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Hard Disk Drive Areal Density EvolutionHard Disk Drive Areal Density Evolution
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Tunneling Head!
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Giant Magnetoresistance (GMR) in Multilayers and 
Spin-Valve Sandwiches

Giant Magnetoresistance (GMR) in Multilayers and 
Spin-Valve Sandwiches

spin-valve

multi-layer GMR 
-metallic spacer 
between magnetic 
layers
-current flows in-
plane of layers
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Density of states in the s and d bands of ferromagnetic Ni, Fe and Co.
Total number of electrons in the spin down (left) and spin up (right) bands are also shown.
The bands are filled up to the common Fermi level E .
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Conductivity in Ferromagnetic Metals 

Current carried independently in spin-up and spin-down
subbands [ ] Mott, 1936

Assumptions:

negligible spin-mixing

Spin dependent conductivity in ferromagnetic metalsSpin dependent conductivity in ferromagnetic metals

-fundamental property of all 
ferro and ferri-magnetic 
systems is that the current is 
carried independently in two 
spin-channels
-conductivity in two channels 
can be very different as 
described by spin-dependent 
mean free paths or scattering 
times
-leads to spin-filtering under 
certain circumstances
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Majority Band vs 
Minority Band Density 

of States in 3d
Ferromagnets

Majority Band vs 
Minority Band Density 

of States in 3d
Ferromagnets

Majorit y Band N(E) Minorit y Band N(E) 

Fe(bcc) 

Ni(fcc) 

Fe(bcc) 

Ni(fcc) 

N(EF) Ï Ð Ð /Ï

Ni(fcc) 2.51 21.28 8.48

Co(hcp) 2.46 9.53 3.87

Fe(bcc) 11.89 3.27 0.28

Majority Band N(E)Ï Minority Band N(E)Ð

Fe 
bcc

Ni 
fcc



Resistor network 
model of GMR

Resistor network 
model of GMR
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-Basic physics readily 
understood in two-
channel conductivity 
model
-Many sophisticated 
models developed but 
none have much 
predictive power
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Current-in-plane (CIP) GMRCurrent-in-plane (CIP) GMR
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Moments antiparallel: 
   

 
An electron will have short scattering length

      in one layer regardless of its spin polarization.

Higher resistance.

Moments parallel: 
   One spin polarization of electrons will
      have have longer scattering length in all layers.

Lower resistance.

-Short circuit effect in 
one spin channel
-GMR limited in 
magnitude by current 
shunting through non-
magnetic layers 
-this model assumes bulk 
spin-dependent 
scattering but GMR 
mostly derived from 
spin-dependent interface 
scattering



Giant Magnetoresistance in heterogeneous ferromagnetsGiant Magnetoresistance in heterogeneous ferromagnets
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GMR 
-common to almost any 
heterogeneous ferro or ferri-
magnetic system



Magnetic Engineering at the Atomic Scale Magnetic Engineering at the Atomic Scale 

Spin Valve
GMR sensor

+ interface 
engineering

+ Artificial
Antiferromagnet
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Tunneling today (good and bad)Tunneling today (good and bad)

• Flash
– Read and write process 

using tunneling to change 
state of floating gate.

• Transistors
– Source of leakage current 
– Significant power 

consumption in off state
– Seeking solutions to this 

problem
• MRAM

– See lecture 2

Poly Si Control gate

Poly-Si Floating gate

Tunnel oxide (~100Å)

SiO2

Writing a flash bit

Fazio and Bauer, Intel Technology Journal (1997)
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Gate leakage in transistor
Rideau, STMicroelectronics
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