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Abstract. We present a theoretical analysis of the phase diagram of two-
component bosons on an optical lattice. A new formalism is developed which
treats the effective spin interactions in the Mott and superfluid phases on the same
footing. Using this new approach we chart the phase boundaries of the broken
spin symmetry states up to the Mott to superfluid transition and beyond. Near
the transition point, the magnitude of spin exchange can be very large, which
facilitates the experimental realization of spin-ordered states. We find that spin
and quantum fluctuations have a dramatic effect on the transition, making it first
order in extended regions of the phase diagram. When each species is at integer
filling, an additional phase transition may occur, from a spin-ordered insulator to
a Mott insulator with no broken symmetries. We determine the phase boundaries
in this regime and show that this is essentially a Mott transition in the spin sector.
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1. Introduction

Recent observations of the superfluid to Mott insulator transition in a system of ultra-cold atoms
in an optical lattice open fascinating prospects for studying many-body phenomena associated
with strongly correlated systems in a highly controllable environment [1]–[3]. For instance,
theoretical studies have shown that, with spinor bosonic or fermionic atoms in optical lattices, it
may be possible to observe complex quantum phase transitions [4], to realize novel superfluidity
mechanisms [5] and to probe one-dimensional systems exhibiting spin charge separation [6].

Even the Mott phase of two-component bosons may exhibit rich behaviour. When the
motional degrees of freedom are frozen, the remaining pseudospins are coupled by an effective
Heisenberg exchange [7]. This effect can be used to ‘engineer’ interacting spin-1

2 Hamiltonians
in ultra-cold atoms, opening the door to controlled studies of quantum magnetism [8]. In this
approach the two-state bosonic or fermionic atoms are confined in an optical lattice where spin-
dependent interactions and hopping are controlled by adjusting the intensity, frequency and
polarization of the trapping light.

The effective spin Hamiltonians computed in [7, 8] are valid provided the system is deep in
the Mott phase. Then, the motional degrees of freedom are frozen and the effective Heisenberg
exchange can be derived by second-order perturbation theory in the tunnelling matrix elements.
However, spin effects are expected to be important, and even stronger, at larger values of the
tunnelling, where perturbation theory fails. How do the spin interactions affect the transition
into a superfluid phase and the properties of the superfluid? This important question cannot be
addressed within the perturbative approach that assumes a Mott starting point.

In this paper we present a theoretical framework, which is non-perturbative in the tunnelling
and allows us to describe both the superfluid and insulating phases in two-component systems.
Using this approach we determine the phase diagram for a total density of one atom per site.
We find that the spin-ordered states persist up to the superfluid transition. In this region the
critical temperature for spin ordering can be large, facilitating the experimental realization of
these phases. The z-antiferromagnetic state (checkerboard occupation of the two components),
in particular, enjoys a negative zero-point energy, which extends its domain beyond the mean-
field prediction for the Mott phase. The transition between this state and the superfluid is found
to be first order in contrast with the standard superfluid–insulator transition.

Before proceeding, we note that spin Hamiltonians can also be simulated by controlled
collisions via frequent time-dependent shifts of the lattice potentials [9]. Compared with
that method, the spin-dependent tunnelling may have certain experimental advantages since
it implements the desired Hamiltonian directly, thus circumventing imperfections and errors
associated with rapid perturbations due to the lattice shifts. We also note the recent studies on
quantum magnetism induced via magnetic dipole interactions of the condensed atoms [10]. The
present approach results in a much larger interaction strength per atom, and also allows for more
flexible control over interaction properties.

The paper is organized as follows. In section 2 we describe the Hubbard model for two
bosonic species on an optical lattice, which serves as our starting point. In section 3, the
perturbative approach of [7, 8] is reviewed and the phase diagram of spin states that arise from it
is sketched. We show that, when both species are at integer filling, the phase diagram also includes
a Mott transition in the spin sector into an insulator with no broken symmetries. In section 4
we present the mean-field description of the SF–MI (superfluid–Mott insulator) transition in
two-component systems. The analytical predictions of a variational approach are compared to
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the results of a numerical mean-field analysis. In section 5 a theoretical framework is developed
that incorporates the effect of quantum fluctuations and treats the magnetic interactions in the
Mott and superfluid phases on an equal footing. Then, in section 6, this framework is used to
analyse the full phase diagram at a total filling of one atom per lattice site. The relevance of the
present results in the light of realistic experiments is discussed in the concluding paragraphs of
this paper.

2. The model

We consider a system with two species of atoms or, equivalently, atoms with two relevant internal
states. The two species shall be denoted by the second quantized bosonic operators a and b.
We assume that the two species are trapped by independent standing wave laser beams through
polarization (or frequency) selection, as done, for example, in [11]. Each laser beam creates a
periodic potential in a certain direction vασ sin2(�kα�r), where �kα is the wavevector of the light
and σ = a, b is the species index. Throughout this work, we assume that the laser beams are
orthogonal, creating either a square lattice in two dimensions or a cubic lattice in three dimensions.
For sufficiently strong periodic potential and low temperatures the atoms will be confined to the
lowest Bloch band. The low-energy Hamiltonian is then given by the Bose–Hubbard model for
two boson species:

H = −
∑
〈i j 〉

ta(a
†
i a j + h.c.)− tb

∑
〈i j 〉
(b†

i b j + h.c.) + U
∑

i

(nai − 1
2)(nbi − 1

2)

+ 1
2

∑
iα=a,b

Vαnαi(nαi − 1)−
∑

iα

µαnαi . (1)

Here 〈i, j 〉 denotes the nearest-neighbour sites and ai, bi are bosonic annihilation operators
for bosonic atoms of different spin states localized on site i , nia = a†

iσ aiσ , nib = b†
iσ biσ . For

the cubic lattice, using a harmonic approximation around the minima of the potential [3],
the spin-dependent tunnelling energies and the on-site interaction energies are given by
ta(b) ≈ (π 2/4)va(b) exp[−(π 2/4)(va(b)/ER)

1/2], U ≈ (8/π)1/2(kaa,b)(ERv
3
ab)

1/4. Here va,b is
the depth of the optical potential for species a and b, vab = 4vavb/(v

1/2
a + v1/2

b )2 is the spin
average potential in each direction, ER = h̄2k2/2m is the atomic recoil energy, and aab is
the scattering length between the atoms of different spins. The intra-species interaction is
given by Va(b) ≈ (8/π)1/2(kaa(b))(ERv

3
a(b))

1/4 (aa(b) are the corresponding scattering lengths).
Furthermore, the magnitude of the inter-species interaction U can be additionally controlled by
shifting the two lattices away from each other, which opens a wide range of U/Vα to exploration.
Note that spin-dependent tunnelling tµσ can be easily introduced by varying the potential depth
va and vb with control of the intensity of the trapping laser. We should also point out that the
two atomic states generally have different energies (µa �= µb in (1)). In the spin language, this
translates to a magnetic field in the z direction. However, since there is essentially no transfer
between the two populations, the experiment is performed with fixed magnetization (population
difference na − nb) and the chemical potentials can be set to fix this magnetization.

In this paper, we address primarily the case in which the total filling is commensurate with
the lattice and the two species have equal density (i.e. zero magnetization). A transition from a
superfluid to a Mott insulator is expected, as in the usual case of a single species. However, in this
system, magnetic order associated with the pseudospin degrees of freedom (boson components)
may occur as well.
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Figure 1. Schematic phase diagram of the effective spin Hamiltonian (2), valid
deep in the Mott phase.

3. Deep Mott phase: effective spin Hamiltonian

To illustrate the magnetic orders that can arise it is instructive to begin deep in the Mott insulator
in the limit ta,b � U, Va,b, where the Hamiltonian (1) can be simplified considerably. The low
energy Hilbert space in this case contains states with a particular integer occupation on every site.
However, there is a remaining degeneracy associated with the spin (boson component) degrees
of freedom. The degeneracy can be removed by an effective Hamiltonian acting within the low
energy subspace [7, 8]. Consider first the case of total filling of one particle per site where the
effective Hamiltonian is easily seen to be

Heff = Jz

∑
〈i j 〉

Sz
i Sz

j − J⊥
∑
〈i j 〉
(Sx

i Sx
j + Sy

i Sy
j )− h

∑
i

Sz
i . (2)

Here |↑〉 and |↓〉 represent sites occupied by the a and b atoms, respectively, and the couplings,
derived by second-order perturbation theory in the tunnelling, are given by

Jz = 2
t2
b + t2

a

U
− 4t2

a

Va
− 4t2

b

Vb

J⊥ = 4tatb

U

h = 2t2
a

Va
− 2t2

b

Vb
+ hext.

(3)

We assume that the induced ordering field h can be cancelled by an externally applied field hext .
In this case the model obviously exhibits a transition between a x–y ferromagnet for J⊥ > Jz > 0
and an Ising antiferromagnet with z-Néel order (figure 1).

We now extend the discussion to the case of any integer filling of N atoms per site. To see
how things may become qualitatively different from the singly occupied case, consider first a
Mott state with two atoms per site. The low-energy Hilbert space of a lattice site consists of the
three states
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1√
2
(a†)2|0〉, a†b†|0〉, 1√

2
(b†)2|0〉. (4)

If Va,b � U , the state a†b†|0〉 has a much lower energy than the other two. This implies a simple
Mott state

∏
i a†

i b†
i |0〉 which, unlike the Mott states in figure 1, does not break any symmetries.

On the other hand, when Va,b is of the same order as U , all three states should be taken into
account and more phases may be possible. Therefore in the general case of N atoms per site we
consider the regime ta,b, |Va,b − U | � U, Va,b and Va = Vb.

The low-energy Hilbert space of a lattice site with N atoms per site can be constructed in a
similar way. It contains the N + 1 states:

|S,m〉 = (a†)S+m

√
(S + m)!

(b†)S−m

√
(S − m)!

|0〉 (5)

where S ≡ N/2 and m = −S, . . . , S. Obviously a† and b† act as Schwinger bosons, creating a
multiplet of pseudospin S. The spin magnitude depends on the site occupancy. It is integer for
even N and half-integer for odd N .

Now the effective Hamiltonian within the spin S subspace can be derived by second-order
perturbation theory [7] as a straightforward generalization of (2). The result is

Heff = −
∑
〈i j 〉

[J⊥(Sx
i Sx

j + Sy
i Sy

j ) + Jz Sz
i Sz

j ] + u
∑

i

(Sz
i )

2 − h
∑

i

Sz
i (6)

where the interactions are given by

u = Va − U = Vb − U

J⊥ = 4tatb

U

Jz = 2
t2
a + t2

b

U

h = z(2S + 1)
t2
a − t2

b

U
+ hext.

(7)

Note that, if we take S → 1
2 , the parameters are identical to those of the effective spin-1

2
Hamiltonian (2) in the case U ≈ Va = Vb. Note also that additional terms, such as (Sz

i Sz
j)

2, do
not arise. The (Sz)2 term is, of course, just a constant for S = 1

2 and therefore has no effect in
this case. However, it plays an important role at larger values of the spin, namely for occupations
N > 1.

For simplicity, consider first the system in the absence of an ordering field (h = 0) or at
fixed zero magnetization. When u is small compared to Jz or J⊥, the remaining terms in (6)
form an anisotropic Heisenberg model. A standard, coherent state mean-field theory is then
possible, which yields x–y ferromagnetic order. A positive u acts to reduce the Sz component
of the spins. At large enough u, the classical coherent states that represent fully polarized spins
become unsuitable descriptions of the system. Specifically, at large u all spins will be essentially
confined to their lowest possible Sz states.

When the spin is half-integer (odd filling), there are two active states, at large u (and h = 0),
corresponding to Sz = ± 1

2 . The Hamiltonian (6) then reduces to a spin-1
2 model, but the spin

interactions remain practically identical. Thus, the essential physics is unchanged and we expect
spin-ordered phases as in the singly occupied case.
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The behaviour of integer spins (even filling) at h = 0 is qualitatively different. At large
enough u only the Sz = 0 state will be important. We then expect that the system is well described
by |�〉 = ∏

i |S,m = 0〉i , a Mott state with no broken symmetries. We should point out that,
for h �= 0, we may also obtain such a Mott state for odd total filling (half-integer spin) when the
average occupation of each species is integer. The transition from this state, where the relative
occupation na − nb is fixed on each site, to the x–y ferromagnet, where the relative occupation
is fluctuating, is formally equivalent to a Mott transition. It can be regarded as a Mott transition
in the spin sector from a ‘spin’ insulator to a ‘spin’, or counterflow, superfluid [7]. The Mott
transition from the x–y ferromagnet to the superfluid phase, where also na + nb is fluctuating,
occurs in the ‘charge’ sector.

To describe the ‘spin–Mott’ transition we note that only the three states with lowest Sz play
an important role in its vicinity. We therefore write a homogeneous mean-field ansatz for integer
spins:

|�〉 =
∏

i

[cos(θ/2)|S, 0〉 + eiη sin(θ/2)(eiϕ cos(χ/2)|S, 1〉 + e−iϕ sin(χ/2)|S,−1〉)]. (8)

For half-integer spins with an ordering field h �= 0 we could write an identical ansatz including
only the three states with lowest on-site energy. The variational energy in the state (8) is given
by

E = − J⊥z

8
S(S + 1) sin2 θ(1 + sinχ cos 2η)

− Jzz

2
sin4 θ

2
cos2 χ + u sin2 θ

2
− h sin2 θ

2
cosχ (9)

and we see that the minimum occurs for η = 0, π . The x–y order parameter is 〈S+〉 ∝ sin θ ≡ ψ .
Therefore, to find the transition to a Mott insulator we expand the energy up to quadratic order in
ψ and minimize it with respect to χ . Note that the quartic term is always positive since Jz < J⊥.
We then obtain the critical value of J⊥ as a function of h:

J⊥c

u
= 1 − (h/u)2

zS(S + 1)
. (10)

For magnetic fields h > u, the description in terms of the states {|−1〉, |0〉, |1〉} breaks down.
Instead, a similar scheme can be carried out, using the states {|0〉, |1〉, |2〉}. This yields another
lobe corresponding to a phase with well defined Sz = 1. A schematic phase diagram is plotted
in figure 2. As the ordering field is increased, we obtain lobes corresponding to larger values
of Sz up to Sz = S, where the spin is fully polarized. In practice the number of particles in
each spin state is conserved independently. In other words the experiment is done with fixed z
magnetization and h is used as a theoretical tool to set this magnetization in our model. In what
follows we fix zero magnetization by setting h = 0.

In summary, we sketched the insulating region of the phase diagram of two-component
bosons. When the filling of each species is integer there is a transition from a x–y ferromagnetic
state to a Mott state without broken symmetries as the intra-species interaction is increased
relative to the inter-species interaction (figure 2). Related spin-ordering transitions for spin-1
bosons have been discussed recently by Imembakov et al [13] and Snoek and Zhou [14]. On
the other hand, at half-integer filling of each species, the system is well described by a spin-1

2
Hamiltonian of the form (2) and only spin-ordered phases arise (figure 1).
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Sz = 0

Sz = 1

Sz = -1

x-y ferro

J/u

h/u

-1

1

0

Sz = 1/2

x-y ferro

J/u

h/u

-1

1

0

Sz = -1/2

Sz = 3/2

Sz = -3/2

(a) (b)

Figure 2. Phase diagram of the Mott state with 0 < Va,b−U � U and (a) even and
(b) odd total filling. The filled lobes mark Mott states with fixed Sz = (na −nb)/2.
Outside of these lobes the system is also in a Mott state but with x–y ferromagnetic
spin order.

The perturbative expansion leading to the effective spin Hamiltonians (2) and (6) breaks
down as the transition to a superfluid is approached and ta,b become comparable to U . The
question arises as to whether the phases predicted by the effective spin Hamiltonian still hold
in this regime. More importantly, how do the effective spin interactions affect the nature of the
transition to a superfluid, and the superfluid phase itself?

To answer these questions we shall develop, in the next two sections, a theory which captures
the effective spin interactions while still able to describe the transition to a superfluid phase.

4. Mean-field theory of the superfluid–Mott transition

The usual, single-component, Mott transition of bosons is well described by mean-field
theory [12, 15]. It is thus natural to start our treatment of the two-component case with a
mean-field approach. In order to capture the superfluid phase we extend the regime considered
in the previous section to allow for arbitrary ratios of ta,b/U . However, we shall confine ourselves
to the case of a single atom per site and to the limit U, ta,b � Va, Vb. Later we shall consider
corrections due to finite intra-species interactions.

In this limit, it is particularly advantageous to use a variational approach, which is equivalent
to mean-field theory [16]. The idea is to assume a site factorizable wavefunction associated with
hard core bosons, which in our case takes the form

|
〉 =
∏

i

[
sin

θi

2

(
sin

χi

2
a†

i + cos
χi

2
b†

i

)
+ cos

θi

2

(
sin

ηi

2
+ cos

ηi

2
a†

i b†
i

)]
|0〉. (11)

This is the most general site-factorizable wavefunction with real coefficients which satisfies the
same-species hard core constraint. It is easily verified that allowing complex weights would
not improve the variational energy. The enormous reduction in Hilbert space, made possible by
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neglecting double occupation, is what makes these states convenient to work with. Specifically,
it is easy to calculate expectation values. In addition, we shall see that they facilitate a fluctuation
expansion about the mean-field theory. Generalization to include higher occupations is possible
but would make the subsequent calculations much more complicated.

In the Mott state, where each site is occupied by exactly one atom, the variational state
simplifies even more:

|
M I 〉 =
∏

i

(
eiϕ/2 sin

χi

2
a†

i + e−iϕ/2 cos
χi

2
b†

i

)
|0〉. (12)

We have added the relative phase to evoke a spin-1
2 analogy. Indeed (12) can be viewed as a

pseudospin-1
2 configuration with a†|0〉 = |↑〉 and b†|0〉 = |↓〉.

The onset of superfluidity is characterized by the development of an order parameter
sin θ �= 0. More precisely, the superfluid order parameters of the two species in the state
|
〉 are given by

〈a〉 = 1

2
sin θ cos

(
χ − η

2

)

〈b〉 = 1

2
sin θ sin

(
χ + η

2

)
.

(13)

Now a classical energy functional is defined by the expectation value of (1) in |
〉. Allowing for
two sub-lattice orders in a hypercubic lattice with coordination number z, the energy function is

E = − zta

4
sin θA sin θB cos

(
χA − ηA

2

)
cos

(
χB − ηB

2

)

− ztb

4
sin θA sin θB sin

(
χA + ηA

2

)
sin

(
χB + ηB

2

)
+

U

8
(cos θA + cos θB), (14)

where all the variational parameters are assumed to be uniform throughout sub-lattice A (B) and
are therefore marked only by a sub-lattice rather than a site index. In the superfluid phase this
energy is minimized when both cos((χi − ηi)/2) = 1 and sin((χi + ηi)/2) = 1, which implies
χi = ηi = π/2. The remaining degree of freedom θ is uniform on the lattice and is found by
minimizing

E(θ) = − z

4
(ta + tb) sin2(θ) +

U

4
cos θ. (15)

The result is

θ =
{
π ta + tb < tc

acos(−tc/(ta + tb)) ta + tb > tc
(16)

where tc = U/2z. We thus find a transition to a Mott insulating state for ta + tb < tc, as
illustrated by the circles in figure 3. This constitutes a straightforward generalization of the
standard transition for a single species.

By assuming the variational state (11), we neglected contributions from states with multiply
occupied a or b bosons. To determine effects arising from the finite magnitude of the intra-species
interaction we use a numerical self-consistent mean-field theory of (1). As first proposed in [15],
the kinetic energy terms in the Hamiltonian are decoupled:
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Figure 3. Phase diagram obtained by the decoupling mean-field theory (17)
for U = 20 and different values of Va,b. Note that for finite Va,b and strong
asymmetry of the hopping ta,b one of the species can be completely depopulated
in the superfluid phase (see the lower left inset). Except for this case, the Mott
transition always happens at the same parameters for both species.

HM F = U
∑

i

(nai − 1
2)(nbi − 1

2) + 1
2

∑
i;α=a,b

Vαnαi(nαi − 1)

−
∑
〈i j 〉

tα(a
†
i 〈a j〉 + h.c.)− tb

∑
〈i j 〉
(b†

i 〈b j〉 + h.c.) + constant. (17)

In the homogeneous phase this leads to a sum of identical single-site Hamiltonians:

H̃M F = U(na − 1
2)(nb − 1

2) + 1
2

∑
α=a,b

Vαnα(nα − 1)−�a(a
† + h.c.)−�b(b

† + h.c.) (18)

where the decoupling fields have to be determined self-consistently according to

�a,b = zta,b〈a(b)〉. (19)

We have solved the combined set of equations (18) and (19) numerically by diagonalizing H̃M F

within a finite-size Hilbert space where we allow for up to M = 9 bosons per species.
We show results in figure 3, where it can be seen that, for a small ratio U/Va,b, the phase

diagram is identical to that determined variationally. As Va,b decreases and approaches U the
Mott domain shrinks. For Va,b < U there is an instability toward a z-ferromagnetic superfluid.
Since the experiment is done at fixed magnetization this would lead to phase separation into
domains occupied only by a or b atoms.

Note that in the Mott state where the order parameters 〈a〉 and 〈b〉 vanish, the ground state
of HM F has precisely one atom per site but is completely independent of the relative weights
of a and b atoms. Similarly, the variational energy in the Mott state (12) is a constant (−U/4),
independent of the individual spin orientation. Thus the simple mean-field approaches are unable
to resolve spin order in the Mott state. To obtain spin order we shall in the next section consider
quantum fluctuations around the variational mean-field solutions.
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5. Effect of fluctuations: ‘magnetic’ states

The situation we encountered when attempting to treat the Mott phase with the variational states
is similar to the basic problem of frustrated quantum magnets. The classical energy of such
systems, i.e. the expectation value of the Hamiltonian in a basis of coherent spin states, often
contains a macroscopic degeneracy (see, for example, the review [17]). A general mechanism that
can lift the degeneracy is ‘quantum order by disorder’, whereby broken symmetry configurations
are selected by the zero-point energy due to spin waves [18].

A spin wave expansion in magnetism includes the quadratic fluctuations around coherent-
state mean-field configurations. We formulate a similar expansion in fluctuations about the
mean-field states (11). As a first step we define second quantized bosonic operators that create
the appropriate Hilbert space:

{a†
i |0〉, b†

i |0〉, a†
i b†

i |0〉, |0〉} ≡ {α†
1i |�〉, α†

2i |�〉, p†
i |�〉, h†

i |�〉}, (20)

where |�〉 is the vacuum of the new bosons and |0〉 is an empty site. The new operators are
analogues of Schwinger bosons in spin systems and they obey a similar constraint:

α
†
1iα1i + α†

2iα2i + p†
i pi + h†

i h i = 1. (21)

Now, we apply an orthogonal change of basis:

ψ0i

ψ 1i

ψ 2i

ψ 3i


 =




sin θi
2 sin χi

2 sin θi
2 cos χi

2 cos θi
2 sin ηi

2 cos θi
2 cos ηi

2

cos θi
2 sin χi

2 cos θi
2 cos χi

2 − sin θi
2 sin ηi

2 − sin θi
2 cos ηi

2

cos χi

2 − sin χi

2 0 0

0 0 cos ηi

2 − sin ηi

2






α1i

α2i

pi

h i


 . (22)

Note the first row of this rotation. It is chosen in such a way that the variational state (11) would
be a simple, singly occupied Fock state of the ψ 0 boson:

|
〉 =
∏

i

ψ
†
0i |�〉. (23)

The remaining rows of (22) define a convenient orthonormal basis for the subspace orthogonal
to ψ†

0 |�〉. Thus, the bosons ψ†
1,2,3, create fluctuations about the variational state. Of course any

other choice of orthonormal basis for the fluctuation subspace would do just as well.
The Hamiltonian (1) acting within the constrained Hilbert space, which excludes multiple

occupation by the same species, may be written in terms of the ψ bosons. Furthermore, ψ0i can
be eliminated using the hard core constraint

ψ
†
βiψ 0i = ψ

†
βi

√√√√1 −
3∑
α=1

ψ
†
αiψαi . (24)

Thus the Hamiltonian is a function of only the three fluctuation operators ψ1,2,3. Assuming the
fluctuations are small, in the sense that their density in the ground state is low, we expand the
Hamiltonian to quadratic order in these operators. The exact form of the resulting quadratic
Hamiltonian depends on the variational starting point which fixes the rotation matrix (22). For
a two sub-lattice variational state, the fluctuation Hamiltonian has the general form:

Hfluc = Evar + 1
2

∑
k

{
Ψ†

k

(
Fk Gk

Gk F 
k

)
Ψk − tr Fk

}
(25)
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where

Ψ†
k = (ψ†

k ψ†
k+π ψT

−k ψT
−k+π ) , ψ†

k = ( ψ
†
1k ψ

†
2k ψ

†
3k ) (26)

while Fk and Gk are 6 × 6 matrices which depend on the variational parameters. Finally Hfluc

is diagonalized by a Bogoliubov transformation to obtain the excitation frequencies ωαk and the
correction to the ground state energy:

�E = 1
2

∑
k

{
−tr Fk +

∑
α

ωαk

}
. (27)

With the Bogoliubov transformation at hand it should be straightforward to calculate the average
occupation of the fluctuations. For consistency of our approach we require

3∑
α=1

〈ψ†
αiψαi〉 � 1. (28)

Let us now focus on the Mott phase. Recall that the variational energy is independent
of the individual spin orientations, i.e. of the parameters in the state (12). The fluctuation
Hamiltonian, on the other hand, will depend on the spin configuration. Before we compare the
zero-point energies corresponding to possible spin orders let us note a few general properties
of the fluctuations in this case. Since the bosons p†

i and h†
i , which create an extra particle

or hole, are unoccupied in (12), they constitute a pair of orthogonal fluctuations. The third
orthogonal fluctuation is φ† = cos(χi/2)α

†
1i − sin(χi/2)α

†
2i which creates a pseudospin of

opposite orientation. Since the classical energy is independent of the spin configuration we
expect that φ†

i will not appear in the quadratic fluctuation Hamiltonian. This reflects the fact that
a local spin flip does not cost energy.

For a uniform state with χi = χ the Hamiltonian assumes a simple form:

Hfluc =
∑

k

{
fh(k)h

†
khk + f p(k)p

†
k pk − g(k)

2
(p†

k h†
−k + pkh−k)

}
, (29)

where the couplings depend on χ :

fh(k) = U

2
−

(
ta cos2 χ

2
+ tb sin2 χ

2

)
zγk

f p(k) = U

2
−

(
ta sin2 χ

2
+ tb cos2 χ

2

)
zγk

g(k) = zγk(ta + tb) sinχ.

(30)

The Hamiltonian is diagonalized by a standard Bogoliubov transformation:

pk = cosh θkck + sinh θkd†
−k

hk = cosh θkd k + sinh θkc†
−k

(31)

which yields the excitation modes:

ω1,2(k) = 1
2

√
U 2 − 2U(ta + tb)zγk + (ta + tb)2(zγk cosχ)2 ± (ta − tb)zγk cosχ. (32)

In addition, there is a zero mode ω3(k) = 0 corresponding to local spin flips, which reflects
the macroscopic degeneracy at the classical level. Higher-order terms in the fluctuations
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take into account the corrected potential landscape and generate a dispersion of the spin flip
mode ω3(k). Since here we are interested in the zero-point energy, we need not go beyond
quadratic fluctuations. The quantum correction to the ground state energy is calculated from the
prescription (27)

�E(χ) = 1

2N

∑
k

[√
U 2 − 2U(ta + tb)zγk + (ta + tb)2(zγk cosχ)2 − U + (ta + tb)zγk

]

− z

2

(
t2
a

Va
+

t2
b

Vb

)
(33)

where we have added the last term perturbatively in tα/Vα. This is justified in the regime
of interest tα,U � Vα. The minimum of �E(χ) occurs for χ = π/2, which corresponds
to pseudospins aligned on the x–y plane. Note that the dispersions of the particle and hole
excitations (32) are degenerate in this case. Their gap vanishes when ta + tb = U/2z, which
marks the transition to a superfluid in agreement with the variational result (16).

To check the consistency of our fluctuation expansion the local density of fluctuations in
the x–y ferromagnet can be calculated using the Bogoliubov transformation (31):

〈p†
i pi + h†

i h i〉 = 1

N

∑
k

2 sinh 2θk = 1

N

∑
k

(
1 − zγk(ta + tb)/U√
1 − 2zγk(ta + tb)/U

− 1

)
. (34)

Figure 4 plots the mean square fluctuation as a function of (ta + tb)/U at a constant ratio ta/tb.
It can be verified that the mean square local fluctuation is smaller than 1/4 throughout the
phase diagram. This constitutes a posteriori justification for our expansion which relied on the
smallness of the fluctuations. We should comment though that the occupation of the zero mode
cannot be calculated at this order. If the x–y state is indeed stable, interactions would generate
a dispersion which would lead to a finite local ground state occupation.

We now consider Mott states with non-uniform (canted) spin order:

|�(θ)〉 =
∏
i∈A

(
cos

θ

2
a†

i + sin
θ

2
b†

i

) ∏
i∈B

(
sin

θ

2
a†

i + cos
θ

2
b†

i

)
|0〉. (35)

The angle θ in this state parametrizes a continuous path from the z-Néel state (θ = 0) to the x–y
ferromagnet (θ = π/2). Since |�(θ)〉 is not translationally invariant, neither will the fluctuation
Hamiltonian derived from it. An elegant way to overcome this difficulty is to apply a unitary
particle–hole transformation on sub-lattice B:

α1i ↔ α2i

pi ↔ hi
(36)

for i ∈ B. In the spin language this is equivalent to a π rotation of the spins in the B sub-lattice
about their x axis. The rotation changes the hopping terms in the Hamiltonian (1):

a†
i a j + h.c. → a†

i a†
j + h.c.

b†
i b j + h.c. → b†

i b†
j + h.c.,

(37)

but it also transforms |�(θ)〉 to a translationally invariant state:

|�(θ)〉 →
∏

i

(
cos

θ

2
a†

i + sin
θ

2
b†

i

)
|0〉. (38)
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Figure 4. Mean square fluctuation in the superfluid and magnetic Mott phases.
The demonstration is at a fixed ratio ta/tb = 0.5.

Our procedure can now be carried out with the new Hamiltonian and the transformed state. The
fluctuation Hamiltonian assumes the form

Hfluc =
∑
k

{
U

2
(p†

k pk + h†
khk)− zγk

2
sin θ(t1 + t2)(p

†
khk + h.c.)

− zγk
2

(
t1 cos2 θ

2
+ t2 sin2 θ

2

)
(h†
kh†

−k + h.c.)

− zγk
2

(
t1 sin2 θ

2
+ t2 cos2 θ

2

)
(p†

k p†
−k + h.c.)

}
(39)

which can be diagonalized by a Bogoliubov transformation. In the z-Néel state (θ = 0) the
excitation energies assume a particularly simple form:

ω1,2(k) = U

2

√
1 −

(
2zta,bγk

U

)2

. (40)

Note that, contrary to the x–y state, the excitations are non-degenerate. The gap in ω1,2(k)
vanishes on the lines ta,b = U/2z, respectively. Thus the z-Néel state is locally stable towards
the formation of a superfluid within these boundaries. There is, however, a dangerous zero mode
ω3(k) = 0 which may be destabilized by higher-order terms in the fluctuation Hamiltonian.
This mode corresponds to φ†

k which describes spin fluctuations toward the x–y ferromagnetic
state. In regions where the z-Néel state is ultimately stable these corrections would just generate
a dispersion for ω3(k).

The quantum zero-point energy of the fluctuations in the z-Néel state is given by

�Ez = U

4

∑
k

[√
1 −

(2ztaγk

U

)2

+

√
1 −

(2ztbγk

U

)2

− 2

]
. (41)
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The mean local fluctuation can be calculated in the same way as before:

〈p†
i pi + h†

i h i〉 = 1

2N

∑
k

[
1√

1 − (2ztaγk/U)2
+

1√
1 − (2ztbγk/U)2

− 2

]
.(42)

It is plotted in figure 4, which demonstrates that fluctuations about the z-Néel state are also small.
Before we address the full Mott domain, it is instructive to evaluate the energy

corrections (33) and (41) deep in the Mott phase, where we can compare the result with the
effective spin Hamiltonian (2). It is also much easier to evaluate the zero-point energy in this
limit. For ta, tb � U we can expand the square roots in (33) and (41) and then perform the
momentum sums exactly, with the result

�Exy ≈ − z(ta + tb)
2

4U
− z

2

(
t2
a

Va
+

t2
b

Vb

)

�Ez ≈ − z(t2
a + t2

b )

2U
.

(43)

These are identical to the mean-field energies in the effective spin Hamiltonian (2). Thus we see
that our fluctuation analysis about the variational states captures the essential spin interactions.
In the next section we address the stability of the spin states over the entire parameter regime to
derive a phase diagram.

A fluctuation Hamiltonian can be derived in a similar way for the superfluid phase where
we find the three excitation modes:

ω1,2(k) = U

8a

[
t+ ±

√
t+ + (t−/t+)2(t2

+ − 1)

]
k + O(k2)

ω3(k) = U
√

t2
+ − 1 + (k/2)2

(44)

with t+ = ta + tb and t− = ta − tb. The zero-point energy correction in the superfluid phase is
evaluated using the prescription (27). A discussion of the collective modes and of the nature of
the superfluid phase is deferred to the next section.

6. Phase diagram for one atom per site

In this section we combine the ingredients prepared in the last sections to present a phase
diagram for a lattice with an average occupation of one atom per site. From the variational
approach we found that the x–y ferromagnet becomes unstable towards a superfluid state when
ta + tb > U/2z. The mean-field phase diagram was sketched in figure 3. However the boundaries
of these phases with the z-Néel state remain undetermined. It is the quantum zero-point energy
of fluctuations that selects ordered magnetic states from a degenerate variational energy.

To analyse the stability of the spin states we need to calculate the derivatives with respect
to θ of the zero-point energies corresponding to these phases:(

dn�E

dθ n

)
θ=θ0

=
∑
α,k

(
dnωα(k)

dθ n

)
θ=θ0

− dn

dθ n

(
(t2

a/Va + t2
b/Vb)z sin2 θ

2

)
θ=θ0

. (45)
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Figure 5. Phase diagram of two-component bosons at a half-filling of each
species, including quantum fluctuation corrections to mean-field theory. In the
filled area above the broken lines the superfluid state is metastable. Hysteretic
behaviour is expected when the system is driven across the double lines.

The last term is added perturbatively in tα/Vα and corrects for a large but finite intra-species
interaction. It is easily seen that the first derivative of the modes ωα vanishes identically at the
points θ = 0 and π/2, corresponding to the z-Néel and x–y states. Consequently these states
are either minima or maxima of the zero-point energy. The second derivative at the z-Néel state
is given by

(
d2�E

dθ 2

)
θ=0

= U/2

τa − τb

×
∑
k


τb(1 − τ 2

b γ
2
k ) + τa(1 + τ 2

b γk
2)√

1 − τ 2
b γk

2
− τa(1 − τ 2

a γ
2
k ) + τb(1 + τ 2

a γk
2)√

1 − τ 2
a γk

2




− U

2z

(
τ 2

a

va
+
τ 2

b

vb

)
(46)

where we have denoted τα ≡ 2ztα/U and vα = Vα/U . The domain of stability of the phase is
obtained by numerically evaluating the momentum sum in (46). The resulting domain of stability
is of the general shape illustrated in figure 5. Note that the phase boundaries deep in the Mott
state (ta,b � U ) are linear and coincide with the result obtained from the effective Hamiltonian
(2). However, we find, in contrast with the effective spin Hamiltonian, that even for true hard
core interactions Va,b→∞, there is a finite x–y ferromagnetic domain.

Note that the Mott z-Néel domain in figure 5 extends beyond the mean-field transition to the
superfluid which occurs at ta + tb = U/2z. As seen in figure 6, this is due to a lower ground state
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Figure 6. The energy, including quantum fluctuations, of the z-Néel state for
ta/tb = 0.1.

energy (including the quantum correction) than the superfluid. In the remainder of this section
we shall examine the nature of the phases and transitions in figure 5.

6.1. Metastability and hysteresis

It is an interesting observation that, over a significant parameter range, quantum fluctuations
favour the z-Néel state even where its variational energy alone is higher than that of the superfluid.
What kind of transition then is marked by the lines ta,b = U/2z, where the z-Néel state finally
becomes unstable? It could be one of two: (i) a first-order transition into the superfluid state or
(ii) a second-order transition into a supersolid, namely a superfluid that retains Ising order.

We shall see that the former indeed occurs, but this is not immediately obvious. Consider
the excitation modes (40). Since only one of them becomes gapless on the transition lines
ta,b = U/2z, one might guess that these lines mark the formation of a supersolid. However, we
now show that, at the classical level, the supersolid is unstable to the formation of a uniform
superfluid.

A variational state describing a supersolid is given by

|
SS〉 =
∏
i∈A

a†
i

(
sin

θ

2
+ cos

θ

2
b†

i

) ∏
i∈B

b†
i

(
sin

θ

2
+ cos

θ

2
a†

i

)
. (47)

When θ = π this is just the z-Néel state. A superfluid component is added to the Néel order
for θ < π . To assess stability we parametrize, a continuous deformation of this state toward the
uniform superfluid:

|
(δ)〉 =
∏

i

[
sin

θ

2

(
cos

χi

2
a†

i + sin
χi

2
b†

i

)
+ cos

θ

2

(
sin

χi

2
+ cos

χi

2
a†

i b†
i

)]
|0〉 (48)

where χi = δ, π/2 − δ for i ∈ A, B and δ ∈ [0, π/2]. The variational energy in this state,
calculated using equation (14), is
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E(θ, δ) = − z(ta + tb)

16
sin 2θ − zta

16
sin 2θ sin δ. (49)

The second derivative (∂E/∂δ)δ=0 is negative, indicating that the supersolid is unstable. We thus
establish a first-order transition between the z-Néel state and the superfluid. We should point out
that, at higher order, quantum fluctuations can change the potential manifold. In particular, they
can make the supersolid phase locally stable. This interesting possibility can be checked, for
example, by quantum Monte Carlo simulations. However, at our level of approximation there is
a first-order transition directly to the uniform superfluid.

An important implication is the presence of a hysteresis region. Consider a change of
system parameters from the superfluid to the z-Néel state along route A in figure 5. In the region
where the superfluid is metastable, it may take an excessively long time to nucleate the z-Néel
state. The system is thus likely to remain in the superfluid state until its line of metastability is
crossed (broken lines in figure 5). Passing the same route in the opposite direction the z-Néel
state will, of course, persist up to the transition line. Along route B matters are qualitatively
different. Since the transition into the x–y Mott state is continuous, there is no hysteresis there.
The transition from the x–y to the z-Néel state is first order but without a significant hysteresis
region. In fact, it is well described as a transition from easy-axis to easy-plane anisotropy in the
Heisenberg model (2).

6.2. The superfluid and the x–y ferromagnet

The uniform superfluid phase deserves a closer examination. In several aspects, it is different
from the single-component case. Most importantly, the two-component superfluid is intimately
related to the x–y ferromagnet.

In terms of the bosonic operators, the x–y ferromagnetic Mott state sustains an order
parameter 〈a†b〉 �= 0. In this sense it can be viewed as a counterflow superfluid [7]. It can support
supercurrents of relative motion characterized by a gradient of the relative phase between a and
b atoms. In the spin language this is simply a gradient of the spin orientation on the x–y plane.
A magnetic field gradient, h(x) = h0x in (2), would twist the spin configuration at a constant
rate inducing AC super-counterflow of frequency ω = h0 L . The Goldstone mode associated
with this order is a spin wave, which describes fluctuations of the relative phase between the
two components. We should note again that, in the quadratic fluctuation Hamiltonian (25), spin
waves are dispersionless. This is a direct consequence of the spin degeneracy at the classical
(variational) level. However, it does not indicate truly vanishing spin wave stiffness. Indeed,
higher-order terms in the fluctuations generate a finite linear spin wave dispersion. This can
also be understood from the effective spin Hamiltonian (2), which obviously has a finite spin
stiffness ∝J⊥.

As system parameters are varied across the transition at ta + tb = U/2z, one of the gapped
particle–hole fluctuations of the x–y Mott state condenses, marking the formation of the two
superfluid order parameters 〈a〉 and 〈b〉. As pointed out in [19], in the x–y Mott state only
the relative phase is fixed while the average phase of the two components is disordered. In the
superfluid the average phase orders as well. Accordingly we find two linear gapless modes in
the superfluid (44), corresponding to an in-phase fluctuation of the two components (ω1(k)),
and a relative phase, spin wave fluctuation ω2(k). From these considerations it is obvious that
the universal aspects of the transition will be identical to the standard, single-component Mott
transition [19].
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7. Discussion and conclusions

We have shown that the magnetic phases found earlier by the perturbative treatments [7, 8]
persist up to the superfluid transition. In fact, they modify this transition in an interesting way,
adding lines of first-order transition between a uniform superfluid and a z-Néel (checkerboard)
Mott state. It is interesting to consider the present results in light of the current experimental
possibilities. In particular the high energy scales, comparable to the on-site repulsion, associated
with spin ordering close to the Mott–superfluid transition, facilitate experimental observations of
these phases. For the same reason they are also expected to be robust to perturbations due to, for
example, inhomogeneous magnetic field variations. The existence of first-order transitions and
metastable states in this regime indicates that the system is likely to display interesting dynamics
as the optical potential is lowered across the transition point. In particular it is expected to
display hysteretic behaviour and nucleation kinetics. It would be interesting to study the effects
of a global confining potential on the phases we described. For instance, we showed that spin
ordered Mott states with equal filling of the two species are qualitatively different for odd and even
numbers of particles per site. Both are likely to be observable in any realistic realization, since
the inhomogeneous trapping potential typically leads to domains with different occupations.

Finally, it is important to note that detection of the complex states, of the type discussed
in this paper, presents an interesting challenge in its own right. It turns out that the quantum
nature of strongly correlated magnetic states can be revealed by spatial noise correlations in the
image of the expanding gas [20]. Specifically, atoms released from a Mott-insulating state of
the optical lattice display sharp (Bragg) peaks in the density–density correlation function as a
consequence of quantum statistics. Such peaks can be used to probe the spin-ordered Mott states
proposed for two-component bosons.

In summary, we presented a theoretical analysis of the phase diagram of two-component
bosons on an optical lattice. We extended earlier treatments which were valid only deep in the
Mott phase toward the MI–SF transition and beyond and were thus able to map a complete phase
diagram.
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