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This series of three lecture will deal with two basic notions that are encoun-
tered in many different soft matter systems; geometric frustration and hand-
edness. The first two lectures will focus on geometric frustration. We will
introduce different kinds of geometric frustration, and discuss different possible
strategies of resolving the resulting frustration, emphasizing differences between
local and global strategies. The third lecture will introduce a quantitative path
to handed phenomena. We will discuss the history of chirality as defined by Lord
Kelvin, and the difficulties that arise when using it as a source for a quantitative
treatment of handedness. We will then present the orientation dependent gen-
eralization of this notion, and its implications. Both notions, that of geometric
frustration and that of handedness, are of exceptional use in may soft matter
systems where the constituents of a structure are ofter big enough to possess a
non-trivial internal structure.

1 Geometric frustration:
Examples and Riemannian formulation

When a multicellular tissue grows or a ductile material irreversibly deforms,
the different cells and different regions in the material may experience different
conditions and thus deform differently. However, the restriction that the tis-
sue remains connected and continuous, forces the different cells or parts of the
material to fit next to one another. As the deformation profile was not nec-
essarily programed to make the different parts snugly fit next to one another,
this will result in frustration; the inability to simultaneously satisfy all intrinsic
tendencies in the material (in the present case, matching all the rest-lengths).

This frustration is not always unwanted. It can be exploited to produce
elaborate shapes from very simple inputs, as well as to strengthen the material
against failure (for example in tempered gorilla glass covering our smart phones).

1



The resolution of geometric frustration may be local (resolving the frustration
uniformly), or resolve the frustration globally, incorporating into the solution
quantities of the object as a whole, such as total volume and aspect ratio.

In what follows we shall explore natural and man-made examples of geomet-
ric frustration, and understand how to treat such phenomena quantitatively.
This will naturally require some use of differential geometry. I will introduce
the notions needed for our discussion, but will do so not in the most general
framework. The less restricted form of these derivations can be found in elemen-
tary differential geometry books (e.g. Lectures on classical differential geometry
by Struik, and Differential geometry by Pogorelov. A more mathematically ad-
vanced account may be found in An introduction to differential geometry with
applications to elasticity by Ciarlet). I also want to draw the participants’ atten-
tion to the 2002 summer school lecture notes by Randy Kamien ”The geometry
of soft materials: A primer” which also saw light as a review article in Rev.
Mod. Phys.

1.1 Examples of geometrically frustrated systems

1.1.1 Flattening the sphere

One of the most familiar notion of geometric incompatibility is that of flattening
the sphere. For hundreds of years cartographers have been faced with the chal-
lenge of accurately describing the spherical surface of the earth on flat pieces
of paper. We know that any such ”flattening” will necessarily distort distances
and shapes. There are two types of questions concerning such maps, the first
is to find the most accurate way of mapping a region in space, and the second
concerns the most accurate description of the whole globe. We will discuss both
of these notions (termed local and global notions) of incompatibility, and will
address the question of minimal distortion quantitatively.

1.1.2 Doubly curved bilayer:
The Bauhinia seed-pod geometry

Next let us consider the following geometry: Two thin elastic sheets of thickness
t are uniaxially stretched by a factor 1 + α with respect to each other along
perpendicular directions and are then glued to one another. Along each direction
we can estimate the difference in length between the center of the layers when
curved to a radius R:

lout
lin

=
R+ t/2

R− t/2
=

1 + α/2

1− α/2
⇒ κ = R−1 =

α

t
.

The curvature along the two directions is equal in magnitude but points along
opposite directions (and thus associated with opposite signs). We note that we
can keep R constant and take α to be arbitrarily small provided also diminish
the thickness t accordingly. In this limit, we do not change the two dimen-
sional geometry of each of the layers (which both start planar, and thus with
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zero Gaussian curvature, K = 0). However, the desired geometry is associated
with a non-vanishing Gaussian curvature K = κ1κ2 = −R−2. Gauss’ theorema
egregium which relates the metric properties of a surface to its allowed confor-
mation in space through the Gaussian curvature thus precludes the ability to
simultaneously conform to the 2D geometry and the prescribed curvatures.

1.1.3 Bend-Splay coupling in 2D nematic liquid crystals

A two dimensional nematic liquid crystal is characterized by a unit vector field
n̂ named the director which is indicative of a local preferred orientation of
the constituents in the liquid. The constituents in a nematic liquid crystal,
named nematogens, have a broken symmetry and are typically elongated rod-
like structures. In its ground state a nematic liquid crystal attempts to align
the nematogens, leading to a uniform and constant director field. However,
this configuration may be distorted by imperfections, boundary conditions, and
other external forces. The energetic cost of such deformations is given by the
Frank free energy:

F = 1
2Ks(∇ · n̂)2 + 1

2Kb ((n̂ · ∇)n̂)
2
.

The first term is called the splay term, and the second is called the bending
term. We could define s = |∇ · n̂| and b = |(n̂ · ∇)n̂| to obtain the energy in
compact form:

F = 1
2Kss

2 + 1
2Kbb

2.

A third term (called the saddle splay) can be written as the divergence of a
function, and for simplicity was omitted above. In three dimensions the above
terms naturally extend to their three dimensional forms and an additional term,
named twist (or helicity) appears, 1

2KT (n̂ · ∇ × n̂)2.
For an unconstrained liquid crystal it is easy to see that the Frank energy

in 2D yields a trivial minimizer where s = 0 and b = 0. However if we now
consider a nematogen of a slightly more structured form, say having a slight
longitudinal bend, things may look different. Such a liquid crystal will possess
a non-vanishing preferred spontaneous bend. Its Frank energy, given by

F = 1
2Kss

2 + 1
2Kb(b− b0)2,

favors a zero splay configuration with a constant bend of value b0, and one
may näıvely expect that we should only consider small perturbations about this
ground state. However, as we next show, there exists no ground state with
vanishing splay and a constant bending.

Setting n̂ = (cos(θ), sin(θ)), the vanishing splay requirement amounts to
θy = tan(θ)θx. This gives for the bending the expression

b = θx/ cos(θ) = θy/ sin(θ).

This can be immediately shown to be incompatible with the no splay condition
as

θxy = −b sin(θ)θy = −b2 sin2(θ) 6= b2 cos2(θ) = b cos(θ)θx = θyx.
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The uniformly bent ground state is therefore frustrated and the ground state
will inevitably contain some splay or display non-uniform bending.

1.1.4 2D axially symmetric exponential growth

Last let us consider a circular ring of N cells that produces a new layer of ΛN
cells, where Λ > 1 every generation. Had Λ been equal to unity this would have
resulted in a cylindrical tube. The restriction that Λ > 1 requires the perimeter
of the next generation to be longer. This growth of the perimeter occurs at an
increasing rate. The most a circular perimeter can grow between layer of height
∆h is ρ(s+∆h)−ρ(s) = 2π∆h, which occurs when the growth is planar. Beyond
this point no axially symmetric solution can continue to increase the perimeter
at an accelerating rate. This is known as the finite horizon of the pseudosphere.
Beyond this point, growth must lead to a strong symmetry breaking of the
configuration.

1.2 Formulation of the problem via Riemanian geometry

We now come to make these notions of frustration quantitative within the frame-
work of Riemannian geometry. The main tool in Riemannian geometry is the
Riemannian metric, g. This is the tool with which infinitesimal distances are
defined. The metric is given with respect to a set of coordinates xα:

ds2 = gijdx
idxj ,

where above, and hereon-after we assume the Einstein summation convention
where repeated indices in a product are summed over. On a smooth Riemannian
manifold every point locally looks like Euclidean space. A general Riemannian
space differs from Euclidean space in that the former does not require to support
the parallel postulate which holds in Euclidean space (that to every straight
line and every point not on the line there exists a single straight line that
passes through the point and never intersects the line). This gives Riemannian
manifolds all their exotic behavior. In particular it allows for something called
non-holonomy or non-trivial parallel transport. For pedagogical reasons, in what
follows next we will consider the notion of connection, covariant derivative, and
parallel transport for surfaces embedded in 3D. Each of these notions can, of
course, be defined in arbitrary dimensions and without the need to resort to an
embedding.

Let us consider a surface in Euclidean three dimensional space,

r(x) =
(
r1(x1, x2), r2(x1, x2), r3(x1, x2)

)
.

The metric is obtained by examining infinitesimal displacements along the sur-
face (dx1, dx2):

ds2 = dr · dr =
dr

dxα
· dr
dxβ

dxαdxβ = gαβdx
αdxβ .
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The inverse metric is also a useful tool in geometry

gαβ = (gαβ)−1, i.e. gαβg
βγ = gγβgβα = δγα.

A vector on the surface in our specific embedded context should be thought
of as the possible velocity vector of a particle moving on the surface. It is a
vector in R3 that is locally tangent to the surface. Such a vector can be defined
through its contravariant (marked by upper indices) components, or through its
covariant (marked by lower indices) components:

v = vα∂αr = vβg
αβ∂αr = vβ∂

βr

where ∂αr = ∂r/∂xα and ∂αr = gαβ∂βr. We now are able to differentiate the
components of a vector. We recall that the component of the vector at different
points are defined with respect to different basis vectors. It thus will surprise
us that a correction term should be introduced to compensate for this effect.

∂αv = ∂αv
β∂βr + vβ∂α∂βr = (∂αv

β + Γβαγv
γ)∂βr = (∇αvβ)∂βr,

where we have defined the Christoffel symbol: ∂α∂βr = Γγαβ∂γr. This compen-
sated differentiation is called the covariant derivative. Similarly one can show
that for the covariant components the covariant derivative reads

∇αvβ = ∂αvβ − Γγαβvγ . (1)

One can also easily show that the Chrisftoffel symbol can be calculated directly
from the metric:

Γγαβ = 1
2g
γδ(∂αgβδ + ∂βgαδ − ∂δgαβ). (2)

The Christoffel symbol is the central tool in defining the connection on the
manifold, that is in determining how to compare vector in different locations,
or alternatively in determining how to parallel translate vectors. The notion of
parallel translation of a vector along a path is trivial in Euclidean space, ”one
only needs to keep the direction of the vector constant”. This is because the
connection in this case is trivial and directions can be defined globally. This
is the case of general Riemannian geometry in which directions are cannot be
defined globally. One can formulate the notion of parallel transport locally: Two
parallel vectors in Euclidean space form with a given straight line a constant
angle. Similarly, to infinitesimally translate a vector vα along a path γ we simply
construct at every point a geodesic curve that is locally tangent to the curve
γ, and keep a constant angle between the vector and the geodesic. Unlike the
case in Euclidean space, parallel translating a vector around a closed loop in a
general Riemannian manifold results in a rotation which is proportional to the
area enclosed by the loop. The local manifestation of this non-holonomy is the
non-commutativity of second derivatives

∇α∇βvγ −∇β∇αvγ = Rδγαβvδ,
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where the Riemannian curvature tensor appearing above reads

Rδγαβ = ∂αΓδβγ − ∂βΓδαγ + ΓνβγΓδαν − ΓνβγΓδβν . (3)

We now note that the central formulas above (??), (??) and (??) rely only on
knowledge of the metric and do not require the specific embedding we used to
understand the intuition behind these notion. Given a Riemannian metric we
can paralle transport vector, define curvature, and use covariant differentiation
as we wish.

In order to discuss physical properties of a manifold we will need to parame-
terize it. Naturally, many of the calculated quantities will depend on the specific
parametrization. In particular, the components of the metric tensor and and of
the christtoffel symbols will differ between different parametrizations. However,
we will see that all relevant scalar quantities will be parametrization indepen-
dent. If we contract a contravariant vector field vα with a covariant vector field
uα the resulting scalar field vαuα = φ will be independent of the parametrization
used (despite the fact that the component of both vector fields will depend on
the parametrization). This will also bring us to conclude that when formulated
properly, if a vectorial equation holds with respect to one parametrization, it
will hold true for every parametrization despite the fact that the components
of the vectors will strongly depend on the parametrization. Higher indexed
quantities, such as the metric, are called tensors and should be thought of as
an external product of vectors. We note in passing that the Christoffel symbol
is not a tensor in this sense (and thus is not allowed into covariant equations),
however the difference of two Christoffel symbols with respect to two different
metrics is a tensor.

1.3 Existence and uniqueness of an embedding for flat
metrics

Let us now consider a three dimensional flat manifold, again given by the map-
ping r(x). One could think of this structure as endowing space with curvilinear
coordinates. Recalling that the Christoffel symbol reads

∂i∂jr = Γkij∂kr, (4)

As we know that parallel transport is trivial in Euclidean space, we expect the
Riemann curvature tensor to vanish. We can ask if that is a sufficient condition
on the metric to produce such a flat manifold. The way to answer such a question
is constructive. We try to reconstruct the manifold from knowledge of the metric
alone. One could think of the definition of the Christoffel symbol above as a
first order PDE for Vα = ∂αr. Such a set of PDE’s allows a solution only
if ∂α∂βV = ∂β∂αV. Thus given a metric gij , and corresponding Christoffel
symbols Γijk we can reconstruct from these a three dimensional structure in
Eculidean space provided that

0 = ∂j∂k∂ir− ∂k∂j∂ir = (∂jΓ
m
ik − ∂kΓmij + ΓlikΓmlj − ΓlijΓ

m
lk)∂mr = Rmijk∂mr.
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Which again implies vanishing of all coordinates of the Riemann curvature ten-
sor. Thus a Riemannianly flat (vanishing curvature) 3D manifold can be has a
unique realization in 3D Euclidean space (up to rigid motions).

1.4 Generation of incompatibility in non-uniform isotropic
expansion

We now come to exemplify how difficult it is to construct a flat metric through
a specific example. Consider a strain-free body, parameterized by Cartesian
coordinates, i.e. g = I. Allow every point in the body to expand isotropically
but non-homogeneously by a factor λ(x), thus giving rise to a reference metric
ḡ = λ2I. Such expansion may result for example from thermal expansion, or
in growth induced by turgor pressure in plants’ cells. We now ask a simple
question: what isotropic growth profiles will result in a compatible reference
metric, i.e. will be realizable by an Euclidean metric, g, and will therefore not
induce residual stress?

To answer this question we write down the components of the Riemannian
curvature tensor of the metric ḡ in terms of the expansion factor λ and its deriva-
tives. Taking independent linear combination of the covariant components of
the Riemannian curvature tensor yields the following compatibility conditions:

2(∂1λ)2 − λ∂1∂1λ−4λ =0, 2∂1λ∂2λ− λ∂1∂2λ = 0,

2(∂2λ)2 − λ∂2∂2λ−4λ =0, 2∂1λ∂3λ− λ∂1∂3λ = 0,

2(∂3λ)2 − λ∂3∂3λ−4λ =0, 2∂2λ∂3λ− λ∂2∂3λ = 0,

where 4 = ∇ · ∇ = ∂21 + ∂22 + ∂23 is the standard Laplacian operator. It
takes straightforward algebra and integration to find that the only non-constant
solution of the above equations is

λ =
C2

|x− x0|2
,

for some constants C and x0. Every other isotropic expansion profile of an ini-
tially Euclidean 3D body will give rise to a non-Euclidean metric and inevitably
result in a residually stressed body. This result, may be surprising when con-
sidering growth profiles. However it is a consequence of a well-known geometric
result whereby all conformal mappings in R3 are inversions of a sphere. It im-
plies that any growth that does not result in residual stress requires delicate
global control, or some mechanical feedback.

1.5 Differential geometry of surfaces in three dimension

When coming to describe surfaces we will need to resort to slightly more compli-
cated structures; namely the first and second fundamental forms. For surfaces
embedded in three dimensions we distinguish between intrinsic properties (es-
sentially the metric and quantities that can be derived from it) and extrinsic
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properties that can be changed without altering the metric, such as the principal
curvature in a specific location. The latter properties will be said to depend on
the specific embedding.

Given a surface r(x1, x2) and a surface normal N̂ we construct the first and
second fundamental forms via

aαβ = ∂αr · ∂βr, bαβ = ∂α∂βr · N̂.

The second fundamental form measures curvature per unit of coordinate length.
This is related to true length through the metric. A third tensor called the
shape operator cαβ = gαγbγβ gives curvatures in real units, independent of the
parametrization. Two scalar quantities can be calculated from it; Its determi-
nant is the Gaussian curvature K = det(c) = κ1κ2, and its trace is the mean
curvature, H = 1

2 (κ1 + κ2). Gauss’ theorema egregium identifies the Gaussian
curvature with the Riemannian curvature which can be calculated from the met-
ric alone. This theorem naturally restricts the allowable pairs of fundamental
forms. For example, the Eulidean metric g = I cannot support a uniformly
curved configuration b = κI, or as we discussed in the examples a saddle like
negative Gaussian curvature.

In addition to Gauss’ equation there are two more differential restrictions
on the fundamental forms These can be written compactly as

∇αbβγ = ∇βbαγ .

The compatibility conditions for surfaces are called the Gauss-Peterson-Mainardi-
Codazzi (GPMC) equations. Similarly to the case of Riemannian curvature
satisfaction of these equations is a necessary and sufficient condition for the
existence of a unique surface with a given first and second fundamental forms.
An exceptionally elegant derivation of these equations starts with a surface and
extends it along its normal vector:

r(x1, x2, x3) = ρ(x1, x2) + x3N̂(x1, x2)

The resulting metric g3D can be expressed in terms of the 2D metric and cur-
vature tensors, a and b:

g3D =

a− 2x3b
0
0

0 0 1

+O((x3)2)

Calculating the Riemannian curvature tensor of g3D reproduces the GPMC
equations.

1.6 Homework assignment (optional)

Derive the compatibility condition for splay-free bending in a 2D liquid crystal.
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