

Labyrinthine phase and slow dynamics in a driven magnetic granular medium

Labyrinthine patterns arise in two-dimensional physical systems submitted to competing interactions, ranging from the fields of solid-state physics to hydrodynamics. Here we report the observation of a labyrinthine phase in an out-of-equilibrium system constituted of magnetized macroscopic particles. We characterize the appearance of the labyrinthine phase as the interaction strength is increased, and we show that the large-scale disordered labyrinthine phase exhibits slow dynamics.

Experimental setup & protocol

Setup

Potential energy model

Magnetic potential energy in 3D

- 2D cell: rough bottom, plexiglas lid, gap = 1.4a.
- *N* ferromagnetic particles: diam. *a*, area fraction $\Phi = \frac{N \pi a^2}{4 S_0}$
- Shaker: acceleration *\Gamma* \rightarrow granular gas
- Coils: orthogonal magnetic field B_{α} \rightarrow induced magnetic dipoles

Repulsive interactions in 2D: $E_{m,ij} = \frac{\pi}{16\mu_0} B_0^2 \frac{a}{r_{..}^3}$

- **Protocol:** 1) Establish granular gas state by vibrating (Γ); 2) Increase linearly B_o ;
 - 3) Perform recordings after a given waiting time τ_w .

Recordings: fast camera (780 Hz) \rightarrow single particle tracking \rightarrow Magnetic and kinetic energy per particle: E_m and E_c

> Phase transitions depending on parameters ϕ and $\varepsilon = E_{m}/E_{s}$

Transition to a crystalline phase (ϕ =0.2)

One moving *up* particle inside a hexagon of 6 fixed down particles a)

 E_{mii} : magnetic potential energy per particle of a given pair {neighbor *i* ; central particle *j*} (computed from U_{m}).

• Low ϕ : *central* position is global min. \rightarrow crystalline • High ϕ : contact position is global min. \rightarrow labyrinthine

The preference for crystalline vs. labyrinthine phases can be explained by comparing potential energies.

Particles can be considered as effective elastic disks with tunable diameter.

Tunable degree of elasticity

Merminod, Berhanu & Falcon, EPL 106 44005 (2014)

Transition to a labyrinthine phase (ϕ =0.5)

Buckled chains

Fraction of particles in chains

Aggregation of pairs, then triplets, until solidification at the full-cell scale.

Slow dynamics

Initially very far from a steady state, the system undergoes slow relaxation, during which measured quantities depend on time.

Strong magnetic quenching generates a disordered state which is ideal for studying the aging of the labyrinthine phase.

Aging

 \rightarrow parameter τ_w : waiting time after B_o reaches its max. value.

Pair correlation function

Partial overlapping limited by the cell gap size (3D effect).

- By tuning the gap h, can we prevent the formation of the chains even at high density (ϕ =0.5)? Frustrated contactless state?
- Can we experimentally check the validity of the 7-particle model presented here for other gap values?
- What are the characteristics of the system during the transient state? What can we say from the critical exponents?
 - \rightarrow A model system for studying the transition from a fluctuating state to an absorbing state?

simon.merminod@univ-paris-diderot.fr