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Abstract. In this chapter we describe the “World—Line” Quantum Monte
Carlo algorithm, primarily for quantum spin, boson, and fermion models on
a lattice. We will take a rather broad definition of this approach to include
any simulation in which a path—integral expression for the partition func-
tion is written down by discretizing the inverse temperature 3, introducing
complete sets of intermediate states, and then summing over those states
stochastically. Because expositions of the world-line algorithm already ex-
ist in the literature for quantum spin and fermion systems, we will focus
on recent applications of the method to interacting boson Hamiltonians.

1. Introduction

Finite temperature Quantum Monte Carlo methods employ path integrals
to map the partition function for quantum mechanical systems onto equiv-
alent classical models in one higher dimension. In the world-line method,[1]
the resulting classical degrees of freedom are the eigenvalues of the origi-
nal quantum operators. The world—line algorithm follows the evolution of
these eigenvalues in imaginary time 7, for example the position z,(7) of
oscillator n for a system of quantum oscillators, or the z component SZ(7)
of spin n for a set of quantum spins. One of the most attractive features
of the approach is precisely that these world-lines trace variables which
are associated with the operators in the original quantum Hamiltonian and
therefore allow a very intuitive real space picture of the correlations in the
system. In contrast, the determinant Monte Carlo algorithm, which is the
focus of other chapters in this volume, also begins with a mapping of a
quantum problem onto a classical problem in one higher dimension, but
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the resulting classical degrees of freedom are less directly related to the
original operators in the Hamiltonian.[2]

The organization of this chapter is as follows: We will first write down
the world-line path integral representation of a single anharmonic quantum
oscillator. This problem shares many features of more complicated models,
for example the nature of errors associated with discretizing S and the
possibility of long correlation times in simulations. However, exact analytic
analysis is possible, making it a good way to develop an intuition concerning
path integral simulations. Additionally, once the single oscillator action is
determined, the action for related, physically interesting, interacting many
body systems can be written down by inspection. We will next discuss
the problem of the 1-d Ising model in a transverse magnetic field, whose
associated classical model is the anisotropic 2d Ising model. From known
analytic solutions of the classical model, we can immediately determine
the phase diagram of the quantum system. This illustrates how the path
integral formalism itself can reveal insights into the physics even before
detailed numerical work is begun. Finally, we will turn to lattice quantum
spin, boson, and fermion models where the classical action is still local, but
considerably more complicated.

We will assume that the reader is already familiar with Monte Carlo
for problems in classical statistical mechanics, and not describe that here.
Nor will we discuss generalizations of the most elementary local “moves”
by which world-line Monte Carlo explores phase space. Such “cluster” or
“loop” algorithms are, however, in many cases much more efficient methods
to evolve the degrees of freedom.[3]

2. The Quantum Oscillator

Consider a single anharmonic quantum oscillator.[4, 5] The partition func-
tion is,

Z = Tre® H

- P2 1 o 1.

H = —+-mu’X?+-2X" 1

om 2™ Y (1)

For A # 0, we do not know how to evaluate the exponential of the entire
Hamiltonian, but we do know how to evaluate the exponential of the ki-
netic and potential energies separately. Unfortunately, since X and P do
not commute, we cannot break up the exponential of H into a product of
exponentials. We therefore proceed as follows: We discretize the imaginary
time S into L smaller subintervals of length At that is, = LA7. We can
then write,

Zip = Tr [e—A'rIs2/2me—Ame2X2/2—ATAX4/4]L (2)
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In the limit A7 — 0 (or, equivalently, L — o0), we have Zy, — Z. Using Zi,
in place of Z for finite At is referred to as the “Suzuki-Trotter” approxima-
tion.[6, 7, 8] We have appended the subscript “tr” to Z to distinguish the
approximate expression obtained at finite L from the exact one for L = oo.
We will discuss in detail the effect of finite A7, but for the moment we
only emphasize that this is a controlled approximation in the sense that
by making A7 increasingly small we can reduce the error to any desired
degree of accuracy.

We now express the trace as a sum over a complete set of position
eigenstates.

Zip = /d.’l?l (z1] [e—ATﬁz/Qme—Ame2X2/2—ATAX4/4]L 21), (3)

and, further, insert complete sets of eigenstates between each of the incre-
mental time evolution operators,

_AP2 _ 252 /9 o4
Ztr :/d$1d$2...d$L<$1|6 ATP /2me ATmw?X?[2—ATAX /4|$2>

<:L,2|efA'rPZ/QmefAme2X2/27AT)\X4/4|l_3)

—A7TP2/2m e—Ame2X2 /2—ATAXY/4

(zrle |z1)-

1 L 1 L
= /dwlde...de exp[—imwQAT E le — Z)\AT E x?]
=1 =1

<.’I,'1|6_ATP2/2m|.772><.’132‘6_ATP2/2m|.’133) o <.TL|6_ATP2/2m|fE1>. (4)

The position operators X have been replaced by their c-numbers eigenval-
ues.
Each of the remaining matrix elements in Eq. (4) can be evaluated:

(e 2m gy = /dp (z1]e=27F12m 1) (p| 741
= /dp e*A’sz/Qmeip(;clfo_l) = —221/71-efémAT[(wl*$l+l)/AT]2. (5)
T

The momentum operators have now also disappeared in favor of c-numbers.
This matrix element of the kinetic energy operator P2 /2m can be thought
of as the exponential of “%mv%’ where the “velocity” measures the change
in distance, z; — z; 11, between position at time slice [ and [ 4 1, divided by
the imaginary time interval Ar. The prefactor of the exponential cancels
when we measure expectation values. Henceforth we drop it from all equa-
tions. (This term, however, will need to be considered again in discussing
measurements of the kinetic energy.)
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The end result is that the partition function for our quantum prob-
lem is now expressed entirely as a multi-dimensional integral over classical
variables,

Ziyr = /’Dme_ATSC‘

Scl = §mw ;fﬂl + Z)\;ml + Em;(T) ; (6)

where we have introduced the symbol [ Dz = [dzidzs ... dz . The original
single quantum mechanical degree of freedom X picked up an imaginary
time index and became a path described by a set of classical variables ;.

It is worth making a few general comments about the form of the
classical action. ATS, describes a one dimensional chain of classical os-
cillators tied to their equilibrium positions by anharmonic “springs” with
V(z) = Ar[3mw?z? + $Xz"] and also to each other by springs of force
constant %m/ AT. The L classical variables trace out the “world-line” in
imaginary time of the single original quantum degree of freedom. The sys-
tem described by Eq. 6 is also sometimes referred to as describing a set of
“beads” whose positions are given by z;, linked together to form a flexible
chain or “polymer.”

We can see a first example of how the paths help visualize the physics
by considering the cross—over from classical to quantum behavior. Suppose
we fix L. As the temperature T increases, § = 1/T decreases, therefore so
does A1 = (/L. The classical oscillators are increasingly tightly coupled
since the spring constant which is the coefficient of (z;41 — 7;)? is 2m/A7.
Therefore, at high T, all the x; will be roughly equal. The classical limit is
then described by paths where the imaginary time dependence is negligible.
Phrased more precisely, the x; are constrained to be equal to a single value
z, and the multi-dimensional integral reduces to a single integral, with
AT> 7 — Bx. One then recovers the classical partition function. We can
also view this limit from fixed A7. Then, if 8 is small, so is L, and the
polymer is short and does not have much time to wiggle. In the opposite low
temperature limit, the ability of the quantum paths to become extended is
intimately tied to the possibility of various quantum coherence effects such
as superfluidity.

We are actually not typically interested in the partition function Z itself,
but rather in expectation values like the potential energy,

(P) = Z*I’I‘r[efﬂﬁ %mwQXQ]. (7)
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We have set A = 0 for simplicity. By the same analysis which led to Eq. 6,
an approximate expression can be written as,

[ Dz ymw?a? e 275

<P>tr f Dz e_ATScl . (8)

Inspection of the form of Eq. 8 reveals that the evaluation of the quantum
mechanical operator expectation value has been reduced to a ratio of clas-
sical integrals in a form identical to the one encountered in classical Monte
Carlo simulation. That is, one generates configurations of the world lines
{z;} using, for example, the Metropolis algorithm and the action A7S
to make the accept-reject decision, and then accumulates a simple aver-
age of the observables in the sequence of configurations so produced. Note
that one could just as well have used acl2 for any / in the numerator, since
Tr[e PHA] = Tr[e=(B—"H 4 =], as a consequence of the cyclic nature
of the trace. Thus the operator to be measured, A, can be inserted at any
point in the string of incremental imaginary time evolution operators. In-
deed, one often samples all [ to build up better statistics in a simulation.
It remains to determine precisely the nature of the Suzuki—Trotter ap-
proximation. For A = 0 we can evaluate the path integral analytically, since
it is a simple multi-dimensional gaussian integral.
L)2

Ly = /Dwe_xth S 9
' Vet M (9)

Here x' = [z1,z2, ...z1] and M is an LxL tridiagonal matrix whose only
non-zero components are,

M, = %mwQAT + % M4 = %
The fact that the partition function is a trace makes M periodic, M7 1 =
M1 = 5x-- The determinant of M is the product of its eigenvalues, which
are obtained by going to momentum space. The eigenvectors of M are
the vectors v; with components (v;),, = e*1" /\/T.. Here k; = 2xl/L and
1=1,2,...L. The eigenvalues of M are,

(10)

1 m
A = —mw? AT + —[1 — cos(k;)], 11
= 5 AT+ {1 = cos(h) (1)
and the determinant, detM = []; ;.
An expectation value like that of the potential energy, and more general
“correlation functions” in imaginary time, can be evaluated by recalling the
identity,

1
() = 25" [ Do wiane V% = S G, (12)
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where G = M~'. Thus for example,

1 1
<P>tr = §mw2($12) = me2G”
1 1 1
= —m?TrG = — = 1
T P G T A N (13)

where we used the translation invariance of M (and G) to write Gy =
(1/L)Tr G. Eqg. 13 gives an analytic expression for the Trotter approxima-
tion for the potential energy. The exact result is, of course,

1 1 1
P=-w

2 (65W—1+2)' (14)

Before we present a comparison of Egs. 13 and 14, we make a few
comments about the matrix eigenspectrum of M and its relation to sim-
ulations. The “condition number,” the ratio of largest to smallest eigen-
value, of the matrix M becomes increasingly large as A7 decreases. For
A7 small, Apax = Ao = 2m/A7 and Apin = AL = %muﬂAT, so that
Amax/Amin = 4/ w2 AT2, Large condition number is generally associated with
difficulties in doing numerical work, and Monte Carlo is no exception. Here
the problem manifests itself as long autocorrelation times. (See Fig. 1.) If
we suggest a move of a single coordinate x; it will not be very likely to be
accepted unless the change is small, since otherwise we will be stretching
the springs to the neighboring beads too much, at a great cost in energy.
Yet such small changes are ineffective at generating the large displacements
characteristic of the low frequency modes. This is a very simple example
of the class of problems addressed by Fourier acceleration[9] and loop al-
gorithms. The solution in this case is immediately evident: If we change
variables to normal mode coordinates, then we can use different step sizes
for the different modes, allowing efficient equilibration.

In practice, if we want to measure some observable as a function of
temperature, the best approach is to fix A7 to be some “small” value and
change 8 by changing L. The reason is that the Trotter errors can be roughly
estimated as A72E; Ey, where E; and E, are energy scales in H; and Ho,
since this is the size of the commutator which is disregarded in breaking
up the exponential. Thus, crudely speaking, A7 must be chosen to make
AT?EEy “small,” a condition which is independent of 3. The results of
such a calculation are shown in Fig. 2. We have chosen m = w = 1. Note
that even for A7 = 0.25 the results for the potential energy are almost
indistinguishable from the exact result.

It is hard to discern the systematic error in the scales used in Fig. 2.
We plot the difference between the exact and approximate results in Fig. 3.
Although in this case the Trotter errors are analytically calculable, in most
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Figure 1. Autocorrelation time £ of a world-line simulation of the quantum harmonic
oscillator. £ is defined as the time it takes the normalized correlation of the deviation
of a phonon displacement from its average value at two different Monte Carlo times to
fall to 1/e. We have chosen m = w = 1. Also, the scale of the size of suggested moves is
chosen to be A = 1.0, where the suggested shift in each (1) is given by dz = A (r — 1)
and r is a random number which is uniform on [0, 1].

cases the determination of the optimal A7 is empirical. The choice is based
on a compromise between the reduction of systematic errors at small At
and the accompanying increase in computational expense. Often, extrapo-
lation is useful, since it allows simulations at relatively large A7 to yield
results at the desired A7 — 0.

We can ask about the analytic form of the Trotter corrections. It has
been shown[7] that under very general conditions (for example the observ-
able being measured must be Hermitian) the leading corrections are second
order in A7. This is explicitly illustrated in Fig. 4 where we show a com-
parison of the exact finite A7 form of Eq. 13 with the exact AT = 0 form
Eq. 14.

In principle, one could also sweep temperature by fixing L and changing
A7. However, at low temperatures A7 will grow large, and the systematic
errors will vary with T'. The result of such a procedure is shown in Fig. 5.
There is an interesting cross—over from behavior characteristic of the orig-
inal quantum Hamiltonian to some other effective large A7 model. This
behavior is revealed especially clearly in the specific heat C = dE/dT
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Figure 2. The potential energy of a single Quantum Oscillator as a function of temper-
ature. Here m = 1 and w = 2. The full line is the exact result while the open and closed
circles are for finite A7 = 0.50 and A7 = 0.25 respectively.

which exhibits an anomalous peak when A7 becomes too large.

The kinetic energy can also be measured. The desired trace TrP2eBH

differs from the partition function in the single matrix element,
(@] P10 a3) = [ dptoa o)l P77/ )

:/dpp267A7p2/2meip(:clfxz)

(9 A 2 ;
2 0% /2m ip(x1 wz)_ 1
= —2m /dpe e (15)

The last integral is given by Eq. 5. The derivative with respect to A7 yields
two terms, and the estimator for the kinetic energy is

1 1 T2 — T1\92
—— —(zm(——— 16
2AT <2m( AT ) (16)
There are two interesting features in this expression. First, the counter-
intuitive minus sign in front of the “expected” velocity-like term can be
understood as a consequence of the fact that we are working in imaginary
time. But notice that even beyond the minus sign, the velocity term which
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Figure 3. Relative error between exact and approximate results for the potential energy
of a single Quantum Oscillator as a function of temperature. Here m = 1 and w = 2. The
dotted and full lines are for finite AT = 0.25 and A7 = 0.125 respectively.

one naively might have thought to be the estimator, contains both the cor-
rect answer and a large negative contribution which diverges as AT — 0,
cancelling the first term. The expectation values in Eq. 16 can, of course,
be rewritten in terms of the Green’s function elements G5 and Gq;. Fi-
nally, we comment that the virial theorem, is obeyed even in the presence
of Trotter errors. That is, the expressions Eqs. 13,15 for the kinetic and
potential energies give the same numeric result even at finite A7.

Once the path integral for the single quantum oscillator is written, the
effective classical action for much more complicated models can be obtained
immediately. For example, the path integral action for an arbitrary poten-
tial,

A

. P? N
H=_—+V(X), (17)
is,
1 _
Sa =D V(@) + 5m Y () (18)
I I T

This illustrates an important feature of QMC: Changes in the Hamiltonian
often translate into straightforward modifications of the underlying simu-
lation code, whereas analytic approaches may need to be entirely reformu-
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Figure 4. The quadratic in A7 nature of the Trotter errors is illustrated by showing the
potential energy at fixed 8 = 2 as a function of (A7)%. Here m =1 and w = 2.

lated. This simple problem also already exhibits one of the crucial features
of the world-line algorithm: Changes to the potential energy (terms that
are diagonal in the basis of intermediate states) are the ones that are triv-
ial to make in the code. As we shall see, changes to the kinetic energy are
more difficult to incorporate in general. Conversely, changes to the form of
the kinetic energy are easy to make in determinant codes, while increased
complexity in interactions is much more difficult.

A more interesting example of generalizing world-line codes is to con-
sider the problem of writing down the path integral for the Hamiltonian of
a one dimensional chain of coupled quantum harmonic oscillators,

2 BE 1y 1 o o 2
H= Zn:[ﬁ + omw X2+ 30 Zn:(Xn — Xpi1)% (19)
Here the index n labels the different quantum degrees of freedom. The
associated classical action is,
1 2 2 1 Tn, — Tn,l+1.\2
Sa = 5w %l:%,l + §mZ(T)

nl

1
+ §a Z(‘T”’l — .’L‘n+1,l)2. (20)
nl
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Figure 5. The potential energy of a single Quantum Oscillator as a function of tem-
perature. Here m = 1 and w = 2. The full line is the exact result for A7 = 0 while the
closed and open circles are for fixed L = 8 and L = 16 respectively.

The quantum mechanical operators X, generate a set of classical variables
Ty, with an additional imaginary time index. Thus the partition function
of the one dimensional quantum problem maps onto a classical problem in
1 4+ 1 dimensions. Anisotropic couplings distinguish correlations in space
and imaginary time.

3. The One-Dimensional Ising Model in a Transverse Field

In the previous section we described the world-line approach for a single
quantum oscillator and collections of quantum oscillators. These models
provide the most simple illustration of the technique, and are also solvable
analytically, in the absence of anharmonicity. The bulk of the applications
of the world-line approach, however, has been to quantum spins and inter-
acting bosons and fermions. In this section we will describe the Ising model
in a transverse magnetic field. Here, the effective classical model is espe-
cially simple, and, in fact, the world—line mapping allows us to determine
much of the physics even before performing simulations. This model, with
the addition of randomness to the couplings, has revealed some remark-
able features of disordered quantum systems, partially through numerical
work.[10, 11]
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The Ising model provides a simple description of magnetic phase transi-
tions. Classical “spin” degrees of freedom S7 which can take on the values
S7 = £1 exist on the sites i of a lattice. Spins on different lattice sites
interact via a coupling constant J,

Ho=J) 5i5. (21)
(i)

The symbol (ij) indicates a sum over near—neighbor sites, the case most
often considered. For a ferromagnetic coupling J < 0, spins 57 and sz
with the same value have lower energy and hence order is favored. On
the other hand, the entropy favors random spin configurations. This model
has a finite temperature phase transition in two and higher dimensions in
which the global up—down symmetry of the spins is broken and a non—zero
spontaneous magnetization m = (S7) exists below the critical temperature
T,. For a two—dimensional square lattice in which the couplings J, and J,
between neighbors in the z and y directions are identical, T, ~ 2.269J.
More generally, if J, and Jy differ, T¢ is given by

2,
KT,

2
2tanh[sz

Tc]tanh[

] =1. (22)

The Ising model Eq. 22 has been very extensively studied by classical
monte carlo methods.[12] However, if a transverse magnetic field, H; =
—B3; 57, is added, quantum simulation methods must be employed owing
to the non—commutivity of the operators. We proceed as for the quantum
harmonic oscillator, beginning with the partition function, discretizing the
inverse temperature 3, and separating the two non—commuting pieces of
the Hamiltonian.

Z = Tre PH = Ty[e"27H|L x 7, = Ty[e~A7Hoe=ATHIL - (23)

Complete sets of states |S7 S5 ... 5% ) which are eigenstates of the z com-
ponent of spin on each of the N sites of the spatial lattice are then inserted.

S Z (871551 - -- Szzv1|e_ATH06_ATH1|SfQS§2 - Sh2)
SZ

—A —A
(8%,8Z, ... 8%q|e ATHo g ATHY g2 g2, | §Z.) ...
(SiLS3L ... Siple ATHoemATHY 57 G2 SF).  (24)

The eigenvalues S} have a second label [ to specify the imaginary time slice.
Like the potential energy operator in our quantum oscillator example, the
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operator exp(—ATH)) is diagonal in the basis chosen for the intermediate
states, and immediately comes out of the expectation values.

Zr ZGXP[JAT Z 1S51] (51153 - --va1|€_ATH1|Sf2552 .- S%2)
S (i)t

( 8%,8%,...8%,|e 27H1|82,82, . §3.) ...

( S7,S5 ... Skple 71118785, ... S%1) (25)

The remaining expectation values of the operators of z component of
spin are easily evaluated, since Hi is the sum of pieces which commute.
Each matrix element factorizes,

—ATH
(81185, .. Sile =™ ‘Sf,l+ls§,l+1 .. Szzv,l+1>

= 1—[<Siz,l|eATBSim |S§,l+1>- (26)

These single site matrix elements are,
2| ATBS® | @z \ _ _—AS;SE
(Sitle™T771 [Sfyq) = e T, (27)

where \ = —%ln[tanhATB]. Thus the effect of the transverse magnetic field
is to introduce an Ising-like coupling in the imaginary time direction. This
is in close analogy to the kinetic energy operator in the quantum oscillator
case, which coupled positions at different imaginary times.

With the matrix elements evaluated, we have,

Ztr = ZB_E (28)
SZ
E = —JAr Y S8iSH—A)_ SiSii, (29)
(ij).4 Ll

which is identical to that of a (d 4+ 1)-dimensional classical Ising model
with one direction having a different coupling constant, A, from the other
d dimensions, JAT.

We can now infer the phase diagram of the quantum model in d dimen-
sions from what is known concerning the classical model in d+1 dimensions.
Cousider, for example, the case of a one-dimensional Ising model in a trans-
verse field. The mapping to the two—dimensional anisotropic classical model
tells us there is a phase transition in the J—B plane whose boundary is given
by Eq. 22, namely, 2tanh[2JA7]tanh[2A] = 1. This curve separates a small
B ferromagnetic phase, in which there is a symmetry—breaking spontaneous
magnetization in the z direction, from a paramagnetic phase at larger B.
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It is important to distinguish the role of £ in the original quantum model
and its classical analog. The classical model exhibits a phase transition in
the thermodynamic limit, that is, when the size of the lattice is infinite, and
when 8.J, and (.J, satisfy Eq. 22. In the language of the one-dimensional
Ising model in a transverse field, the condition that the classical lattice be
infinite corresponds to taking S — oo, since 8 gives one of the classical
linear dimensions. N — oo is also required of the original linear lattice size.
In other words, there is a “quantum phase transition” in the ground state
of the one—-dimensional Ising model in a transverse field as a function of the
parameters J and B.

Besides predicting a phase transition and giving an analytic expression
for the phase boundary, the mapping also tells us the dynamic critical
exponent z, which defines the relationship between the correlation length
in the spatial and imaginary time directions near the critical point. (See
also section 7.) Since the mapping is to a classical model which, to within an
anisotropy in coupling constants, looks the same in these directions, we infer
that z = 1 for the Ising model in a transverse field (in any dimension). In the
Hamiltonians to be discussed in the following sections, the structure of the
action will be rather different in the space and imaginary time directions,
so that one might expect z # 1. We will briefly discuss the implications of
the value of z for finite size scaling in Section 7.

We conclude this section by noting that the problem of a one-dimensional
Ising model in a random transverse magnetic field has recently revealed
a number of fascinating features.[10, 11] None of the steps in the above
discussion of the world-line formulation required that the field B is site
independent, or that the coupling constant J not depend on the link ij.
World-line simulations of the disordered model[13] are then a simple gen-
eralization of the clean case, again illustrating the powerful feature of these
simulations that new Hamiltonians and their associated physics can often
be explored with simple modifications of codes.

4. The Spin-1/2 XXZ Hamiltonian

In the preceding section we saw how a d-dimensional Ising model in a trans-
verse magnetic field maps onto an anisotropic d + 1-dimensional classical
Ising model. The quantum mechanical Hamiltonian had a simple classical
analog because the non-diagonal terms in the Hamiltonian appeared only as
single site operators. We now turn to Hamiltonians where the non—-diagonal
terms appear in pairs. As we shall see, this results in more complicated ef-
fective actions and restrictions on the allowed spin patterns.
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Consider the quantum XXZ Hamiltonian,

H = ZJQE(S?SJElc + S?Sjy) + J. 5785 — BZSiz
(ij) i
-3 %(sﬁs; +878H) + 15285 — BY. 87 (30)
(i3) i
Here S7,SY and Sf are quantum spin-1/2 operators at each site i, and
Si+ ,S; are the associated raising and lowering operators. When J, > J,
this model is in the Ising universality class and exhibits a finite temperature
phase transition in zero field to a state with long range order, in dimensions
greater than d = 1. For J, > J,, the model is in the XY universality class,
again with a finite temperature phase transition in zero field to a state
with long range order in dimensions greater than d = 2, with a Kosterlitz—
Thouless phase transition to a state with spin correlations which decay
with a power-law in d = 2. The isotropic Heisenberg point J, = J, has
long range order in d = 2 only at 7" = 0.[14] As we shall see in the following
section, this spin—1/2 XXZ Hamiltonian is isomorphic to a lattice system
of hard—core bosons with a near neighbor interaction.

We formulate a world-line simulation by discretizing f = LAT in the
partition function. However, the division of the Hamiltonian introduces a
new feature. The principle governing how to divide H into pieces is that
it must be possible to evaluate the matrix elements which arise after the
introduction of complete sets of states. A convenient choice in the case of the
XX7Z Hamiltonian is the “checkerboard” decomposition.[15] For simplicity,
consider the case of one-dimension. We divide H = H; + Ho where,

Jm — — JZ Z Q2 B z z
Hy = Z (S Sy + 878 1) + SSESE L — - (8P4 SE)
ioad 2 2 2
Hy = 3 P2(S7sm, 48578k, + 28787, — D (87 + 57,,).(31
2 = Z B (S Sip1 +8;55) + g i Dt 2( 7+ 871)-(31)

7 even

This is illustrated in Fig. 6. We will now discuss why this is a useful division.

The expression which arises for the path—integral for the partition func-
tion, after the introduction of a complete set of states which are diagonal
in the z component of spin, is,

7 = Zexp[—JzATZSf,l f+1,l_BATZSiZ]
S2 i,

il
( S715% ...5%11e"S7255 ... Sks)
( 8%8%,...8%5le |S78%, ... 8%;) ...

( Sf,QLS§,2L - SJZV,2L|e_h|Sf15§1 - S¥1)s (32)
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Figure 6. The division of the one-dimensional XXZ Hamiltonian into H; and H, each
of which consists of independent two—site pieces. Periodic boundary conditions in the
spatial direction connect the last site, z = 8 to the first, z = 1.

with the abbreviation h for the zy terms in the Hamiltonian. We have to
introduce 2L time slices in this checkerboard decomposition in one dimen-
sion, because neither H; nor Hj is diagonal in the basis of intermediate
states chosen.

The crucial observation is that Hy and Hs consist of independent two—
site pieces. Thus the matrix elements factorize,

—h
(8155, -- - Shile |Sf,z+155,l+1 - Szzv,l+1>

= H <Sz'z,lsiz+1,l|e_hi|Sz'z,l+1Siz+1,l+1>a (33)
2 odd

and one must only evaluate the corresponding two site expectation values.
The results are,

(FHle ™ +4) = (==l ™ - -)=1,
b B - Jw
(+—le M+ =) = (—+ e —+) :COSh(?AT),
hi b o Jr
(+ =™ = +) = (= + e + =) = —sinb(TFA7),  (34)

with all other matrix elements zero. Note that the only non-zero matrix
elements are those between states which have the same SZ, = S7 + S5 in
the two time slices. This is a consequence of the fact that [h, S%,] = 0.
The off-diagonal matrix elements are negative if the XY coupling is
antiferromagnetic, J; > 0. This is an instance of the “sign problem” in
quantum monte carlo. If the XY coupling is ferromagnetic, J, < 0, then
there is no sign problem. In the case of a near—neighbor antiferromagnetic
coupling on a bipartite lattice, we can eliminate the sign problem by rotat-
ing the spin operators on one sublattice. This changes the sign of J, and the
world-line simulation is applicable, but does not alter the physics since it
simply corresponds to a different choice of direction of the local axes of spin
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quantization. If the signs cannot be eliminated by such a rotation or some
other means, then the world-line method will not work for the Hamiltonian
in question. Examples of such cases are antiferromagnetic models on non—
bipartite lattices like the triangular lattice, or models with longer range
antiferromagnetic coupling, such as the two—dimensional, square lattice,
“J1—Jo” Heisenberg model which has a next near—neighbor antiferromag-
netic coupling Jo across the diagonal of a square. This sign problem is the
most fundamental limitation to quantum simulation techniques. It arises
not only in the world—line algorithm, but also in the determinant approach,
in ground state projection methods, etc.

In the absence of a sign problem the simulation can be implemented. It is
useful to picture the structure of the checkerboard break—up by drawing the
(14+1)-dimensional array of spins and shading the squares corresponding
to bonds across which a piece of the Hamiltonian acts. Thus H; connects
spatial sites (1,2), (3,4), ...(N — 1, N) from time slice [ to [ + 1 where [ is
odd, and likewise Hy connects spatial sites (2, 3), (4,5), ...(N,1) from time
slice [ to I + 1 where [ is even. (The last pair (N, 1) is present if we have
periodic boundary conditions which connect the first and last sites in our
Hamiltonian.) The resulting “checkerboard lattice” is illustrated in Fig. 7.

That the matrix elements vanish unless the sum of the z components of
spin at the top and bottom of a shaded square are equal puts constraints
on the terms in the sum over S3; which contribute to the partition function.
These conservation laws can best be visualized as follows: Draw lines con-
necting the sites on which the z component of spin is pointed up. Since the
number of such up spin sites is conserved from time slice to time slice, the
result is a set of continuous “world-lines”. The world-lines can cross only
the shaded squares of the checkerboard lattice, since it is on these that the
Hamiltonian acts. The periodic boundary conditions inherent in the trace
require that these world—lines also connect continuously from the last time
slice, [ = 2L, to the first, ] = 1. As we shall see, this same construction
occurs in the monte carlo path integral formulation for problems of inter-
acting bosons and fermions where the conservation law is particle number,
and the name “world-line” is especially appropriate.

We need to formulate monte carlo moves which respect the restricted
class of spin configurations which is allowed. A move which flips a single spin
§ — —S8§ would always give rise to zero matrix elements if the original
configuration had non-zero Boltzmann weight. Put differently, it would
“break” a world-line. It is easy to see (Fig. 7) that moves which “pull” a
world-line across an unshaded square of the checkerboard lattice preserve all
the local conservation laws and result in configurations of nonzero weight,
assuming the original configuration was allowed. Four spin variables are
changed in such an update, and the values of the matrix elements on four of
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Figure 7. The “checkerboard” which arises by shading those plaquettes of the
space—-imaginary time lattice across which time evolution operators act. In the figure,
the number of spatial sites N = 8 and L = 3. In one dimension, the number of imaginary
time slices 7 in the checkerboard lattice is twice L, since H; and H»> both have to act.
The periodic boundary conditions connect sites and slices at the edges of the lattice,
illustrated here by the identification of the boundaries x = 0 and 7 = 0 with £ = 8 and
T = 6 respectively. World lines can traverse only diagonals of shaded squares. A typical
monte carlo move which pulls a world-line across an unshaded square is shown.

the plaquettes are modified. This means that the decision making process is
local, and updating all the degrees of freedom on the lattice scales linearly
with the lattice size. An acceptance-rejection step using the Metropolis
algorithm in which the move is accepted with probability max(1,R), where
R is the ratio of the product of new to old values of the matrix elements on
the four modified plaquettes, satisfies detailed balance, and will generate
spin configurations with Boltzmann weight equal to the product of all the
matrix elements.

This world-line algorithm for one-dimensional quantum spin-1/2 sys-
tems can easily be generalized to higher dimension. There are different
possibilities for dividing up the Hamiltonian. For d = 2, one might break H
into four pieces corresponding to odd and even links in each of the x and y
directions of the spatial lattice. This requires 4L intermediate states, where
L = B/Ar. The allowed spin configurations are even more restricted, and
not completely trivial to visualize. Pulling world-lines across an unshaded
plaquette in either the z or y directions are still allowed moves. These will
now change the values of eight spins and eight of the plaquettes of the
lattice. However, these moves do not exhaust the full phase space. Moves
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which introduce a local twist of the lines are also permitted, and should be
included to ensure ergodicity. Indeed, the density of these local twists has
been used to characterize the various phases of the Hamiltonian.[16]

It is also possible to break H into only two pieces, each consisting of
independent four site terms. The resulting matrix elements are a bit more
complicated to evaluate, but the variance in the QMC is reduced since more
of the sum is done analytically. Also, this approach involves introducing
only half as many time slices (2L), and provides an easier means to keep
track of local twists.

It is possible to introduce variance reduction techniques into world-line
monte carlo. Rather than suggesting a move which would pull a line across
an unshaded plaquette each time that plaquette is encountered in sweeping
through the lattice, one can modify the suggestion probability based on
the configuration of spins on neighboring sites. In general this is done ac-
cording to some insight into the expected correlations, reducing the rate of
suggestion of moves whose acceptance would violate expected structures.
Of course, any such modification of the suggestion probability must also
be appropriately accounted for in the Metropolis acceptance/rejection step
so as to preserve detailed balance. Thus the algorithm always remains ex-
act, to within Trotter errors, and only the variance and equilibration are
affected.[1]

The cpu time scaling of a single sweep through the lattice in the world-
line algorithm is linear in both the spatial size N and the inverse temper-
ature L = /A, because the Metropolis decision-making step involves
only the evaluation of a local quantity, the ratio of a product of matrix
elements for the small number of plaquettes whose spin configuration was
changed. This is in contrast to the “determinant” QMC algorithm described
in chapter 7 which has a spatially nonlocal action resulting in a N3L scal-
ing.[17] However, we should emphasize that this nominally linear scaling is
quite misleading. World—line simulations can have enormous equilibration
and autocorrelation times, for example, easily 10* sweeps on a “typical”
N=8x8 spatial and L = 80 time slice lattice. This is what has motivated
the development of loop algorithms.|[3]

Snapshots of the spin configurations in the course of the simulation of
the XXZ Hamiltonian are given in Fig. 8 for J, =1 and J, = 0,1, 2. These
provide intuitive pictures of the underlying correlations. For example, we
can see the antiferromagnetic spin order in the z direction build up as J,
increases.

While, these snapshots provide qualitative pictures of the physics, we
need to describe how to measure operator expectation values. It turns out
there are severe limitations to what one can calculate. This is a serious
drawback of the world—line algorithm, especially in comparison with the de-
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Figure 8. “Typical” snapshots of world-line configurations for the XXZ Hamiltonian
on an N = 8 site lattices at J./J, = 0,1, 2, inverse temperature 8 = 2 (with L = 8),
and magnetization M, = 0. The world-lines follow the trajectories of the up spins,
as described in the text. As J,/J, becomes larger the world-lines increasingly tend to
occupy every other spatial site, reflecting a growth of antiferromagnetic order.

terminant approach where any equal time measurement can be constructed
from the quantities used in updating the auxiliary field.[2] Consider evalu-
ating,

(A) = Z 'Tr[Ae PH). (35)

If the operator A is diagonal in the basis of complete sets of intermedi-
ate states, the procedure is simple. A acts on the state (S%; S5 ...5%|
yielding a number a[ S§;, S5, ... S%| without altering the state. The op-

erator e PH then generates in the numerator the same sequence of matrix
elements as in the partition function in the denominator. Thus if config-
urations are generated according to this product of matrix elements, one
simply accumulates the numbers a[ S§; S5 ...S%,] and averages them over
the course of the measurement sweeps in the simulation. As described in
section 2, the periodic nature of the trace allows the operator A to be in-
serted at any point in the string of matrix elements. To improve statistics,
one can measure values a[ S%;, S3;, ... S%,] on any time slice [.

Expectation values of diagonal operators A(0)B(r) which are offset
in imaginary time (here B(r) = e¢"#Be ™) can also be measured for
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7 = nAT by inserting A and B into positions in the product of matrix
elements separated by imaginary time 7 and accumulating the numbers
a[Sll, 510 - Sl O[ST 1ins S5 14ms - - - Sk u4n] which arise. Again we can
improve statistics by inserting the pair A, B anywhere in the string of incre-
mental time evolution operators as long as they are separated by imaginary
time nAT.

Measuring matrix elements of operators which are not diagonal in the
basis of intermediate states is harder, and, indeed, often not possible. Con-
sider (S;"S;., + 57 S;,), an expectation value which is needed in deter-
mining the energy. This operator acts on an intermediate state vector and
modifies it, so that the matrix elements in the numerator and denominator
are no longer identical. This means that our ratio of integrals is no longer
of the form of an integral of some “weight function” in the denominator
and the product of the same weight function and a “measurement” in the
numerator. We can fix this by multiplying and dividing by the matrix el-
ement in the denominator which is missing in the numerator. Then the
same product appears in both places, and the measurement is made by
accumulating the ratio of the new matrix element to the old one. That is,

(S;FSi1 +878H,) =
( (57 z+1l|(S+Sz+1+S Siti)e ATHJ\Sz 141 S 41)
<Si,l i+1,l‘e AT HJ|SZ J+1 Sz'+1,l+1>

where ( )mc denotes a monte carlo average of the indicated ratio of matrix
elements. We have again exploited the fact that the operator can be inserted
at any point [ in the string of intermediate states. H; is whatever piece of
the Hamiltonian happens to be acting at that point. In fact, to get a nonzero
result, H; must be that piece of the Hamiltonian which connects the spatial
sites (4,7 + 1) in propagating from [ to [ + 1.

We can make this a little more concrete by noting the matrix element,

( iz,lsf+1l|(5+s+1+5 Sii1)e THJ| P11 St ) (37)

vanishes if 57, +57,,,=0,2. (Recall local conservation laws require that
Si S = Szl + 571, In this case we have either no world-lines
propagating up the shaded square, or else two world-lines propagating up
the square. No spin—flips are possible, and it is natural that the expecta-
tion value vanish. If, on the other hand, the plaquette has 57, + 57, , = 1,
then there is a non—zero contribution. The ratio of expectatlon values is
tanh(J,A7/2) if the plaquette’s single world-line is propagating vertically
upward, and coth(J;A7/2) if the single world-line traverses the plaquette
diagonal. That the kinetic energy is large in the latter case is intuitively ap-
pealling when the model being simulates is a fermion or boson Hamiltonian:

)mc- (36)
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a world-line moving across the plaquette in which the particle is changing
sites makes a large contribution the expectation value of the kinetic energy,
while a world-line moving upwards does not.

Measuring an operator which does not conserve particle number locally,
is even more complicated, since the resulting ratio is ill-defined. More pre-
cisely, an operator like S;' Siyi 5 S;Lj where j > 1 will result in a se-
quence of states in the numerator which is completely different from that
in the denominator. As has been described,[1] it is possible to solve this
problem by conducting two parallel simulations, one with “broken” world—
lines, but in practice the technique is quite complicated, and also results in
measurements which are very noisy. Most world-line simulations measure
only operators which do not break world—lines. These issues are closely re-
lated to the discussion of “forward—" and “side-” walking discussed in the
contributions of Nightingale and Umrigar in this volume.

We comment that it is sometimes possible to measure different sets of
correlation functions by inserting different types of intermediate states in
the simulation. To measure an operator like S;" Sivit5i Sift ;= 2(S7SE,
8¢S}, ;), which is not diagonal in the basis of Sf, for example, one could
insert instead as intermediate states complete sets of eigenstates of S in the
path—integral. Whether or not this is possible depends on the sign problem.
Because the XXZ Hamiltonian does not commute with S{;, the eigenstates
|ST =+,855 = +) and |ST = —, S5 = —) are mixed, in addition to a mixing
of |Sf =+,85 = —) and |S¥ = —, 5§ = +). A straightforward calculation
shows that there is no sign problem if one is in the Heisenberg or Ising
limits J, > J;.

In spite of the restrictions on the operators we can measure, we shall
see when we discuss lattice bosons that we are still able to extract a lot of
interesting physics from world-line simulations. Because spin—1/2 systems
are identical to hard—core bosons, we will defer presenting typical results
from these simulations to the next section.

We have one final caveat to make about the world-line algorithm. The
moves described above in which world-lines are locally deformed are not
ergodic. For example, they never change the total magnetization. This is
so because whole world lines are never created or destroyed, only changed
in shape. There is also another, more subtle, quantity that these moves
conserve: the winding number. Periodic boundary conditions require that
the world lines connect across the last and first time slices in a continuous
fashion. They can do this is a trivial way, with each world-line moving
generally upward through the lattice (see Fig. 9a), but they can also satisfy
the periodic boundary conditions in imaginary time with configurations in
which there is a net flow of world—lines across the right or left spatial sides
of the system (see Fig. 9b). Such configurations are said to have non-zero
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winding number. Moves which are local deformations of the lattice cannot
change the winding number, that is, they can never evolve from 9a to 9b.
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Figure 9. World-line configurations with winding number W = 0 [a] and W = 1 [b].
Both satisfy all the local conservation laws, as well as periodicity in imaginary time. No
sequence of local distortions of the world-lines can evolve the system from [a] to [b].

As with the equivalence of the fixed and fluctuating particle number
ensembles, in the thermodynamic limit it can be argued that the fixed
winding number sector yields the same physics as allowing the winding
number to fluctuate. Perhaps the simplest way to see this is that if there
were no spatial periodic boundary conditions in the kinetic energy term,
then winding around the lattice would not be possible. But we certainly
expect that periodic and open boundary cinditions to give the same result
in the thermodynamic limit. Therefore we expect the inclusion of non—zero
winding moves to be unnecessary in the thermodynamic limit. It has also
been been verified by explicit calculation with and without moves which
change the winding number that expectation values of observables are the
same in the thermodynamic limit.[18] We will come back in the next section
to a discussion of these global conservation laws.

Nevertheless, the existence of these global conservation laws is a bit
disconcerting. For one thing, the most natural analytic check, J, = 0 (a
noninteracting system in boson language) is no longer simple since the exact
result includes all winding number sectors. This is especially unfortunate
since the coding of the kinetic energy terms which this verifies is the most
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difficult part of the world-line algorithm, and hence the most important
part to check carefully. An ancillary benefit of the loop algorithms, whose
primary virtue is the rapid exploration of phase space, is that they also
allow for moves connecting the different magnetization and winding number
sectors.

5. World—Lines for Interacting Bosons

In this section we will discuss world-line monte carlo for interacting bosons.
Such simulations were first carried out[19] for continuum models of the
superfluid transition in He*, and have been more recently applied lat-
tice models in studies of the superconductor-insulator transition in thin
films.[20, 21, 22, 23, 25, 24, 26, 27, 28, 29] We first point out that the
problem of hard—core bosons is isomorphic to the quantum spin-1/2 XXZ
Hamiltonian considered in the previous section. We then discuss the soft—
core case, and also some of the physics of interacting bosons and how it
might best be extracted from QMC.
By making the identifications,

St — a;r Sy — aj S¥ + % — a;rai = nj, (38)
we can map quantum spin—1/2 operators onto hard—core bosons. Here ai(a;r)
are boson annihilation(creation) operators at site . The hard—core con-
straint n; = +1 guarantees that the Hilbert space has the same dimension-
ality, two states per site, as a spin—1/2 system. More formally, the commu-
tation relations of the boson operators, together with Eq. 38, reproduce the
appropriate spin commutation relations.

With this mapping the quantum spin Hamiltonian becomes,

H=-t Z(agaj + a;ai) — W an + Uhe +V Zn,nj (39)
(ij) i (i)

In boson language, u is the chemical potential. ¢ is the hopping parameter,
Unc is a hard—core potential, and V is a near—-neighbor repulsion. These
quantities are related to the parameters in the spin Hamiltonian via,

Jpy — 2t J, =V B — p. (40)

As we have discussed, for J, > J, the spin Hamiltonian is in the Ising uni-
versality class, and has dominant (S{S{ ) correlations. In boson language
this corresponds to a model where the interactions dominate the kinetic
energy V > 2t resulting in a phase where density correlations (ninjii)
have a well defined oscillatory pattern. Meanwhile, in the opposite limit
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Jy > J, the spin Hamiltonian is in the XY universality class, and has dom-
inant (S;" Si1) correlations. In boson language this corresponds to a model
where the kinetic energy dominates the interactions 2¢ > V, resulting in a
superfluid phase wil large off-diagonal correlations (agaiﬂ). The isotropic
Heisenberg point of the spin model J, = J, corresponds to a “supersolid”
phase where the bosons have simultaneous diagonal and off-diagonal long
range order.[30]

Since the two models are completely isomorphic, the discussion of the
simulation method for quantum spins carries over unchanged to the hard—
core boson model, apart from a trivial change in language. Note that the
choice of —t in front of the kinetic energy term (as opposed to +t), a
convention which not affect the physics, prevents a sign problem. This is
the same argument as we made previously for the difference in sign of J,
in the quantum spin model.

However, it is also of interest to study a soft-core “boson-Hubbard”
Hamiltonian in which the hard—core constraint which forbids double occu-
pancy is replaced by a finite repulsion Uy, — Unj(n; — 1). It is necessary
to evaluate a more general class of matrix elements,

Ta:tala:
ATl atey al)| Nij+1 M,i+1) (41)

(mig njle
Local particle number requires that ni; + nj; = njiq1 + nj.41, but we
no longer have the restriction n;; = 0,1. The calculation of the matrix
elements can be done either by diagonalizing H in a truncated Hilbert
space, allowing, for example, up to a maximum of n; = 10 bosons per
site,[31] or exactly.[32]

We can check a code for the generalized soft—core model against diag-
onalization results on a 4 site lattice. In Fig. 10 we show a comparison
between the quantum simulation and the exact values for the occupations,
fm which measure the fraction of sites having m bosons. Here we have cho-
sen §=1,L =8, N, =4 and t = 1, and show f,,, versus U. For U large and
negative, all the bosons clump on a single site, so that there is one site with
four bosons and three empty ones. Thus fy = %;fl =0,f2=0,f3 =0,
and fy = i. When U becomes large and positive, the bosons distribute
themselves one to a site, and all f,, vanish except for fi; which approaches
one. Note again that the exact diagonalization includes all winding number
sectors, yet is in good agreement with the simulations, which do not.

We now briefly describe the physics of the boson—Hubbard model in
order to motivate a further discussion of the issue of particle and wind-
ing number conservation.[20, 33] Let us consider the ground state phase
diagram. In the absence of any boson kinetic energy, ¢t = 0, all the sites
are independent and will contain a number of particles determined by the
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Figure 10. The fractional occupations, defined in the text, as a function of on-site
repulsion U. The open(closed) circles are QMC results for fo(f1) from a boson-Hubbard
world-line code, and the smooth curves are from exact diagonalization. The lattice is
four sites, as is the number of bosons.

chemical potential. If 4 < 0 the number of bosons on each site N, will be
zero. For chemical potentials 2(N,—1)U < p < 2N,U, the number of bosons
on each site will be N,. A plot of the density per site (n) as a function of
chemical potential y will exhibit a set of steps when g is an integral multiple
of 2U. The size of these steps measures the gap to charge excitations, and
on these steps the compressibility kK = d(n)/0u = 0, vanishes. When the
hopping ¢ is turned on, the bosons can condense into a superfluid phase,
and indeed they do so immediately for incommensurate fillings. However,
the plateaus where the density (n) is an integer will not be destroyed until
t/U reaches a critical value. When ¢/U > (t/U). the bosons will also have
a superfluid ground state at commensurate filling. The qualitative phase
diagram therefore consists of insulating “Mott lobes” at low t/U where
the density is fixed at integer values and there is a nonzero gap A, and a
superfluid phase outside these lobes.

Because it has insulating and superfluid phases, and a transition be-
tween them, the boson—Hubbard Hamiltonian has been used to model the
superconducting—insulating phase transition in thin, disordered films, and,
in particular, the issue of a possible universal conductance value at the crit-
ical point.[22, 23, 33, 34] In order to include randomness, a key ingredient
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in the physics of these systems, the chemical potential in Eq. 39 is modified
to depend on the site index y — pi. This randomness competes with the
interactions which drive the Mott insulating phase, since the energy cost to
move an electron in a phase where all sites are singly occupied is reduced
from U to U — e where € is the scale of the randomness. On the other hand,
it is not clear that this weakening of the gap will aid the superfluid phase,
since disorder generally acts against extended states as well. Indeed, it is
believed that the random site energies drive the formation of a third, “Bose
glass,” phase in which both the gap and superfluid density vanish.[33]

It is clear from the above discussion that computation of the compress-
ibility and superfluid density are essential to a description of the physics of
the boson-Hubbard model. (In fact, some of these same issues could already
have been raised in the preceding section in the context of computing the
magnetic susceptibility and spin stiffness in quantum spin Hamiltonians.)
How are these quantities to be measured, given the restricted ensembles in
which world-line simulations are often formulated?

It is simple to make contact between fixed and variable particle number
ensembles.[20] At zero temperature, the chemical potential can be expressed
as the derivative of the ground state energy with respect to particle number.
Replacing the derivative by a discrete difference, we have,

p(Np) = Eo(Np + 1) — Eo(Np). (42)

We can then obtain the compressibility «,

1
T Ny + 1) — p(Ny)

K1) (43)

Even on modest sized lattices it is possible to get an accurate determination
of the phase diagram and also to evaluate the critical exponent predicted for
the behavior of k as the Mott lobe is approached by changing the chemical
potential.[33, 9] Typical traces of the density (n) as a function of chemical
potential are shown in Fig. 11, and the resulting phase diagram determined
thereby[35] is given in Fig. 12.

The second quantity we need to measure is the order parameter for the
superfluid transition. The first choice might be to evaluate the asymptotic
behavior of the equal time boson Greens function (ajag) as |i — j| — oo,
which is nothing more than the superfluid condensate, the macroscopic
occupation of the k = 0 mode. As we have discussed, however, this quantity
cannot be measured in a world-line simulation.[36] Instead we will measure
the superfluid density ps, a quantity which gives the response of the energy
to a twist in the boundary conditions.[36] Specifically, if the energy of a
lattice of linear dimension L is measured with periodic and antiperiodic



28 R.T. SCALETTAR

N=128 U=5 A=0 and 2.5 =6

1.5

0.5

Figure 11. The occupation per site, Ny, as a function of chemical potential for fixed
on-site repulsion U = 5 and two different disorder stengths, A = 0 (closed circles) and
A = 2.5 (open circles). The plateau at N, = 1 indicates a Mott insulating phase, and
its extent measures the size of the gap. The lattice is N = 128 sites, and the inverse
temperature 8 = 6.

boundary conditions, then ps = 2L(FEappe — Fpbe). Ceperley and Pollock
have shown[19] that the superfluid density is proportional to the winding
number p; oc (W?).

Unfortunately, this does not completely solve the difficulty of finding
an order parameter for the superfluid phase, since our simulations are con-
ducted in the W = 0 ensemble, and hence p; = 0. However, this difficulty
can be solved by considering a generalization of the winding number.[31] We
define a “pseudocurrent”[37] operator j(7) which measures the surplus of
right moving to left moving bosons at imaginary time 7, and an associated
correlation function J.

J(r) = {3(n);0),

Ny

i) = Y [zli,7 +1) —a(i,7)]. (44)
i=1

Here (7, 7) is the position of boson 7 at time slice 7. The Fourier transform,

T(w) =Y 7T (), (45)
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Figure 12. The boundary of the Mott insulating lobe as determined from a family of
curves of n(u) for different U as in Fig. 11. The solid triangles are for the clean system.
The other symbols are for a ratio of disorder to interaction strength of 1/2, with the
number of sites N = 64 (crosses), N = 128 (squares), and N = 256 (stars).

obeys J (w = 0)  (W?2), for simulations which sample all winding number
sectors. In simulations constrained to W = 0, J(w — 0) o« (W?2). This
procedure is analogous to measuring the magnetic susceptibility in an Ising
model simulation with conserved magnetization order parameter M = 0 by
defining a momentum dependent susceptibility and extrapolating to zero
momentum.|[31]

The results of such a procedure are illustrated in Fig. 13 where we show
the frequency dependent pseudocurrent—pseudocurrent correlation function
J(w) as a function of frequency w for different values of the density. There
is a very clear difference between the behavior at a density of one boson per
site, where J(w — 0) = 0 and away from that density, where J(w — 0)
does not vanish. This tells us that the gapped Mott phase has p; = 0
while the region away from density one where xisfinite is a superfluid.
At weaker coupling, t/U > (t/U)., we find that ps becomes nonzero even
at commensurate filling, just at the same point where the gap vanishes.
However, in the disordered system there is a phase where the gap vanishes
but py is still zero. This is the “Bose glass”.

We conclude this section by noting that the first simulations of su-
perfluid transitions for interacting bosons were calculated for continuum
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Figure 13. The pseudocurrent—pseudocurrent correlation function versus frequency (cir-
cles). Panel (a) shows 16 bosons on 16 sites, and panel (b) shows 15 bosons on 16 sites. In
the latter case, the extrapolation w — 0 yields a non—zero value, different from the w =0
value which is pinned to zero by the constraint W = 0. This is therefore a superfluid. In
both cases, the inverse temperature S = 2 and the on—site repulsion U = 20.

models.[19] Beginning with a first quantized Hamiltonian,
=\ i X,
H= EZ o + igj V(X; — Xj), (46)

the inverse temperature is discretized and complete sets of continuous posi-
tion eigenstates are inserted between the operators e=27/7. Just as in our
discussion of the quantum oscillator, the expression which results consists
of a classical problem of a set of interacting chains Z;(7) which represent the
trajectory of each boson in imaginary time. However, in addition to moves
which modify the boson positions, it is also essential to include moves which
guarantee that the boson wavefunction is symmetric. This turns out to re-
quire “exchange” moves which connect the chains corresponding to different
bosons.

The resulting simulations give an appealing qualitative picture of the
nature of the superfluid transition.[19] At high temperatures, the individ-
ual chains do not have much “imaginary time” to wander, so that if one
projects the coordinates Z;(7) down to the 7 = 0 plane they form fairly
small closed trajectories. Their size is roughly given by the deBroglie ther-
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mal wavelength Ar = h/v/27wmkgT. As the temperature is lowered, the
chains have an increasing length of imaginary time in which to wander,
and the projected path becomes larger and larger. Eventually, the paths of
different bosons begin to become close enough for the exchange moves to be
accepted, signaling the superfluid transition. The exchange moves also al-
low the winding number to change, so that (W?) can be directly measured
to probe the superfluid transition quantitatively. A technical difficulty is
that the acceptance rate of the exchange moves falls as the system size is
increased, providing a limit to the size of the systems that can be easily
simulated.[19]

6. World—Lines for Interacting Fermions

Our final illustration of the world-line algorithm is for lattice fermions.
Because both the physics and the algorithm have been described several
times,[1] we present only a short discussion which sets forth some of the
differences with the boson case. Consider first, for concreteness, a model
of one-dimensional spinless fermions with a repulsion V between near—
neighbor sites.

H = —tz (cicit1 + c,+1cz — i Z n, +V Z NNt 1. (47)

As with lattice bosons, the formulation of the algorithm resembles that of a
quantum spin—1/2 Hamiltonian very closely. The Pauli principle automat-
ically enforces a “hard—core” constraint which forbids us from considering
the generalization to multiple occupancy. The only non-zero matrix ele-

ments are, abbreviating iLz = —tA'r(c}L Ci+1+ c! +1€i)5
(00]e~i[00) =1,
(10]e7P|10) = cosh(tAr), (10]e7]01) = sinh(tAr),
(01]e™™]10) =sinh(tA7),  (01]e™™|01) = cosh(tA7),
(11]e Mj11)  =1. (48)

These matrix elements are identical to those arising in the spin-1/2 XXZ
model, Eq. 34, and the hard—core boson model. This similarity in the world—
line algorithm for the different models reflects, of course, the exact map-
pings which exist between all these systems in one dimension.

For more general fermion Hamiltonians, world-line algorithms differ
from those for quantum spins and bosons in two ways. First, in the fermion
case, one is typically interested in models in which the operators also carry
a spin index. (Of course there are instances of quantum spin and boson
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models where there are several spin or boson species, but such cases are
the exception, whereas for fermions they are the rule.) When there are
only density-density interactions of the form n;n;, coupling the two spin

species, that is, no spin flip hopping terms like c;-rch | or more complicated

interactions like c}}ci ic} 1551 then the path-integral which arises involves
two separate checkerboard lattices. That is, the off-diagonal matrix ele-
ments involve only one spin species at a time, and the coupling between
the spin species is through the diagonal terms which factor out of the ma-
trix elements as numbers. Thus one suggests moves which distort fermion
world-lines of one spin species leaving the other spin species’ world-lines
unchanged, though this static configuration of the other spin species does
enter the acceptance-rejection decision through the diagonal interaction
terms.

The second, and much more profound, difference is in the sign problem.
Boson and quantum spin operators have non—zero commutation relations
on the same site, but commute on different sites. This means that the
sign of the matrix elements entering the simulation is determined com-
pletely locally, for example by the explicit solution of the two site problem
which arises after the checkerboard decomposition. Fermion operators, on
the other hand, anticommute on different sites. Additional minus signs can
arise in getting the fermion creation operators in their canonical order after
a hopping process.

To be more specific, recall that in expressing a fermion occupation num-
ber state like [10110...) a convention for the order in which the creation
operators act on the vacuum must be chosen. For example we might define
|11010...) = c‘icicf1 ...|vac). Consider the action of C§C4 on this state.
We anticommute the pair of operators through cJ{ and cg, but since we are
moving two operators together there are no sign changes. At this point, the
destruction operator for site 4 meets the creation operator on site 4 and
they cancel. The crucial point to observe is that this whole process leaves
the creation operators in their canonical order cJ{ cgcg ...|vac) so we get the
occupation number state [11100...) with no minus sign.

What would happen if we instead acted with a longer range hopping C;ECQ

on this state? This pair of operators would anticommute through cj{ without

introducing a minus sign. cg would then meet and destroy co, but cg would

be left out of its canonical order, that is, to the left of CL Anticommuting it
through yields —|10011...). This minus sign introduces large fluctuations
into measurements and prevents useful simulations. The general rule is
that one gets a minus sign if there is an odd number of occupied sites
“in between” the two states that are connected by the hopping, where “in
between” means the order of creation operators in the convention chosen for
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acting on the vacuum state. One does not need to have long-range hopping
to encounter this problem. If one has a two—dimensional lattice and has a
convention for occupation number states in which the operators for rows in
the x direction are adjacent, the hopping in the y direction will be between
sites which are not “neighbors” in the string of creation operators. Such
hopping processes will yield minus signs.

Fermion world-line simulations are not possible except strictly in one
dimension. Even a one-dimensional lattice with a single “impurity” orbital
onto which the fermions can hop will have a sign problem. As we have
discussed, hoppings which are longer range than near—-neighbor cannot be
handled. An exception is the case when only interactions, and not kinetic
energy terms couple one-dimensional chains along which the fermions hop.
Thus the world-line algorithm for fermions is almost exclusively applied to
models in one—-dimension. Many path integral QMC simulations of inter-
acting fermions in higher dimension are conducted with the determinant
algorithm described in this volume.

We conclude by mentioning that nice illustrations of the real space spin
density wave, charge density wave, and other correlations in fermion models
treated by the world-line method can be found in Ref. [1].

7. Finite Size Scaling in Quantum Phase Transitions

Finite size effects are the most important limitation of monte carlo simula-
tions. In this section we present a brief discussion of an additional feature
of finite size scaling (F'SS) in quantum simulations.

We begin by reviewing some of the elements of FSS for a classical system
like the Ising model which exhibits a second order phase transition. In an
infinite system, near a second order critical point, quantities like the specific
heat, magnetization, susceptibility, and correlation length exhibit power law
singularities,

Coxt™@ M o tP x o<t Eoxt™. (49)

Here t = |T — T¢| is the distance from the critical point and «, 3,7,V are
critical exponents whose values we are interested in calculating.

For a finite system, these quantities will of course depend on the linear
system size IV in addition to t. The fundamental assumption of FSS is that
the functional dependence on N and ¢ is such that only the ratio N/é = Nt
enters. Thus for the susceptibility we write,

x(N,t) o< Nv f(Nt"), (50)

where f is some unspecified FSS function. This form embodies the depen-
dence on the ratio of correlation length to system size, and also reduces to
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the correct form x oc £77 when N — oo. Thus a simple version of FSS for
classical second order phase transitions is to plot the scaled susceptibility
N _%X(N ,t) versus the scaling variable Nt”. Data for different lattice sizes
should all lie on a single “universal curve,” allowing for a determination
of the exponents v and v, and the critical temperature 7., based on the
quality of this data collapse.

In the case of quantum systems we are often interested in “quantum”
phase transitions which occur in the ground state as a function of some con-
trol parameter other than the temperature. For example, as we discussed
in section 3, the ground state of the Ising model in a transverse field un-
dergoes a phase transition at 7" = 0. Similarly the boson—-Hubbard model
undergoes an insulator—superfluid transition at 7' = 0 as the hopping is
increased. Just as we cannot simulate spatial size N = oo, we are also re-
stricted to finite L instead of 8 = infty. Thus, in such quantum mechanical
problems the quantities measured will depend not only on the spatial size
N but also on the imaginary time size L. F'SS can still be done, but it is
necessary also to keep the aspect ratio of the system, N?/L fixed as the
spatial size N is varied. Here z is the dynamical critical exponent. Phys-
ically, this reflects the statement that the correlation length in imaginary
time diverges as &; o« &*. The ratio &% /&, also enters the scaling function
and in order to get collapse of data for different system sizes, this quantity
must be kept fixed in the simulation. This is a more serious problem than
just giving another fitting parameter in addition to the other exponents
and the position of the critical point, since z controls the aspect ratio of
the lattices to be simulated.

8. Conclusions

The world-line QMC algorithm is a powerful approach to the simulation of
lattice quantum spin, boson, and fermion models. It is considerably more
pictorial than other QMC methods like the determinant algorithm. It also
has a local action which results in a nominally linear scaling with system
size for a sweep through the lattice updating all the degrees of freedom.

However, the technique also has a number of drawbacks: The difficulty in
measuring certain observables, the sign problem which prevents the study
of frustated spin models or fermions in greater than one dimension, and
long equilibration and autocorrelation times. A number of these difficulties
have been solved by the construction of loop algorithms. 3]
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