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Magnetic Tunneling Junctions: HistoryMagnetic Tunneling Junctions: History

Pinned FM

Free FM

1974 Slonczewski - concept proposed
1975 Juliere - first demonstration (CNR-France)

Fe/Ge/Co, ∆R/R~14% at 4.2 K
1982 Maekawa and Gafvert (IBM post-docs)

Ni/NiO/Ni, Fe, Co, ∆R/R~0.4-2% at 4.2 K
1990~1993 Miyazaki et al. (Tohoku University)

NiFe/Al-Al2O3/Co, ∆R/R~2.7% at room temperature (RT)
1995 Miyazaki et al. (Tohoku University) - first large MR at RT

Fe/Al-Al2O3/Co, ∆R/R~18% at RT
1995 Moodera et al. (MIT) - large RT MR

Co-Fe/Al-Al2O3/Co, ∆R/R~10% at RT
1995 Gallagher and Parkin – proposal for MRAM using MTJs
1996 Parkin et al. - large RT MR  

>25%  in shadow masked and patterned junctions; reproducible
1998 Parkin et al. - extraordinarily large RT MR; high thermal stability  

>35% in sub-micron junctions;  >47%  in shadow masked junctions
specific resistances ~60 to >109 Ω(µm)2; thermal stability (>300 °C)

1999-2000 Scheuerlein et al. – First MTJ MRAM demonstration 
<3 ns read and write

2001-2003 Parkin et al. – giant MR using novel tunnel barrier (>220% at RT)
2002 Durlam et al. – 1 Mbit MRAM in 0.6 µm technology
2003 Sitaram et al.; Bette et al. – 128 kbit MRAM core in 0.18 µm technology
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Simplest MTJ: Hard-SoftSimplest MTJ: Hard-Soft

MTJ comprised of 
two FM layers with 
different coercivities

Pd
80Å Co84Fe16
16Å Al-180s
24Å Co84Fe16
100Å Ir22Mn78

200Å Ti

Problems: 
- difficult to control magnetics: 
- difficult to find FM layer with 
very high Hc and S
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Spin Valve Structure using Exchange BiasSpin Valve Structure using Exchange Bias
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Establishing 
Exchange Bias
Establishing 

Exchange Bias

An antiferromagnet grown in the absense of
a magnetic field has no long-range magnetic order

A disordered antiferromagnet layer adjacent to a ferromagnetic layer
may be magnetically ordered by heating above its blocking temperature

and subsequently cooling

Antiferromagnet film deposition onto a ferromagnetic layer biased by an
external applied field will yield a uniformly antiferromagnetically ordered layer

cooling

substrate

Bias Magnet
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Top lead

Free ferromagnet

MR ~ 50%
Switching field of free layer ~ 3 Oe

Substrate

Ti, Ti/Pd or Ta/ Pt

CoFe or NiFe/CoFeAl2O3
Al2O3

CoFe/NiFe

Antiferromagnet

Underlayer
Si, quartz, N58
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Pinned ferromagnet
Tunnel 
barrier
Tunnel 
barrier

Antiferromagnet
Bottom electrode
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Shadow-Masked Structures Prepared by Sputter DepositionShadow-Masked Structures Prepared by Sputter Deposition

20x20 µm2

Tunnel barrier
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Shadow-masked MTJs prepared by sputter depositionShadow-masked MTJs prepared by sputter deposition
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20x20 µm2

Tunnel barrier




Lecture II: Magnetic Tunnel Junctions and MRAMLecture II: Magnetic Tunnel Junctions and MRAM

Stuart Parkin
IBM Almaden Research Center, San Jose, California
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Magnetic tunnel junctions
Magnetic engineering

Spin polarization of tunneling current
~50% for 3d transition metal ferromagnets/ Al2O3

Magnetic Random Access Memory 
Attractive: Non-volatile, dense and high-speed

Magnetic Tunnel Transistor [Lecture 3]
Hot electron spin injection into GaAs and Si
3,500% change in collector current ~100% spin polarized current
Optical detection of spin polarized current using QW light emitting diode

Supported in part by the United States
Defense Advanced Research Project Agency (DARPA)
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Exact Free Electron Model of TunnelingExact Free Electron Model of Tunneling

Schrödinger equation
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Tunneling Matrix elementsTunneling Matrix elements

• Tunneling is a quantum mechanical 
phenomenon

• From basic quantum mechanics, the 
barrier height (Φ), width (d) and 
electron energy (k)  determine the 
transmission probability
Exponential decrease with 
barrier thickness and height
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