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From Dendrites to Labyrinths:
- The Morphology of Magnetic Flux Patterns
in Superconductors!

A. T. Dorsey, Department of Physics, University of Florida

Collaborators: R. Goldstein (U. Arizona), A. Dolgert, S.J. Di

Bartolo (U. Virginia).
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Type-I .Superconductivity

Magnetic field H

Normal
B=H

Temperature T

e What happens in a thin film?

—
N/

e Such a configuration is energetically unfavorable. The sample

breaks up into normal and superconducting regions—intermediate
state.
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Issues:

e Many of the patterns involve sharp interfaces between two phases:
either normal/superconducting, superconducting/vortex liquid,
etc. Focus on developing models for the interface dynamics.

e Can we understand
— length scales?
— topology?
— dynamics? .
Outline:

o Interface dynamics without demagnetizing effects.

— Growth of the superconducting phase—a free boundary model.

— Instabilities of the interface motion and analogies with den-
dritic growth.

— Studies using the time-dependent Ginzburg-Landau equa-
tions.

— Experiments.
. Includiﬁg demagnetizing effects—the intermediate state.

— Landau’s model of the intermediate state.

— The current loop model of the intermediate state.

— Numerical studies of branching instabilities.

— The laminar state—energetics, fluctuations, and defects.

— Experiments.

N

From R. P. Feynman, The Feynman Lectures on Physics, Vol. II:

Finally, there is a most remarkable coincidence: The equa-
tions for many different physical situations have ezactly
the same appearance. Of course, the symbols may be different—
one letter is substituted for another—but the mathematical
form of the equations is the same. This means that hav-
ing studied one subject, we have a great deal of direct and
precise knowledge about the solutions of the equations of
another.
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Interface Dynamics in Superconductors o Free boundary model for interface motion

How is the magnetic flux expelled from the Meissner phase? Consider

¢ In the normal phase eddy currents are produced due to flux
a type-1 superconductor (without demagnetizing effects).

motion. Faraday’s law + Ampére’s law + Ohm'’s law (J=0E)
leads to the diffusion equation for the B field (B = B(z,y)3),
with D = /4xo:

_E ) 8,B = DgV?B (normal regions).

b Normal

g B=H ' ® In the superconducting regions B = 0.

= First order transition ¢ On the normal side of the S/N interface, E = —v x B, so that
E; = v,B; (t = tangent, n = normal). Combine with Ohm’s

Temperature T law and Ampere’s law to arrive at the boundary condition on
the moving boundary:
| (: By, = —DB(BB/an)I,-.

* For an equilibrium, planar S/N interface, B = H_ asthe interface
is approached from the superconducting side. If the interface has
curvature K, and moving with a normal velocity vy, this becomes

Superconducting B; = Hc(l - doK: - ﬁvn),
nu;::; : ! where dj is the capillary length and S is the kinetic coefficient.

e Far from the S/N interface the magnetic field is the applied field.

\ e The diffusion equations + boundary conditions constitute a free
‘ boundary problem for the moving interface. It is highly nonlinear
and nonlocal; analytic solutions are only known for zero surface
tension and in special circumstances.
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Dendritic growth of a pure substance C Dendritic growth <=> flux expulsion?
Liquid e There is a close analogy between flux expulsion and dendritic
growth:
Flux expulsion Solidification
Flux diffuses away from the interface. | Heat diffuses away from the interface.
Flux diffusion: 8,B = DgV?*B Thermal diffusion: 8T = DyrV?T
’ Dp = /4m0 ~ 10 cm? 57! Dr ~ 1073 cm? 57!
Tt < Toen Faraday’s law: Bjv, = —Dg(6B/0n)|; | Heat flux: Lv, = —Drcp(dT/8n)|;

e Place a piece of a solid into its supercooled liquid. The conversion B; = H(1 - doK — Bus) Gibbs-Thomson: T; = Tn(1 — doK — Bvn)
of liquid into S.Ohd P rO(Eluces latent heat _L’ thh.muSt dlff,use s Instability: “fingered” flux fronts. Instability: Mullins-Sekerka (dendrites).
away from the interface in order for the solid to continue growing: . _

’ - 2
&T = DrV°T. ‘ o There should be a dynamic instability of the flux front, which
o At the interface, is only stabilized at short wavelengths due to surface tension
effects.
Lv, = [Drcp(8T/0n)sotia — Drep(8T/0n)iquid) -
rate of heat production rate at which heat flows into liquid and solid

o The temperature at the planar solid/liquid interface is the melt-
ing temperature T;,; for a curved, moving interface we have the
Gibbs-Thomson boundary condition:

T; = Tr(1 — doK — Buy,),
with dp the cdpilla.ry length, K the curvature, and 3 a kinetic

fFici *Frahm, Ullah, and Dorsey, Phys. Rev. Lett. 66, 3067 (1991); Liu, Mondello, and
coeflicient. Goldenfeld, Phys. Rev. Lett. 66, 3071 (1991)
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uccinonitrile (a transparent plastic crystal with
ooled melt. Note the smooth
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o

Dynamic instabilities of the interface

o In the solidification problem, the growth is known to be unstable;
highly ramified patterns are formed (“dendrites”). Therefore we
expect the growing superconducting nucleus to also be dynami-
cally unstable!

H <H
a [

Normal

Y .
n «— Lines of constant B

I\
[ |

/_-\

Superconductor

(B=0) -— Interface (B=H_)

® OB /0n is largest near the bump; recalling that B;v, = —Dg(8B/8n)|;,
we see that bumps grow faster.



o A linear stabilit.y analysis for a planar interface shows that th'e
growth rate for long wavelength perturbations is positive, and is
stabilized at short wavelengths by the surface tension:

Growth rate

=

Wavenumberk  k_ \

e In the solidification problem, the crystalline anisotropy will “,f,o-
cus” the instability, leading to dendritic patterns ( “snowflakes”).

Solid-‘needle crystal’’

Parabolic tip

\

~—
~a——— Sidebranches
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A demonstration?

¢ A model for “Poisson growth”:
Rev. A 44, R6185 (1991).

® Two glass plates separated by grease.

o Slowly lift the top plate.

o

see H. La Roche et al., Phys.

—

@ Mass conservation gives

—
—

agh = —hV-v.

e Combine with Darcy’s law,

v=—kuVp

(for Poiseuille flow k& = h?/12); assuming gradients in A are

small,

2, _H
Vp Z

o At the interface, v, o —0p/on.

3Special thanks to Chris Lobb.
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Time-dependent Ginzburg-Landau (TDGL)
theory

o The TDGL equations for the order parameter 1/) and the vector
potential A are

mr(0+ 2 g) v = —g;f—: - 5'3:; (v- i;:A)’,,,+ a — blyl,

VXVxA =4rJ,+3,),
where J,, and J, are the normal and supercurrents,

J. = o(-Vé—BA)
* . *2
VY~ V)~ A

2m
The parameter a = ag (1 — T/T¢) and controls the correlation

1/2
length & = h/(2m/a|)!/? and penetration depth A = [mb/47re*2|a|] ?
The magnetic fieldis H=V x A.

s =

e Important dimensionless parameters: £ = A/£ (ratio of length
scales), & = 4mk?(ho /2m~y) (ratio of time scales).

o Can be derived from the microscopic BCS theory in the appro-
priate limit.

¢ Can derive interface model from TDGL equations using matched
asymptotic expansions. The constants dy, 8 are determined
from solutions of the equilibrium GL equations.®

‘A. T. Dorsey, Ann. Phys. 233, 248 (1994); S. J. Chapman, Quart. Appl. Math. 53, 601
(1995).
8J. C. Osborn and A. T. Dorsey, Phys. Rev. B 50, 15 961-15 966 (1994).
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Numerical solution of the TDGL equations

e Computational lattice:

- 2 >

Node

o Discretize TDGL equations. Put gauge fields on the links of the
lattice to insure gauge invariance (1 = z, y):

U¥(x) = exp[—ikaA,(x)].

Then derivatives become
1 1
5 _; Bl {50 0 —
( 21,”8“ zA,,) TS a [UFx)p(x + afp) — P(x)],

(VxA), = ‘{,% {U*()U¥(x + a2) [U=(x + ag)] "} [U¥(x)] " — 1}
Becomes a lattice gauge theory.

o Iterate equations of motion.

13
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FIG. 2. The magnetic field for a type-I superconductor in
the spinodal rcgime. The initial conditions and relevant pa-
rameters are the same as in Fig. 1 except that H, =0.2. There
is no lower critical size for sced nucleation so that the order pa-
rameter can leak through the flux wall via the mechanism of
phase slippage (sec text), resulting in a daughter seed on the
other sidc of the wall. The duughter seed continues to grow
until once more the ficld at the interface increases to H., and

the process repeats. H

—— Nucleation
(metnsinble)

Spinodal
(uastable)

200

200 100

FIG. 1. The magnetic ficld B in the x-y plane, for a type-i
superconductor in the nucleation regime, from Egs. (4) and
(6). ‘The lengths are in units of the penctration depth A(7),
time is in units of the order-parameter relaxation time rg, the
mugnetic ficld is in units of V2H,, and the grey scale ranges
from white (8 =0) to black (B=11,). The cxternal magnetic
ficld is H, =0.4, x=0.3, aiid £=0.1 (scc text). We begin with
a wedge-shaped perturbation on a planar superconducting-
normal interface. The interface velocity is proportional to the
ficld gradient, and the magnetic field is large in regions of neg-
ative curvature. These two features are expected on the basis

of the simple diffusion model.



' Propagating Front Solutions in One Dimension

e Dimensionless TDGL equations in one dimension (% = fe®,
q=A-Vo/k):
1
Of = 50f —¢'f+f = F,
a0 = 82q - f*q.
Both diffusive (v ~ t~1/2) and propagating (v = constant) solu-
tions exist. .

2.0 Wy

~— linear marginal stability

L8]
%‘ ——— matched asymptotics
K] o ical results
> 10}
FLL
3 \
\\‘
B ot R |
%0 5.0 10.0
fiux per unit length Q_,

Figure 1: Numerical values (open squares) of the front speed as a function of Q for £ =1
and 7 = 1.

e For propagating solutions, for small flux the problem reduces to
Fisher-KPP equation (population biology); v = 2/«. For large
flux can use matched asymptotic expansions.

eFork=1/ V2 and & = 1/2 the equations can be solved exactly,’

with (v = v/2).

¢S. J. Di Bartolo and A. T. Dorsey, Phys. Rev. Lett. 77, 4442-4445 (1996).
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Some experimental results

e M. R. Freeman, “Picosecond Studies of Nonequilibrium Flux Dy-
namics in a Superconductor,” Phys. Rev. Lett. 69, 1691 (1992).

o P. Leiderer et al., “Nucleation and Growth of a Flux Instability
in Superconducting YBa;Cu3O7_, Films,” Phys. Rev. Lett. 71,
2646 (1993).

e C. A. Duran et al., “Observation of Magnetic Field Penetration
via Dendritic Growth in Superconducting Niobium Films,” Phys.
Rev. B 52, 75 (1995).

e H. D. Hallen et al., “Penetration of Laterally Quantized Flux
Lamina into a Superconducting Wire Network,” Sol. State Comm.
99, 651 (1996).

e Carina Reisin, “Flux Dynamics and Pattern Formation of Flux
Penetration into Type-1 Superconductors,” doctoral thesis (Tech-
nion), 1997.

15



Demagnetiiing effects and the intermediate

state
Field lines
11 sC sC SC SC H,
S/N interface
Side view

e In the film geometry the sample cannot expel the flux, so the
superconducting and normal phases coexist.

e What sets the characteristic size of a domain? Need to account
for

— demagnetizing energy (bending of field lines), which favors a
finely divided structure (energy ~ a);
— surface energy of the interfaces, which favors a coarse struc-
ture (energy ~ 1/a).
e Minimizing, we find a = \/’%, with d the film thickness, A
the interfacial width (microscopic), and f(h) a model dependent

function of the reduced magnetic field h = H,/H,. Gives the
correct order of magnitude.

16
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Lamirar Structure
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Fig. 8. MMMMI&M-M&T 2165°K, A=Q.
- =095,
Applndﬁeldmknuwedli‘mmemdnllx in this photograph only, ncmnl
regions are dark. {After Sharvin (9).)
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Landau’s fheory of the intermediate state E (s Determining the shape of the laminae

NN

o Assume a laminar structure:

-— A=

Top view e Problem: find the shape of the laminae, determine the unknown
f(h).

o The laminar structure is only observed experimentally in oblique o e Two dimensional magnetostatics— complex variable methods.
fields. L

‘ e Boundaries are unknown. Solve using the hodograph method;
o Global flux conservation: H,A = H,A,, with A = A, + A,. ‘ developed in the context of fluid mechanics:

o Area fraction: p, = A,/A = H,/H,.
¢ Energy balance (bulk):
F = —(H?/8m)A.d + (Hﬁ/87r)An(£.

Free streamline flow around a plate | Laminae in superconductors
Complex potential w = ¢ + i) Complex potential w = ¢ +iA,

Fluid velocity u — tv = —dw/d( Magnetic field B = B, — iB, = —dw/d(

condensation energy field energy ‘ Streamlines Field lines (lines of force)
Free streamline Superconducting-normal interface
e Minimum at p, = H,/H,; i.e., H, = H,. : Free streamline velocity U Superconducting critical field H,
. Region of fluid flow Normal phase with nonzero magnetic field
e Leaves out surface energy and demagnetizing effects. These re- Cavity behind plate Superconducting phase

quire a model of the laminae shape. Riabouchinsky flow Lamina in a finite thickness plate

17 18



The current loop (CL) model’

Hy

. Wi
e ~-————
/ - -
-~
/7 8
/
!
V4

e What is the energy of a collection of normal domains of magne-

tization M = — H, [4n?
H? H.H,
)] = —e 1% 1-
BirYl = Vitm +VIt(-p)
e ——rt [ LA S —
condensation energy bulk field energy .
H? 1. dy 1 ibi-
—<AdY Li—-M dz[dz'¢ds ¢ds'—— .
+ 8r za: ! 2 g‘(}d /0 f f R,‘j
surface energy interaction among current loops

e Assume the dynamics is overdamped:

1 6E
nBtr,»(s) = —*Em

¢ Can solve numerically using intrinsic coordinates (arclength and
tangent angle).

7R. E. Goldstein, D. P. Jackson, and A. T. Dorsey, Phys. Rev. Lett. 76, 3818-3821

(1996); A. T. Dorsey and R. E. Goldstein, Phys. Rev. B ’

37,3058 (1998)

19
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Disordered patterns and instabilities

o Competition between long-range, repulsive interaction among
the currents, and the surface tension, which is short range and

attractive. For sufficiently small surface tension this results in a
branching instability.

e Elongational instability of a circular flux domain, h = 0.38.

(e ol

20



Energy of the laminar state in the CL model

e The CL model captures many of the features of the disordered
patterns. It can also be applied to the laminar state (observed
in oblique fields).

o The function f(h) calculated in the CL model is very close to
f(h) in the Landau model.

e Can use CL model to study the dynamics of the laminar state.

e Other periodic structures observed under some conditions: flux
spots, honeycomb structures. Also, the thread model: E. R.
Andrew, Proc. Roy. Soc. (London) A194, 98 (1948).

21
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Figure 5.10 - Image analysis of laminar pattern: (a) typical laminar pattern
(H=270 Gauss, $=20°). Normal regions are bright, superconducting regions are dark;
(b) 2D fast-Fourier-transform of (a); (c) sgecvnl intensity - experimental points (*),

fitted curve (—).

Q0 Im? an (a) *UM? NN 70 anan mna - 510 MR
nna (b) 0D Sp-"37In TR TN TN o (H=270 Gauss, p=20°)

(=) nnann Ny (o) MPNT0I TN - n*?10R90 MW () .(a) 7@ 2D e

C. Reisia, PL.D. Heesis (Techhion)
C.R. Reisin and $. 6. Lipsoa
Phys Rev B &t, Y25 (2000
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Fig. 4 Periodicity of Jaminar structures as a function of the reduced field, Landau

nonbranching model (---) and GJD CL model (—) for Sharvin’s geometry, The points

are the experimentally observed periodicities scaled using A, (o) and Acu (*) (NT)r

transition],
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Figure 5.9 - Image analysis of corrugated pattemn: (a) typical corrugated pattern,
h=0.53. Normal regions are bright, superconducting regions are dark; (b) 2D
fast-Fourier-transform of (a); (c) spectral intensity - experimental points (s), fitted
curve (—).
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¢ Fluctuations and defects

e Can use CL model to examine deformations and fluctuations of
the laminae.
(a)
%o er ez 3 on o e e s s o
h
“ T
7 The continuum elastic theory is identical to that of a two-
3 . dimensional smectic liquid crystal:
s ’ B 1 2 ? Kl 2
® gzo- Felastic = j d’r [—2— (u, + Eu’) + 7“1::4 .
154 5 e
ol o Can also include defects into the model in the form of edge dis-
ST T XERENE == locations; the dislocation energy is finite and can be small.
oao 01 02 03 04 05 08 o7 08 09 10
h

nonbranching model (---) and GID CL model (—). The points are the experimentally

observed periodicities scaled using A, () and Ace (*): (a) (NI)r transition; (b) (SDr

Fig. 2 Periodicity of corrugated structures as a function of the reduced field, Landau >

transition.
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H, = 158 Gauss (increasing) * H, = 169 Gauss (increasing)

Figure 6.8 - Dislocation defects in laminar intermediate state pattern. Motion of
laminae induced by changing the applied magnetic field: (a) and (b) climbing up,
decreasing H;, (c) climbing down, increasing H,.

NIUND P07 ABLN D™ 280 70 N°IN? NMIAN] 07019 70 TP - 6.8 MR
JH, ITIn Ln?un 01970 (b) -1 (a) :?D9MN "B1IDN NTO1 TU°D?

H, nx7pi ,.nun 01978 (¢)

Some other labyrinthine patterns

<D

° There are many other systems in which surface tension competes
with long-range dipolar interactions; the energy is generally of the

form

BI{r) = IS A+ £ Li — 50 fds fas't- 0 (Ry/c)

System In 5 Q d

type-1 (H?d/87)(ps + h?/pa) | H2dA /8% | H2d/8r | sinh™"(1/2)
superconductors +2 -1+ 22
magnetic Lagrange multiplier |dorw 2dM?* |sinh™I(1/z)
fluids +z— 1+ 22
Langmuir Lagrange multiplier |yie-rc | (Ap)® [1/2z
monolayers

FitzHugh-Nagumo | AF D P Ko(z)

model
Ezplanation of symbols: orw, ferrofluid water surface tension; M, ferrofluid

magnetization; y.e_Lc, line tension between liquid expanded (LE) and liquid
condensed (LC) phases in a Langmuir monolayer; Ay, discontinuity in electric
dipole moment density between LE and LC phases; dyol, a molecular cutoff

— monolayer thickness.

24



LABYRINTHS N _SUPERCONDUCTORS !, Summary

a2

e Growth of the superconducting phase after a quench from the
normal phase.

— Growth limited by diffusion of magnetic flux away from the
interface. :

— Interfacial instabilities lead to ramified patterns. Analogies
ce with dendritic growth.

— Behavior contained in simple free-bounda.ryv model is con-
tained in TDGL equations.

e Structure of the intermediate state in type-I superconductors.

v — Introduced a current-loop model for the intermediate state.

- C — For certain parameters the Biot-Savart interaction produces
a branching instability.

— CL model can also be applied to ordered structures such as

m ) the laminar state.

e Future work.

cand mo.gnetic fluids
)12/

— Phase ordering kinetics for layered systems. Dynamic scal-
ing?
~ Go beyond relaxational dynamics and include diffusive dy-

namics. Easiest case—FitzHugh-Nagumo model (with R.
Goldstein).

— Pattern formation in type-II superconductors—flux invasion.

25
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