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These lecture notes are the basis of the presentation with the same title
that will take place in the Summer School ’Nonequilibrium Statistical Me-
chanics: Fundamental Problems and Applications’ at Boulder, USA, in July
2009. The reader will not find new results here and I am in debt with a set
of authors who have contributed to the subjects presented here in the last
years. I am particularly in debt with the PhD thesis of Leonie Canet (down-
loadable from http://lpm2c.grenoble.cnrs.fr /spip.php?article353) and with
the lecture notes of B. Delamotte ‘An introduction to the nonperturbative
renormalization group’ [1]. The textbook of M. Le Bellac [2] was always
around the table while I was writing these notes as can be seen in the first
chapter. I have learnt most of what I know in field theoretical treatment of
reaction-diffusion systems from many discussions with L. Canet, H. Chaté
and B. Delamotte. The lectures of U. Täuber (that can be downloaded from
http://www.phys.vt.edu/ tauber/) have also been very useful. In summary:
these notes are not original, almost all the good things the reader can find
here have been explained in a better way elsewhere, and I be mainly the
author of many mistakes that will certainly appear. However, I hope that in
some parts, as in the motivation of the Derivative Expansion, a pedagogical
progress to most part of the literature has been achieved. Moreover, in the
third chapter I have tried to explain carefully some calculations made some
time ago and never written in detail in the literature. I must acknowledge F.
Benitez and L. Canet for reading a previous version of this manuscript and
suggesting many improvements. L. Quintana and A. Rubini helped a lot to
make this text closer to real English. I must acknowledge also the support
of the uruguayan program PEDECIBA.
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Chapter 1

Introduction to the
Non-Perturbative
Renormalization Group

This first chapter is a quick introduction to the Non-Perturbative Renormal-
ization Group (NPRG). We will present the sort of problem this technique
tries to address in and out of equilibrium. For the sake of simplicity, we
will leave the out-of-equilibrium examples for the third chapter and focus on
using the equilibrium Ginzburg-Landau model. In particular, the Ginzburg
criterion for the validity of perturbative calculations is presented. Finally,
the NPRG is introduced and its general properties shown.

1.1 Some examples of physical problems out-

of-equilibrium

The goal of these notes is to present the Non-perturbative Renormalization
Group (NPRG) and its applications in nonequilibrium statistical mechanics.
As in many areas of theoretical physics, the technique is involved. This
makes very difficult to learn while trying to approach the different physical
problems it would be applied to. This is the reason why a significant part of
these lectures use examples in equilibrium phenomena. The technical aspects
are simpler in this case and it is easier to acquire a physical intuition of the
methods employed before addressing the nonequilibrium examples.

However, it is important to start by describing some examples of physical
problems that one may be interested in analyzing and of the kind of quantities
to be calculated.
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1.1.1 Reaction-diffusion problems

Suppose we consider a reaction-diffusion problem where some molecules of
type A can diffuse with a diffusion coefficient D and can experiment reactions
of the type

A→ 2A with rateσ

A→ nothing with rateµ

2A→ nothing with rateλ (1.1)

This reaction-diffusion problem is included within a large family of phenom-
ena included in the ’Directed Percolation’ universality class [3, 4]. If you
change the values of the reaction rates this system experiments a second
order phase transition between two very different scenarios.

In order to have a rough estimate to what happens in such a phenomena
one can consider a mean field approximation and describe it in terms of a
uniform average concentration of particles n(t) whose evolution in time is the
mean field evolution equation:

∂tn(t) = (σ − µ)n(t)− 2λn(t)2 (1.2)

If the initial value of n(t) is n0, the solution takes the form

n(t) =
n0n∗

n∗ − n0(1− e∆t)
e∆t. (1.3)

where n∗ = ∆/(2λ) and ∆ = σ − µ. The behavior of the solution depends
on the sign of ∆:

• If ∆ > 0, there are two stationary solutions n(t) ≡ 0 and n(t) ≡
n∗. For any non-zero initial condition, the concentration tends to n∗
exponentially when t� ∆−1.

• If ∆ < 0, there is only one stationary solution n(t) ≡ 0 and the con-
centration tends to it exponentially when t� ∆−1.

• At ∆ = 0 a second order phase transition takes place and n(t) tends
to zero at large times but only algebraically:

n(t) =
n0

1 + 2λn0t
(1.4)

In fact, Monte Carlo simulations of the full reaction-diffusion problem,
without mean field approximation, show that this second-order phase transi-
tion takes place [3]. Typical evolutions in a d = 1 system are shown in the
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Figure 1.1: In this simulation [3] all the rates D, µ, σ and λ are fixed in
terms of a single probability p of connexion of lattice sites. The first line
corresponds to a one dimensional lattice uniformly occupied initially with
three different values of p: one below, one above and one just at the critical
value. The second line is the same but the lattice is only occupied in a single
site initially.

figure 1.1. The n(x, t) ≡ 0 state is called an ’absorbing state’. If there are
no particles at all the reactions (1.1) can not generate them. In that phase,
not only the expected value of the number of particles tends to zero at large
times: all fluctuations in the system disappear and the number of particles
itself goes to zero. On the other hand, the phase with a non-zero concentra-
tion in its final state is called an ’active phase’. The average concentration
tends to a non-zero value, but the value of the concentration in a given point
continues to fluctuate along time.

The goal of Renormalization Group methods is to go beyond mean-field
approximations in a controlled way. For the moment, we will consider only
properties with large characteristic times and distances. For those particular
kind of properties of the system, one can exploit phenomenological stochastic
equations that take into account the diffusion from one point to another and
the existence of microscopic fluctuations in the local concentration. This
establishes a separation between modes that evolve slowly with time that
will be described with a local mesoscopic variable n(t, ~x), and microscopic
’rapid’ fluctuations that will be treated as a ’noise’. This can be done with
a non-linear Langevin equation:

∂tn(t, ~x) = D∇2n(t, ~x) + (σ − µ)n(t, ~x)− 2λn2(t, ~x) + ζ(t, ~x) (1.5)
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where ζ(t, ~x) represents the effect of the ’noise’.
In order to complete the modeling associated to this Langevin equation

it is necessary to specify the form of the noise. Considering the separation of
scales and that the noise is supposed to rapidly fluctuate independently from
one position to another, one can invoke the Central Limit Theorem in order
to argue that the noise should be well described by a centered Gaussian noise
with local correlation:

〈ζ(t, ~x)〉 = 0 〈ζ(t, ~x)ζ(t′, ~x′)〉 = 2Γ(t, ~x)δ(t− t′)δ(d)(~x− ~x′) (1.6)

However, there is an important property of this reaction-diffusion problem
that can not be neglected for a correct description of the system even at long
times and distances intervals: the state n(t, ~x) ≡ 0 is an absorbing state.
This means that fluctuations of the system must be suppressed locally if
n(t, ~x) is small. We will then suppose that

Γ(t, ~x) = γn(t, ~x) (1.7)

The resulting Langevin equation takes into account, at least phenomeno-
logically, the main properties of the Directed-Percolation universality class.
One can solve (at least in principle) this equation by Monte Carlo methods
[3, 4]. However we will try to acquire a better comprehension of its behavior
by developing approximate semi-analytical methods in order to extract its
main properties.

The basic ideas mentioned before can be generalized to any reaction-
diffusion system, with one or more species of molecules. We will see, more-
over, that one can justify from first principles this kind of Langevin equations
directly from the reaction-diffusion set of reactions.

1.1.2 The Kardar-Parisi-Zhang equation

The methods that will be presented can also be successfully used when ap-
plied to other non-linear Langevin equations that do not originate in reaction-
diffusion processes. One example of that is the application to the Kardar-
Parisi-Zhang (KPZ) equation [5]. It describes (for example) the interfaces
growth between two different media, but it also applies to many other sys-
tems including the noisy Burgers equation of fluid dynamics [6]. Suppose an
interface between two medias characterized by a height h̄(~x, t) as in figure 1.2.
In this analysis the ’turning back’ effects, as in the figure 1.3, are neglected.
Now, suppose a generic relaxational evolution equation of the type:

∂th̄(~x, t) = ν∇2h̄(~x, t) + χ(∇h̄(~x, t)) + ζ(~x, t). (1.8)
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Figure 1.2: Evolution of the height h̄(t, ~x) of an interface

Figure 1.3: Type of interface included and not included in the analysis

Here ζ(~x, t) is the noise term of the equation and the term proportional to
ν describes the effect of a surface tension. It is important to stress that the
deterministic part of the equation depends only on differences of the field.
Now, suppose that χ(∇h̄) varies slowly:

χ(u = ∇h̄) = χ(0) + ∇χ|u=0 · ∇h̄+
1

2

∑
ij

∂2χ

∂ui∂uj

∣∣∣∣
u=0

∂ih̄∂jh̄+ . . . (1.9)

Neglecting the dots terms and supposing that the dynamics is isotropic:

χ(u = ∇h̄) = χ(0) + ∇χ|u=0 · ∇h̄+
λ

2
(∇h̄)2 + . . . . (1.10)

Now, if one performs the change of variables h(~x, t) = h̄(x − ∇χ|u=0 t, t) −
χ(0)t, one arrives to the KPZ equation [5]:

∂th(~x, t) = ν∇2h(~x, t) +
λ

2
(∇h(~x, t))2 + ζ(~x, t). (1.11)
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Again, the form of the noise must be specified. However, one can prove that
in this system, the behavior at large distances and large times is extremely
universal. Most of the details of the deterministic parts and/or the shape of
the noise have no impact on the macroscopic behavior of the surface. Then
the simplest form of the noise can be taken: Gaussian and white with:

〈ζ(~x, t)〉 = 0, 〈ζ(~x, t)ζ(~x′, t′)〉 = 2Dδ(d)(~x− ~x′)δ(t− t′) (1.12)

1.1.3 What kind of objects will be analyzed?

As mentioned, we will be interested in the analysis of the behavior of these
out-of-equilibrium systems at long times and at large intervals of distances.
It is important to analyze the kind of aspects that will be addressed and
compared to experiments and other techniques.

First of all, we will concentrate on quantities that are averages on the
noise. One could study the behavior of the system for a particular realization
of the noise, but here we will concentrate only on quantities that have been
averaged on the noise. This kind of quantities are much simpler and much
more universal. For example, when the mean on the noise is performed
the system tends to depend much less on initial conditions at long times.
Moreover, the symmetries of the dynamics are realized on means but are not
present on a given particular realization of the noise.

Second, only large distance and long time behavior will be analyzed.
Again, in general, this considerably reduces the dependence on initial con-
ditions. The characteristic distances and times are, in most cases, of the
same order of magnitude as in the microscopic rules of evolution. However,
in some cases the characteristic times and distances are much larger. In such
cases, the phenomenon of universality takes place for quantities dominated
by these macroscopic scales. The corresponding regime is called the critical
regime. Most part of the analysis to be presented here will refer to the criti-
cal regime of some models, but some aspects of the non-critical regimes will
be also analyzed. It is important to realize that for non critical properties
it is necessary to control not only the macroscopic behavior but also to be
able to relate it to the detailed microscopic behavior of the system. This
is a much harder task, but some examples of successful applications of the
NPRG to that class of problems will be shown. In those cases, we will keep
our focus on the large distance and long time behavior even when studying
non-universal properties.

Some concrete examples that apply both for reaction-diffusion problems
(then ϕ = n) or in other Langevin equations (for KPZ, ϕ = h) are the
following:
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• The mean value of the field ϕ,

〈ϕ(t, ~x)〉, (1.13)

is an extremely important quantity. In the reaction-diffusion problem
(1.1) it allows for the determination of the phase diagram of the model.
If 〈ϕ(t, ~x)〉 = 0 the system is in the absorbing phase and if 〈ϕ(t, ~x)〉 > 0,
the system is in its active phase. It is important to observe that the
shape of the phase diagram is not universal and depends on the precise
knowledge of the microscopic form of the theory.

Close to the second order phase transition, approached from the active
phase one can define a (universal) critical exponent from it:

〈ϕ(t, ~x)〉 ∼ |µ− µc|β (1.14)

Here the rate µ has been used as a control parameter, but the other
rates can be used as well.

• The correlation function:

G(t1, ~x1; t2, ~x2) = 〈ϕ(t1, ~x1)ϕ(t2, ~x2)〉 (1.15)

plays a very important role in the analysis of the system, particularly
near a second order phase transition. It allows the definition of some
critical exponents. One defines also more general correlation functions
that are the mean value of products of more than two fields.

• The response function is other important object in this out-of-equilibrium
systems. Suppose that one adds a ’source’ term j̃(t, ~x) in the Langevin
equation for Directed Percolation:

∂tn(t, ~x) = D∇2n(t, ~x) + (σ − µ)n(t, ~x)− 2λn2(t, ~x) + ζ(t, ~x)− j̃(t, ~x).
(1.16)

The response function is defined as

χ(t1, ~x1; t2, ~x2) =
δ〈ϕ(t, ~x)〉
δj̃(t′, ~x′)

∣∣∣∣
j̃≡0

. (1.17)

As before, it allows the definition of some critical exponents, that a
priory are not independent of the previous ones. In some cases, the
response function is related by a fluctuation-dissipation theorem to the
correlation function, but in many out-of-equilibrium systems they are
independent quantities.
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In the critical regime, one can consider, for example, the response func-
tion averaged on time, whose behavior at large times t is:∫

dt′χ(t, ~x; t′, ~y) ∼ e−|~x−~y|/ξ⊥

|~x− ~y|d−2+η
(1.18)

This defines the critical exponent η. The spatial correlation length ξ⊥
diverges in the critical point:

ξ⊥ ∼ |µ− µc|−ν⊥ (1.19)

In the same way, the space average of the response function defines a
correlation time ξ‖ that diverges near the critical point as

ξ‖ ∼ (ξ⊥)z. (1.20)

This relation defines a specific out-of-equilibrium exponent.

1.2 The Janssen-De Dominicis-Martin-Siggia-

Rose procedure

In this subsection we present a formalism that simplifies considerably the
analysis for the calculation of mean values on the noise. It was elaborated
by Martin-Siggia-Rose [7], Janssen [8] and De Dominicis [9]. Consider the
Langevin equation:

∂tϕ(t, ~x) = F [ϕ](t, ~x) + ζ[ϕ](t, ~x) (1.21)

with ζ(t, ~x) a centered Gaussian noise with

〈ζ(t, ~x)〉 = 0 〈ζ(t, ~x)ζ(t′, ~x′)〉 = 2Γδ(t− t′)δ(d)(~x− ~x′) (1.22)

where Γ may depend on ϕ and may also be a differential operator.
Let’s call P [ζ] the (non-normalized) probability distribution of the noise.

For example, for a Gaussian white noise of variance 2Γ(t, ~x) it is (see exercise
1):

P [ζ] ∝ exp
(
− 1

4

∫
ddxdt

ζ2(t, ~x)

Γ(t, ~x)

)
. (1.23)

Then the mean value on the noise of a certain quantity is

〈O[ϕ]〉 =

∑
ζ(t,~x)O[ϕζ ]P [ζ]∑

ζ(t,~x)P [ζ]
(1.24)
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where O[ϕζ ] is the quantity O[ϕ] evaluated on the particular solution of the
Langevin equation, ϕζ that corresponds to a given realization of the noise
ζ(t, ~x). The sum in (1.24) over all field configurations may be ambiguous.
In order to make it precise one can imagine that the system is discretized in
time and space. We will use continuous notations along this manuscript but
it should be kept in mind that if any ambiguity takes place it is convenient to
consider a discretized version of the model (for example, in a regular lattice).

It is convenient to re-write this expression in a way similar to mean-
values of equilibrium statistical mechanics. In order to do so, consider the
numerator of the previous expression:

N =
∑
ζ(t,~x)

O[ϕζ ]P [ζ] =
∑
ζ(t,~x)

∑
ϕ(t,~x)

O[ϕ]P [ζ]
∏
(t,~x)

δ
(
ϕ(t, ~x)− ϕζ(t, ~x)

)
∝
∑
ζ(t,~x)

∑
ϕ(t,~x)

O[ϕ]P [ζ]
∏
(t,~x)

δ
(
∂tϕ(t, ~x)−F [ϕ](t, ~x)− ζ[ϕ](t, ~x)

)
(1.25)

Here, we should add the following comment: The last relation is only valid
if the determinant of the transformation from ϕ to ∂tϕ(t, ~x) − F [ϕ](t, ~x) −
ζ[ϕ](t, ~x) is a constant. This may or may not be the case depending on the
precise definition of the temporal derivative in a discrete form. It can be
shown that if a forward derivative is chosen when discretizing (Itô prescrip-
tion) then the determinant is a constant for any Langevin equation. Here
we will suppose that such a discretization has been chosen in order to give a
precise meaning to the Langevin equation.

The delta functions, may be re-written via Fourier transformations:

N ∝
∑
ζ(t,~x)

∑
ϕ(t,~x)

∑
ϕ̃(t,~x)

O[ϕ]P [ζ] exp
{
−i
∫
dt

∫
ddxϕ̃

(
∂tϕ(t, ~x)−F [ϕ](t, ~x)−ζ(t, ~x)

)}
(1.26)

The sum over the noise is now a Gaussian sum that can be performed exactly:

N ∝
∑
ϕ(t,~x)

∑
ϕ̃(t,~x)

O[ϕ] exp
(
− S[ϕ, ϕ̃]

)
(1.27)

with

S[ϕ, ϕ̃] =

∫
ddxdt

{
2Γ(t, ~x)ϕ̃2(t, ~x) + iϕ̃

(
∂tϕ(t, ~x)−F [ϕ](t, ~x)

)}
(1.28)

Repeating the same procedure for the denominator one concludes that

〈O[ϕ]〉 =

∑
ϕ(t,~x)

∑
ϕ̃(t,~x)O[ϕ] exp

(
− S[ϕ, ϕ̃]

)
∑

ϕ(t,~x)

∑
ϕ̃(t,~x) exp

(
− S[ϕ, ϕ̃]

) (1.29)
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S will be called the ’action’ associated with the Langevin equation.
As an example, one can consider the action for the Langevin equation

associated to the reactions 1.1 in the class of universality of the Directed
Percolation. In this case:

SDP [ϕ, ϕ̃] =

∫
ddxdt

{
iϕ̃(t, ~x)

(
∂t −D∇2 − (σ − µ)

)
ϕ(t, ~x)

+ 2iλϕ̃(t, ~x)ϕ(t, ~x)2 + 2γϕ̃2(t, ~x)ϕ(t, ~x)
)}

(1.30)

It is convenient to re-scale the fields in order to have the same coefficient in
the two trilinear terms: ϕ →

√
λ
γ
ϕ and ϕ̃ →

√
γ
λ
ϕ̃. Moreover, the action is

usually expressed in terms of the purely imaginary field ϕ̄ = iϕ̃, obtaining:

S(MSR)
DP [ϕ, ϕ̄] =

∫
ddxdt

{
ϕ̄(t, ~x)

(
∂t −D∇2 − (σ − µ)

)
ϕ(t, ~x)

+ 2
√
λγ
(
ϕ̄(t, ~x)ϕ(t, ~x)2 − ϕ̄2(t, ~x)ϕ(t, ~x)

)}
(1.31)

With fields normalized this way, the Directed-Percolation action presents the
’rapidity symmetry’:

ϕ(t, ~x)→ −ϕ̄(−t, ~x), ϕ̄(t, ~x)→ −ϕ(−t, ~x). (1.32)

An expression of the type (1.29) is to be compared to the standard expres-
sion for mean values in standard Boltzmann equilibrium. If the configuration
variable in that case is a field ϕ then, the mean value of a quantity O is

〈O[ϕ]〉 =

∑
ϕ(~x)O[ϕ] exp

(
−H[ϕ]

)
∑

ϕ(~x) exp
(
−H[ϕ]

) (1.33)

(here the factor (kBT )−1 has been re-absorbed in the definition of the effective
Hamiltonian H).

The expressions (1.31) and (1.33) are very similar. The differences are:

• The sum must be done in (1.29) in twice the variables (ϕ and ϕ̃) than
in (1.33) (only ϕ).

• The variables in (1.29) depend on position and time and in (1.33) de-
pend only on the position.

• The functional S is complex and the effective Hamiltonian H is real.
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This similarity allows us to exploit standard techniques from equilibrium
statistical mechanics. In fact, for simplicity, we will analyze equilibrium as
examples first. It is important to emphasize that going from the equilibrium
Boltzmann distribution sum to the non-equilibrium case is not difficult. We
will come back to non-equilibrium problems in the third chapter.

Before considering equilibrium examples, let’s comment that Doi and
Peliti have proved a more rigorous way to construct mean values with the
form (1.29) directly from a reaction-diffusion problem without having to
model it with a Langevin equation [10, 11]. For example, one can prove
rigorously that mean values in the discretized form of the reaction-diffusion
problem (1.1) associated with the Directed Percolation can be calculated
with the action

S(DP )
DP [ϕ, ϕ̄] =

∫
ddxdt

{
ϕ̄(t, ~x)

(
∂t −D∇2 − (σ − µ)

)
ϕ(t, ~x)

+
√

2σλ
(
ϕ̄(t, ~x)ϕ2(t, ~x)− ϕ̄2(t, ~x)ϕ(t, ~x)

)
+ λ
(
ϕ̄(t, ~x)ϕ(t, ~x)

)2
}

(1.34)

Details can be found in e.g. [] Here the fields ϕ and ϕ̄ are conjugated complex
fields. In contrast, in the J.D.M.S.R procedure these fields are independent,
ϕ is real and ϕ̄ is purely imaginary. If some deformation of contour in the
complex plane of the fields allowed us to ignore this point, one observe that
the two actions (1.31) and (1.34) have a very similar structure. The only
differences are that in the action (1.31) the quartic term is absent and that
the value of the coupling is not fixed in terms of the reaction-diffusion rates.
This is important for non-universal problems, but for universal quantities as
critical exponents one can expect that the obtained values do not depend
on the precise form of the action but only in its symmetries. So, in the cal-
culation of universal properties, one can consider both actions as essentially
equivalent.

1.3 Some examples of physical problems in

equilibrium

It is simpler to present the Non-Perturbative Renormalization Group in the
context of equilibrium statistical mechanics. As explained in the previous
section, the generalization to out-of-equilibrium problems is relatively simple
but in order to not superimpose difficulties, the equilibrium case will be pre-
sented first. More specifically, we will consider the Ginzburg-Landau model
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Figure 1.4: On the left: the potential for r0 > 0 ⇔ T > Tc. On the right:
the potential for r0 < 0⇔ T < Tc.

for the uni-axial ferromagnetic-paramagnetic transition that has an effective
Hamiltonian:

H =

∫
ddx
{1

2
(∇ϕ(~x))2 +

r0

2
ϕ2(~x) +

u0

4!
ϕ4(~x)

}
(1.35)

The potential of this model is presented in the figure 1.4. In mean-field it
presents a second order phase transition at r0 = 0.

The kind of objects that can be easily calculated for this model are similar
to those that appear in the solution of reaction-diffusion equations or non
linear Langevin equations:

• The mean value of the field ϕ:

〈ϕ(~x)〉 (1.36)

represents the magnetization of the model. An important point is to
know if the symmetry ϕ → −ϕ is spontaneously broken or not in this
model. If 〈ϕ(~x)〉 = 0 the system is the symmetric/paramagnetic phase
and if 〈ϕ(~x)〉 > 0, the system is in its broken/ferromagnetic phase and
a spontaneous magnetization is present.

As in the out of equilibrium case, one can define the universal critical
exponent β from it.

• The correlation function:

〈ϕ(~x1)ϕ(~x2)〉 (1.37)
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also plays an important role in the analysis of the system. Moreover,
in the equilibrium situation, the correlation function is identical to the
response function. Critical exponents can be defined in the same way
as before, but there is no time dependence and so the z exponent makes
no sense.

All the mean values of products of fields can be expressed in term of func-
tionals. As a first example, consider the partition function of the Ginzburg-
Landau model in presence of an external magnetic field (or source):

Z[J ] =

∫
Dϕ(~x) exp

(
−H +

∫
ddxJ(~x)ϕ(~x)

)
(1.38)

W [J ] = logZ[J ] is (proportional to) the Helmholtz free-energy of this mag-
netic system. Here the notation

∫
Dϕ(~x) has been introduced. It represents

a sum over all field configurations, as discussed before. From W [J ] one can
obtain the various correlation functions by taking derivatives of W with re-
spect to J . For example, one can calculate the magnetization in presence of
the external magnetic field:

φ(~x) = 〈ϕ(~x)〉J =
δW

δJ(~x)
(1.39)

One can also calculate the 2-point correlation function:

〈ϕ(~x)ϕ(~y)〉 =
δ2W

δJ(~x)δJ(~y)
+

δW

δJ(~x)

δW

δJ(~y)
(1.40)

and so on.
It is sometimes convenient to express the free-energy as a function of

the magnetization φ(~x) instead of J(~x). To do so, one performs a Legendre
transform, obtaining the Gibbs free-energy Γ[φ]:

Γ[φ] =

∫
ddxJ(~x)φ(~x)−W [J ] (1.41)

In the previous expression J(~x) is chosen so that the magnetization takes the
value φ(x).

1.4 The Landau/mean-field approximation

Before considering sophisticated techniques in order to address non-perturbative
issues in out-of-equilibrium systems, it is convenient to analyze the Ginzburg-
Landau model in the mean-field approximation, and the perturbative correc-
tions to it. This will help us to acquire an intuition of the meaning of the
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mean-field approximation and its limitations. We will first calculate the
Gibbs-free energy in the mean field approximation.

Consider the mean field or Landau approximation, which neglects fluctu-
ations of the field around its mean value. In order to do so, one can suppose
that in the partition function (1.38) the configuration with maximum prob-
ability dominates the sum:

Z[J ] =

∫
Dϕ(~x) exp

(
−H[ϕ] +

∫
ddxJ(~x)ϕ(~x)

)
Landau∼ exp

(
−H[ϕm] +

∫
ddxJ(~x)ϕm(~x)

)
(1.42)

where ϕm(~x)[J ] minimizes the argument of the exponential:

δH[ϕ]

δϕ(~x)

∣∣∣∣
ϕ≡ϕm[J ]

= J(~x) (1.43)

This gives the Helmholtz free-energy in the mean-field approximation:

W [J ] = logZ[J ]
Landau∼ −H[ϕm] +

∫
ddxJ(~x)ϕm(~x) (1.44)

The mean-field approximation expresses itself more transparently in terms of
the Gibbs free-energy. In order to calculate it, it is necessary to first calculate
the magnetization (mean value of ϕ) in this approximation:

φ(~x) =
δW [J ]

δJ(~x)

Landau∼ −
∫
ddy

δH[ϕm]

δϕm(~x)

δϕm[J ]

δJ(~x)
+ ϕm(~x) +

∫
ddyJ(~y)

δϕm[J ]

δJ(~x)
Landau∼ ϕm(~x) (1.45)

This is reasonable: if only one configuration contributes to the sum, it is to
be expected that the mean value of the field is the value of this particular
configuration. The Gibbs free-energy can be deduced directly:

Γ[φ] =

∫
ddxJ(~x)φ(~x)−W [J ]

Landau∼ H[φ] (1.46)

In words: the mean-field or Landau approximation corresponds to replace
the Gibbs free-energy functional for the effective Hamiltonian.

After deriving this general expression, it is convenient to apply it in some
simple particular cases. For example one can evaluate the Gibbs free-energy
in a constant background magnetization φ(~x) ≡ φ. In that case

Γ[φ] = VV (φ) (1.47)
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where V is the space volume and V (φ) is called the effective potential. In the
mean field approximation, the effective potential is identical to the potential
appearing in the effective Hamiltonian.

From the effective potential one can extract a lot of physical information.
For example, taking the first derivative one can extract the relation between
the magnetization φ and the external magnetic field J :

J =
∂V

∂φ
= r0φ+

u0

3!
φ3 (1.48)

In particular, when J → 0 one can analyze the existence of a spontaneous
magnetization. If r0 > 0, φ → 0 when J → 0. On the other hand, when
r < 0, φ→ ±

√
−6r0/u0 (depending on the sign of J). The system presents

a second order phase transition at r0 = 0. It is reasonable to expect that
parameters appearing in the Ginzburg-Landau effective Hamiltonian (r0 and
u0) depend smoothly on the external control parameters as the temperature.
One then sees that in mean field approximation, r0(T ) ∼ r̄0(T − T0) where
T0 is the mean-field critical temperature. In particular, one realizes that the
mean-field β critical exponent is 1/2.

One can also extract from the effective potential the expression for the
susceptibility χ at zero external magnetic field (supposing that we are in the
symmetric phase, then φ = 0):

χ−1 =
∂J

∂φ

∣∣∣∣
J=0

= r0 (1.49)

The second derivative of the effective potential is nothing but the inverse of
the susceptibility. From this expression one sees that the γ critical exponent
(given by χ ∼ |T − Tc|−γ) is 1 in the mean-field approximation.

From the mean-field expression of the Gibbs free-energy, one can also
extract correlation functions (that for equilibrium problems are proportional
to response functions). For example, the two-point correlation function can
be obtained by

G(~x, ~y) = 〈ϕ(~x)ϕ(~y)〉 =
δ2W [J ]

δJ(~x)δJ(~y)
+
δW [J ]

δJ(~x)

δW [J ]

δJ(~y)
(1.50)

It is convenient to define the connected 2-point correlation function by sub-
tracting the product of the expectation values of the fields:

Gc(~x, ~y) = 〈ϕ(~x)ϕ(~y)〉 − 〈ϕ(~x)〉〈ϕ(~y)〉 =
δ2W [J ]

δJ(~x)δJ(~y)
(1.51)
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Now, observe that in that case

Gc(~x, ~y) =
δφ(~x)

δJ(~y)
(1.52)

(as mentioned before, in this system the correlation function and the response
function are the same). But

δ(d)(~x− ~y) =
δJ(~x)

δJ(~y)
=

∫
ddz

δJ(~x)

δφ(~z)

δφ(~z)

δJ(~y)
=

∫
ddz

δ2Γ[φ]

δφ(~x)δφ(~z)
Gc(~z, ~y)

(1.53)
One concludes that the 2-point function is the inverse in the operatorial sense
of the second derivative of the Gibbs free-energy.

The ’matrix’ of second derivatives of the Gibbs-energy in a constant back-
ground field is

Γ(2)(~x, ~y)
Landau∼ H(2)(~x, ~y) = (−∇2

x + r0 +
u0

2
φ2)δ(d)(~x− ~y) (1.54)

It can be ’diagonalized’ by Fourier-transforming, giving the eigenvalues q2 +
r0 + u0

2
φ2. One concludes that in Landau approximation, and for φ = 0,

Gc(~x, ~y)
Landau∼

∫
ddq

(2π)d
ei~q·(~x−~y)

q2 + r0

(1.55)

By performing the Fourier transform, one deduces (see exercise 2) that for
T > T0, ξ ∼ √r0 in mean-field approximation, corresponding to ν = 1/2.
Moreover, one deduces that the anomalous dimension is η ∼ 0 in the mean-
field approximation.

1.5 The Ginzburg-Landau model at one loop

We are particularly interested in cases where the mean-field approximation
is not a good approximation. In order to know in which situations the mean-
field is a good approximation and in which one it is not, the simplest proce-
dure is to apply the Ginzburg criterion: one calculates the first corrections to
the mean-field approximation and compares the correction to the supposed
dominant term. Only if the corrections are small compared to the supposed
dominant term, one can reasonably trust the mean-field expression. So, let’s
calculate the first correction to the Landau approximation. This can be done
by separating in the sum (1.38) the field ϕ in ϕm and a (supposed ’small’)
fluctuation ϕ̃ = ϕ− ϕm:

Z[J ] =

∫
Dϕ̃(~x) exp

(
−H[ϕm + ϕ̃] +

∫
ddxJ(~x)(ϕm(~x) + ϕ̃(~x))

)
(1.56)
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Given the fact that we are supposing that the fluctuations are small, one can
expand the effective Hamiltonian in ϕ̃:

H[ϕm + ϕ̃] = H[ϕm] +

∫
ddx

δH[ϕ]

δϕ(~x)

∣∣∣∣
ϕ≡ϕm[J ]

ϕ̃(~x)

+
1

2

∫
ddx

∫
ddy

δ2H[ϕ]

δϕ(~x)δϕ(~y)

∣∣∣∣
ϕ≡ϕm[J ]

ϕ̃(~x)ϕ̃(~y) + . . . (1.57)

Replacing in the expression for the partition function:

Z[J ]
1loop∼ exp

(
−H[ϕm] +

∫
ddxJ(~x)ϕm(~x)

)
×
∫
Dϕ̃(~x) exp

(
− 1

2

∫
ddx

∫
ddy

δ2H[ϕ]

δϕ(~x)δϕ(~y)

∣∣∣∣
ϕ≡ϕm[J ]

ϕ̃(~x)ϕ̃(~y)
)

(1.58)

The remaining integral is a Gaussian integral. Gaussian integrals can be
calculated analytically, giving the expression (see exercise 1):∫ N∏

k=1

(dxk) exp(−1

2

∑
ij

xiaijxj) = (2π)N/2(det(A))−1/2 (1.59)

where the aij are the components of the matrix A that is supposed to be

positive definite. The expression δ2H[ϕ]
δϕ(~x)δϕ(~y)

∣∣∣
ϕ≡ϕm[J ]

can be seen as a big ma-

trix. It is important to recall that one can always imagine that the system
has been put on a periodic lattice and that the indices ~x and ~y take their
values in a finite set of values. In that case, the integrals are just discrete
sums. The determinant can be written in a convenient way by exploiting the
expression (see exercise 3)

log det(A) = Tr log(A) (1.60)

where the trace of the logarithm of the matrix is nothing but the sum of eigen-
values of the matrix A. One arrives then to the Helmholtz free-energy with
first correction to the Landau approximation (’one-loop approximation’):

W [J ]
1loop∼ −H[ϕm] +

∫
ddxJ(~x)ϕm(~x)− 1

2
Tr log

δ2H[ϕ]

δϕ(~x)δϕ(~y)

∣∣∣∣
ϕ≡ϕm[J ]

(1.61)

Please note that an unimportant additive constant (coming from the (2π)N/2)
has been removed in order to obtain a friendlier expression.
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As before, the result is much simpler if it is expressed in terms of the Gibbs
free-energy. In order to obtain it, one must keep in mind that including these
corrections, the mean value of ϕ is no longer ϕm. The correct mean value
will be φ = ϕm + ∆φ, where the correction ∆φ is supposed to be of ’one-
loop’ order. Performing the Legendre transform of the one-loop expression
for W [J ] gives:

Γ1 loop[φ] =

∫
ddxJ(~x)∆φ(~x) +H[ϕm] +

1

2
Tr log

δ2H[ϕ]

δϕ(~x)δϕ(~y)

∣∣∣∣
ϕ≡ϕm[J ]

(1.62)

Now,

H[φ] = H[ϕm] +

∫
ddx

δH[ϕ]

δϕ(~x)

∣∣∣∣
ϕ≡ϕm[J ]

∆φ(~x) + . . . (1.63)

where the dots are of ’two-loop order’. One concludes that at one-loop order,

Γ1 loop[φ] = H[φ] +
1

2
Tr log

δ2H[φ]

δφ(~x)δφ(~y)
(1.64)

where in the last expression ϕm has been replaced by φ because, by doing
so, the error introduced in those terms is of two-loop order.

From this expression, one can extract, for example, the behavior of the
effective potential at one-loop order. Evaluating, in a constant background
field, and exploiting the form of the second derivative of the effective Hamil-
tonian obtained in the previous section, one concludes that the effective po-
tential takes the form at one-loop,

V (φ) =
r0

2
φ2 +

u0

4!
φ4 +

1

2

∫
ddq

(2π)d
log
(
q2 + r0 +

u0

2
φ2
)

(1.65)

In absence of some sort of cut-off this integral is divergent because high
momenta contributions are not bounded (ultraviolet divergence). As it was
pointed out before, one can always imagine to be considering the discretized
version of the model where there is a natural momentum cut-off of the order
of Λ = 1/a where a is the lattice space. We will suppose that such a regulator
exists even if not specifying it explicitly for notation simplicity. Moreover,
we will show now that in some cases the system can have low momentum
divergences, called infrared divergences. These divergences are much more
difficult to treat and they will be at the heart of our concerns here.

At this order, the expression for the relation between the magnetization
and the external magnetic field becomes:

J =
∂V

∂φ
= r0φ+

u0

3!
φ3 +

u0

2
φ

∫
ddq

(2π)d
1

q2 + r0 + u0

2
φ2

(1.66)
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and the susceptibility,

r ≡ χ−1 =
∂J

∂φ

∣∣∣∣
J=0

= r0 +
u0

2

∫
ddq

(2π)d
1

q2 + r0

(1.67)

One observes that the terms that came from the one-loop correction to the
mean field approximation are suppressed by a factor of the coupling constant
u0. This property is true also at higher orders of the expansion around
the mean field approximation: each new term includes higher powers of u0.
The second order phase transition takes place at the temperature where the
magnetic susceptibility diverges. Then r(T = Tc) = χ−1(T = Tc) = 0.
At first sight this is problematic, because at that temperature r0 must be
negative in order to compensate the second term of the r.h.s. expression, but
then the integrand has a pole and is not well defined. This is an artifact of
the approximation, because we can safely replace in the second term of the
expression r0 by r because the correction would be of order u2

0:

r =
∂J

∂φ

∣∣∣∣
J=0

= r0 +
u0

2

∫
ddq

(2π)d
1

q2 + r
(1.68)

Evaluating then at T = Tc:

0 = r0(T = Tc) +
u0

2

∫
ddq

(2π)d
1

q2
(1.69)

Performing the subtraction of these two expressions one arrives to

r = r0(T )− r0(T = Tc)−
u0

2
r

∫
ddq

(2π)d
1

q2(q2 + r)
(1.70)

Two different cases arise:

• If d > 4 the integral is dominated by the ultraviolet range of wave-
numbers but is regular when T ∼ Tc. If the integral is cut-off at q ∼ Λ,
one has T = Tc,

r = r0(T )− r0(T = Tc)− Cu0rΛ
d−4 (1.71)

where C is a numerical constant. In this case, the correction to the
mean-field expression is regular and is small as long as u0Λd−4 � 1.
The critical exponents (as γ) are the same as their mean-field approx-
imation, at least in a finite neighborhood of u0 = 0.
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• If d < 4, the ultraviolet range of wave-numbers is sub-leading (one
can safely take the limit Λ → ∞), but the integral is dominated (and
divergent) when T → Tc (or, equivalently r → 0). In that case,

r = r0 − r0(T = Tc)− rC ′u0r
(d−4)/2 (1.72)

where C ′ is another numerical constant. It is clear that the mean field
approximation can only be a good approximation as long as u0r

(d−4)/2 �
1. In particular, the critical regime r ∼ 0 can not be approached by a
direct expansion around the mean-field.

Before considering a strategy to avoid this difficulty of the perturbative
expansion near a second order phase transition, it is important to recognize
the origin of this difficulty. The reason is that all wave-numbers contribute
significantly to the loop corrections to the mean field if the system approaches
a critical regime. It is difficult to control an approximation when many
degrees of freedom with very different typical wave-number scales interact
in a significant way. All momentum from the microscopic Λ−1 scale to the
macroscopic r−1/2 = ξ scale contributes more or less in the same way in the
one-loop correction to mean-field approximations. The problem is, of course,
magnified when the microscopic coupling u0 is ’large’. However, even at
’small’ microscopic couplings many systems show large correlations between
many degrees of freedom that require more sophisticated techniques than
mean-field or perturbative approaches.

1.6 The Non-Perturbative Renormalization Group

equation

The NPRG is the modern version of the Wilsonian Renormalization Group
[13, 14, 15, 16, 17, 18]. It is conceptually very similar to it but it is tech-
nically much simpler and efficient [19, 20, 21, 22, 23, 24]. The main idea of
these approaches is to treat each shell of wave-numbers in one step. That is,
the Renormalization Group (RG) abandons the idea of trying to formulate
approximation schemes, that are valid from microscopic wave-number scales
as the inverse lattice spacing in a ferromagnetic system, to the macroscopic
sizes of the crystal. Instead, the RG is based on the construction of a family
of effective theories with a variable scale and in each step the RG employs
an effective theory for a given scale in order to construct the effective theory
of the next scale. Of course, in the rare cases of interacting systems where
exact solutions are available, the RG is normally useless. The RG purpose is
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to give a good background for the formulation of precise and robust approx-
imations. This is why in these notes the expression ’Exact Renormalization
Group’ is employed only once, even if it is an expression frequently used
in the literature. Another expression employed for the same techniques is
’Functional Renormalization Group’.

We will present an heuristic introduction to the ideas of the RG and
more particularly of the NPRG, without proving the main equation of the
NPRG. The reader who wants a detailed proof is encouraged to read the
appendix. The lecture notes of B. Delamotte [1] and the review of J. Berges,
N. Tetradis and C. Wetterich [25] and references therein are certainly a good
complement.

The goal of Wilsonian RG and of NPRG is to avoid expressions like (1.68)
where modes with all scales of wave-numbers contribute at the same time.
In order to do so, the NPRG strategy includes two main points:

• The first one is to introduce a ’regulator’ that filters modes with low
wave-numbers from the sums contributing to the free-energy. Only
modes with wave numbers higher than a certain parameter k will be
included in the corresponding Gibbs free-energy what will be noted
Γk[φ]. When k → 0, all modes are included and Γk[φ] becomes the
standard non-regulated Gibbs free-energy. On the other hand, when k
becomes of the order of the microscopic scale Λ, no modes at all are
included and Landau approximation becomes essentially exact Γk[φ] ∼
H[φ].

• The second one, is to obtain an equation giving the dependence of Γk
with k that is more or less local in wave-numbers. One will look for an
equation for ∂kΓk where integrals of the type (1.68) appear but only
modes with wave-numbers in a small shell around k contribute. The
expressions will be finite in the ultraviolet and in the infrared and the
construction of approximations will be much easier. The equation must
be local in another sense: we will look for an equation where ∂kΓk can
be calculated in terms of Γk but do not require the knowledge of Γk′
for other values of k′.

There are other points to be added to these ones from the practical point of
view. One needs reasonably simple equations in order to be able to perform
concrete calculations. In particular, we want to exploit all the information
we know in an exact way (as the presence of symmetries) in order to simplify
calculations and motivate better approximations. So we will try, whenever
it is possible, to have a simple equation that respects all the symmetries of
the model.
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The simplest way to filter the low wave-numbers modes from the contri-
butions to a partition function is to add a quadratic term to the effective
Hamiltonian. One will require of this quadratic term to not affect the modes
with wave-numbers higher than k and to bring the correlation length of
modes with wave-length smaller than k to a value of the order of k−1. The
corresponding extra term in the Hamiltonian will look like

∆Hk[ϕ] =
1

2

∫
ddq

(2π)d
ϕ(−~q)Rk(q

2)ϕ(~q) (1.73)

In order to satisfy the properties mentioned before, we will require that

Rk(q
2) ∼

{
Zkk

2 if q . k
0 rapidly if q & k

(1.74)

The factor Zk varies slowly with k and will be explained in detail below.
Moreover it is necessary that Rk(q

2) tends to infinity if k →∞ at fixed q.
From the Hamiltonian H+∆Hk a regulated Helmholtz free-energy Wk[J ]

can be calculated. From it one can perform a (modified) Legendre transform
in order to obtain a regulated Gibbs free-energy:

Γk[φ] =

∫
ddx J(~x)φ(~x)−Wk[J ]−∆Hk[φ] (1.75)

The subtraction of the last term is essential so that Γk tend to H[φ] when
k → ∞. In that limit the Landau approximation is well justified because
all modes have a very short correlation length. According to the Ginzburg
criterion of validity of the Landau approximation, the Landau approximation
becomes asymptotically exact. In this limit, the standard Legendre transform
of Wk[J ] goes to H + ∆Hk. Given the fact than we want a definition of Γk
that goes to H in that limit, one must subtract the last term.

It is shown in the Appendix that this definition of Γk gives an exact RG
equation satisfying all the properties required before. Here, we will arrive to
it by an heuristic argument based in a one-loop analysis. In order to do so,
let’s suppose that in a certain regime, the one-loop approximation for the
regulated Gibbs free-energy is well justified. One deduces that

Γk[φ] = H[φ] +
1

2
Tr log

(
H(2)[φ] +Rk

)
(1.76)

where H(2) is the matrix of second derivatives of H.
Now, one can calculate from it the derivative with respect to k:

∂kΓk[φ] =
1

2
Tr
(
∂kRk(H(2) +Rk)

−1[φ]
)

(1.77)
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This expression has good news and bad news. The good news is that thanks
to the regulator Rk, the equation is dominated by a small shell of momenta
q ∼ k. The reason for that is, first, that ∂kRk(q

2) goes to zero very rapidly
when q � k and, second, the term Rk added to H(2) ensures that the con-
tributions coming from q � k are suppressed. The bad news is that one
observes that in (1.77), the derivative of Γk with respect to k is not ex-
pressed here in terms of Γk but in terms of H ∼ limk→∞Γk. This is not
in the spirit of the NPRG as expressed before where, in order to be able to
construct robust approximations, one wants to analyze a single scale at each
time.

Fortunately, at one-loop order, one can avoid the bad news, by replacing
H by Γk in the r.h.s. of (1.77). In fact the difference would induce a correction
of 2-loop orders. The corresponding equation

∂kΓk[φ] =
1

2
Tr
(
∂kRk(Γ

(2)
k +Rk)

−1[φ]
)

(1.78)

has all the good properties we were looking for and is called the Wetterich
equation [22]. Now, magic happens: this equation turns out to be exact!
Even if we have motivated the equation by looking for an equation with very
convenient properties and a one-loop argument, one can prove that it is an
exact expression. The corresponding proof can be found in the Appendix.

In the next chapter, this equation is put at work. We will show that a very
simple approximation scheme is able, at leading order, to reproduce almost
all the critical properties of Ginzburg-Landau models in any dimension with
reasonable precision. We will show, moreover, that going beyond the leading
order one can systematically improve the precision of the predictions and
results seem to converge to the well-established results in any case where
they exist in any dimension. Even more, the same approximations allow us
to treat notoriously non-perturbative problems as the convexity properties
of the effective potential in the broken phase.

In the last chapter, these techniques are generalized for nonequilibrium
systems. It will be shown that the NPRG is also able to analyze successfully
that type of systems. In particular, universal and non-universal properties of
some models in the Directed Percolation universality class will be calculated
quantitatively. In some cases these results go beyond those obtained at any
order of perturbation theory.
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1.7 Appendix: Proof of the NPRG equation

Here we prove the NPRG equation without any approximation. Consider
the expression for the regulated Helmholtz free-energy:

exp(Wk[J ]) =

∫
Dϕ(~x) exp

(
−H−∆Hk +

∫
ddxJ(~x)ϕ(~x)

)
(1.79)

One can take the derivative with respect to k, obtaining:

∂kWk[J ] = −〈∂k∆Hk〉J = −1

2

∫
ddq

(2π)d
∂kRk(q

2)
{ δ2Wk

δJ(~q)δJ(−~q)
+
δWk

δJ(~q)

δWk

δJ(−~q)

}
(1.80)

Now, consider Γ̃k[φ] the standard Legendre transform of Wk[J ], and take the
derivative with respect to k at fixed φ on it:

∂kΓ̃k[φ]|φ =

∫
ddx∂kJ(~x)|φφ(~x)−

∫
ddx

δWk[J ]

δJ(~x)
∂kJ(~x)|φ − ∂kWk[J ]|J

= −∂kWk[J ]|J (1.81)

Now, it has been shown in (1.53) that the ’matrices’ W
(2)
k and Γ̃

(2)
k = Γ

(2)
k +Rk

are inverses, one deduces that

∂kΓ̃k[φ] =
1

2

∫
ddq

(2π)d
∂kRk(q

2)
{(

Γ
(2)
k +Rk

)−1

~q,−~q
+ φ(q)φ(−q)

}
(1.82)

Subtracting ∆Hk from Γ̃k one deduces finally,

∂kΓk[φ] =
1

2

∫
ddq

(2π)d
∂kRk(q

2)
(

Γ
(2)
k +Rk

)−1

~q,−~q
(1.83)

1.8 Exercises

1) Prove that∫ N∏
k=1

(dxk) exp(−1

2

∑
ij

xiAijxj +
∑
i

xiji)

= (2π)N/2(det(A))−1/2 exp(
1

2

∑
ij

ji(A
−1)ijjj) (1.84)

Deduce that

〈xl〉 =

∫ ∏N
k=1(dxk) exp(−1

2

∑
ij xiAijxj)xl∫ ∏N

k=1(dxk) exp(−1
2

∑
ij xiAijxj)

= 0 (1.85)
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and

〈xlxm〉 =

∫ ∏N
k=1(dxk) exp(−1

2

∑
ij xiAijxj)xlxm∫ ∏N

k=1(dxk) exp(−1
2

∑
ij xiAijxj)

= (A−1)lm (1.86)

2) Consider the Ginzburg-Landau model with N scalar fields ϕi with
O(N) symmetry:

H =

∫
ddx
{1

2

∑
i

∇ϕi(~x) · ∇ϕi(~x) +
r0

2

∑
i

ϕ2
i (~x) +

u0

4!

(∑
i

ϕ2
i (~x)

)2}
(1.87)

Generalize the expressions for the Gibbs free-energy in the Landau and
in the one-loop order for this model. Deduce the expression for the
2-point function in this model in the symmetric phase without external
magnetic field in mean-field approximation. Extract from it the critical
exponents η and ν.

3) Show that for a positive definite symmetric matrix A,

log det(A) = Tr log(A) (1.88)

4) Consider the action (1.34) for the reaction-diffusion process (1.1). De-
duce from it the mean-field exponents η, ν⊥ and z in that model.
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