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These lecture notes are the basis of the presentation with the same title
that will take place in the Summer School ’Nonequilibrium Statistical Me-
chanics: Fundamental Problems and Applications’ at Boulder, USA, in July
2009. The reader will not find new results here and I am in debt with a set
of authors who have contributed to the subjects presented here in the last
years. I am particularly in debt with the PhD thesis of Leonie Canet (down-
loadable from http://lpm2c.grenoble.cnrs.fr /spip.php?article353) and with
the lecture notes of B. Delamotte ‘An introduction to the nonperturbative
renormalization group’ [1]. The textbook of M. Le Bellac [2] was always
around the table while I was writing these notes as can be seen in the first
chapter. I have learnt most of what I know in field theoretical treatment of
reaction-diffusion systems from many discussions with L. Canet, H. Chaté
and B. Delamotte. The lectures of U. Täuber (that can be downloaded from
http://www.phys.vt.edu/ tauber/) have also been very useful. In summary:
these notes are not original, almost all the good things the reader can find
here have been explained in a better way elsewhere, and I be mainly the
author of many mistakes that will certainly appear. However, I hope that in
some parts, as in the motivation of the Derivative Expansion, a pedagogical
progress to most part of the literature has been achieved. Moreover, in the
third chapter I have tried to explain carefully some calculations made some
time ago and never written in detail in the literature. I must acknowledge F.
Benitez and L. Canet for reading a previous version of this manuscript and
suggesting many improvements. L. Quintana and A. Rubini helped a lot to
make this text closer to real English. I must acknowledge also the support
of the uruguayan program PEDECIBA.
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Chapter 2

A simple NPRG application at
equilibrium

In this chapter we will see a concrete application of the NPRG. The Ginzburg-
Landau model with a single scalar field is used as the simplest possible ex-
ample. The generalization to the slightly more involved model with N scalar
fields and O(N) symmetry is also mentioned. Along the presentation we
will introduce a widely used approximation scheme in the NPRG context:
The Derivative Expansion (DE). A detailed presentation of the leading order
(called Local Potential Approximation, LPA) is done and the corresponding
results shown. The presentation will be mainly focused on critical properties
of the model but will also contain some comments on non-critical results.
We will also present limiting behavior of the LPA in the perturbative and
large N limits as well as the limit corresponding to the Non-Linear σ model
around d = 2. Finally, we will see the critical exponents obtained from higher
orders of the Derivative Expansion and compare them to the best estimates
in the literature. Some comments are added for other approximation schemes
explored in the literature in the NPRG context.

2.1 Approximating the NPRG

The equation (1.78) looks simple because of its similarity to the one-loop
expression (1.77). However, it is extremely involved. In the perturbative
expression (1.77) all the r.h.s. elements are known a priori. In the NPRG
equation (1.78) they are part of the problem. In fact, the NPRG equation
is a functional partial differential equation that can not be solved without
performing approximations. As explained in the previous chapter, the equa-
tion is exact, but the first thing we will have to do is to replace it with an
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32 CHAPTER 2. A SIMPLE NPRG APPLICATION AT EQUILIBRIUM

approximate but manageable equation.
As explained before, the main advantage of the NPRG equation is that

its r.h.s. is dominated by a small shell of wave-numbers. This will allow
us to formulate approximation schemes otherwise impossible to implement.
Of course, one could just employ the perturbation theory. The equations
could be organized according to the powers of coupling constant appearing
in each term. By doing so, one recovers the full perturbative expansion
[26], and can use this calculation in order to justify the perturbative RG
improvement to direct perturbative calculations. We will not follow this
strategy here and, in fact, there are much simpler and convenient ways to
implement the perturbative RG analysis both at equilibrium and out-of-
equilibrium. The reader is encouraged to look at the notes of B. P. Vollmayr-
Lee for a presentation of perturbative techniques. The strength of the NPRG
is that it is extremely adapted to the formulation of other approximation
schemes that do not rely on perturbation theory.

Here we will present an approximation scheme called Derivative Expan-
sion [27, 28, 25]. This approximation scheme is well suited only in order
to study the large distance (and long time in the out-of-equilibrium case)
regime of a model. More precisely, if the correlation length of a model is ξ,
the DE makes sense only for quantities with typical wave-numbers p verifying
pξ � 1. We will be interested mainly in the critical regime of various models
where ξ → ∞. In that regime, the DE is only able to calculate correlation
functions and its derivatives at zero wave-numbers. It includes, however, a lot
of very useful physical information, including the phase diagram of a model,
the thermodynamical equation of state, the existence and value of the mean
value of a field, the values of all critical exponents, etc. In particular, the
DE will allow us to calculate all quantities that can be extracted from the
effective potential (the Gibbs free-energy per unit of volume in a constant
background field) whose typical wave-number is zero in the thermodynamical
limit.

So, for the sake of concreteness, let’s calculate the exact equation for
the effective potential Vk(φ) by evaluating the NPRG equation (1.78) in a
constant background field φ. In that case, as mentioned before Γk[φ] =
VVk(φ), where V is the volume of the space. Also, in such case, the system
is translationally invariant. This implies that the (connected) correlation
function of two fields only depends on differences of positions:

Gc(~x, ~y) = 〈ϕ(~x)ϕ(~y)〉 − 〈ϕ(~x)〉〈ϕ(~y)〉 = Gc(~x− ~y). (2.1)

By performing a Fourier transform, this implies that

G̃c(~p, ~p
′) =

∫
ddx

∫
ddyei(~x·~p+~y·~p

′)Gc(~x, ~y) = (2π)dδ(d)(~p+ ~p′)Gc(~p). (2.2)
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The last equality can be seen as a convenient definition of the Fourier trans-
form of the correlation function in the transitionally invariant case, which is
a function of a single wave-vector.

We have seen that Gc can be seen as a matrix which is the inverse of
Γ

(2)
k +Rk. For these quantities, translational invariance also makes convenient

to define the Fourier transform of Γ
(2)
k (~x, ~y) by factorizing the delta function

associated with conservation of wave-vectors:

Γ̃
(2)
k (~p, ~p′) =

∫
ddx

∫
ddyei(~x·~p+~y·~p

′)Γ
(2)
k (~x, ~y) = (2π)dδ(d)(~p+~p′)Γ

(2)
k (~p). (2.3)

In fact, because of rotational invariance, the functions Γ
(2)
k (~p), Rk(~p) and

Gc(~p) are functions of p2. Moreover, the functions Γ
(2)
k (p2) + Rk(p

2) and
Gc(p

2) are algebraic inverses:

Gc(p
2) =

1

Γ
(2)
k (p2) +Rk(p2)

. (2.4)

For the particular wave-vectors appearing in the NPRG equation, one con-
cludes that in a constant background field(

Γ
(2)
k +Rk

)−1

~p,−~p
= (2π)dδ(d)(0)

(
Γ

(2)
k (p2)+Rk(p

2)
)−1

= V
(

Γ
(2)
k (p2)+Rk(p

2)
)−1

.

(2.5)
One concludes that

∂kVk(φ) =
1

2

∫
ddq

(2π)d
∂kRk(q)

Γ
(2)
k (q2, φ) +Rk(q2)

. (2.6)

This is the exact NPRG equation for the effective potential. Its difficulty is
clear: it is not a closed equation because it depends on the, also unknown,
2-point function Γ

(2)
k (q2, φ). One could deduce from (1.78) an equation for

Γ
(2)
k (q2, φ), by taking two functional derivatives and performing a Fourier

transform. However, the corresponding exact equation would depend on Γ(3)

and Γ(4). In general, the equation for Γ(n) depends on all Γ(m) with m ≤ n+2.
This is sometimes called the closure problem of the N−body problem.

In order to face this problem, one must perform approximations. It is
interesting to note, however, that we actually know one part of Γ(2)(q2, φ)
(and, in fact, of any Γ(n)) if we know the effective potential. In order to
express it, let’s define the corresponding Fourier transforms as∫

ddx1 . . .

∫
ddxne

i(~x1·~p1+···+~xn·~pn) Γ
(n)
k (~x1, . . . , ~xn, φ)

∣∣∣
φ(~x)≡φ

= (2π)dδ(d)(~p1 + · · ·+ ~pn)Γ
(n)
k (~p1, . . . , ~pn, φ). (2.7)
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where, because of the delta-function, the last argument ~pn is not an inde-
pendent variable but is fixed by ~pn = −(~p1 + · · · + ~pn−1). If so defined,
then

Γ
(n)
k (~p1 = · · · = ~pn = ~0, φ) =

∂nVk(φ)

∂φn
. (2.8)

This is intuitive: to take the derivative with respect to a constant background
field of the Gibbs free-energy is the same than to take the derivative with
respect to the zero wave-number component of the field. The precise proof
is left for exercise.

In particular, concerning the equation for the potential (2.6) this implies

that the part of Γ
(2)
k (q2, φ) that can be expressed in terms of the potential is

Γ
(2)
k (q2 = 0, φ) = ∂2Vk(φ)/∂φ2.

The properties of the NPRG must now be exploited. First of all, given
the fact that the NPRG equation is both ultraviolet and infrared finite, the
functional Γk[φ] is regular in the field and in its derivatives. This means that

its derivatives Γ
(n)
k are regular functions of the wave-vectors and of the exter-

nal background field. Second, the integral appearing in (2.6) is dominated by
wave-vectors with q2 . k2. This motivates the Derivative Expansion approx-
imation scheme: one expands, in the r.h.s. of NPRG equation the differences
between Γ

(n)
k and H(n) functions to a given power of wave-number and ne-

glect higher powers. At leading order, called Local Potential Approximation
(LPA), one performs the replacement:

Γ
(n)
k (~p1, . . . , ~pn, φ)

LPA→ Γ
(n)
k (~p1 = · · · = ~pn = ~0, φ) = ∂nφVk(φ), (2.9)

except for the 2-point function that has a bare wave-number dependence:

Γ
(2)
k (p2, φ)

LPA→ p2 + Γ
(2)
k (p2 = 0, φ) = p2 + ∂2

φVk(φ). (2.10)

This information can be summarized by performing this approximation in
the effective potential equation

∂kVk(φ)
LPA∼ 1

2

∫
ddq

(2π)d
∂kRk(q)

q2 + ∂2
φVk(φ) +Rk(q2)

. (2.11)

This gives the LPA equation for the effective potential. We now have an
approximated but closed equation. One can extract from it a lot of physical
information as will be analyzed in detail in the next section.

We must now explain how to formulate higher orders of the DE. This
approximation scheme corresponds to expanding the Fourier-transform of the
derivatives of Γk in wave-vectors. Wave-vectors correspond in direct space
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to derivatives of the field. Then, the DE can be seen as an expansion of Γk
(or more precisely, an expansion of Γk −H) in the number of derivatives of
the fields. Then, the leading order (LPA) will correspond to take an Ansatz
for the averaged Gibbs free-energy of the form:

Γk[φ]
LPA∼

∫
ddx
{1

2

(
∇φ(~x)

)2
+ Vk(φ)

}
. (2.12)

One sees in this ansatz that the part containing derivatives is left as in H
and the part without derivatives is allowed to flow with k. From this ansatz
one can calculate derivatives of Γk, substitute them in the NPRG equation
(1.78) and obtain the LPA equation for the potential (2.11).

In the same way, the next-to-leading order of the DE, called O(∂2) cor-
responds to take the ansatz:

Γk[φ]
O(∂2)∼

∫
ddx
{Zk(φ)

2

(
∇φ(~x)

)2
+ Vk(φ)

}
. (2.13)

Now both the term without derivatives of the fields and the term with the
minimum number of derivatives (two) are allowed to flow, but the terms with
more derivatives are maintained at zero. The next-to-next-to-leading order,
called O(∂4) includes three further terms, that are all possible independent
terms with four derivatives of the field, etc. Plugging these ansatz in the
NPRG equation (1.78) one deduces closed flow equations for the various
coefficient functions Vk(φ), Zk(φ), etc.

In the next sections concrete results obtained from this approximation
scheme will be presented. Before doing so, it is important to discuss why
such an approximation scheme has a chance to correctly describe the long
distance regime of several models including their strongly coupled regime.

In order to analyze this it is important to ask: what is the expansion
parameter of the DE? As stated before, it is an expansion of the derivatives
of Γk in the norm of wave-vectors. However, wave-vectors are dimensionful,
so when expanding in a typical wave-vector scale p, one is expanding, in fact,
in p divided by another wave-vector or inverse distance scale Mk. In fact,
in a typical problem there are many of such possible scales, and the DE is
an expansion in all these p/Mk parameters. In order to gauge the quality of
the approximation, what matters is the smallest scale Mk that corresponds
to the inverse of the correlation length ξk in presence of the regulator. For
non zero k, the regulator term ∆Hk will give a contribution to Mk of order
k as explained before. This contribution comes on the top of genuinely
physical contributions that would be present in the systems in absence of
this artificial regulator term. In general, the most unfavorable situation is
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the critical regime where the physical correlation length is infinite (and then,
gives no contribution to Mk). In that case, only the contribution from the
regulator is present and consequently Mk is of the order of k.

Let’s concentrate on the critical case for the moment where the expansion
parameter is of the order of p/k. The physical limit of the model corresponds
to k → 0, so in that limit, the best one can hope to calculate with this
approximation scheme are quantities with zero typical wave-number. The
delicate point is the following: even if we are calculating quantities with zero
typical wave-numbers (because of interactions between different modes) in
the equations, correlation functions with arbitrary wave-number will appear
anyway. So, normally, we are not able to focus only on the small wave-
number regime because it is coupled to the rest of the theory. Here the form
of the NPRG comes to the rescue as explained before, because internal wave-
numbers q that contributes significantly to NPRG equations are bounded by
k. So, in practice, correlation functions with all wave-numbers smaller than
k are not coupled via the NPRG equation to other sectors of correlation
functions. So, the good news is that we are expanding in a parameter that is
bounded. The bad news is that the DE is an expansion in a parameter q/k
that includes values of order 1.

Why should an expansion in a parameter of order 1 work? In fact, in
critical phenomena it is usual to expand in parameter which is a priori of
order 1. For example, one usual approximation is to expand in ε = 4 − d
to obtain critical exponents in d = 3! The usual justification for such a
procedure is the following: the mean-field approximation gives estimates for
critical exponents in the Ginzburg-Landau model that are not exact but
that are reasonably close to those of d = 3. One can formulate an expansion
in ε that is well justified in 3.99 dimensions and that gives corrections to
mean-field critical exponents that come from perturbative loop corrections.
If one extrapolates to ε = 1, the typical size of the corrections will be the
difference between real critical exponents and mean-field critical exponent
(that is small). So one can reasonably guess that the ε is accompanied
by a small pre-factor that makes ε = 1 still in the domain of validity of
the expansion. And if one looks at orders ε and ε2 this reasoning works!
The difficulty comes from the fact that the perturbative expansion does not
converge, but we will leave the task of explaining Borel resummation and
other sophisticated techniques to the perturbative experts.

The justification of the Derivative Expansion for Ginzburg-Landau mod-
els is similar, but it is in fact better grounded for many reasons. First of
all, the leading order of the DE already includes all one-loop corrections to
the effective potential. So for properties with zero typical wave-numbers, the
LPA is one-loop exact [25, 1]. Then, for the small momentum regime, the DE
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is as good as the perturbative expansion at one-loop when ε = 4−d is small.
In fact, in the perturbative regime, the situation is even better because at
zero external field φ = 0, the corrections to the wave-number dependence of
the 2-points correlation function is of order ε2. So, if we are interested not
only in small wave-numbers but also in small external fields, the LPA ap-
proximation is something of intermediate precision between O(ε) and O(ε2).
Second, the DE expansion is not an extrapolation but an interpolation. It is
not only a good approximation near d = 4 but also reproduces the leading
order of the Non-linear σ model for O(N) models around d = 2 (at order
O(∂2)) [25, 1]. Third, in any dimension, the LPA reproduces exactly the
limit N →∞ for the effective potential of O(N) models [25, 1]. So, the DE
is justified as the perturbative RG expansion but in a triple way.

The same kind of reasoning can be made for other models, including out-
of-equilibrium cases. Typically, the Derivative Expansion will work (in the
sense of giving good results in the leading orders) when anomalous dimen-
sions are small. In fact, as will be explained in the next section, the LPA
approximation gives an anomalous dimension equal to zero and so one ex-
pects DE to work better when anomalous dimensions are small. Fortunately,
anomalous dimensions are frequently small.

The DE has been applied to a large family of problems (many of them
quoted in the reviews [25, 1]). Empirically the DE works surprisingly well in
any dimension and for almost any tested model. Semi-quantitative results
are obtained already at order LPA and they seem to improve in almost any
tested model at next-to-leading order [25, 1]. The next-to-next-to-leading
order has only been tested in the Ginzburg-Landau model in the Ising uni-
versality class and the corresponding results for critical exponents have the
same quality level than 7-loops with Borel resummation [29]. There are only
two known exceptions to these results: the applications to Quantum Chro-
modynamics and to the KPZ Langevin equation. In these problems, the
DE has shown comparatively poor results [31, 32, 33]. These models, with
physically very different motivations, have two properties in common: both
models have very involved symmetries and they posses derivative interac-
tions. It is possible that DE is not well suited for models where symmetries
impose that interactions are dominated by derivative terms.

In what refers to the non-critical regime where there is a finite correlation
length ξ, we are better positioned if the critical regime is under control. In
that case the expansion parameter will be p/k in the part of the flow where
k � ξ−1 and pξ in the opposite case (here ξ is the physical correlation length).
If the critical regime is under control, the validity of the results for any model
will be for pξ . 1.
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Figure 2.1: Flow with k of the effective potential Vk for T > Tc.

2.2 Results of LPA

Before presenting results obtained from the solution of the LPA equation,
let’s explain how physical results can be obtained in the DE from the behavior
of the different functions Vk(φ), Z(φ), etc. In order to do so, one must solve
the corresponding equations and for almost any application this must be
done numerically. The set of initial conditions at k = Λ is fixed by imposing
that ΓΛ[φ] = H[φ]. The NPRG equations in a given approximation is a set
of differential equations of first order in k. So, given the mentioned initial
conditions, one can follow the solution from k = Λ to the physical limit
k → 0.

The solution for the potential can have two typical behaviors in the case of
the Ginzburg-Landau model. For example, by keeping u0 fixed in (1.35) and
varying r0(T ) the system can go when k → 0 in a symmetric/paramagnetic
phase or in broken/ferromagnetic phase. A schematic evolution of the po-
tential in the symmetric phase is presented in the figure 2.1.

One initially observes the effective potential favors the formation of a spon-
taneous magnetization. However, fluctuations tend to restore the symmetry
and at a given value of k = k̄sym, the two minimums of the potential reach
φ = 0. The potential then continues to evolve but rapidly stabilizes. From
the corresponding potential, one can obtain the equation of state:

∂Vk→0(φ)

∂φ
= J. (2.14)
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Figure 2.2: Flow with k of the effective potential Vk for T < Tc.

Because there is a single minimum of the potential, the only solution when
J → 0 is φ = 0 and the system has no spontaneous magnetization.

If the temperature is low enough the evolution is quite different as shown
in figure 2.2.

The minimums of the potential evolve, but stabilize at a certain values
φ = ±φbroken, with φbroken > 0. All the potential for |φ| > φbroken stabi-
lizes rapidly, but the part with |φ| < φbroken continues to evolve and slowly
approach a flat behavior, that gives a convex physical effective potential
when k → 0. In this situation, the solution of the equation of state (2.14)
for J → 0+ is φ = φbroken corresponding to the spontaneous magnetization.

Varying the microscopic parameters that intervene in the solution via the
’initial conditions’ for the flow at k = Λ, one can also study this way the phase
diagram of a given model. In particular, one observes that there exists a value
of r0(T ) in the edge of these two phases where ∂2

φVk→0(φ = 0) = 0. This will
correspond to the critical temperature Tc. Moreover, r0(T ) is expected to be
a regular function of the temperature. So around Tc, r0(T ) ∼ r̄0(T − Tc).
Varying r0 we are, in fact, varying the temperature of the model.

From the solution of the DE, one can also calculate all critical exponents.
For example, the exponent ν can be obtained from the behavior of the phys-
ical correlation length as a function of the temperature. There are many
different definitions of the correlation length that agree in mean-field ap-
proximation but that are slightly different in its exact form. One frequently
used definition of the correlation length (that is not exactly equivalent to the
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one presented in the previous chapter) is obtained from the low wave-number
behavior of the physical 2-point function. If one considers this function at
zero magnetization φ and at low wave-number:

Γ
(2)
k→0(p2) = ∂2

φVk→0(φ = 0) + Zk→0(φ = 0)p2 +O(p4), (2.15)

a usual definition of the correlation length (sometimes called the ’gap defini-
tion’ of the correlation length) is

ξ2 =
Zk→0(φ = 0)

∂2
φVk→0(φ = 0)

. (2.16)

If the terms of order p4 and higher are neglected, the 2-point function has
essentially the same form than in mean-field approximation. By identifying
the correlation length with the mean-field approximation, one obtains this
’gap definition’ of the correlation length (2.16). It is important to mention
that ξ →∞ when T → Tc because, at that temperature, the denominator of
the r.h.s. of (2.16) goes to zero as explained before.

Now, by tuning the initial condition, the solution at k → 0 can be varied.
One can then represent ξ as a function of the temperature and from the
relation

ξ ∝ |T − Tc|−ν (2.17)

extract the exponent ν. It is worth noticing that this procedure is not nu-
merically very precise in practice. There are other procedures that are con-
ceptually equivalent but numerically more efficient that are normally used in
the literature.

In the same way, one can prove (see exercise 2) that at T = Tc one can
obtain the critical exponent η from the flow of Zk(φ) by

η = − lim
k→0

∂ logZk(φ = 0)

∂ log k
. (2.18)

Here, we can point out that the function Zk appearing in the behavior of
the regulator profile Rk(q

2) (1.74) may be chosen as Zk(φ = 0). This allows
for the regulator term to be normalized in the same way that Γ(2). With
this definition, k2 can be interpreted as a contribution to the inverse running
correlation length squared, M2

k (compare the equations (2.15) and (1.74) ).
Having explained how to extract several physical quantities from the var-

ious functions that appear in the DE, let’s explain in more detail the results
that come from the LPA approximation.

First, comparing the LPA approximation and the next-to-leading order
(2.13), one observes that LPA approximation corresponds to take Zk(φ) ≡ 1.
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As can be seen from equation (2.18) this gives:

η
LPA∼ 0. (2.19)

That is, concerning the wave-number dependence of the 2-point function,
the LPA gives no improvement with respect to mean-field. In ε expansion
a similar result is found: η has no correction of order ε, being of order ε2.
In fact, this is not far from true in d = 3: the correct value of η for the
Ginzburg-Landau model (1.35) is quite small (near 0.036 [34]).

Second, for almost any application, the LPA equation needs to be solved
numerically. It can be solved in any dimension with the same numerical
difficulty. In fact, after analytically performing the angular integration in
(2.11) the dimension d becomes an arbitrary real parameter that can be
chosen at will:

∂kVk(φ) =
1

2dπd/2Γ(d/2)

∫ ∞
0

dqqd−1 ∂kRk(q)

q2 + ∂2
φVk(φ) +Rk(q2)

. (2.20)

In order to obtain a concrete solution of the LPA equation one must chose
a regulator profile Rk(q

2). Physical results can not depend on the choice of
regulator function we make. In fact, in the physical limit k → 0, ∆Hk is
eliminated and correspondingly all dependence on Rk(q

2) should disappear
on observable quantities. However, once we have done approximations (as
the LPA), one introduces a (hopefully small) dependence on the choice of
regulator we make. On one hand this is bad news because it introduces
a spurious dependence on physical predictions coming from a non-physical
object. On the other hand, varying Rk(q

2) and studying the dependence
of physical results on this variation allow us to gauge the quality of the
approximation. A good criterion to chose a regulator is the stability of its
results: if when slightly changing the shape of the regulator the results change
in an important way one commonly says that the regulator is not optimized
[35, 36]. The variations of physical quantities around an optimized regulator
allows for the estimation of the order or magnitude of the error bars for the
results.

Anyway, in order to concretely solve the LPA equation one needs to make
a choice of Rk(q

2). In the last few years mainly two regulators have been
largely used, each of them having their points in favor and their drawbacks.
In order to be able to perform the radial integral in (2.20) analytically, the
theta-regulator [35] has been widely used. It has the shape:

Rk(q
2) = Zk(k

2 − q2)θ
(
1− q2/k2

)
(2.21)
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If one chooses it, the LPA equation becomes a nonlinear but numerically
relatively simple partial differential equation:

∂kVk(φ) =
1

d2d−1πd/2Γ(d/2)

kd+1

k2 + ∂2
φVk(φ)

. (2.22)

There are two advantages in the theta-regulator. First of all, its simplicity:
in order to handle the LPA approximation or the next-to-leading order of
the DE, it gives equations which are extremely simple to solve numerically.
Second, there are other regulators that give simple NPRG equations (for
example, the sharp cut-off [16, 24, 37] and the power-law cut-off [28]), but
none of them gives good results in the sense that they seem to be very far
from an optimal regulator. The theta-regulator seems to be optimal among
all regulators at the level of LPA [35], and modified by a pre-factor it can be
optimized at next-to-leading order [36]. Given these good properties and its
simplicity, the theta-regulator is normally the first choice when exploring a
new problem.

However, it also has an important drawback: this regulator is not analyti-
cal in wave-numbers. This implies that the DE can not be implemented with
it beyond next-to-leading order because the non-analyticities of the regulator
give a non-analytic behavior of the Gibbs free-energy [29]. This problem be-
comes even more severe, for example, in finite temperature field theory [38]
where even the LPA can be pathological with this regulator.

Another very used regulator is the exponential regulator [22]. Its shape
is

Rk(q
2) = Zk

q2

exp(q2/k2)− 1
. (2.23)

Its drawback is evident: it does not allow the calculation of integrals ana-
lytically. However this regulator has proven to be extremely stable in many
situations. In general, it is convenient to multiply it by a constant and vary
this prefactor in order to optimize the results (the optimum pre-factor is fre-
quently around 2 [36]). In general, the optimized exponential regulator is a
good alternative to the theta-regulator. Because of its analyticity, the DE
can be formulated at any order for this regulator and the concrete calculation
at order O(∂4) has been formulated with it [29].

All critical exponents can be calculated in LPA in any dimension. They
can be related to η and ν and so we will concentrate on the exponent ν here.
Corrections of scaling and in particular the sub-critical exponent ω can also
been calculated by these methods [39]. At the level of precision of LPA, one
can extract ν numerically as explained before. For higher precision, more
elaborated methods are required. Some results for ν and ω of the LPA for
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Table 2.1: LPA results for some critical exponents for the O(N) model for
d = 3 and theta-regulator.[39]

N 0 1 2 3 4 5 10 ∞
ν 0.59 0.65 0.71 0.76 0.80 0.84 0.92 1
ω 0.66 0.66 0.67 0.70 0.73 0.77 0.87 1

the O(N) models (see exercise 3) are summarized in the table 2.1. They
have been calculated with the theta-regulator and they come from [39]. If we
compare them to the best estimates in the literature (see table 2.3), we can
observe that the quality is quite good, given the tremendous simplicity of the
method and the fact that it is only the leading order of the DE. In the next
section, the quality of the results for various orders of the DE is analyzed.

It is important to mention that the LPA equation for the potential be-
comes exact when N → ∞ and so do the various critical exponents [40].
The LPA has been used for the calculation of critical exponents in a large
variety of models. To give just another example, it is interesting to mention
that this approximation is able to identify the infinite set of multi-critical
points in d = 2 for a single scalar model [41] and calculate the corresponding
critical exponents with a relatively good precision. This is quite impressive
for an approximation which neglects the anomalous dimensions, that tend to
be large in d = 2.

Before considering higher orders of the derivative expansion, it is im-
portant to mention that the NPRG is able to analyze not only critical and
universal properties but it is also able to calculate non-universal and/or non-
critical properties. In particular, the LPA approximation is able to calculate
delicate non-universal properties as the critical temperature of vapor-liquid
transition of a given gas [25]. Moreover, the LPA has shown to be compat-
ible with the general properties of convexity of the effective potential [21].
These is very important for practical applications in studying various broken
phases, because it is a property very difficult to satisfy in standard mean-field
or perturbative approximations.

2.3 Higher orders of Derivative Expansion

Here we present results for higher orders of the DE, focusing on the Ginzburg-
Landau model (1.35) and its generalization with O(N) symmetry (1.87). In
the model with a single scalar, the next-to-leading order of the DE corre-
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sponds to the Ansatz (2.13). When considering the model with N scalars
and with O(N) symmetry, the O(∂2) order corresponds to the most general
expression with O(N) symmetry and with zero or two derivatives:

Γk[φ]
O(∂2)∼

∫
ddx
{
Vk(ρ) +

Zk(ρ)

2

∑
i

(
∇φi(~x)

)2
+
Yk(ρ)

4

(∑
i

φi∇φi
)2
}
,

(2.24)
where ρ = 1

2

∑
i φ

2
i .

When including these gradient terms, the DE gives non-trivial values for
the anomalous dimensions. This is important in d = 3 in order to improve
the precision of the results, but around d = 2 this is important even at the
qualitative level. Once these terms are included, the DE correctly reproduces
(with this linear realization of O(N) models) the correct one-loop result
of Non-linear σ model around d = 2. It is important to stress that no
perturbative approach is known allowing to reproduce both the 4 − ε and
the 2 + ε expansions. As mentioned before, this is one of the reasons for the
precision achieved in the DE even at low order [25, 42]. This not only allows
to a correct treatment of the non-abelian case (N > 3) but also for a quite
impressive treatment of the Kosterlitz-Thouless transition, corresponding to
d = 2 and N = 2 [25, 43]. The treatment of the d = 2 Ising universality class
becomes semi-quantitatively correct also [43]. The corresponding results are
presented in table 2.2.

Table 2.2: O(∂2) results for some critical exponents for the O(N) model for
d = 2 [43] compared with the exact result.

N ν η
0 0.70 0.75 0.222 0.2083...
1 0.92 1 0.295 0.25
2 – – 0.287 0.25

For d = 3 and at order O(∂2), the results achieve a relatively good quan-
titative level, as can be seen in the table 2.3. It is important to mention
that results from [43] have been done with the exponential regulator without
improving it by including a constant pre-factor.

In d = 3, for the particular case of N = 1, corresponding to the Ising
universality class, the results of better quality are known for two reasons.
First, the results have been optimized as explained before [36]. Second the
DE has been pushed up to the O(∂4) order [29]. The corresponding results
are shown in table 2.4. As it is visible in this table, the results from O(∂4) are
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Table 2.3: O(∂2) results for some critical exponents for the O(N) model for
d = 3 [43] compared with best estimates in the literature.

N ν η
0 0.590 0.5882(11) [44] 0.039 0.0284(25) [44]
1 0.6307 0.6302(1) [45] 0.0467 0.0368(2) [45]
2 0.666 0.6717(1) [46] 0.049 0.0381(2) [46]
4 0.739 0.741(6) [44] 0.047 0.035(4) [44]
10 0.881 0.859 [47] 0.028 0.024 [47]

of the same level of precision than those coming from 7-loops perturbative
RG analysis.

Table 2.4: Results from Derivative Expansion a different orders [36, 29] for
N = 1 and d = 3, compared to best estimates in the literature [45] and best
perturbative estimates [44].

order ν η
∂0 =LPA 0.651 0

∂2 0.628 0.044
∂4 0.632 0.033

7-loops [44] 0.6304(13) 0.0335(25)
best estimate [45] 0.6302(1) 0.0368(2)

Before finishing this chapter, it is important to quickly mention that in the
context of the NPRG there are other approximation schemes that have been
implemented and that are not based on perturbation theory. It is impossible
to present here any of them in detail, but the interested reader is advised to
look at the corresponding references that can be found in [25, 42]. Just for
the sake of completeness, most of the other schemes are based on Weinberg’s
proposal of an approximation scheme [48]. It consists in expanding Γk in the
fields and truncating this expansion to a given power of the fields, but includ-
ing an arbitrary wave-number dependence. This kind of approximation has
been used in other contexts as in truncated Schwinger-Dyson equations. It
is impossible to resume here the literature on it. In the context of the NPRG
it has also been largely used together or not with the Derivative Expansion
approximation [25, 42]. For models such as Ginzburg-Landau, where the in-
teractions are dominated by potential terms and not by derivative terms, it
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seems that DE is more powerful in order to extract low wave-number quanti-
ties [49]. When interactions including derivatives are present as in QCD and
in the solution of KPZ equation, it seems that the inclusion of some sort of
full momentum dependence is convenient [50, 51, 33]. Recently an approx-
imation scheme that includes the advantages of both DE and Weinberg’s
approximation, has been proposed with very promising results [52, 53].

2.4 Exercises

1) Prove the equation (2.8).

2) At the critical temperature the systems shows the property of scaling
invariance. In particular, the quotient of two correlation functions is a
function of dimensionless variables without any dependence on micro-
scopic parameters of the model:

Γ
(2)
k (p′)

Γ
(2)
k (p)

= f
(p′
p
,
k

p

)
. (2.25)

The function Γ
(2)
k (p) has a limit when k → 0. By admitting this, show

that Γ
(2)
k→0(p) is a power law when T = Tc and comparing to (1.18) show

that the exponent is

Γ
(2)
k→0(p) ∝ p2−η. (2.26)

Show also that the same η appear in the formula (2.18):

Zk(φ = 0) ∼ k−η (2.27)

Hint: consider (2.25) for p = k.

3) Show that the LPA equation for the O(N) model (1.87) is:

∂kVk(ρ) =
1

2dπd/2Γ(d/2)

∫ ∞
0

dqqd−1∂kRk(q)

×
{ N − 1

q2 + ∂ρVk(ρ) +Rk(q2)
+

1

q2 + ∂ρVk(ρ) + 2ρ∂2
ρVk(ρ) +Rk(q2)

}
,

(2.28)

where ρ = 1
2

∑N
i=1 φiφi
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4) Consider the φ4 approximation to the O(N) form of Γk[φ] (see [25] or
[1]):

Γk[φ] =

∫
ddx
{Zk

2

∑
i

∇φi(~x)·∇φi(~x)+
rk
2

∑
i

φ2
i (~x)+

uk
4!

(∑
i

φ2
i (~x)

)2}
(2.29)

Deduce the NPRG equations for the three constants rk, uk and Zk in
that approximation. Prove that the systems go to a critical regime
when k → 0 if the renormalized and dimensionless constants r̃k, ũk
defined by

r̃k =
rk
Zkk2

ũk =
uk

Z2
kk

4−d (2.30)

approach a fixed point solution k∂kr̃k = k∂kũk = 0.

Deduce from the NPRG equation for the dimensionless constants and
from the running anomalous dimension ηk = −k∂k logZk, the values of
η and ν in 4− ε dimensions and in 2 + ε dimensions.



48 CHAPTER 2. A SIMPLE NPRG APPLICATION AT EQUILIBRIUM




