Half Metals

- One spin band present at E_f
- MTJs with 1/2-metals show large effects
 - 200% MR with I electrode
 - M-I transition with both electrodes
- Useful 1/2 metals
 - High Curie temperature
 - Well behaved magnetism
 - Interface stability
 - Thermal stability
 - Defect tolerant

- d-d gap
 - Fe_3O_4
 - MnFe₂O₄
 - Singh PRB 65 064432 (2002)

$$- Fe_x Co_{(1-x)}S_2$$

- Mazin APL **77** 3000 (2000)
- Charge transfer gap
 - CrO₂
 - Manganites
- Covalent gap
 - Semi-Heusler Family
 - NiMnSb

Feng J. Appl. Phys. 91 8340 (2002)

• PtMnSb

Crystal and Band Structure of Fe₃O₄

Spin polarized electron bands from local spin density LMTO calculation [Zhang & Satpathy, 1991]

 Half metallic nature of Fe₃O₄ confirmed by recent fully relativistic first principles band structure calculations [Art Freeman]

Only minority-spin electrons are present at the Fermi Energy

Magnetic Tunnel Junction with 24 Å MgO barrier: Normal and Inverse MR

MTJ with Fe₃O₄ Electrode

Energy filtered XTEM \rightarrow Thin [001] oriented Fe₃O₄ layer formed at interface between Fe and oxide barrier \rightarrow No TMR for [111] oriented Fe₃O₄

Amorphous ferromagnetic electrodes

- Why amorphous?
 - Low coercivity
 - Low magnetization
 - Uniform
 - Low magnetostriction
 - High thermal stability
- Loss of some spin polarization due to metalloid atoms
- Thin interface layer improves performance

Thin amorphous layers

• Thin CoFe layers are amorphous between Al_2O_3 and CoFeB for t < 20 Å

LIVI. FIIII NICE Stuart Parkin July 7, 2003

Soft X-ray Emission Spectroscopy (SXES)

conventional x-ray fluorescence → partial local DOS

resonant x-ray emission elastic scattering (recombination)

Resonant X-ray Emission Near Fe 2p edge

Resonant X-ray Emission Near Fe 2p Edge

Normalized Photon Intensity

Resonant x-ray emission near Co 2p edge

 no change of Fermi level feature → evidence that Co LDOS does not change at Fermi level with amorphization; consistent with unchanged Co local magnetic moment in CoFe alloys

[C. Paduani et al, J.A.P. 86, 578 (1999); J. M. MacLaren et al, JAP 85, 4833 (1999)]

Why are Magnetic Tunnel Junctions Interesting?

Perpendicular current flow \rightarrow ideal for ultra high density recording (narrow read gap)

Much wider range of materials possible (c.f. GMR)

Interfacial phenomenon: very thin stacks (c.f. GMR)

Weak temperature dependence

No theoretical limit to Tunneling Magnetoresistance!
GMR: 1990: 10%; Today: 15-20% (simple spin valve)
TMR: 1975: 2% (4K); 1995: 10% ; 1997: 48%; Today: >220% at 300K
→Magnetic Tunnel junctions: game-changer!

Previous MRAM Approaches: Ferrite Core and AMR RAM

2-D array of ferrite cores with write and sense wires

Anisotropic MR (AMR) Memory (1980s)

Flux closed pair of magnetic thin films

Cross-point Architecture: Coincident Field Selection for Writing MTJ Cell

Flux Closure Issues and Remedies in MTJs

Reduce magnetostatic interaction \rightarrow reduce FM layer thicknesses

Use AP (Anti-parallel) pinned FM layer e.g. FM/Ru or FM/Os

Ref: Parkin & Heim, US patent #5,465,185 (filed 1991) Parkin US patent (filed 1998)

Indirect Exchange Coupling via non-magnetic metals

Spin density wave from scattering at interface between magnetic and nonmagnetic layers

Coupling of magnetic layers via non-magnetic spacer:sign, magnitude depend on spacer thickness

First Observation of Oscillatory Coupling and GMR in Metallic Multilayers Parkin et al, Phys. Rev. Lett. <u>64</u>, 2304 (1990)

FIG. 3. (a) Transverse saturation magnetoresistance (4.5 K) and (b) saturation field (300 K) vs Ru layer thickness for structures of the form Si(111)/(100 Å) Ru/[20 Å) Co/ t_{Ru} Ru]₂₀/(50 Å)Ru deposited at temperatures of •, 40 °C; 0, 125 °C; ×, 200 °C.

FIG. 4. (a) Transverse saturation magnetoresistance (4.5 K) and (b) saturation field (4.5 K) vs Cr layer thickness for three series of structures of the form Si(111)/(100 Å) Cr/[(20 Å) Fe/t_{Cr} Cr]_N/(50 Å) Cr, deposited at temperatures of \triangle , **a**, 40 °C (N=30); 0.125 °C (N=20).

Polycrystalline

S.S.P. Parkin et al, Phys. Rev. Lett. <u>66</u>, 2152 (1991)

Oscillations in GMR: Polycrystalline vs. Single Crystal Co/Cu Multilayers

Single crystalline

S.S.P. Parkin

Sputter deposited on MgO(100), MgO(110) and Al₂O₃ (0001) substrates using Fe/Pt seed layers deposited at 500C and Co/Cu at \sim 40C Stuart Parkin July 7, 2003

Néel Orange-peel Coupling

Correlated roughness leads to ferromagnetic coupling

Néel coupling field
$$\rightarrow H_N = \frac{\pi^2}{\sqrt{2}} \left(\frac{h^2}{\lambda t_F} \right) M_s \exp(-2\pi\sqrt{2}t_s / \lambda)$$

Coupling field, H_N, decreases with increasing thickness of ferromagnetic layer and tunnnel barrier

Schrag et al Appl. Phys. Lett. (2000)

Balancing Néel and Magnetostatic Fields in MTJs using Oscillatory Interlayer Coupling

- MTJs with Improved Magnetic Switching Characteristics
 - using anti-parallel pinned (AP) ferromagnetic layer
 - Patterned AP pinned MTJ structures display highly symmetric astroid with no offset field

Giant Magnetoresistance Head

Disk Magnetic Field

Current spin valve GMR head uses

- PtMn exchange bias layer
- CoFe/Ru/CoFe pinned layer
- Cu spacer layer
- CoFe/NiFe free layer
- Various underlayers and overlayers

Magnetization Creep in Exchange Biased and Hard/Soft MTJ

Magnetization Creep in Hard/Soft MTJ

- Moment of hard layer decreases as moment of soft layer reversed
 - Eventually soft layer completely demagnetizes hard layer
- Remanent moment decay follows a stretched exponential curve
- Decay is independent of cycling frequency up to 10 kHz
- Exchange biased MTJs stable to field cycling

Magnetization Creep in Hard/Soft MTJ

Moment decay of hard layer caused by reversal of moment of free layer

- No decay for fields smaller than coercive field of soft layer
- Decay insensitive to field for field > H_c

Dependence of Creep on Tunnel Barrier Thickness

- Creep slower with increasing tunnel barrier thickness
- Creep faster for thinner hard layer
- Creep depends on magnetic properties of soft layer

T=300 K MTJ Set in 5 kOe Cycled in ±200 Oe

Domain Wall Stray Field Magnitude

Thomas, Samant and Parkin, PRL (2000)

Maximum Domain Wall Stray Field vs wall-width parameter, q

- DW stray field calculated from gradient of magnetic potential, $\Psi(\mathbf{r})$
 - For thin Co films DW likely to be of Néel type (M rotates in plane of film) and Ψ(r) depends on div M – no surface charge
 - Consider linear DW infinitely long along y (Dietze and Thomas)
 - M varies only along x; $\Psi(\mathbf{r})$ related to M_x
 - $M_x(x)/M_s \sim q^2/(x^2+q^2)$ where q is a wall-width parameter

Domain Wall Fringing Fields

•very large stray fields from Neel wall in y and z directions

Origin of Creep in Hard/Soft MTJ

150 Å Co 12 Å Al ox. 20Å Co 100 Å Co₇₅Pt₁₂Cr₁₃

T=300 K MTJ Set in 5 kOe Cycled in ±200 Oe

No creep of hard layer observed when moment of free layer rotated!

Hard layer moment in CoPtCr/Al-O/Co MTJ sandwich:

- \diamond decays to zero after reversing moment \sim I ,000,000 times
- no creep after rotating moment \sim 1,000,000 times
- Mechanism via motion of domain walls in free layer
 - Iarger charge on domain walls in Co compared to Ni₄₀Fe₆₀

Magnetic Engineering at the Atomic Scale

Optical Characterization of Switching Uniformity

D.W. Abraham, P.L. Trouilloud et al.

MTJ Magnetic Random Access Memory: Reading

- ☺ High resistance
- ☺ High magnetoresistance (MR)
- © Controllable resistance
- © Weak temperature dependence
- $\ensuremath{\boxdot}$ Scalable to small sizes with high MR
- ℬ MR falls off with increasing voltage

Serial vs Crosspoint Architecture

July 7, 2003

MTJ MRAM: IT-IR cell for Faster Reading

July 7, 2003

I Transistor / I Resistor MRAM Cell

Signal ∝ MR/1→ High performance Sense power~10-100 fJ: 100,000 x smaller than GMR cell! [higher MR, higher R and N~1] ~300 mV array voltage → Low power IT/IR increases size of cell

MRAM Cell Concepts

July 7, 2003

MTJ MRAM Demonstration

MTJ MRAM

As fast as SRAM, As dense as DRAM and Non-volatile - no power needed to maintain memory

MRAM1 Characteristics

- 77 chiplets, 1 mm x 1.6 mm, 1K bit to 4K bit arrays
- Access time achieved: 2.25 ns
- Write time demonstrated: 2.3 ns
- Cycle time exercised: 10 ns (tester limited)

Via/ROM Cell 1 Cell 2 Cell 3

MRAM1 Processing

- CMOS 6SF fabricated in BTV on 200 mm Si, 3 special steps
- Wafers diced into 1" squares
- MTJ and MX materials (8 layers) deposited in Almaden
- MX, TJ, Vz, and M3 processed in Yorktown with e-beam lith

The MRAM Development Alliance

Formation: November 2000, IBM + Infineon **Mission**:

Design and develop jointly a competitive and scalable MRAM technology.

- →200mm MRAM technology development
- →Cu BEOL technology
- →Two architectures
 - FET for high performance
 - Cross point for high density

The MRAM Development Alliance

Project Locations

Yorktown Heights, NY

Burlington, VT

East Fishkill, NY (main development site)

Almaden, CA

Erlangen

Process Integration in 0.18µm Technology

Process Flow

Final Cu Level (M3) 2nd Cu Level (Bitline M2) ILD, Planarization Local Interconnect (MA) MTJ Encapsulation MTJ RIE Patterning MTJ Stack Deposition Contact Via (VA) M1/VA ILD Deposition 1st Cu Level (Write Line M1) 0.18um CMOS fabrication

Key integration processes are:

- MTJ patterning by RIE
- Post etch treatment of the MTJ
- Encapsulation of the MTJ with a suitable low temperature ILD.

MTJ Control for Read Yield

Resistance distributions within a functional 2kbit array

MTJ Control for Write Yield

Test Results Compared to Simulations

Array Quality Factor: AQF = H_{sw}/σ_{Hsw}

A. Sitaram, et al. VLSI Tech Symposium 2003

Write yield dependence on AQF: Test results compared to simulations (Inset shows checkerboard yield map for 2kbit array)

Endurance

- Blanket write cycles on a 2kb array
- No significant degradation of median MR and MTJ resistance through 630 million cycles

128 kbit MTJ MRAM Core Array Fabricated in a 0.18 µm Cu Technology

Cell pitch = $1.1\mu m$ (WL) x $1.27\mu m$ (BL) \rightarrow Cell area $1.4 \mu m^2$

A. Bette, et al. VLSI Circuit Symposium 2003

FET Cell Read Performance

128 kbit FET MRAM test chip

Array Read Access Time (ns)

Measured distribution of access times

Performance Analysis of FET MRAM Read Operation

→ Through optimization of the MTJ resistance ($R_L = 5 k\Omega$), optimization of the SA device matching and improvements in MR, a yieldable array read access time of 5ns is achievable with MR = 35% @ 300mV MTJ bias voltage.

Time Required For Cell Writing

 \rightarrow No errors observed beyond 1.5 ns T_w

A. Bette, et al. VLSI Circuit Symposium 2003

Comparison of Memory Technologies

Existing Products

Technology Potential

	SRAM	DRAM	NAND Flash	NOR Flash	IT-IMTJ MRAM	XPC MRAM
Cell size in F ²	100	8	5	6	>8 [published: 20-40]	>4
Supply Voltage	2.5 V	2.5 V	I.8 V	3.3 V	I.8 V [published: 2.5-3.3V]	I.8 V
Retention Power	IμW-375 mW	10 mW	0	0	0	0
Retention Time	∝ [with power]	64 ms	10 yrs	l0 yrs	l0 yrs	l0 yrs
Random Read Access	2-100 ns	60 ns	ΙΟ μs	90 ns	l Ons-50ns [published: 3ns–50ns]	50ns-1 <i>µ</i> s
Random Write Access	2-100 ns	60 ns	100 μs [erase 100 ms]	10 μs [erase 100 ms]	I 0-40 ns [published 3ns-50ns]	20-40 ns
Endurance	>1015	>1015	>10 ¹⁵ read 10 ⁵ write	>10 ¹⁵ read 10 ⁵ write	10 ¹⁵ [expected]	10 ¹⁵ [expected]

Magnetic Random Access Memory (MRAM)-The Perfect Memory!

DRAM is like a leaky bucket: Must be constantly refreshed to maintain contents

The SRAM bucket doesn't leak, but is a much bigger bucket

MRAM is a small bucket that does not need constant refilling