
Pinned FM

Resistance increases exponentially with 
Al-O thickness

MR independent of barrier thickness
assuming barrier completely oxidized
no oxidation of underlying 

ferromagnetic electrode

Dependence of MR and R 
on Al thickness

Dependence of MR and R 
on Al thickness
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Sensitivity of MR to Interface StructureSensitivity of MR to Interface Structure
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XTEM of Typical 
MTJ

XTEM of Typical 
MTJ
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Temperature (K)
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PtMn Exchange Biased MTJ with RA~12Ωµm2PtMn Exchange Biased MTJ with RA~12Ωµm2
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Aluminum Oxide Tunnel BarrierAluminum Oxide Tunnel Barrier

Best tunnel barrier: oxidized Al metal films
Aluminum wets Ni, Fe, Co etc

Plasma or thermal oxidation gives rise to dense oxide (fills pinholes)
Al metal diffuses through oxide layer

Typically reactively sputtered Al2O3 less dense
Smaller breakdown voltage…

Limits to Al2O3 thickness
1/3 unit cell of crystalline Al2O3 ~4.3 Å! 
Defects, non-uniformity in thin layers, oxidation of FM

Defects form defect band of states (Buhrman- BEEM)
Image charge effects: rounding of barrier 
Very difficult to probe structure of ultra thin oxide layers

One of the best probes is transport
IV and temperature dependence measurements

Stuart Parkin
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“Lumpy” Al2O3 Tunnel Barrier“Lumpy” Al2O3 Tunnel Barrier
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QuestionsQuestions

What determines tunnel barrier height?
How can we measure tunnel barrier height? 
Experimentally, strong decrease of barrier height with decreasing Al2O3 

thickness from IV curves
Can we reduce barrier height by work function engineering, adding defects…

How can we measure structure of thin tunnel barriers?
Interfaces very critical
Defects in thin layers very important

Can we improve growth of thin dielectric layers? 
Surfactants
Ultra smooth underlayers
Deposition temperature
Assist ion source

What determines voltage dependence of MR?
Can we significantly reduce decrease of MR with voltage?

What determines dependence of MR on magnetic material?

Stuart Parkin
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• Magneto-conductance determined from ac 
conductance vs dc bias voltage curves for parallel 
and anti-parallel alignment of ferromagnetic 
layers
• MR oscillates through zero MR for negative 
bias voltage
• Weak MR oscillation for positive bias voltage
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Transmission 
probability depends on 

electron energy 
relative to barrier 

height

Exact Free Electron Model of TunnelingExact Free Electron Model of Tunneling
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Assume exchange split 
parabolic bands in 

Ferromagnet:
Majority and minority bands 

have different Fermi 
energies

Exact Free Electron Model of TunnelingExact Free Electron Model of Tunneling
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M M

Transmission probability 
maximized when Or for band with Fermi energy 

closest to barrier heightB
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• Model shows TMR decreases with 
bias and changes sign

• Resonances in insulator 
conduction band 

• Bias dependence of MR caused by 
different bias dependence of spin 
polarized currents

Bias Dependence of 
MR: Exact Free 
Electron Model

Bias Dependence of 
MR: Exact Free 
Electron Model
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Spin Polarized Electron Tunneling: FM-I-FMSpin Polarized Electron Tunneling: FM-I-FM
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1 2
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Spin Polarized Electron Tunneling: FM-I-FMSpin Polarized Electron Tunneling: FM-I-FM

Juliere (1975)
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Tunneling (DOS effect)Tunneling (DOS effect)

Majority Band N(E)
Fe(bcc) 

Minority Band N(E) 
Fe(bcc) 

• In real metals DOS not 
uniform 

• Not all electrons tunnel with 
equal probability.
– T(s-p) > T(d)

• d-electrons are more 
localized

• Number of initial and final 
states determine the net 
current

Junctions with:
–Metals
–Superconductor
–Semiconductor 

Have different IV characteristic 
which reflect the DOS and relative 
tunneling probabilities.

Stuart Parkin
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Spin polarization in materials (simple picture)Spin polarization in materials (simple picture)

Stuart Parkin
July 7, 2003

• Spin-bands are exchange split giving rise 
to different DOS at Ef for Spin up and 
spin down.

• This spin imbalance in tunneling current 
then called “Spin Polarized” current

• In devices, the tunneling spin 
polarization (TSP) depends on 
transmission probability and DOS.
Spin polarization is not intrinsic!

Spin polarization depends on:
- barrier height
- barrier shape
- degree of disorder in barrier
- bonding at F/I interfaces
- electronic structure of insulator

TNTN
TNTN

P
↓↑

↓↑

+
−

=



Spin-Dependent Tunneling and Density of StatesSpin-Dependent Tunneling and Density of States
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Julliere:

How can P be related to the    
properties of the material?

First idea: Spin polarization P equals   
the spin-polarization of all 
electrons at the Fermi energy of the    
ferromagnet:

for Ni: P negative (predominantly 
spin-down electrons at Fermi edge) 
for Fe: P positive
but: MTJs made of Ni and Fe 
electrodes show positive TMR !  

Ni

P =
N↑ - N↓

N↑ + N↓

N↑

N↓

TMR = 
P1P2

1 – P1P2



Spin Polarization of the Tunneling CurrentSpin Polarization of the Tunneling Current

Responsible for spin-polarization of  
tunneling current is matrix element for 
tunneling probability

→ s and p electrons have low DOS at 
Fermi edge compared to d electrons but 
are much more mobile: tunneling current 
in MTJs is dominated by fast sp-
electrons
There are several techniques to 
measure the “spin polarization” of a 
ferromagnet that yield different results
as different matrix elements play a role

band structure of Fe from Callaway and Wang 1977

Stuart Parkin
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Measuring Spin PolarizationMeasuring Spin Polarization
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• Spin polarization can be measured with 
variety of techniques
– What is T for each measurement 

technique?
• Photoemission

– Measures DOS with T~1
• Point Contact Andreev Reflection  (PCAR)

– Measures with T = vf

• Tunneling in Superconductors (STS)
– T is barrier dependant!

TNTN
TNTN

P
↓↑

↓↑

+
−

=

Nadygorny Phys Rev B 63 184433



Superconducting Tunneling SpectroscopySuperconducting Tunneling Spectroscopy
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Cartoon shows DOS for finite field H and      
zero temperature T

Dynamic Conductance versus applied
field is a measure for spin-polarization at
EF of  ferromagnet (FM)

The spin polarization is dominated by highly 
itinerant states near the Fermi Energy of the 
FM

The structure closely resembles that of an 
MTJ
Values for the P only at high field, very low 
temperature and zero bias

BarrierSC FM

Energy

DOSDOS

Si - substrate

FMSC Barrier

Meservey and Tedrow, Physics Reports 274 (1994)



Conductance CurvesConductance Curves
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Determination of Spin Polarization:
Fitting the Conductance vs. Voltage Curves

Determination of Spin Polarization:
Fitting the Conductance vs. Voltage Curves

Spin-polarization is extracted by 
fitting the conductance-curves. 
In the fit we use the 
superconducting density-of-
states derived by Maki.
Parameters in fit:

Temperature T
Spin-Orbit Parameter b
(spin-flip via non-magnetic    
impurities)
Depairing parameter ζ
(magnetic field tends to 
depair Cooper-Pairs) 
Spin-polarization P -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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Fitting procedure: see, for example, Worledge Phys Rev B 62 447 (2000) Stuart Parkin
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Relationship of Spin Polarization to MagnetizationRelationship of Spin Polarization to Magnetization

Spin-polarization for Fe, Co and Ni and their alloys measured to be positive 
and around 45%

Weak relationship between TMR and magnetization (c.f. [Co70Fe30]B20: TMR~60%)
Results are in contradiction to photoemission results 
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Bias voltage (mV)

H=2T

Spin Polarization of Alloys From 
superconducting Tunneling Spectroscopy

Spin Polarization of Alloys From 
superconducting Tunneling Spectroscopy
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Tunneling Matrix Elements in Co1-xPtx AlloysTunneling Matrix Elements in Co1-xPtx Alloys
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Spin-polarization for Co-Pt alloys ~ constant 
for small Pt but decreases for higher Pt 
content      
simple model can account for dependence of 
TMR on Pt content assuming

tunneling ~3x more probable from Co 
than Pt

spin polarization from Co independent of 
Pt content

moment decreases linearly with Pt 
content

x (atomic % Platinum)

Sp
in

 P
ol

ar
iz

at
io

n 
(%

)



Resistance of MTJs with Co-Pt Alloy Ferromagnetic ElectrodeResistance of MTJs with Co-Pt Alloy Ferromagnetic Electrode
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