

Dependence of MR and R on AI thickness

- Resistance increases exponentially with Al-O thickness
- MR independent of barrier thickness
 - assuming barrier completely oxidized
 - no oxidation of underlying

ferromagnetic electrode

Sensitivity of MR to Interface Structure

XTEM of Typical MTJ

10CoFe/50Py (Free FM) Barrier Ga₂O₃ 20CoFe/15Fe (pinned FM)

275IrMn (Antiferromagnet)

50Ta

200Cu

50Ta

PtMn Exchange Biased MTJ with RA~ $I2\Omega\mu m^2$

Ta(200Å)/PtMn(250Å)/Co₈₀Fe₂₀(15Å)/Al(6Å)+O₂/Co₈₀Fe₂₀(10Å)/Ni₈₁Fe₁₉(46Å)/Ta(100Å)

IBM Almaden Research Center

Stuart Parkin July 7, 2003

60

-40

-60

-20

0

Field (Oe)

20

40

Aluminum Oxide Tunnel Barrier

Best tunnel barrier: oxidized Al metal films

- Aluminum wets Ni, Fe, Co etc
 - Plasma or thermal oxidation gives rise to dense oxide (fills pinholes)
 - Al metal diffuses through oxide layer
 - Typically reactively sputtered Al₂O₃ less dense
 - Smaller breakdown voltage...
- Limits to Al₂O₃ thickness
 - I/3 unit cell of crystalline $Al_2O_3 \sim 4.3$ Å!
 - Defects, non-uniformity in thin layers, oxidation of FM
 - Defects form defect band of states (Buhrman- BEEM)
 - Image charge effects: rounding of barrier
 - Very difficult to probe structure of ultra thin oxide layers
 - One of the best probes is transport
 - IV and temperature dependence measurements

"Lumpy" Al₂O₃ Tunnel Barrier

- What determines tunnel barrier height?
 - How can we measure tunnel barrier height?
 - \bullet Experimentally, strong decrease of barrier height with decreasing Al_2O_3 thickness from IV curves
 - Can we reduce barrier height by work function engineering, adding defects...
- How can we measure structure of thin tunnel barriers?
 - Interfaces very critical
 - Defects in thin layers very important
- Can we improve growth of thin dielectric layers?
 - Surfactants
 - Ultra smooth underlayers
 - Deposition temperature
 - Assist ion source
- What determines voltage dependence of MR?
 - Can we significantly reduce decrease of MR with voltage?
- What determines dependence of MR on magnetic material?

Oscillatory variation of MR with Bias Voltage

• Magneto-conductance determined from ac conductance vs dc bias voltage curves for parallel and anti-parallel alignment of ferromagnetic layers

• MR oscillates through zero MR for negative bias voltage

• Weak MR oscillation for positive bias voltage

Exact Free Electron Model of Tunneling

Transmission probability depends on electron energy relative to barrier height

Transmission probability vs E/ϕ

Transmission probability maximized when

$$k_x = \sqrt{\frac{2mE_x}{\hbar^2}} = i\kappa_x = i\sqrt{\frac{2m\phi}{\hbar^2}}$$

Exact Free Electron Model of Tunneling

Assume exchange split parabolic bands in Ferromagnet: Majority and minority bands have different Fermi energies

Transmission probability maximized when

$$k_x = \sqrt{\frac{2mE_x}{\hbar^2}} = i\kappa_x = i\sqrt{\frac{2m\phi}{\hbar^2}}$$

Or for band with Fermi energy closest to barrier heightB

Bias Dependence of MR: Exact Free Electron Model

- Model shows TMR decreases with bias and changes sign
 - Resonances in insulator conduction band
- Bias dependence of MR caused by different bias dependence of spin polarized currents

Spin Polarized Electron Tunneling: FM-I-FM

 $I_P \approx N_{\uparrow}^1 N_{\uparrow}^2$

 $I_{AP} \approx N_{\uparrow}^1 N_{\downarrow}^2 \approx 0$

Spin Polarized Electron Tunneling: FM-I-FM

Tunneling (DOS effect)

- In real metals DOS not uniform
- Not all electrons tunnel with equal probability.
 - T(s-p) > T(d)
 - d-electrons are more localized
- Number of initial and final states determine the net current

Fe(bcc) Majority Band N(E) Fe(bcc) Minority Band N(E)

Junctions with:

- -Metals
- -Superconductor
- -Semiconductor

 \rightarrow Have different IV characteristic which reflect the DOS and relative tunneling probabilities.

Spin polarization in materials (simple picture)

- Spin-bands are exchange split giving rise to different DOS at E_f for Spin up and spin down.
- This spin imbalance in tunneling current then called "Spin Polarized" current
- In devices, the tunneling spin polarization (TSP) depends on transmission probability and DOS.
- \rightarrow Spin polarization is not intrinsic!
- \rightarrow Spin polarization depends on:
 - barrier height
 - barrier shape
 - degree of disorder in barrier
 - bonding at F/I interfaces
 - electronic structure of insulator

Spin-Dependent Tunneling and Density of States

- Julliere: $TMR = \frac{P_1P_2}{1 P_1P_2}$ How can P be related to the properties of the material?
- First idea: Spin polarization P equals the spin-polarization of all electrons at the Fermi energy of the ferromagnet:

$$\mathsf{P} = \frac{\mathsf{N}^{\uparrow} - \mathsf{N}^{\downarrow}}{\mathsf{N}^{\uparrow} + \mathsf{N}^{\downarrow}}$$

 for Ni: P negative (predominantly spin-down electrons at Fermi edge) for Fe: P positive but: MTJs made of Ni and Fe electrodes show positive TMR !

Spin Polarization of the Tunneling Current

- Responsible for spin-polarization of tunneling current is matrix element for tunneling probability
- → s and p electrons have low DOS at Fermi edge compared to d electrons but are much more mobile: tunneling current in MTJs is dominated by fast spelectrons
- There are several techniques to measure the "spin polarization" of a ferromagnet that yield different results as different matrix elements play a role

band structure of Fe from Callaway and Wang 1977

Measuring Spin Polarization

- Spin polarization can be measured with variety of techniques
 - What is T for each measurement technique?
- Photoemission
 - Measures DOS with T~I
- Point Contact Andreev Reflection (PCAR)
 - Measures with $\mathbf{T} = \mathbf{v}_{\mathbf{f}}$
- Tunneling in Superconductors (STS)
 - T is barrier dependant!

$$P = \frac{N_{\uparrow} |T| - N_{\downarrow} |T|}{N_{\uparrow} |T| + N_{\downarrow} |T|}$$

Nadygorny Phys Rev B 63 184433

Superconducting Tunneling Spectroscopy

- Cartoon shows DOS for finite field H and zero temperature T
- Dynamic Conductance versus applied field is a measure for spin-polarization at E_F of ferromagnet (FM)
- The spin polarization is dominated by highly itinerant states near the Fermi Energy of the FM
- The structure closely resembles that of an MTJ
- Values for the P only at high field, very low temperature and zero bias

Meservey and Tedrow, Physics Reports 274 (1994)

Conductance Curves

Conductance curves for a Al $|AI_2O_3|$ Co junction

Determination of Spin Polarization: Fitting the Conductance vs. Voltage Curves

Spin-polarization is extracted by fitting the conductance-curves. In the fit we use the superconducting density-ofstates derived by Maki.

Parameters in fit:

- Temperature T
- Spin-Orbit Parameter b (spin-flip via non-magnetic impurities)
- Depairing parameter ζ (magnetic field tends to depair Cooper-Pairs)
- Spin-polarization P

Fitting procedure: see, for example, Worledge Phys Rev B 62 447 (2000)

Relationship of Spin Polarization to Magnetization

- Spin-polarization for Fe, Co and Ni and their alloys measured to be positive and around 45%
 - Weak relationship between TMR and magnetization (c.f. [Co₇₀Fe₃₀]B₂₀: TMR~60%)
- Results are in contradiction to photoemission results

Spin Polarization of Alloys From superconducting Tunneling Spectroscopy

Tunneling Matrix Elements in Co_{1-x}Pt_x Alloys

x (atomic % Platinum)

- Spin-polarization for Co-Pt alloys ~ constant for small Pt but decreases for higher Pt content
- simple model can account for dependence of TMR on Pt content assuming
 - tunneling ~3x more probable from Co than Pt
 - spin polarization from Co independent of Pt content
 - moment decreases linearly with Pt content

Resistance of MTJs with Co-Pt Alloy Ferromagnetic Electrode

 Tunneling from Ptsites reduced:

higher resistance with higher fraction of Pt in the alloy

- Tunneling spinpolarization is domiated by the spin-plarization of the electrons tunneling from Co sites
- → spin polarization independent of composition

