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Happy Bastille day  



 Physical complexity of flows on Earth and beyond 
Vorticity and helicity dynamics 

 Kinematics of tensors  and methodology  
                 Exact laws, structures and different energy spectra in MHD? 
                               Complexity of phenomenology: beyond Kolmogorov 
          *************** 

        Weak turbulence and beyond, towards strong turbulence with closures 
*************** 

II – Some results for MHD and for rotation 

II - Modeling: why and how 
II - The Lagrangian averaging model, for MHD and perhaps for fluids 

II - Adaptive mesh refinement with spectral accuracy 
II - Application to the dynamo problem at low magnetic Prandtl number 

GENERAL OUTLINE for LECTURES 	
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The theoretically solvable case of weak/wave 
turbulence 

But is it useful? 



Conditions & methodology for weak/wave turbulence 

For 2nd order moments	




Conditions & methodology for weak/wave turbulence 

For 2nd order moments	


unless ω(k)=0,	

e.g. for kpara=0 …	




Fourier���
formulation	


and	

interaction	

representation	




Expand in	

small 	

parameter,	

solve at	

lowest order	

and	

iterate	




This allows you to perform the closure	




Closure:	


No contribution	

at lowest order	

of 4th order	

cumulants	




Traditional Closure schemes 

•  Compute µm from an auxiliary problem: Test Field Model (Kraichnan)	


•  Weak turbulence does it naturally	


Eddy	

Damped	
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Markovian	

Model	

Or	

EDQNM	
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Closure ad hoc hypothesis vs. weak turbulence theory, & how they meet:	




Resulting equations 	

of the simplified	

dynamics,	

in the weak 	

turbulence regime,	

for MHD for all	

second-order	

moments, including	

helicity	


Note: equations are	

anisotropic, with	

expressions in terms	

of kperp and k//	




(simplified MHD, page 2)	


Galtier et al., J. Plasma Phys.  2000	




(simplified MHD, page 2)	


Question:	


Why can one call 	

this set of equations a	

``simplified’’ dynamics 	

for MHD?	


Galtier et al., J. Plasma Phys.  2000	




Further simplification: 2D MHD limit 
s=±1, E± = v2+b2 ± 2v.b	
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Geometrical & physical	

coefficient,	
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k=κ+L	
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Simplified version (2D MHD) 

Geometrical & physical	

coefficient,	

with	

k=κ+L	


``Emission’’	


(eddy noise)	

“Absorption”	


(eddy viscosity)	


s=±1, E± = v2+b2 ± 2v.b	




Simplified version (2D MHD) 

Geometrical & physical	

coefficient,	

with	

k=κ+L	


Emission	


(eddy noise)	

Absorption	


(eddy viscosity)	


s=±1, E± = v2+b2 ± 2v.b	

Convolution	

Integral	


Galtier et al., Astrophys. J. 2002	




Evidence of weak MHD 
turbulence 

    with a kperp
-2 spectrum  

•  In Reduced MHD 
computations (Dmitruk et al., 
PoP 10, 2003) 

•   In the Jovian 
magnetosphere (Saur et al., 
Astron. Astrophys. 386, 2002)        

Compensated spectrum	






     Isotropic phenomenology of turbulence with waves!

•  Assumption: î  = τW / τNL << 1; transfer time Ttr evaluated as 

       Ttr = TNL / î  = TNL* (TNL/TW)          with TNL=l/ul   and    TW= 1/Ω 

•  Constant energy flux: ε = DE/Dt ~ k*E(k) / Ttr    

                   E(k) ~ [εΩ]1/2 k-2                 (Dubrulle &Valdetarro, 1992; Zhou, 1995)!

                   Structure functions: <δu(l)p> ~ lζp   ,    ζp = p/2"i	  
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     Isotropic phenomenology of turbulence with waves!

•  Assumption: î  = τW / τNL << 1; transfer time Ttr evaluated as 

       Ttr = TNL / î  = TNL* (TNL/TW)          with TNL=l/ul   and    TW= 1/Ω 

•  Constant energy flux: ε = DE/Dt ~ k*E(k) / Ttr    

                   E(k) ~ [εΩ]1/2 k-2                 (Dubrulle &Valdetarro, 1992; Zhou, 1995)!

                   Structure functions: <δu(l)p> ~ lζp   ,    ζp = p/2"

Exercise: MHD: TW= l/B0 , E(k) ~ [εB0]1/2 k-3/2 , ζp = p/4 
Anisotropic case: TW= lpara/B0 , E(kperp, kpara) ~ [εB0]1/2 kperp

-2 kpara
-1/2 

i	  



    The scaling of 
the energy 
spectrum at 
high enough 
rotation rate 

     can differ from 
the classical 
Kolmogorov 
spectrum, 

     i.e. E(k) ≠ k -5/3 

(Morize et al., 2005)	


K41	
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     can differ from 
the classical 
Kolmogorov 
spectrum, 

     i.e. E(k) ≠ k -5/3 

(Morize et al., 2005)	


K41	


But it does not stop at k-2 …	


Is it stopping at ~ 2.3?	




Initial conditions: fully developed non rotating Kolmogorov flow, 15363 grid	

T=0 to T=30 , going through dark blue, green, mauve, red, pink, pale blue                     + LES	


  ABC forcing	




GHOST 
•  Geophysical High Order Suite for Turbulence (Gomez & Mininni) 

•  Community code 
•  Pseudo spectral, incompressible Navier-Stokes 

(including rotation and passive scalar), and magnetic 
fields (MHD, with or w/o Hall term); it also includes 
some LES (the alpha model; a helical spectral model) 

•  The code parallelizes linearly up to 2,000 processors 
using MPI, and now up to 40,000 processors using 
hybrid Open-MP / MPI (Mininni et al. 2011, see arxiv:1003.432) 

•  Community Data (20483 forced Navier-Stokes turbulence with and 
without helicity; 15363 and 30723 helically forced rotating turbulence; 
15363 decaying turbulence with a magnetic field, 20483 MHD with 
symmetries)    [3D visualization with VAPOR freeware] 



    Top view 

 & side view of  

(left) relative 
helicity 

(positive or negative) 

& 
(right) vorticity 

Taylor-Green non-helical forcing, k0=4, 5123, Ro=0.35	




     Mininni+AP, PRE 79 ‘09)	


Experiment	


p/2	


p/2	


DNS	
 As time evolves	


Scaling of structure functions	

in rotating turbulence	


Simand et al., ‘00; Baroud et al., ‘02	




From Taylor-Green forcing 	

(globally non helical)	


 to ABC forcing 	

(Beltrami flow, fully helical) 	


for rotating turbulence	




With helicity, strong	

coherent structures	

form that are organized	


Beltrami Core Vortices	


Non-helical case	




    Zoom on a 
Beltrami core 
vortex  

 amidst a tangle 
 of smaller-scale  
 vortex filaments 

Together with 
 particle trajectories 

15363 grid, kF=7,	

 Re=5100, 	

 Ro=0.06,	


Mininni & AP, 	

Phys. Fluids 22 (2010)	




ZOOM on 
Vorticity: 

Beltrami 
core 
vortices  

Helical  
forcing  at kF=7 

DNS on 15363 
grid points 

Re=5100, 
Ro=0.06 

Updrafts, with H>0 

•  Mininni & AP, Phys. 
Fluids 22 (2010) 



PdF of normalized small scale	


Solid: velocity gradients	


Dash: helicity gradients	


dots: Gaussian	


From Taylor-Green forcing (globally non helical) to 
ABC forcing 	

(Beltrami flow, fully helical) for rotating flows	


Weakened intermittency in the direct energy cascade	




strong rotation 	

Triangle:  velocity 	

Diamond: helicity	


p/3	


0.7p	


 weak Ω 	

* velocity	

+ helicity	


Scaling exponents 	

of structure 	

functions 	


<δf=f(x+r)-f(x)]p> ~ rζp	


of velocity	


and helicity	

p	


The energy in the direct cascade is self-similar for strong rotation,	

whereas helicity displays some modicum of intermittency	


 ζp = p/2 for the non-helical case (Simand + ‘00; Baroud + ‘02; Mininni & AP ‘09) not observed here 	


p/2	


<δu2(l)> ~ l 1.4	


i	  



strong rotation 	

Triangle:  velocity 	

Diamond: helicity	


p/3	


0.7p	


 weak Ω 	

* velocity	

+ helicity	


Scaling exponents 	

of structure 	

functions 	


p	


p/2	


ζp ~ 3p/4 at high Ω 
experimentally 	

as well	

van Bhokhoven et al. 2009 	


70 cm	




So, what’s happening? 

New spectral law for energy and helicity  
at high rotation 



     Isotropic phenomenology of turbulence with waves:!

•  Small parameter: î  = τW / τNL ; transfer time Ttr evaluated as: 

       Ttr = TNL / î  = TNL* (TNL/TW)          with TNL=l/ul   and    TW= 1/Ω 

•  Constant helicity flux: ε~ = DH/Dt ~ k*H(k) / Ttr   
•  Assume E(k) ~ k -e, H(k) ~ k -h  

        e + h = 4 in the helical case with rotation 

Assuming maximal helicity [H(k)=kE(k)] leads to e=5/2 
and structure functions: <δu(l)p> ~ lζp     , ζp = 3p/4    (Mininni & AP, 2009) 

But is maximal helicity a reachable solution?"



Chakraborty, 2007; 	

Rosenberg et al. 2011	




kx - Compensated spectra for energy (x=e) & helicity (x=h) 
15363 run  
•  kF=7  
•  Re=5100 
•  Ro=0.06 

Compensated spectra for the new spectral law: 	

                   kperp

4 E(k)*H(k)/kF	


F	


F	


Mininni & AP,	

Phys. Fluids 2010	


Dash-dot: 	

h = 2.1 = e	


Solid: e=2.1	

Dash: h=1.9	


Product of spectra	
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15363 run  
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F	


F	


Mininni & AP,	

Phys. Fluids 2010	


Dash-dot: 	

h = 2.1 = e	


Solid: e=2.1	

Dash: h=1.9	


Product of spectra	


Fluxes of energy (solid)	

And helicty (dash)	




kx - Compensated spectra for energy (x=e) & helicity (x=h) 
15363 run  
•  kF=7  
•  Re=5100 
•  Ro=0.06 

F	


Mininni & AP,	

Phys. Fluids 2010	


Dash-dot: 	

h = 2.1 = e	


Solid: e=2.1	

Dash: h=1.9	


Fluxes of energy (solid)	

And helicty (dash)	




NORMALIZED RATIO OF HELICITY TO 
ENERGY TO SMALL SCALES 

as a 
function 
of 
rotation  

Mininni & AP,	

Phys. Fluids 2010	


Ω	




•  Does the clear 
self-similarity 
of the direct 
cascade of 
energy in this 
quasi-2D flow 
imply 
conformal 
invariance, à la 

Bernard et al. (2006), 
which these 
authors found 
in 2D NS in 
the inverse 
energy 
cascade? 

Zero vorticity paths in z-averaged field	

Thalabard et al., PRL to appear, arXiv:1104.1658 	




•  Does the clear self-
similarity of the 
direct cascade of 
energy in this 
quasi-2D flow imply 
conformal 
invariance, à la 
Bernard et al. (2006), 
which these 
authors found in 
2D NS in the 
inverse energy 
cascade? 

Yes, with 
κ=3.6 ± 0.1,	


κ≠6 (2D NS 
inverse cascade) 	


Thalabard et al., PRL to appear, arXiv:1104.1658 	




Going beyond, at higher resolution 
•  What about recovery of isotropy at small scale beyond what 

we call the Zeman scale lΩ at which TW=TNL lΩ = [ε/Ω3]1/2 

•  Large run to resolve the inverse cascade, the wave-
modulated anisotropic inertial range, the isotropic inertial 
range and the dissipation range 

•  30723 grid points, Tera-grid allocation of 21 million hours on ~ 
30,000 proc (i.e., 700 hours of clock time, or 6 weeks) 



Return to 
isotropy in 
the small  
scales. 
30723 grid 
Ro ~ 0.07 
Re ~ 24000 
NSF Tera-grid 

Forcing           kΩ: τwave = τNL        k4 E(k)* H(k)	




Return to 
isotropy in 
the small  
scales. 
30723 grid 
Ro ~ 0.07 
Re ~ 24000 
NSF Tera-grid 

Forcing           kΩ: τwave = τNL        k4 E(k)* H(k)	


kΩ ~ [Ω3 /ε]½  	




Return to 
isotropy in 
the small  
scales, angular 
dependence 
of spectra 

30723 grid 
Ro ~ 0.07 
Re ~ 24000 
NSF Tera-grid 

  Zeman wvnb	
Forcing	




Summary of results 
•  In the presence of helicity and rotation, the direct transfer to small scales 

is dominated by the helicity cascade and the energy cascade to small 
scales is quenched because of the inverse cascade 

•  This provides a ``small’’ parameter  for the problem (the normalized ratio 
of energy to helicity fluxes), besides the small Rossby number 

•  The direct energy cascade is non-intermittent and conformal invariant 
(when properly averaged in the vertical direction). It is also (presumably) 
different from (i) the non-helical case, and (ii) the (presumably) self-
similar inverse cascade of energy to large scales.  

•  There is a change of inertial index in the small scales from a 
Kolmogorov law to a law steeper than what is predicted by a wave-
induced non-helical model, with a possible breaking of universality and 
with a possible e ≤ 7/3, h ≥ 5/3 limit 

•  Isotropy recovers at small scale provided the Zeman scale is resolved 
•  The flow produces strong organized long-lived columnar helical 

structures, Beltrami Core Vortices, at scales slightly smaller than the 
injection scale, with also a growth of structures at large scales 



Some questions 
•  Can helicity help in interpreting laboratory experiments or 

atmospheric data? 

•  Is there experimental evidence for this e+h=4 law? 
•  Is there experimental evidence for Beltrami Core Vortices? 

•  What about the large Reynolds number limit? 

•  How does the dynamics change in terms of the relative 
alignment between the velocity and the vorticity [relative 
helicity ρ(k)=H(k)/kE(k)]? 



Some questions 
Does the nature of the imposed forcing at large scale play a role?  
       (helical or not: yes; random vs. deterministic? 2D vs 3D?) 

•  What happens locally in space? What structures transfer to 
small vs. large scales? What are the Beltrami Core Vortex 
structures made of? How do they evolve and interact to lead to 
both a direct and an inverse cascade? 

•  Universality? 
•  Modeling: isotropic vs. anisotropic?  
•  Need/nature of helical contribution? 

•  What happens when helicity is neither zero nor maximal 
globally? 



 A Few Issues in Turbulence  

II – What do we mean by modeling? 



Kolmogorov-compensated energy spectra: k5/3 E(k) 

 Navier-Stokes, ABC forcing 

Small Kolmogorov k-5/3 law  
(flat part of the spectrum) 

K41 scaling increases in range, as 
the Reynolds number increases 

•  Bottleneck at dissipation scale  

Solid: 20483, Rv= 104,  R~ 1200 
Dash: 10243, Rv=4000 

 Linear resolution: X 2	

Cost: X 16	


Kolmogorov k-5/3 law	


Mininni et al., Phys. Rev. E 77 (2008)	




Large effort 
•  Linear number of modes N ~ Reynolds number Re 
        (N ~ L0/ldiss ~ Re3/4 for a Kolmogorov spectrum)  

•  1D FFT cost is NlogN 

•  Time of computation ~ Tdiss/TNL ~ Re 

•  Cost of three-dimensional computation ~ Re4 

      Moore’s law: doubling of resolution every 6 years … 

40963 Navier-Stokes on Earth Simulator:16 Teraflops, 10 TeraBytes	


122883 (NSF plan): 2 Petaflops, 200 Terabytes, 20MW, $200M, 105+ CPUs	


Data output, analysis, visualization and storage	




There are several ways out 
•  Zero-dimensional models: phenomenology, shell (scalar) models, SOC, … 

•  One dimensional: Burgers equation and its extension to fully compressible flows, 
MHD flows, kinetic effects (the Hada equation), solitons, … 

•  Two-dimensional problem with either 2 or 3 components (2D2C, 2D3C) and 
``thick’’ 2D 

•  Implementing symmetries in 3D at all times 

•  Adaptive mesh refinement (AMR) 

•  Quasi - direct numerical modeling, with filtering really 

•  Eddy viscosity and Large-Eddy Simulations (LES) 

And combining them 



        Brunhes                                           Jamarillo              Matuyama          Olduvai 

Reversal of the Earth’s magnetic 
field over the last 2Myrs 	

(Valet, Nature, 2005)	


Temporal assymmetry and chaos in reversal processes	




Surface (1 bar) radial magnetic fields for  
  Jupiter, Saturne & Earth versus Uranus & Neptune 

                         (16-degree truncation, Sabine Stanley, 2006) 

       Axially dipolar	


 Quadrupole ~ dipole	




The Taylor-Green flow 

⎥
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The Taylor-Green flow is a globaly non-helical forcing (Taylor & Green, 
Proc. Roy. Soc. A 151, 421, 1935). 

• The resulting flow shares similarities with the Cadarache von Kárman 
dynamo experiment in liquid sodium or gallium (at PM ~ 10-6) (Marié et al., 
MHD, 38, 163, 2002). 

The flow is highly turbulent. 

•  It gives an experimental dynamo (2006 onward: Cadarache, CEA 
Paris, ENS Lyon & Paris, …)	


z	




Is there a lack of universality in MHD turbulence? 

•  Tool: a code which enforces symmetries 
•  Two runs, 5123 grids, one enforcing the Taylor-Green 

symmetries, one a generic pseudo-spectral code 

Pouquet et al. GAFD 104, 2010	




B0 = 0, 
F = 0 

Ev(t=0)= 
EM(t=0)=1 

HM(t=0)=0 
HC(t=0)~ 0 

Symmetric MHD Taylor-Green 20483 equivalent res. Rlam ~ 1300, Lee et al. 2010	


Energy spectra for 3 different runs 	


k5/3 ET(k)	


I	


C	


A	
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Energy spectra for 3 different runs 	


k5/3 ET(k)	


I	


C	


A	


k-3/2	


k-2	


k-2  ?	




B0 = 0, F=0 

Symmetric MHD Taylor-Green 20483 equivalent res. Rlam ~ 1300, Lee et al. 2010	


Energy spectra 	


Ratio of time-scales	


TNL / TA = f(k) 

k5/3 ET(k)	




Lack of 
universality  

in MHD 
turbulence, 
B0 = 0, F=0 

Symmetric MHD Taylor-Green 20483 equivalent res. Rlam ~ 1300, Lee et al. 2010	


k5/3 ET(k)	

IK	


K41	


WT	


•  Do these spectral indices persist in time for a given flow?	


•  Would it be observed as well in the statistically steady state?	




Lack of 
universality  

in MHD 
turbulence 
B0 = 0, F=0 

k5/3 ET(k)	

IK	


K41	


WT	


•  Do these spectral indices persist in time for a given flow?	

•  Would it be observed as well in the statistically steady state?	


•  Does the difference in indices persist at higher Reynolds number?	

•  Is there, in the IK case, a follow-up steeper spectrum?	




Extreme events in the Solar Wind 

Fast vs. slow solar wind magnetic field,	

and velocity data (Marino et al.)	


K41	




Extreme events in active regions on the Sun 

in solar active regions 
(Abramenko, review, 2007) 



Extreme events in numerical 3D MHD 

•  Scaling exponents, 5123 
DNS with varying B0: 

•  As B0 increases, so does 
the intermittency, i.e. the 
departure from a straight 
line 

Müller & Biskamp, PRE 67 (2003) 



•  .6 x .6 arc sec., B> 17G, with 400 X 
270 pixels and for long time series 
(up to 500 magnetograms) 

•  Is this a manifestation of weak MHD 
turbulence in the presence of a 
strong B? 

The inertial slopes α measured 
 from 3 to 10 Mm 
(larger scale: sunspots) vary from  
α=-2.3 (X-flare with index 130), 
To α below 2.0 (flare index of 18), 
To α=-1.6 (flare index of 0) 



Temporal variation 
of inertial index 
α in dark black 
line, 

 and flux in thin 
grey line 

Very active region with 37 flares (13 M, 3 X class) 

Kolmogorov 1941	




•  Temporal variation of 
inertial index α in dark 
black line, and flux in 
grey line 

•  Or is it a 
manifestation of 
something else 
(like non-universal 
RMHD behavior)? 

Do quiet regions follow Kolmogorov law? 
But where is the intermittency? 

K41 here	




Variation of inertial index α 
with flare type 

Stationarity (quiet) vs. bursty 
(chaotic, catastrophic) 
behavior? 

Flare type	




Rapazzo et al., 2008	


Dmitruk, Gomez and Matthaeus, PoF 2003	
 Reduced MHD	

Numerical data	




Rapazzo et al., 2008	


Dmitruk, Gomez and Matthaeus, PoF 2003	
 Reduced MHD	

Numerical data	




Grqppin Mueller PRL 2005	


Free decay, k0=4, EM=EV, PM=1	

R=2700, HC~HM~0	

10243, 9 T*	


Forced, fixed energy up to k=2, 	

PM=1, 	

R=2300, HC~0.15, HM~0.2 ,	

B0=5, brms=vrms=1,	

10242 X 256, 	


k-3/2	


k-5/3	


Also: Maron et al, 2008: kperp
-3/2	






Going beyond, using models of 
turbulence 

•  Are spectral indices universal or do they change  

–  with Rossby number, at fixed Reynolds number?  

–  with Reynolds number, at fixed Rossby number?  

Large Eddy Simulation (LES) with spectral modeling of turbulent 
flows (Chollet & Lesieur, 1981) but implementing: 

–  A dynamical fit to the computed energy spectrum instead of imposing Kolmogorov law 

–  Inclusion of helicity in both the eddy viscosity and the eddy noise 
–  (somewhat phase-preserving) eddy noise reconstruction 



Numerical modeling 

Slide from Comte, Cargese Summer school on turbulence, July 2007	


Direct Numerical Simulations	

(DNS)	


versus	


Large Eddy Simulations	

(LES)	


* Resolve all scales	

vs.	

* Model (many) small scales	


3D space              &       Spectral space	




Ratio of time scales: not constant in inertial range	


Ratio EM(k)/EV(k): constant in inertial range	


Lagrangian model, 60003 equiv. res.	




Ratio of time scales: not constant in inertial range	


Ratio EM(k)/EV(k), constant in inertial range: new paradigm?	


Lagrangian model, 60003 equiv. res.	




Lagrangian-averaged (or alpha) Model 
for Navier-Stokes and MHD (LAMHD): 
the velocity & induction are smoothed on lengths 
αV & αM, but not their sources (vorticity & current) 

Equations preserve invariants (in modified - filtered L2 --> H1 form)	

McIntyre (mid ‘70s), Holm (2002), Marsden, Titi, …,  Montgomery & AP (2002)	




Lagrangian-averaged NS & MHD  
 Model Equations for the ideal case 



Invariants of the MHD-alpha 
equations in two space dimensions 

•  The invariants, to 
which the usual 
Kolmogorov -like 
phenomenology will 
apply, involve BOTH 
the smoothed fields 
and the raw ones 
(H_1 norm instead 
of L_2) 

•   In 3D, replace A by 
magnetic helicity 



Lagrangian-averaged NS & MHD  
dissipative Model Equations 

•  Advection by smooth velocity field	

•  The velocity equation involves both the smooth and rough fields	

•  The induction equation involves only smooth fields,	

   except for dissipation which, in terms of Bs, is hyperdiffusive	


                                   (remember: vk~ (1- α2
v k2) us,k  ,  Bk~ (1- α2

mk2) Bs,k )	




Scientific framework 
•  In the MHD, understanding the processes by which 

energy is distributed and dissipated down to kinetic 
scales, and the role of nonlinear interactions and 
turbulence in the Sun and for space weather 

•  Modeling of turbulent flows with magnetic fields in 
three dimensions, taking into account long-range 
interactions between eddies and waves, and the 
geometrical shape of small-scale eddies  

•  Understanding Cluster observations in preparation for 
a new remote sensing NASA mission (MMS: 
Magnetospheric Multi-Scale) 



Cancellation Exponent 



Sorriso-Valvo 
et al., PoP 9 
(2002)	




Cancellation exponent κ (upper curve) and 
magnetic dissipation (lower curve): 
comparison of DNS and LAMHD 

Graham et al., PRE 72, 2005 

κ=[d-dF]/2 (see Sorriso-Valvo et al. PoP, 2002)	




Variation of correlation with scale 

•  Solar data,  
active region 



2D-MHD 
•  Three invariants: 

•  Total energy   ET=<v2/2 + b2/2> 
•  Cross-helicity                               Hc=<v.b>  
•  Magnetic potential                                           EA=<a2>,  b =curl  a 

•  These invariants have different physical dimensions: EA is more 
``large-scale’’ than ET and Hc 

•  Statistical equilibria: possibility of an inverse cascade of EA 
together with direct cascades of ET and of Hc (all observed 
numerically), like in 3D. 

•  Is Hc  ``more’’ or ``less’’ invariant than ET? 
     What happens to the ratio Hc/ ET? (selective decay) 



Cascades in forced 2D-MHD 

•  Energies (top: magnetic; bottom: 
kinetic} as a function of time are 
correctly represented in the model  

•  However, the growth of  squared 
magnetic potential due to the inverse 
cascade is always smaller than for 
DNS (solid line) 

•  Negative resistivity instability which 
involves the small scales  

                   where the filtering occurs 



Inverse Cascade of Magnetic Potential 

•  Turbulent magnetic resistivity 
      ηturb ~ EV_EM in the small scales 

         is <0 when EM > Ev, and is 
responsible for the inverse cascade 
(AP, JFM 1978; turbulence closure result) 

Solid line: DNS; other lines: α runs 
(arrows indicate values of alpha)

•  Change of sign of ηturb in small scales 
for α runs  

     (except for the one with αm=0) 

0	


Normalized energy difference	




•  In conclusion: 

•  The LAMHD model works up to the cut-off length α 
•  The errors are smaller than for under-resolved runs 
•  The growth rate of large-scale instabilities is OK in 3D 

The model allows for computations in regimes of 
turbulence never explored before at a known given 
Reynolds number 

Phys. Fluids 17, 035112; and 18, 045106 and 20, 035107; Phys Rev E 76, 056310 



Validation of LES: temporal evolution  
of total energy 

DNS	


LES PH	


Under-resolved DNS	


Chollet-Lesieur (1984)	


Savings in CPU : 0.5*[1536/96]4 ~ 30,000 (also for memory)	




Validation of LES, energy spectrum 

DNS	


Under-resolved DNS	


LES-PH	




Validation of LES, Helicity spectrum 

DNS	


Under-resolved DNS	


LES-PH	


Non-helical model	


DNS	




Phenomenologies for MHD turbulence 
•   MHD could be like fluids               Kolmogorov spectrum EK41(k) ~ k-5/3 
Or 

•  Slowing-down of energy transfer to small scales because of Alfvén waves 
propagation along a (quasi)-uniform field B0:        EIK(k) ~ (εT B0)1/2 k-3/2 

     (Iroshnikov - Kraichnan (IK), mid ‘60s) 

      Ttransfer ~ TNL * [TNL/TA]    ,  or 3-wave interactions but still with isotropy. 
      Eddy turn-over time    TNL~ l/ul    and wave (Alfvén) time   TA ~ l/B0 

And 

•  Weak turbulence theory for MHD (Galtier et al PoP 2000): anisotropy develops 
and the exact spectrum is:                                  EWT(k) = Cw kperp

-2 f(k//) 

     Note: WT is IK -compatible when isotropy (k// ~ kperp) is assumed: TNL~ lperp/ul  and 
TA~l// /B0 

Or  kperp
-5/3  (Goldreich Sridhar, APJ ‘95) ?  Or  kperp

-3/2 (Nakayama ‘99; Boldyrev ‘06, Yoshida ‘07) ? 





Moore’s law: Doubling of speed of processors every 18 
months implies doubling of resolution for DNS in 3D 
every 6 years … 

* Develop models of turbulent flows (Large Eddy 
Simulations, closures, Lagrangian-averaged, …) 

* Improve numerical techniques 

* Be patient 

•  Is Adaptive Mesh Refinement (AMR) a solution? 

•  If so, how do we adapt? How much accuracy do we 
need? 

Another way to go to higher Reynolds numbers …	




The need for Adaptive Mesh 
Refinement 

DATA	




AMR on 2D 
Navier-Stokes 

Rosenberg et al., JCP 2006; 
Aimé Fournier et al., 2008 

•  Decay for long times 
(incompressible) 

•  Formation of dipolar vortex 
structures 

•  Lesser number of degrees of 
freedom (~ 1/4) with AMR, 
compared to an equivalent 
pseudo-spectral code 
(periodic boundary 
conditions) 

(but ….) 



AMR in incompressible 2D - MHD 
turbulence at R~1000 

•  AMR using spectral elements 
of different orders, P;  

•  DNS is in black 

•  No noticeable differences 
when using the L2 norms 
(energy and its dissipation) 

•  But accuracy matters when 
looking at Max norms, here 
the current 

Rosenberg et al., New J. Phys., 2007 



AMR in 2D - MHD 
turbulence 

•  Magnetic X-point 
configuration in 2D 

•  Temporal variation of: 
        Dissipation 
       Jmax 
       Degrees of freedom 
    normalized by the number of 

modes in a pseudo-spectral code 
at the same Rv,  

     ~33% 

    Refinement and coarsening 
criteria … 

Rosenberg et al., New J. Phys. 2007 



2D -MHD Orszag-Tang vortex with AMR 

•  Error in temporal 
derivative of total 
energy (compared 
to dissipation) 

         is ~ 10-3 

(computed every 10 time 
steps) 

•  Error in .v is ~  
10-5 (controlled by a code 

parameter) 

Rosenberg et al., New J. Phys. 2007 



Examples of AMR 

Hairpin vortex, Euler case	

Grauer et al. PRL 80 (1998)	


Parallel flux tubes in 3D, ideal run	

with effective resolution up to 40963	


Grauer Marliani PRL 84 (2000)	




Thank you for your attention! 


