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These lecture notes are the basis of the presentation with the same title
that will take place in the Summer School 'Nonequilibrium Statistical Me-
chanics: Fundamental Problems and Applications’ at Boulder, USA, in July
2009. The reader will not find new results here and I am in debt with a set
of authors who have contributed to the subjects presented here in the last
years. I am particularly in debt with the PhD thesis of Leonie Canet (down-
loadable from http://lpm2c.grenoble.cnrs.fr /spip.php?article353) and with
the lecture notes of B. Delamotte ‘An introduction to the nonperturbative
renormalization group’ [1]. The textbook of M. Le Bellac [2] was always
around the table while I was writing these notes as can be seen in the first
chapter. I have learnt most of what I know in field theoretical treatment of
reaction-diffusion systems from many discussions with L. Canet, H. Chaté
and B. Delamotte. The lectures of U. Tduber (that can be downloaded from
http://www.phys.vt.edu/ tauber/) have also been very useful. In summary:
these notes are not original, almost all the good things the reader can find
here have been explained in a better way elsewhere, and I be mainly the
author of many mistakes that will certainly appear. However, I hope that in
some parts, as in the motivation of the Derivative Expansion, a pedagogical
progress to most part of the literature has been achieved. Moreover, in the
third chapter I have tried to explain carefully some calculations made some
time ago and never written in detail in the literature. I must acknowledge F'.
Benitez and L. Canet for reading a previous version of this manuscript and
suggesting many improvements. L. Quintana and A. Rubini helped a lot to
make this text closer to real English. I must acknowledge also the support
of the uruguayan program PEDECIBA.
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Chapter 3

Simple NPRG applications in
reaction-diffusion systems

We have finally arrived to the applications of the NPRG to out-of-equilibrium
phenomena. The first application of NPRG to this kind of phenomena was
done in the Directed-Percolation (DP) universality class [54]. In this ref-
erence, critical exponents were calculated but also non-universal properties
in out-of-equilibrium problems were analyzed also. In particular, reaction-
diffusion processes called Branching and Annihilating Random Walks (BARW)
were studied. In its odd case can be taken with the form (1.1) in the partic-
ular case of u = 0. For this particular process in the DP universality class,
the structure of the phase diagram was studied [54, 55]. NPRG results for
the even-BARW, that go beyond the scope of the perturbative analysis, can
be found in [56]. The model-A has also been analyzed within this methods
[57]. Finally, the analysis of the KPZ-equation has been performed within
the NPRG under various approximation schemes [32, 33]. A brief review of
the many of these results can be found in [30].

In the present chapter a single example will be presented: the application
of the NPRG equation in the LPA approximation to DP universality class
and, in particular, to the odd-BARW process realization.

3.1 LPA approximation for reaction-diffusion
processes

In this section, the LPA approximation for any reaction-diffusion process of
a single molecule species is presented. For all these types of reactions, the
Doi-Peliti [10, 11] and the J.D.M.S.R. [7, 8, 9] procedures give actions of the
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50CHAPTER 3. SIMPLE NPRG APPLICATIONS IN REACTION-DIFFUSION SYSTEMS

form:
Slp, ¢l = / dledt{p(t,7) (8 — DV)p(t,7) + Ve, 9)}  (3.1)

As explained in the first chapter, for such an action, mean values can be taken
with an expression similar to the one of equilibrium statistical mechanics
(1.29). Correspondingly, one can define the equivalent of a partition function
in presence of 'sources’:

Z[J,J] = / Do(t, )Dp(t, T) exp ( — S|, @] + / dldt{Jp + J@}> (3.2)
One can also consider, the equivalent of a Helmholtz 'free-energy’, W[J, J| =
log Z[J, J]. From it, one can extract ¢(t, T) = (p(t, T))| ;7 and P(t, T) = <¢<t’f>>‘J,j
where the mean values are taken in presence of sources J(t, %) and J(t, ¥).
Consequently, one can perform a Legendre transform in order to define the
equivalent of a Gibbs ’free-energy’:

L6, 0] = / d*zdt{J(t,Z)o(t,T) + J(t,Z)d(t, E)} — W[J, J]. (3.3)

The NPRG procedure can be performed in the same way as in equilibrium
phenomena. One modifies the action by a quadratic term:

1 [dw d% -
AS, ol == | ———®(—q, —w)Ry(q,w)P(q, 3.4
bl = 5 [ 5 T RGP @) (34
where ® is a vector with components (¢, ) and Ry is a 2 X 2 symmetric
matrix. Correspondingly one can define the regularized Wi[J, J] and I'x[¢, ¢]
as in previous chapters. If the matrix R}, is properly chosen, the behavior of
I'y is, again,

Tul6, 3] ~ { it (3.5)

The corresponding NPRG equation can be deduced in the same way than
for equilibrium systems and takes the form:

OuLulo.d] = STr(Au(T? + ) (6.4 (36)
It is important to realize that now I'® is a matrix not only in space and time
indices but also in the ’internal’ space (¢, ¢). Correspondingly, the "trace’ is
now over space-time indices and also over internal indices.
Before going to specific applications, it is important to mention two tech-
nicalities:
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e The form of various actions S has been deduced by considering a It
prescription. This is automatic in the Doi-Peliti procedure and is part
of a precise definition of the Langevin equation in the J.D.M.S.R pro-
cedure. When using the Ito prescription a very careful treatment of
Fourier transforms is necessary. In these notes we will proceed in a
naive way, ignoring this problem. One can prove, however, that at the
level of the LPA this problem has no consequences [58]. When consid-
ering more sophisticated approximations it is important to go back to
a precise discretized version of the model before taking Fourier trans-
forms in order to take into account the Ito prescription. At the end of
the day the procedure is not very involved, but goes beyond the scope
of the present lectures.

e The fields ¢ and ¢ are not real scalar fields. Depending on the specific
procedure employed (Doi-Peliti or J.D.M.S.R) they will have different
‘complexifications’. For the Doi-Peliti procedure they must be complex
conjugated fields. In that case, the integration (1.29) must be done,
in fact, over the real and imaginary parts of the field ¢. For the case
of the J.D.M.S.R, ¢ is real and ¢ purely imaginary. In that case,
the integration must be done over ¢ and the imaginary part of ¢. In
these notes we will ignore this point by supposing that some sort of
analytical continuation is possible which allow us to treat ¢ and ¢ as
independent real fields. At a perturbative level it does not seem to have
any consequences but this is a delicate point for a non-perturbative
analysis. This technical point is presently under active investigation
[58].

To perform concrete calculations, a regulator profile matrix must be cho-
sen. As mentioned before, it is important to chose a regulator that respect
the known symmetries of the model. For reaction diffusion systems, it is
important to respect space and time translation invariance, space rotations
invariance and also other internal symmetries of specific reaction-diffusion
actions.

For the DP action (1.34), the simplest regulator profile matrix Ry, cor-
responds to chose a matrix independent of frequencies and only with off-
diagonal components (as typical quadratic terms in the action):

Ru(@w) = ( gy 0 ) (3.7)

In particular, for the DP case it has the virtue of respecting the rapidity
symmetry

o(t,Z) — —p(—t,©), o(t, %) — —p(—t, ). (3.8)
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The function Ry (¢?) should have the same properties than for the equilibrium
case. The only difference is that the normalization at ¢ = 0 should be taken

One difficulty that must be mentioned with such a regulator is that is
has good properties for high wave-numbers but not for high frequencies. In
principle one should ask the same kind of requirement in frequencies than in
wave-numbers in order to have a NPRG equation ultraviolet finite and also
with good decoupling properties of modes with high frequencies. However, in
practice it seem to be unnecessary. Even if there are not a frequency cut-off
induced by the regulator, in practice the integrals fall at least as 1/w? at high
frequencies (in fact for most of physical quantities is fall much faster). Even
if it does not induce a decoupling of modes with high frequencies as fast as
the one in wave-numbers, it seem to be enough in practice.

In order to extract physical information from the solutions of the NPRG
equation, one proceeds in a similar way than in equilibrium problems. How-
ever, there are some minor differences to be analyzed. As explained in the
first chapter, the weight associated to the action (1.29) allows to compute
the expected values of functionals of the field variable (¢, %), as for exam-
ple {(p(t,Z)p(t',2")). As it was also mentioned in that chapter, for out-of-
equilibrium phenomena it is important to be able to calculate also response
functions. A very important property of the J.D.M.S.R. formalism (and
of the Doi-Peliti formalism) is that it also allows to calculate the response
functions. For the simplest response function,

Wt 7) = F0D) — (ot (e, ) (39
as can be easily shown (see exercise 4). This is why the field @ is usually
called response field. Given this fact, the response and correlation functions
can be treated on an equal footing, and one can speak of a general 2-point
correlation function (®;(t,7)®,(t',2’)), where ®; may be ¢ or ¢. Conse-
quently, correlation and response functions can be obtained from the matrix
of second derivatives of I';. As explained before, the matrix of second deriva-
tives of I'y + ASy is the inverse (in space-time and internal indices) of the
general 2-point function (including response fields) just defined.

A general property in out-of-equilibrium problems is that S|y, = 0] = 0.
This is manifest in the J.D.M.S.R. formalism presented before and can be
shown to be true also in the Doi-Peliti formalism. If Ito prescription is taken
into account properly it can be shown that this property is also true at the
level of Ty [¢, ¢]. In particular, it implies that the second derivative of I';, with
respect to ¢ at zero ¢ is zero, giving a null entry in the matrix to be inverted.
This is important, because as will be seen shortly, many times the physical
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quantities that one wants to calculate in a ’symmetric phase’ are evaluated
at zero external sources. In that case, the various objects must be evaluated
at zero external fields. In the particular case of the DP universality class,
the 'symmetric phase’ corresponds to the absorbing phase. In that case, the
rapidity symmetry impose, moreover, that the second derivative with respect
to ¢ evaluated at zero external fields is also zero. In that case, the correlation

function at zero external sources is simply zero and the response function is
621—‘1@[?1&]
36(t )06t ) | 4_50

where no rapidity symmetry is present (or it is broken spontaneously), the
full matrix inversion is necessary and the correlation function is non-zero.
Moreover, as explained in the previous chapter, in many cases it is useful to
consider the system in an external field even if at the end of the day we will
evaluate correlation function at zero fields. This is, in particular the case
when considering the LPA approximation, where keeping the external field
is associated to the encoding of all derivatives of I'y at zero wave-numbers
(and frequencies).

In order to extract correlation length and critical exponents in out-of-
equilibrium phenomena, one proceeds in a similar way as for the anomalous
dimension in the equilibrium phenomena. One observes that, for low mo-
menta and frequencies:

nothing but the operator inverse of . In the general case,

. 5Ty, d)
1 _ ddd i(wt—p-&) k —
X W) /t e 06 (t, 2)06(0,0) [ 45—

=x Hw=0,p=0)+ Z(iw + Dpp*) + O(w?* p*,p’w) (3.10)

where x '(w = 0,p = 0) = 92.Vi(¢ = 0,6 = 0). Accordingly, the physical
correlation length is

€2 = Xp=o(w = 0,7’ = 0)Z—o Dy—0, (3.11)

and the correlation time is
&) = Xi=o(w = 0,7 = 0) Zy—o. (3.12)

One observes also, that the product Z,Dy plays an analogous role in out-
of-equilibrium phenomena to the factor Z, that appeared in the equilibrium
case in the static limit w — 0. Consequently, the extraction of 1 can be done
like in that case: 9108(Z, D)
. 08\ 4 Lk

= -
In order to extract the scaling between correlation time and length, it is
important to observe that the flow effectively stops when k becomes of the

(3.13)
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order of fll. If we are close to the critical regime, for values of k 2 511, the
evolution of the various parameters is as in the critical case. In that regime,
the parameters yi(w = 0,7 = 6), Z and Dy evolve in power laws if k is
small enough. That is, in the regime £ <k < A,

Xe(w=0,p=0) ~ k7, Zy ~ k™, Dy ~ k™™ (3.14)

When k approaches 511, the flow of these quantities progressively stops and
when k£ becomes smaller nothing new happens. So one concludes that

Xk:o(w = O,ﬁ: 6) ~ fi, Zk:O ~ fj_na Dk:O ~ fﬁ (3-15)
3.

Comparing with (3.11) one deduces that [+m+mn = 2 and replacing in (3.12)
one concludes that
5” ~ JZ__n. (316)

Given the definition of the exponent z, { ~ £% one concludes that z = 2 —n.
Now, n can be extracted from the logarithmic derivative of Dy in the critical
case: 1oz D
. 0g Lk
2—z—n——11€1_)r%k ET
(here k — 0 means when k is much smaller than the microscopic scale A and
consequently Dy behaves as k™).

We consider now the LPA approximation for the particular form of the
regulator (3.7), that can be used in most reaction-diffusion processes with
only one molecule species. The LPA corresponds to neglect the flow of terms
in [y that includes derivatives (time derivatives and space derivatives) but
to allow a free evolution of the effective potential (the part of [, that do not
includes derivatives). For reaction-diffusion problems, it corresponds to the
Ansatz:

(3.17)

Lo d) = [ dieit{o(t.2)(0 - DV)o(t. )+ Vilo.d)}  (319)

where now, the form of Vi (¢, ¢) evolves with & and it not fixed to its bare
form. The bare form to be employed as initial condition at £ = A is the one
that comes from the Doi-Peliti prescription:

Va(,8) = 60(1 — 0 + V20A(6 — 6) + Ad0) (3.19)

In order to deduce the LPA equation for Vi(¢é,¢) one must calculate the
matrix of second derivatives of [y, evaluate it in uniform fields and perform
a Fourier transform. The calculation is straightforward and gives:
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92V, w+ D+ 92V
(7 )—( o W Q+¢’“) (3.20)

From it one can calculate the inverse matrix that appears in the NPRG
equation:

R -1 1
I'?(Gw) + Ri(qw)) = .
( b ) Det (I¥(q,w) + Ri(q,w))
8(%% —(—iw + D¢* + E);Q;Vk + Ri.(q?))
% —(iw + Dg* + (3;(1—)‘/;3 + Ri(q?)) 0V

(3.21)

Performing the corresponding products of matrices and traces one arrives to
the LPA equation for the effective potential:

V(o / / R (¢*)(Dg” + Ri(q®) + 055 Vi)
V(9 9) = + (Dg® + Ri(¢?) + 02,V3)? — 2V, 02V

(3.22)
The interest of taking a regulator that does not depend on w becomes now
evident: the integral over w can now be done in analytical way, giving:

OVi(,®) = = / ddqd 9:Fulg) (3.23)
20 G 1 - 022/ (De? + Rela?) + 02, V4)”

This is the general LPA equation for any reaction-diffusion process with a
single molecule species or for any Langevin equation with a single scalar field
if the regulator (3.7) is used. Other regulators may be necessary in cases
(as for model-A and for the KPZ equation) where the regulator (3.7) does
not satisfy all the symmetries of the model. In such cases, the procedure
of deduction of the LPA is identical but the trace may include some other
terms.

In the next section, the solutions of the LPA equation are analyzed for
the DP universality class. Within this universality class, some non-universal
properties associated to the odd-BARW model are also analyzed.

3.2 LPA for Directed Percolation

From the LPA for reaction-diffusion processes (3.23) one can analyze the DP
exponents in any dimension of interest. In the particular case of the DP



56CHAPTER 3. SIMPLE NPRG APPLICATIONS IN REACTION-DIFFUSION SYSTEMS

universality class, the action must respect the rapidity symmetry (3.8). If
the initial condition satisfies it, it is not hard to convince ourselves that the
property is preserved by the LPA equation for any %k (see exercise 3). In
that case, the potential may be written in terms of the quantities x = ¢¢
and y = ¢ — ¢ that are manifestly invariant under the symmetry. A further
property of the action is that S[$,¢ = 0] = 0. In particular, for DP, the
potential is proportional to x. It is not difficult to show that if the initial
condition satisfies such a property then the solution Vj of (3.23) satisfies it
(up to an additive constant without physical consequences').

The procedure mentioned in the previous section in order to extract expo-
nents must be used here. Given the fact that LPA does not include renormal-
izations of terms in I'y with derivatives, the associated exponents (1 and z)
remain at their mean-field values n = 0 and z = 2. In the table 3.1 various
exponents obtained from the LPA equation are compared to Monte-Carlo
simulations. It is convenient to mention that, as for the Ginzburg-Landau

Table 3.1: LPA results for some critical exponents for the DP universality
class compared to perturbative estimates [59] and Monte-Carlo results [60,
61, 62].

LPA Perturbative results Monte-Carlo
d v I} z v 15} z v I} z
1]1.056 (0528 | 208770398 | 1.49 | 1.096... | 0.276... | 1.580...
21 0.730 | 0.730 | 2| 0.709 | 0.622 | 1.72 | 0.734(4) | 0.584(4) | 1.76(3)
310.584 | 0.872 | 2| 0.584 | 0.822 | 1.89 | 0.581(5) | 0.81(1) | 1.90(1)

model, the critical exponents in the DP universality class become the mean-
field ones above four dimensions. So, it is to be expected that the exponents
are better when the dimension grows. It is interesting to observe, however,
that the v critical exponent prediction remains of excellent quality even in
d = 1. The other exponents, are of much lower quality in low dimension,
certainly because the mean field value for the anomalous dimension and z
exponent are not good approximations in those dimensions.

It would be interesting to have at our disposal higher orders of the DE for
this universality class. To be able to do so, it is necessary to properly take
into account the technical issues mentioned in the previous section. This
work is currently in progress [58].

'In fact, even such a constant remains equal to zero if the Itd prescription is imple-
mented properly [58].
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The most spectacular results of the LPA in this problems appear, in fact,
when studying the phase diagram of the model, which is a non-universal
property. Particularly important is the case of the odd-BARW that, as ex-
plained before, corresponds to the reaction-diffusion process (1.1) when no
decaying probability is present ;1 — 0. In that case, mean-field approxima-
tion predicts the absence of phase transition (see subsection 1.1.1; if y = 0,
one has that A > 0) and only an active phase is present with stationary
solution n = n, = A/(2)). This is in contradiction to d = 1 and d = 2
simulations [63, 64] where a phase transition is observed in this model that
belongs to the DP universality class.

This failure of mean-field was addressed by Cardy and Tauber [65, 66]
in a seminal paper where they have shown that perturbative RG is able to
correct the mean-field prediction in those dimensions. The concept of that
work is that fluctuation can induce, at a coarse-grained level, an effective
rate u; even if at the bare level this rate is absent. From the RG perspective
it is natural to expect it, because the value = 0 is not protected by any
symmetry, so it is natural to expect that at the level of I';, this parameter
will become non-zero even if it is zero at the level of §. One way to think
about this effective rate is as the result of a composite reaction:

A% 2 A nothing (3.24)

In the same way, the rate o will have at the level of ', a value o that is
different from its bare value. The non-trivial issue is the sign when k£ — 0
of Ay = op — pg. If the sign of this quantity keeps the positive sign of its
bare expression, the system will be in an active phase, but if the sign changes
along the evolution with k the system can go to an absorbing phase. The
conclusion to which Cardy and Tauber arrived is that fluctuations are only
strong enough in order to induce a non-trivial phase diagram for d < 2. They
showed that the transition line is given by o. = D()\/(2Dwe))¥< for d < 2
(with € = 2 — d) and takes the form 0. = Dexp(—4nD/\) in d = 2. For
d > 2 they predicted that no transition could take place in such system, and
such a conclusion was clearly under control in the perturbative domain.
This problem was re-analyzed within the NPRG [54, 55] and the result
was compared with Monte-Carlo simulations in dimensions 1 < d < 6. The
corresponding results are shown in figure 3.1. It is important to stress that
this line transition corresponds to a non-universal property of the model,
usually claimed to be beyond the scope of field-theoretical treatments. The

2In fact, not only LPA but also a small variant of this approximation (sometimes called
LPA’) was analyzed in [54, 55]. This variant allows to estimate the exponents n and z
beyond the mean-field approximation.
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o/D

AID

Figure 3.1: Phase diagram of the BARW A % 2A4, 24 2 nothing, in
dimensions 1 to 6 (figure from [55]). Lines present NPRG results. Dots
present Monte-Carlo numerical simulations. For each dimension the active
phase lies on the left of the transition line and the absorbing phase on the
right.
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comparison between NPRG and Monte-Carlo results is surprisingly good and
clearly shows phase transitions above d = 2. A technical point needed to be
mentioned is that in order to compare Monte-Carlo and NPRG results the
overall distance scale must be fixed. More precisely the relation of the lattice
parameters and the continuum parameters at a microscopic scale A requires
an adjustment of the points in the plane (A\/D,o/D) by an overall factor.
It is fixed by dimensional analysis to take the form (C?7¢ C?). Once the
scaling factor C' has been adjusted for a single point, it fixes the complete
curve for any dimension.

Let’s compare the results coming from perturbative RG and NPRG. In
d = 1 and d = 2, perturbative results are reliable, because the transition
curve includes the zero-coupling limit A = ¢ = 0. In those cases, NPRG
and perturbative results coincide: the curve in d = 1 is quadratic in both
cases and the curve in d = 2 is exponential in D/ (see parts (b) and (c)
of figure 3.2). Moreover, the LPA pre-coefficient of the exponential is —11.8
that is very close to the perturbative RG one (—4m) [65, 66]. For higher
dimensions, the transition curve does not approach the zero-coupling limit
and it is beyond the scope of a perturbative analysis because it takes place
only beyond a finite threshold A;,/D. The value of this threshold coupling
has also been investigated as a function for the dimension in [55] as shown
in the part (a) of figure 3.2. It is seen in this curve that the threshold varies
essentially linearly with the space dimension d. This suggests strongly that
the mean-field prediction of non-existence of an absorbing phase is only re-
covered asymptotically for d — oo (this results has been supported also by
other techniques [67]). In this out-of-equilibrium phenomena, mean-field ap-
proximation or even perturbative corrections seem to be much less trustful
than in the equilibrium case. Even characteristic dimensions where some
phases exists or not, that normally are well under control in mean-field ap-
proximation for equilibrium phenomena, seem to require more sophisticated
techniques in the out-of-equilibrium case. This seems to be a quite general
phenomena [30]. In order to face this problems, the NPRG methods seem to
be a power tool. Its use in this type of problem is almost all in the future.

3.3 Conclusions

These notes tried to present a pedagogical introduction to the application
of the NPRG to out-of-equilibrium systems. In order to do so, it has been
necessary to introduce before the physical motivations to use the NPRG and
some basic examples. These examples, have been taken for simplicity from
equilibrium problems, conceptually simpler than nonequilibrium ones. This
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Figure 3.2: (a) Evolution of the thresholds Ay,/D with the dimension; (b)
and (c) log plots of the transition curve in the vicinity of the origin in d = 1

and d = 2 respectively (figure from [55]).
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took a large part of the notes. I tried to make it readable for students that
did not know the basic perturbative results as the one-loop correction to the
Landau approximation. Unfortunately it obliged me to shorten the space
devoted to out-of-equilibrium problems that was the main objective.

I hope that the reader who arrived to this point will be able now to
read the literature on the subject both in equilibrium and nonequilibrium
problems. The notes of B. Delamotte [1] on NPRG and the short review of
L. Canet on nonequilibrium applications of it [30] are certainly good com-
plements in order to do so. I tried to present a relatively complete NPRG
bibliography but the reading of some of the reviews mentioned will give some
complements. I think that the notes are already too long, so it is impossible
to analyze the case of 'parity conserving’ transitions. However, I encourage
the reader to try to reproduce the formulas of the article [56] as proposed in
the last exercise of this chapter. If he or she manages to do so, the goal of
these notes will be achieved.

3.4 Exercises
1) Calculate the matrix F,(f)(q, ¢, ¢) from the LPA Ansatz (3.18).
2) Prove (3.23).

3) Prove that if the initial condition for V} satisfy the rapidity symmetry
(3.8) as in (3.19), then the solution Vj of the equation (3.23) has the
symmetry for any k.

4) Prove that if the initial condition for Vj, is proportional to ¢¢ as in
(3.19), then the solution Vj, of the equation (3.23) has also this property
for any & (up to a constant with no physical consequences).

5) Prove (3.9).

6) Read and reproduce the various formulas in reference [56].
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