GOALS:

1) the simplest SAT-UNSAT transition (→ Chris Moore)
2) the simplest replica calculation (→ Giulio Biroli, Florent Krzakala)
3) illustrate RSB in fully connected models (→ Federico Ricci)
4) connection of SAT-UNSAT and jamming (→ Sid Nagel, Karen Daniels)
5) connection between spin glasses and glasses (→ Giulio Biroli, Gilles Tarjus, Ludovic Berthier)
6) connection with packing problems in large dimensions (→ Henry Cohn)

OUTLINE

A. Perceptron
 1. Definitions
 a. Perceptron
 b. Constraint satisfaction
 c. Stat mech formulation
 2. Replica method
 a. General calculation
 b. Replica symmetric solution
 3. The SAT-UNSAT transition
 a. SAT phase
 b. UNSAT phase
 c. Landscape
 d. Isostaticity
 4. Non-convex perceptron
 a. Full phase diagram and RSB
 b. Geometric interpretation

B. Spheres
 1. Spheres as constraint satisfaction problem
 a. General formulation
 b. Differences: quenched disorder, crystal
 c. The Franz-Parisi potential
 2. Spheres in infinite dimensions
 a. Liquid phase: virial expansion
 b. Results for the transition densities
 c. Out-of-equilibrium: phase diagram and J-line
 3. Criticality of jamming

REFERENCES:

– Part A and part B1 are based on SciPost Phys. 2, 019 (2017), also on arXiv:1702.06919
– For Replica Symmetry Breaking, see Castellani-Cavagna arXiv:cond-mat/0505032 or FZ, arXiv:1008.4844
– Part B2 is based on the draft of the book available in this Dropbox folder
– For part B3 see Annual Review of Condensed Matter Physics, Vol. 8, 265-288 (2017), also on arXiv:1605.03008