)
this set of equations a |
N\ e o 99 .

simplified”” dynamics ins = s 0= o ansar, .
for MHD? '

? 4+ kk' . Lf
sl = "(’2“‘—~k“'. (33]

Galtier et al.. J. Plasma PhyS. 2000 In (27)-(29), # | means the Cauchy principal value of the integral in question.

where # is the angle between K and K, and with



Further simplification: 2D MHD Ilimit

s=+1,E, = v?+b%? + 2v.b

Resulting equation for energy spectrum E*(k) = (k< /k3)¢" (k), with Dy, = (k)] Ok x1, dedL

sy _ me2 kL L, ) (kxn)ﬁ
0y E°(k) = by kQLJ_n

(k)
1E5(L) — E(K)] Dy



Simplified version (2D MHD)
s=+1, E, = v?+b? + 2v.b

Resulting equation for energy spectrum E*(k) = (k7 /k3)¢* (K}, with Dy = d(K)) Sy a1, drdL

(ki L) (kxe)p
E S
K212 2 (%)

- [E°(L) = E%(k)] Dy

0y E3(K) = 7;)%2

Geometrical & physical
coefficient,

with

k=x+L



Simplified version (2D MHD)

s=+1,E, = v?+b? + 2v.b

Resulting equation for energy spectrum E*(k) = (k7 /k3)¢* (K}, with Dy = d(K)) Sy a1, drdL

2
O ES(K) =T 1 g I E=3(k)

Geometrical & physical
coefficient,

with (eddy noise
k=x+L source)

Emission
term



Simplified version (2D MHD)

s=+1,E, = v?+b? + 2v.b

Resulting equation for energy spectrum E*(k) = (k7 /k3)¢* (K}, with Dy = d(K)) Sy a1, drdL

kL )?(kxk)
) Es(k) _ 7;)%2 ,r( 1 2J_)2( QXN)“ E_S(n)

k9 LYk
1B*(L) — ()] Dz

/

Geometrical & physical e
, Emission
coefficient, “Absorption”

with (eddy noise)
k=u1+L. (eddy viscosity)



Simplified version (2D MHD)

s=+1,E, = v?+b? + 2v.b

Convolution
Integral

Resulting equation for energy spectrum E*(k) = (k7 /k3)¢* (K}, with Dy = d(K)) Sy a1, drdL

o (kL) (kxk)d
8y B3 (k) = 7;)% ; J_kZJ_LQ ; | g $(k)

Geometrical & physical

: Emission
coefficient, Absorption
with (eddy noise)
k=v+L (eddy viscosity)

Galtier et al., Astrophys. J. 2002



Evidence of weak MHD
turbulence

with a k., spectrum

Speclral Index for different fil ronges

* |In Reduced MHD

computations (pmitruk et al.,
PoP 10, 2003)

Spectrol Inrdex

 |nthe Jovian

magnetosphere (sauret al,
Astron. Astrophys. 386, 2002) )

1 10 100

Compensated spectrum






Isotropic phenomenology of turbulence with waves

« Assumption: 1 =T1,,/Ty << 1, transfer time T, evaluated as
T, =T /1T =T (Ta/Tw) with T,,=l/u, and T,~ 1/Q

« Constant energy flux: € = DE/Dt ~ K*E(k) / T,

e E ( k) ~ [€Q] 172 k-2 (Dubrulle &Valdetarro, 1992; Zhou, 1995)

Structure functions: <du(/)P> ~ FP , |C, = p/2
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Isotropic phenomenology of turbulence with waves

« Assumption: 1 =T1,,/Ty << 1, transfer time T, evaluated as
T, =T /1T =T (Ta/Tw) with T,,=l/u, and T,~ 1/Q

« Constant energy flux: € = DE/Dt ~k*E(k) / T,

e E ( k) ~ [€Q] 172 k-2 (Dubrulle &Valdetarro, 1992; Zhou, 1995)

Structure functions: <du(/)P> ~ FP , |C, = p/2

Exercise: MHD: T,= I/B,, E(K) ~ [eBg]"2 k32, {, = p/4
Anisotropic case: Ty~ |,,../B,, E(k Koara) ~ [EBol"2 Kogrp2 Kogra /2

perp’ perp "“para



The scaling of

the energy 2.5
spectrum at 241
high enough 3
rotation rate 22
2.1

can differ from . °
the classical 1.9}
Kolmogorov \2
spectrum, :
16
i.e. E(k) # k 573 (s}
1.4

10

(Morize et al., 2005)



But it does not sto

2.5
241
23
22t
2.1}t

L9t
L3
1.7}
L6}
1.5

1.4
107

L 2

“

10°

(Morize et al., 2005)




But it does not sto

Is it stopping at ~ 2.3?

10°

(Morize et al., 2005)



1536ROT: Energy spectra

ABC(]forcing

0 1 2 3

10 10 10
K

107
10

l

Initial conditions: fully developed non rotating Kolmogorov flow, 1536° grid
T=0 to 1'=30, going through dark blue, green, mauve, red, pink, pale blue + LES



GHOST

Geophysical High Order Suite for Turbulence (comez & minini

Community code

Pseudo spectral, incompressible Navier-Stokes
(including rotation and passive scalar), and magnetic
fields (MHD, with or w/o Hall term); it also includes
some LES (the alpha model; a helical spectral model)

The code parallelizes linearly up to 2,000 processors
using MPI, and now up to 40,000 processors using
hybrid Open-MP / MPI vininni et al. 2011, see arxiv:1003.432)

Community Data (20483 forced Navier-Stokes turbulence with and
without helicity; 156363 and 30723 helically forced rotating turbulence;
15363 decaying turbulence with a magnetic field, 20483 MHD with
symmetries) [3D visualization with VAPOR freeware]



Top view

& side view of

(left) relative
helicity

(positive or negative)

&
(right) vorticity

Taylor-Green non-helical forcing, k,=4, 512°, Ro=0.35



G
A ° °
| Experiment | Scaling of structure functions
e _sess | Inrotating turbulence
8
L]'az 3
0
0 2 4 6 8 10
p
Simand et al., ‘00; Baroud et al., ‘02 |
DNS As time evolves |
p/2
~ *
v .: o
>
) v
. v
e

Mininni+AP, PRE 79



From Taylor-Green forcing
(globally non helical)

to ABC forcing
(Beltrami flow, fully helical)

for rotating turbulence



With helicity, strong
coherent structures
form that are organized

Beltrami Core Vortices

FIG. 9: From top to bottom and from left to right, slices
of the energy density, vorticity intensity, z component of the
velocity, and helicity density, in run B at § = 30.




Mininni & AP,
Phys. Fluids 22 (2010)

Zoom on a

amidst a tangle
of smaller-scale
vortex filaments

Together with
patrticle trajectories

15363 grid, k=7,
Re=5100,
Ro0=0.06,




ZOOM on
Vorticity:

Beltrami
core
vortices

Helical
forcing at k=7

DNS on 15363
grid points

Re=5100,
Ro0=0.06

Updrafts, with H>0

Mininni & AP, Phys.
Fluids 22 (2010)




From Taylor-Green forcing (globally non helical) to
ABC forcing
(Beltrami flow, fully helical) for rotating flows

Weakened intermittency in the direct energy cascade
? .

f\

\

/ Solid: velocity gradients

.' /Dash helicity gradients

<\dots: Gaussian

PdF of normalized small scale



Scaling exponents
of structure
functions

<Of=f(x+r1)-f(x)]P> ~ 1}

of velocity

and helicity

\°J

<Su()> ~114

p

- strong rotation

Triangle: velocity

© Diamond.: helicity

2 0?7[)

p/3
-

weak €2
* velocity
+.helicityd

D]

The energy in the direct cascade is self-similar for strong rotation,

whereas helicity displays some modicum of intermittency

T, = p/2 for the non-helical case (Simand + ‘00; Baroud + ‘02; Mininni & AP ‘09) not observed here




Scaling exponents

of structure
functions

*

Qo

v

NeCaQ)
Laser sheet
Coramer
Elactrode
Mugnet

Rotating table (RTF)

C,~ 3p/4 at high Q
experimentally

as well
van Bhokhoven et al. 2009

’
D
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So, what's happening?

New spectral law for energy and helicity
at high rotation



Isotropic phenomenology of turbulence with waves:

« Constant helicity flux: €~ = DH/Dt ~ k*H(Kk) / T,
e Assume E(k) ~k®, H(k) ~kh

e + h =4 in the helical case with rotation

Assuming maximal helicity [H(k)=kE(k)] leads to e=5/2

and structure functions: <du(/)P>~ I, {,= 3p/4  (Mininni & AP, 2009)

But is maximal helicity a reachable solution?



E(k)
H(k) =
e =dE/dt,é = dH/dt |

— Eq+Eg ~e¢

Zeman wavenumber at which Ty =

f(a’ b’ c’ d, e’ f’ g)

TNL- kQNE CSQA’

Wavenumbers k. ;, at which Eq, Hy = Ex, Hg

'3('30 '31_ )]

'3(1 '34_

8)

1@ Qf ke + /3 k53
Hq + Hp ~ €809k + ge=1/3=5/3

=0

ko = kg

ke~ e EPQ 35 | ky~eYES QO 37
— ko ~ e 1/2 33/2 ye and
—e _ 3e—=5
Eqg~e?2 Q2 k€ (1)
—(3—e _ _1—3e —(4—8)
Hqo~e€ € k (2)
—le < 7/3|if ke p o — oo for Q — oo

Chakraborty, 2007
Rosenberg et al. 2011



k* - Compensated spectra for energy (x=e) & helicity (x=h)

15363 run

Ke=7
Re=5100
Ro=0.06

Mininni & AP,
Phys. Fluids 2010

| Dash-dot:
Wh=21=e

P
.
N\

Solid: e=2.1 \
Dash: h=1.9

_>)1

Product of spﬁ;ctra

T
Compensated spectra for the new spectral law:

Koer B FH(K) ki



k* - Compensated spectra for energy (x=e) & helicity (x=h)

15362 run

. ... Dash-dot:
o k=7 Wh=21=e
. Re=5100 - NN “
+ R0=0.06 < 1. N

Solid: e=2.1 N\
Dash: h=1.9
T
; ' OF Prpduct of spectra

_>)1

Fluxes of energy (solid)
And helicty (dash)

Mininni & AP,
Phys. Fluids 2010



k* - Compensated spectra for energy (x=e) & helicity (x=h)

15363 run . _

N . Dash-dot:
o k=7 Wh=21=e
« Re=5100 . { gany W9
- R0=0.06 < 1. NG

4. Solid: e=2.1 N\
Dash: h=1.9
F
10° 10' 10°

Fluxes of energy (solid)
And helicty (dash)

Mininni & AP,
Phys. Fluids 2010



NORMALIZED RATIO OF HELICITY TO
ENERGY TO SMALL SCALES

as a
function
of
rotation

Phys. Fluids 2010




Does the clear
self-similarity
of the direct
cascade of
energy in this
quasi-2D flow
imply
conformal
Invariance, ala
Bernard et al. (2006),
which these
authors found
in 2D NS in
the inverse
enerqgy
cascade?

Thalabard et al., PRL to appear, arXiv:1104.1658

Zero vorticity paths in z-averaged field



Does the clear self-
similarity of the
direct cascade of
energy in this
quasi-2D flow imply
conformal
invariance, ala
Bernard et al. (2006),
which these
authors found in
2D NS in the

inverse energy

cascade?

107

T?Q.'vv;édé‘O‘éé‘a‘&‘
l.‘ .‘. ) J
- 10 1 Yes, with
®=3.6 +0.1,
®#6 (2D NS

inverse cascade)

Thalabard et al., PRL to appear, arXiv:1104.1658



Going beyond, at higher resolution

« What about recovery of isotropy at small scale beyond what
we call the Zeman scale |, at which T,,=T, 2 |5 = [€/Q3]"?

« Large run to resolve the inverse cascade, the wave-
modulated anisotropic inertial range, the isotropic inertial
range and the dissipation range

« 30723 grid points, Tera-grid allocation of 21 million hours on ~
30,000 proc (i.e., 700 hours of clock time, or 6 weeks)



Forcing Ko Tyae =T, K E(K)* H(K)
100.000 F ! -
: -10/3 1
Returnto < 10.000
isotropy in <
Py = 1.000
the small -
~
scales. = 0.100
30723 grid < :
0.010¢
Ro ~ 0.07 :

Re ~ 24000 OWW
NSF Tera-grid




k* E(k)* H(k)

100.000
~10/3
Return to g 10.000
isotropy in <
Py T 1.000
the small ~
~e
scales. = 0.100
30723 grid < :
0.010¢
Ro ~ 0.07 :

Re ~ 24000 O'WW
NSF Tera-grid




Return to
Isotropy in

the small
scales, angular
dependence
of spectra

30723 grid

Ro ~ 0.07

Re ~ 24000
NSF Tera-grid

Forcing

Zeman wvnb



Summary of results

In the presence of helicity and rotation, the direct transfer to small scales
is dominated by the helicity cascade and the energy cascade to small
scales is quenched because of the inverse cascade

This provides a " 'small” parameter for the problem (the normalized ratio
of energy to helicity fluxes), besides the small Rossby number

The direct energy cascade is non-intermittent and conformal invariant
(when properly averaged in the vertical direction). It is also (presumably)
different from (i) the non-helical case, and (ii) the (presumably) self-
similar inverse cascade of energy to large scales.

There is a change of inertial index in the small scales from a
Kolmogorov law to a law steeper than what is predicted by a wave-
induced non-helical model, with a possible breaking of universality and
with a possible e < 7/3, h = 5/3 limit

Isotropy recovers at small scale provided the Zeman scale is resolved

The flow produces strong organized long-lived columnar helical
structures, Beltrami Core Vortices, at scales slightly smaller than the
Injection scale, with also a growth of structures at large scales



Some questions

Can helicity help in interpreting laboratory experiments or
atmospheric data?

Is there experimental evidence for this e+h=4 |aw?
Is there experimental evidence for Beltrami Core Vortices?

What about the large Reynolds number limit?

How does the dynamics change in terms of the relative
alignment between the velocity and the vorticity [relative
helicity p(k)=H(k)/kE(k)]?



Some questions

Does the nature of the imposed forcing at large scale play a role?
(helical or not: yes; random vs. deterministic? 2D vs 3D?)

« What happens locally in space? What structures transfer to
small vs. large scales? What are the Beltrami Core Vortex
structures made of”? How do they evolve and interact to lead to
both a direct and an inverse cascade?

* Universality?
« Modeling: isotropic vs. anisotropic?
* Need/nature of helical contribution?

 What happens when helicity is neither zero nor maximal
globally?



A Few Issues in Turbulence

Il - What do we mean by modeling?



Kolmogorov-compensated energy spectra: k3 E(k)

Navier-Stokes, ABC forcing

Small Kolmogorov k-3 law — Kolmogorov k27 law ____
L 1/3
(flat part of the spectrum) - ‘
o | 1.00F | _
K41 scaling increases in range, as i
the Reynolds number increases
X
* Bottleneck at dissipation scale
0.10F

Linear resolution: X 2

. Cost: X 16
Solid: 2048%, R,= 104, Ry~ 1200

Dash: 10243 R,=4000

'
’
1
i
'] .
. 1 L 1 1 Lo

Mininni et al., Phys. Rev. E 77 (2008) k/k,



Large effort

* Linear number of modes N ~ Reynolds number R,
(N ~ L/l .. ~ Re%*for a Kolmogorov spectrum)

1D FFT costis NlogN
« Time of computation ~ T,./T\. ~ R

« Cost of three-dimensional computation ~ Re*
Moore’s law: doubling of resolution every 6 years ...

4096° Navier-Stokes on Earth Simulator: 16 Teraflops, 10 TeraBytes

122883 (NSF plan): 2 Petaflops, 200 Terabytes, 20MW, $200M, 105+ CPUs

Data output, analysis, visualization and storage



There are several ways out

« Zero-dimensional models: phenomenology, shell (scalar) models, SOC, ...

« One dimensional: Burgers equation and its extension to fully compressible flows,
MHD flows, kinetic effects (the Hada equation), solitons, ...

« Two-dimensional problem with either 2 or 3 components (2D2C, 2D3C) and
“thick” 2D

* Implementing symmetries in 3D at all times

« Adaptive mesh refinement (AMR)

* Quasi - direct numerical modeling, with filtering really

« Eddy viscosity and Large-Eddy Simulations (LES)

And combining them



VADM (102 A m?)

Rolative paleointensity
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Reversal of the Earth’s magnetic

field over the last 2Myrs
(Valet, Nature, 2005)

. Temporal assymmetry and chaos in reversal processes

Jamarillo Matuyama Olduvai
Jaramilo Matuyama Clduvai
Calbb Mountan




Surface (1 bar) radial magnetic fields for

Jupiter, Saturne & E’arth versus Uranus & Neptune

(18-degree truncation, Sabing Stanley, 2006)

Axially dipolar

Quadrupole ~ dipole



The Taylor-Green flow

- sin(k,x)cos(k,y)cos(k,z) |
F =| —cos(k,x)sin(k,y)cos(k,z)
0

| N

The Taylor-Green flow is a globaly non-helical forcing (Taylor & Green,
Proc. Roy. Soc. A 151, 421, 1935).

*The resulting flow shares similarities with the Cadarache von Karman

dynamo experiment in liquid sodium or gallium (at P,,~ 10-%) (Marié et al.,
MHD, 38, 163, 2002).

The flow is highly turbulent.

e It gives an experimental dynamo (2006 onward: Cadarache, CEA
Paris, ENS Lyon & Faris, ...)



Is there a lack of universality in MHD turbulence?

« Tool: a code which enforces symmetries

« Two runs, 5123 grids, one enforcing the Taylor-Green
symmetries, one a generic pseudo-spectral code

.:a) i |

Pouquet et al. GAFD 104, 2010



k53 E (k) B,

0,
F=0

ny : E, (t=0)=
AN Ey(t=0)=1

_._‘...\\\‘ i H M (t: 0 ): 0
 Hy(t=0)~ 0

Energy spectra for 3 different runs I\

1

Symmetric MHD Taylor-Green 20483 equivalent res. R;, ~ ~ 1300, Lee er al. 2010

lam



k53 E (k) B, =0,
0

k2 9 F =
r . E(t=0)=
LTSN ~— % E,(t=0)=1
\'\.\ - Hy(t=0)=0
~ Hg(t=0)~0
Energy spectra for 3 different runs I\

1

Symmetric MHD Taylor-Green 20483 equivalent res. R;, ~ ~ 1300, Lee er al. 2010

lam



| K5/3 ET(k)

11
Ratio of time-scales | ——

L

Symmetric MHD Taylor-Green 20483 equivalent res. R, ~'1300, Lec et at. 2010



Lack of

- S/3 . : :
k> Ep(k) universality
o 100} : in MHD
W | turbulence,
- B, =0, F=0
=
2 1.0}

1 10 100
k
* Do these spectral indices persist in time for a given flow?

* Would it be observed as well in the statistically steady state?

Symmetric MHD Taylor-Green 20483 equivalent res. R, ~ 1300, Lee et al. 2010



Lack of

. 5/3 . . .
k> Ep(k) universality
_10.0¢ ] iIn MHD
- r 4
- turbulence
~
. B,=0, F=0
2 1.0t 1
x E ]

1 10 100

L ... K :
® Do these spectral indices persist in time for a given flow?
* Would it be observed as well in the statistically steady state?

* Does the difference in indices persist at higher Reynolds number?
e [s there, in the IK case, a follow-up steeper spectrum?



Extreme events in the Solar Wind
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Fast vs. slow solar wind magnetic field,
and velocity data (Marino et al.)
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NCAA Flae
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In solar active regions e e
(Abramenko, review, 2007) | " 757 | x1s2m
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Figure 16: Scaling exponents {{g) of structure functions of order g calculated for eight
active regions by Abramenko et al. (2002). The struight dotted line has a slope of 1/3 and
refers to the state of Kolmogorov turbulence. The NOAA number and the strongest flare
(X-ray class/optical class) of each active region 1s shown. [ncrease of the flaning activity
of active regions (from the top down to the bottom) 1s accompanied by general increase in
concavity of {(g) functions.



Extreme events in numerical 3D MHD

« Scaling exponents, 5123
DNS with varying B:

* As B, increases, so does
the intermittency, i.e. the
departure from a straight
line

20/

*, Oep
Q\ e >

s » o w
L
L R

FIG. 1. Scaling exponents {, ol perpendicular (lilled symbols)
Miiller & Biskamp, PRE 67 (2003) and parallel (open symbols) structure functions §_ (€)= (| &z,|7) loe

8.-05,10 (circles, diamonds, triangles) together with isolropic



Solar observation (Abramenkova et al.)
MDI line of sight high res. magnetograms

e .6Xx.6arcsec., B>17G, with 400 X
270 pixels and for long time series
(up to 500 magnetograms)

* |s this a manifestation of weak MHD
turbulence in the presence of a

strong B?

The inertial slopes a measured

from 3 to 10 Mm

(larger scale: sunspots) vary from
a=-2.3 (X-flare with index 130),
To a below 2.0 (flare index of 18),
To a=-1.6 (flare index of 0)

LR
‘ “ﬁ

Jul 32000, 710 T
J .

Jul 42050, 92 LT :

AR NOAA 9077

E(k), Jim?

Scaler, Mm
100 10 1
1087 \ E

107

108

10°
— 13, 00/ 1710UT
o= 239
10* ,
Jul 14, 00y 09:12UT
a= 216

10°L
0.01 0.10 1.00 10.00
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Solar observations (Abramenko et al.)
MDI - line of sight high res. magnetograms

Temporal variation
of inertial index

. AR NOAA 8077 ©
ain dark bIaCK . 3'0? Jul 13, 2000 Tl 14, 2000 1 ;
Iine, ?ﬁ—‘m e _p ’-;

. . & L K&l y <

and flux in thin g5 e
. 10! L c001%

grey ||ne 17 18 19!im§?m21 22 6 7 ﬁgw'ST 0 112 @

Fig. 2.— Time variations of the power index calculated for active region NOAA 9077 (left axis
is valid for both panels). State of Kolmogerov turbulence is shown by black dashed line. GOES

Kolmo gOfOV 1 94 1 1-8A X-ray flux (right axis) is shown by gray lines. The arrows mark the X-ray flux peaks related

to flares occurred in the active region under study.

Very active region with 37 flares (13 M, 3 X class)



Solar observations (Abramenko, 2005)

Temporal variation of
inertial index o in dark
black line,

Orisita
manifestation of
something else
(like non-universal
RMHD behavior)?

AR NOAA 0365, May 25-27, 2003
3.0 B A A A A s A el s A -l L A — l
g 25% 0.1
£ 20
¢ N ) S S S N LSS S C
2 15 1001
a
0 £.0.001
10 20 30 40 50 60
time, hours
AR NOAA 0061, Aug 3, 2002 "
3.0 0.1
< 2.5 .
g ~-0.01
s 20 o |
I A U e LI
12 14 16 18
time, UT

Do quiet regions follow Kolmogorov law?
But where is the intermittency?

GOES (18 A), watts m “ x10°

GOES (1-8 A), watts m* x10"



Solar observations (Abramenko, 2005)

150

Variation of inertial index a
with flare type

E

Flare Index, A

Stationarity (quiet) vs. bursty
(chaotic, catastrophic)
behavior?

T L Ll L]

15 1.7 19 21 23 f 25
Power Index, «

Flare type



Dmitruk, Gomez and Matthaeus, PoF 2003
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Reduced MHD
Numerical data

Rapazzo et al., 2008
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8- Total energy spectra as a function of the

vavenumber n for simulations F, GG, H and [. To higher
alues of ¢4 = v, /Uy, the ratio between the Alfvén and

shotospheric velocities, correspond steeper spectra, with

Jpectral index respectively 1.8, 2, 2.3 and 2.7.



Dmitruk, Gomez and Matthaeus, Pol
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Reduced MHD
Numerical data
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. Total energy spectra as a function of the
er n for simulations F, GG, H and I. To higher
| 1+ = v /ug, the ratio between the Alfvén and
ric velocities, correspond steeper spectra, with
dex respectively 1.8, 2, 2.3 and 2.7.




Grgppin Mueller PRL 2005
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FIG. 2 Field-perpendicular total (solid line), Kinetic (dashed

ox‘n 0.10 1.00 line), and magnetic (dotted line) energy spectra (normalized,
K time-averaged, and compensated) in 1024 X 256 case Il simu-
lation with b, < 5. Dash-dotted curve: high-k part of field-
FIG. 1. Total (solid line), kinetic (dashed line), and magnetic parallel total energy spectrum. [nset: perpendicular total energy
(dotted line) energy spectra in 10247 case | simulation (normal- spectrum for resolutions of 5127 X 256 (dash-dotted line) to
ized, time-averaged, and compensated). Dash-dotted line: & 10247 % 256 (solid line).
scaling.
Forced, fixed energy up to k=2,
Free decay, kO=4, EM=EV, PM=1 Py=1,
R=2700. HC~HM~0 R=2300, HC~0.15, HM~0.2 ,
2
10243, 9 T* BO=5, b= Vims=1,

10242 X 256,

. ) -3/2
Also: Maron et al, 2008. kperp






Going beyond, using models of
turbulence

* Are spectral indices universal or do they change

— with Rossby number, at fixed Reynolds number?

— with Reynolds number, at fixed Rossby number?

Large Eddy Simulation (LES) with spectral modeling of turbulent

flows (chollet & Lesieur, 1981) but implementing:
— A dynamical fit to the computed energy spectrum instead of imposing Kolmogorov law
— Inclusion of helicity in both the eddy viscosity and the eddy noise
— (somewhat phase-preserving) eddy noise reconstruction



Numerical modeling

Direct Numerical Simulations
(DNS) 3D space

VECIsSus

-~

Large Eddy Simulations S
(LES) |

* Resolve all scales

VS. L
* Model (many) small scales

Slide from Comte, Cargese Summer school on turbulence, July 2007

Qe

log FZ(&)

Spectral space
resclved Lmodeled
.
ke logk



—Ratio.of time scales: not constant 1n inertial range
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Lagrangian model, 6000° equiv. res.

Ratio E,,(k)/Ey/(k): constant in inertial range



—Ratio.of time scales: not constant 1n inertial range

NL
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-
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\i
e :

Lagrangian model, 6000° equiv. res.

Ratio E,,(k)/Ey/(k), constant in inertial range: new paradigm?



Lagrangian-averaged (or alpha) Model
for Navier-Stokes and MHD ( ):

the velocity & induction are smoothed on lengths
o, & o, but not their sources (vorticity & current)
v = us + ov. B = Bs + 0B.

Gylr.t) = exp|—r/al/dma?r.
alr,t) p[—r/al/ us = Go, @ v, By = Gq,, @B,

- v =(1—-0a}V?) ug and B = (1 — a3,V?) Bg

Equations preserve invariants (in modified - filtered L, --> H, form)
Mclintyre (mid ‘70s), Holm (2002 ), Marsden, Titi, ..., Montgomery & AP (2002)



Lagrangian-averaged NS & MHD
Model Equations for the ideal case




Invariants of the MHD-alpha
equations in two space dimensions

* The invariants, to
o which the usual
E - §/d~x (us-v+Bs-B). Kolmogorov -like
phenomenology will
L apply, involve BOTH
/d‘x v By, the smoothed fields
and the raw ones
o (H_1 norm instead
[ a2 of L_2)
* |n 3D, replace A by
magnetic helicity

HC:S

|
A=3



Lagrangian-averaged NS & MHD
dissipative Model Equations

e Advection by smooth velocity field
* The velocity equation involves both the smooth and rough fields
e The induction equation involves only smooth fields,

except for dissipation which, in terms of B, 1s hyperdiffusive

(remember: v~ (1- 0¢, k%) u, , By~ (1- o? k) B, )



Scientific framework

* In the MHD, understanding the processes by which
energy is distributed and dissipated down to kinetic
scales, and the role of nonlinear interactions and
turbulence in the Sun and for space weather

* Modeling of turbulent flows with magnetic fields in
three dimensions, taking into account long-range
Interactions between eddies and waves, and the
geometrical shape of small-scale eddies

« Understanding Cluster observations in preparation for
a new remote sensing NASA mission (MMS:
Magnetospheric Multi-Scale)



Cancellation Exponent

Rapid change of sign of fields of zero mean (& derivatives)

Ott et al., 1992: sign-singular measure p;(l) as the differ-
ence of two probabilities, for disjoint subsets Q;(l) of size [
covering Q(L)

1 .
i(l) = lo. @
% ( ) -"Q(L) dr |f(’l')| /Qz(l) r f(’f') (1)

As [ grows, cancellations between structures of opposite signs occur

X)) =z @~ )



Phys. Plasmas, Vol. 9, No. 1, Jarnuary 2002 Analysis of cancellation in two-gimensional . . . 83

— Sorriso-Valvo

FIG. }. (Color) The coarse-g ¢ signed m of the cumezz J at time 1= 73 for four different box sizes, namely VL=000L, NL=0016, /L et al., POP 9
=0089, I/L=0.12, fram top to bottoma. Colors range from cyan for negative J vales to yellow for positive ocoes, going throogh blue and beown.
Canceliations @1 larpe scales are respoasible for the decrease in magnitode of the measure (2002)




Cancellation exponent K (upper curve) and

magnetic dissipation (lower curve):
comparison of DNS and LAMHD

Graham et al., PRE 72, 2005

%:[d-dF]/Z (see Sorriso-Valvo et al. PoP, 2002)



Variation of correlation with scale

e Solar data,

30

S active region
25 § =0.53
X(r)20 A ;
t .
15 1
NOAA 7315
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2D-MHD

Three invariants:
« Total energy E =<v?/2 + b?/2>
» Cross-helicity H.=<v.b>
« Magnetic potential E,=<a?>, b =curl a

These invariants have different physical dimensions: E, is more
“large-scale” than Erand H,

Statistical equilibria: possibility of an inverse cascade of E,
together with direct cascades of E;and of H_ (all observed
numerically), like in 3D.

Is H, ""more” or “'less” invariant than E;?
What happens to the ratio H ./ E;? (selective decay)



Cascades in forced 2D-MHD

Energies (top: magnetic; bottom:
kinetic} as a function of time are
correctly represented in the model

However, the growth of squared
magnetic potential due to the inverse
cascade is always smaller than for
DNS (solid line)

Negative resistivity instability which
involves the small scales

where the filtering occurs



Inverse Cascade of Magnetic Potential

Normalized energy difference «  Turbulent magnetic resistivity

Neurb ~ Ev_Ep in the small scales

s <O when E,, > E,, and is

responsible for the inverse cascade
(AP, JFM 1978; turbulence closure result)

Solid line: DNS; other lines: « runs
(arrows indicate values of alpha)

y | \ Change of sign of n,,, in small scales
for o« runs

(except for the one with o,,=0)



In conclusion:

The LAMHD model works up to the cut-off length «
The errors are smaller than for under-resolved runs
The growth rate of large-scale instabilities is OK in 3D

The model allows for computations in regimes of
turbulence never explored before at a known given

Reynolds number

Phys. Fluids 17, 035112; and 18, 045106 and 20, 035107, Phys Rev E 76, 056310



Validation of LES: temporal evolution
of total energy

1.5
LES BH
1t e i
N
3]
+ 3
A B X | —DNS 1536
! .é!i-" B o K Chollet-Lesieur (1984) + DNS 1503
0.5- LES CL 96°
-~LES PH 96°
0 10 20 31:0 40 50 60

Savings in CPU : 05*[1536/96]4 ~ 30,000 (also for memory)



Validation of LES, energy spectrum

o| + 3
10° | —DNS 1536° -
+ DNS 160°
= PH LES CL 96°
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Validation of LES, Helicity spectrum

| —DNS
e DNS ~~~~~~~ ESCL
10 Lo --LESPH
A ™ - LESP |
| |
% 10-2— B :
EO 05 S-PH
D 2 3 4567
-3 Non-helical model
10 ‘
10’ 10



Phenomenologies for MHD turbulence

«  MHD could be like fluids — Kolmogorov spectrum E, (k) ~ k3
Or

« Slowing-down of enerqgy transfer to small scales because of Alfvén waves
propagation along a (quasi)-uniform field B, E, (k) ~ (€T By)"2 k3?2
(Iroshnikov - Kraichnan (IK), mid ‘60s)

Toanster ~ T “[Thni/TAl 5 or 3-wave interactions but still with isotropy.
Eddy turn-over time T,,~l/u, and wave (Alfvén) time T,~I/B,

And

« Weak turbulence theory for MHD (Gattier et al PoP 2000): anisotropy develops

and the exact spectrum is: Ewr(k) = C,, Kperp 2 f(Ky)

I\Tlotle:/ BI/I/T is IK -compatible when isotropy (k, ~k,..,) is assumed: Ty, ~ loerp/U; and
A~/ Bo

Or Kperp™? (Goldreich Sridhar, APJ 95) ? OF Ko, (Nakayama ‘99; Boldyrev 06, Yoshida ‘07) ?






Another way to go to higher Reynolds numbers ...

Moore's law: Doubling of speed of processors every 18
months implies doubling of resolution for DNS in 3D
every 6 years ...

* Develop models of turbulent flows (Large Eddy
Simulations, closures, Lagrangian-averaged, ...)

* Improve numerical techniques
* Be patient
 Is Adaptive Mesh Refinement (AMR) a solution?

« |f so, how do we adapt? How much accuracy do we
need?



The need for Adaptive Mesh
Refinement

. | DATA
4 km BAMEX 10 km BAMEX 22 km CONUS Composite
forecast forecast forecast NEXRAD Radar

Figure 1: From Bill Skamarock, showing the lack of convergence with model resolution.



AMR on 2D
Navier-Stokes

Rosenberg et al.,
Aimé Fournier et al., 2008

* Decay for long times
(incompressible)

Al=6.40e+01

Al=8.006+00

Al=8.00e+00

* Formation of dipolar vortex
structures

« Lesser number of degrees of
freedom (~ 1/4) with AMR,

compared to an equivaleﬁ‘t\:
pseudo-spectral code et

(periodic boundary
conditions)

(but ....)
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AMR in incompressible 2D - MHD
turbulence at R~1000

200
 AMR using spectral elements 180} 180
of different orders, P; 60
« DNS is in black '
160 140
 No noticeable differences 140f 120
when using the L, norms 08 085
(energy and its dissipation) 120¢ '
é 00 — pseudo-spectral
1
 But accuracy matters when = —— P=8 (512), ejw/AMR
looking at Max norms, here 80
the current — P=8 (512), evibi/AMR
60] —— p=16 (512), ejw/AMR
Rosenberg et al., New J. Phys., 2007 40
20t
o 3
0 0.2 0.4 0.6 0.8

time



AMR in 2D - MHD
turbulence

« Magnetic X-point
configuration in 2D
» Temporal variation of:
Dissipation
Jmax

Degrees of freedom

normalized by the number of
modes in a pseudo-spectral code
at the same R,

~33%

Refinement and coarsening
criteria ...

Rosenberg et al., New J. Phys. 2007
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2D -MHD Orszag-Tang vortex with AMR

* Error in temporal |
derivative of total 1 ~
energy (compared ‘
to dissipation)

dEldt Emor

is ~ 103
(computed every 10 time
steps)

e Errorin {¥i.vis ~

10-° (controlled by a code
parameter)

Rosenberg et al., New J. Phys. 2007




Examples of AMR

Parallel flux tubes in 3D, ideal run
with effective resolution up to 40963

Hairpin vortex, Euler case Grauer Marliani PRL 84 (2000)
Grauer et al. PRL 80 (1998)

FIG. 4. Volume rendering of |w| at time 1.32. Only level 3, FIG. 4. Volume rendering of | f| at time 0.42.
4, and 5§ grids are shown.



Thank you for your attention!




