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Aim
To determine how much information about perturbations 
at one end of a granular material may be deduced from 
measurements at the other end.

System construction

Figure 1: A typical pack, comprising 800 particles, with periodic 
boundary conditions applied at the box edges

Figure 2: Displacements in an allowed mode of motion produced by 
removing one constraint from the packing of figure 1.

Figure 4: Decay rate of modes in the localised basis vs mode index, 
obtained simply by arranging modes in order of increasing decay rate. 
Modes with small index display a linear dependence of decay rate on 
index, just like modes in an elastic material.

Figure 3: Left: a mode strictly localised to the left side of the system. 
Right: a mode exponentially localised to the left side of the system. 
Each mode is represented by a map of the displacements of all 
particles, and a graph of the magnitude of particle displacement vs 
position in the horizontal direction.

Mode profiles

Figure 5: Mode disappearance rate vs the reciprocal of system width. 
Just as in the case of an elastic material, there is a linear relationship 
between these quantities, and the coefficient appears to be very 
similar.

Conclusions
• Particle displacement decays with distance from the 

surface in a granular material in the same way as for 
an equivalent mode in an elastic material.

• This means that measurements at one end of a 
granular material give very limited information about 
perturbations at the other end.

A granular pack for further computations is formed by 
putting N circular particles in a large box with periodic 
boundary conditions, and reducing the box size until a 
jammed, isostatic state is achieved. The particles are 
then replaced by nodes located at particle centers, with 
bonds joining nodes representing touching particles. 

To model a physical sample of a granular material, all 
constraints crossing the periodic boundary condition on 
the left and right sides are removed. This introduces 
numerous free modes of motion. Many bases of the 
allowed motion could be formed, but it is useful to form a 
basis by sequentially finding modes maximally localised 
to the left and right sides of the system. 

We call the proportionality constant between decay rate 
and index the “mode disappearance rate”. In an elastic 
material, the appropriate basis of perturbations is a set of 
sinusoidal functions. These disturbances have decay 
rates of the form 2πn/L, where n is an integer and L is 
the width of the system. The mode disappearance rate 
for an elastic material is thus 2π/L. 
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Cutting a bond introduces a mode in which the particles 
can move without changing the length of any bond. Such 
modes are long-ranged: each mode involves the 
movement of nodes all across the system.

In this basis, some modes are strictly localised to a 
portion of the system, with displacements outside this 
portion comparable to numerical error. Others are 
exponentially localised to one side of the system, so that 
particles throughout the system move but with 
displacement that decays with position. 

Ordering the modes by this decay rate shows a region 
where a mode's decay rate is proportional to its index. 
This corresponds to the decay of disturbances to an 
elastic material.

In the granular system considered here, the mode 
disappearance rate is likewise inversely proportional to 
system width, with a proportionality constant of similar 
size. The exponential decay of displacement with 
position means that, if there is even a small uncertainty 
in measurement, a very limited number of pieces of 
information about a perturbation at one side of the 
system can be determined by measurements at the 
other side.
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