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Motility-driven glass and jamming transitions in biological tissues
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Cell motion inside dense tissues governs many biological processes, including embryonic development and
cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make
quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi (SPV) model that
simultaneously captures polarized cell motility and multi-body cell-cell interactions in a confluent tissue, where
there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solid-like
state to a fluid-like state that is controlled by three parameters: the single-cell motile speed, the persistence
time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion
and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally
accessible structural order parameter that specifies the entire jamming surface as a function of model parameters.
We demonstrate that a continuum Soft Glassy Rheology model precisely captures this transition in the limit of
small persistence times, and explain how it fails in the limit of large persistence times. These results provide
a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic
development and cancer progression, which may be associated with Epithelial-to-Mesenchymal transition in
these tissues.

Recent experiments have revealed that cells in dense bio-
logical tissues exhibit many of the signatures of glassy ma-
terials, including caging, dynamical heterogeneities and vis-
coelastic behavior [1–5]. These dense tissues, where cells are
touching one another with minimal spaces in between, are
found in diverse biological processes including wound heal-
ing, embryonic development, and cancer metastasis.

In many of these processes, tissues undergo an Epithelial-
to-Mesenchymal Transition (EMT), where cells in a solid-
like, well-ordered epithelial layer transition to a mesenchy-
mal, migratory phenotype with less well-ordered cell-cell in-
teractions [6, 7], or an inverse process, the Mesenchymal-to-
Epithelial Transition (MET). Over many decades, detailed cell
biology research has uncovered many of the signaling path-
ways involved in these transitions [8, 9], which are important
in developing treatments for cancer and congenital disease.

Most previous work on EMT/MET has focused, however,
on properties and expression levels in single cells or pairs of
cells, leaving open the interesting question of whether there is
a collective aspect to these transitions: Are some features of
EMT/MET generated by large numbers of interacting cells?
Although there is no definitive answer to this question, several
recent works have suggested that EMT might coincide with a
collective solid-to-liquid jamming transition in biological tis-
sues [5, 10–12]. Therefore, our goal is to develop a framework
for jamming and glass transitions in a minimal model that ac-
counts for both cell shapes and cell motility, in order to make
predictions that can quantitatively test this conjecture.

Jamming occurs in non-biological particulate systems (such
as granular materials, polymers, colloidal suspensions, and
foams) when their packing density is increased above some
critical threshold, and glass transitions occur when the fluid is
cooled below a critical temperature. Over the past 20 years
these phenomena have been unified by “jamming phase dia-
grams” [13, 14].

Building on these successes, researchers have recently used

self-propelled particle (SPP) models to describe dense bio-
logical tissues [15–17]. These models are similar to those
for inert particulate matter – cells are represented as disks or
spheres that interact with an isotropic soft repulsive potential –
but unlike Brownian particles in a thermal bath, self-propelled
particles exhibit persistent random walks. Just like in thermal
systems, SPP models exhibit a jamming transition at a critical
packing density φG, but this critical density is slightly altered
by the persistence time of the random walks [17–21].

During many biological processes, however, a tissue re-
mains at confluence (packing fraction equal to unity) while
it changes from a liquid-like to a solid-like state or vice-versa.
For example, in would-healing, cells collectively organize to
form a ‘moving sheet’ without any change in their packing
density [22], and during vertebrate embryogenesis mesendo-
derm tissues are more fluid-like than ectoderm tissues, despite
both having packing fraction equal to unity [1].

Recently, Bi and coworkers [23] have demonstrated that the
well-studied vertex model for 2-D confluent tissues [24–29]
exhibits a rigidity transition in the limit of zero cell motil-
ity. Specifically, the rigidity of the tissue vanishes at a crit-
ical balance between cortical tension and cell-cell adhesion.
An important insight is that this transition depends sensitively
on cell shapes, which are well-defined in the vertex model.
While promising, vertex models are difficult to compare to
some aspects of experiments because they do not incorporate
cell motility.

In this work, we bridge the gap between the confluent tis-
sue mechanics and cell motility by studying a hybrid between
the vertex model and the SPP model, that we name Self-
Propelled-Voronoi (SPV) model. A similar model was in-
troduced by Li and Sun [30], and cellular Potts models also
bridge this gap [31, 32], although glass transitions have not
been carefully studied in any of these hybrid systems.
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FIG. 1. Analysis of glassy behavior. (A) The mean-squared displacement of cell centers for Dr = 1 and v0 = 0.1 and various values of p0
(top to bottom: p0 = 3.85,3.8,3.75,3.7,3.65,3.5) show the onset of dynamical arrest as p0 is decreased indicating a glass transition. The
dashed lines indicate a slope of 2(ballistic) and 1(diffusive) on log-log plot. (B) The self-intermediate scattering function at the same values of
p0 show in (A) shows the emergence of caging behavior at the glass transition. (C) The effective self-diffusivity as function of p0 at v0 = 0.1.
At the glass transition De f f becomes nonzero. (D)The cell displacement map in SPV model for p0 = 3.75, v0 = 0.1 and Dr = 1 over a time
window t ≈ 103 corresponding to the structural relaxation at which Fs(q, t) = 1/2.

I. THE SPV MODEL

While the vertex model describes a confluent tissue as a
polygonal tiling of space where the degrees of freedom are
the vertices of the polygons, the SPV model identifies each
cell only using the center (rrri) of Voronoi cells in a Voronoi
tessellation of space [33]. For a tissue containing N-cells, the
inter-cellular interactions are captured by a total energy which
is the same as that in the vertex model. Since the tessellation is
completely determined by the {rrri}, the total tissue mechanical
energy can be fully expressed as E = E({rrri}):

E =
N

∑
i=1

[
KA(A(ri)−A0)

2 +KP(P(ri)−P0)
2] . (1)

The term quadratic in cell area A(ri) results from a combi-
nation of cell volume incompressibility and the monolayer’s
resistance to height fluctuations [26]. The term involving
the cell perimeter P(ri) originates from active contractility
of the acto-myosin sub-cellular cortex (quadratic in perime-
ter) and effective cell membrane tension due to cell-cell ad-
hesion and cortical tension (both linear in perimeter). This
gives rise to an effective target shape index that is dimension-
less: p0 = P0/

√
A0. KA and KP are the area and perimeter

moduli, respectively. For the remainder of this manuscript we
assume p0 is homogenous across a tissue, although heteroge-
neous properties are also interesting to consider [34].

In the vertex model [23], a rigidity transition takes place at a
critical value of p0 = p∗0 ≈ 3.81, below which the cortical ten-

sion dominates over cell-cell adhesion and the tissue behaves
like a elastic solid; above p∗0, cell-cell adhesion dominates and
the tissue rigidity vanishes. While the energy functional for
cell-cell interactions is identical in the vertex and SPV models,
the two are truly distinct: the local minimum energy states of
the vertex model are not guaranteed to be similar to a Voronoi
tessellation of cell centers, although we do find them to be
very similar in practice. Therefore, we are also interested in
whether a rigidity transition in the SPV model coincides with
the rigidity transition of the vertex model.

We define the effective mechanical interaction force expe-
rienced by cell i as FFF i = −∇∇∇iE (see Appendix A for details).
In contrast to particle-based models, FFF i is non-local and non-
additive: FFF i cannot be expressed as a sum of pairwise force
between cells i and its neighboring cells.

In addition to FFF i, cells can also move due to self-propelled
motility. Just as in SPP models, we assign a polarity vector
n̂nni = (cosθi,sinθi) to each cell; along n̂nni the cell exerts a self-
propulsion force with constant magnitude v0/µ, where µ is
the mobility (the inverse of a frictional drag). Together these
forces control the over-damped equation of motion of the cell
centers rrri

drrri

dt
= µFFF i + v0n̂nni. (2)

The polarity is a minimal representation of the front/rear
characterization of a motile cell [31]. While the precise mech-
anism for polarization in cell motility is an area of intense
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FIG. 2. (A) Glassy phase diagram for confluent tissues as function of cell motility v0 and target shape index p0 at fixed Dr = 1. Blue data
points correspond to solid-like tissue with vanishing De f f ; orange points correspond to flowing tissues (finite De f f ). The dynamical glass
transition boundary also coincides with the locations in phase space where the structural order parameter q = 〈p/√a〉= 3.81 (red line). In the
solid phase, q≈ 3.81 and q > 3.81 in the fluid phase. (B) Instantaneous tissue snapshots show the difference in cell shape across the transition.
Cell tracks also show dynamical arrest due to caging in the solid phase and diffusion in the fluid phase.

study, here we model its dynamics as a unit vector that under-
goes random rotational diffusion

∂tθi = ηi(t)

〈ηi(t)η j(t ′)〉= 2Drδ(t− t ′)δi j
(3)

where θi is the polarity angle that defines n̂nni, and ηi(t) is a
white noise process with zero mean and variance 2Dr. The
value of angular noise Dr determines the memory of stochastic
noise in the system, giving rise to a persistence time scale τ =
1/Dr for the polarization vector n̂. For small Dr � 1, the
dynamics of n̂ is more persistent than the dynamics of the
cell position. At large values of Dr, i.e. when 1/Dr becomes
the shortest timescale in the model, Eq. (2) approaches simple
Brownian motion.

The model can be non-dimensionalized by expressing all
lengths in units of

√
A0 and time in units of 1/(µKAA0). There

are three remaining independent model parameters: the self
propulsion speed v0, the cell shape index p0, and the rota-
tional noise strength Dr. We simulate a confluent tissue un-
der periodic boundary conditions with constant number of
N = 400 cells (no cell divisions or apoptosis) and assume that
the average cell area coincides with the preferred cell area,
i.e. 〈Ai〉 = A0. This approximates a large confluent tissue in
the absence of strong confinement. We numerically simulate
the model using molecular dynamics by performing 105 inte-
gration steps at step size ∆t = 10−1 using Euler’s method. A
detailed description of the SPV implementation can be found
in the Appendix Sec. A.

II. CHARACTERIZING GLASSY BEHAVIOR

We first characterize the dynamics of cell motion within the
tissue by analyzing the mean-squared displacement (MSD) of
cell trajectories. In Fig. 1(a), we plot the MSD as function
of time, for tissues at various values of p0 and fixed v0 = 0.1
and Dr = 1. The MSD exhibits ballistic motion (slope =2
on a log-log plot) at short times, and plateaus at intermedi-
ate timescales. The plateau is an indication that cells are be-
coming caged by their neighbors. For large values of p0, the
MSD eventually becomes diffusive (slope =1), but as p0 is
decreased, the plateau persists for increasingly longer times.
This indicates dynamical arrest due to caging effects and bro-
ken ergodicity, which is a characteristic signature of glassy
dynamics.

Another standard method for quantifying glassy dynamics
is the self-intermediate scattering function [35]: Fs(q, t) =〈

ei~q·∆~r(t)
〉
. Glassy systems possess a broad range of relax-

ation timescales, which show up as a long plateau in Fs(t)
when it is analyzed at a lengthscale q comparable to the near-
est neighbor distance. Fig 1 (b) illustrates precisely this be-
havior in the SPV model, when |~q| = 2π/r0, where r0 is the
position of the first peak in the pair correlation function. The
average 〈...〉 is taken temporally as well as over angles of ~q.
Fs(t) also clearly indicates that there is a glass transition as a
function of p0: at high p0 values Fs approaches zero at long
times, indicating that the structure is changing and the tissue
behaves as a viscoelastic liquid. At lower values of p0, Fs re-
mains large at all timescales, indicating that the structure is ar-
rested and the tissue is a glassy solid. Fig 1 (d) demonstrates
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that at the structural relaxation time, the cell displacements
show collective behavior across large lengthscales suggesting
strong dynamical heterogeneity. This is strongly reminiscent
of the ‘swirl’ like collective motion seen in experiment in ep-
ithelial monolayers [3, 4].

A. A dynamical order parameter for the glass transition

Although the phase space for this model is three dimen-
sional, we now study the model at a fixed value of Dr = 1.

We then search for a dynamical order parameter that dis-
tinguishes between the glassy and fluid states as a func-
tion of the two remaining model parameters,(v0, p0). A
candidate order parameter is the self-diffusivity Ds: Ds =

limt→∞〈∆r(t)2〉/(4t). For practicality, we calculate Ds using
simulation runs of 105 time steps, chosen to be much longer
than the typical caging timescale in the fluid regime. We
present the self-diffusivity in units of D0 = v2

0/(2Dr), which is
the free diffusion constant of an isolated cell. De f f = Ds/D0
then serves as an accurate dynamical order parameter that dis-
tinguishes a fluid state from a sold(glassy) state in the space
of (v0, p0), matching the regimes identified using the MSD
and Fq. In Fig. 2, the fluid region is characterized by a finite
value of De f f and De f f drops below a noise floor of ∼ 10−3

as the glass transition is approached. In practice, we label
materials with De f f > 10−3 as fluids indicated by a yellow
dot, and those with De f f ≤ 10−3 as solids indicated by blue
squares. Importantly, we find that the SPV model in the limit
of zero cell motility shares a rigidity transition with the vertex
model [23] at p0 ≈ 3.81, and that this rigidity transition con-
trols a line of glass transitions at finite cell motilities. Typical
cell tracks (Fig. 2) clearly show caging behavior in the glassy
solid phase.

B. Cell shape is a structural order parameter for the glass
transition

Previously the shape index q = 〈p/√a〉 was shown to be
an excellent order parameter for the confluent tissue rigidity
transition in the vertex model[10]; for p0 < 3.813, q is con-
stant ∼ 3.81 and q≈ p0 for p0 > 3.81. Quite surprisingly, we
find that q (which can be easily calculated in experiments or
simulations from a snapshot) can be used as a structural order
parameter for the glass transition for all values of v0, not just
at v0 = 0. Specifically, the boundary defined by q = 3.813,
shown by the red solid line in Fig. 2 coincides extremely well
with the glass transition line obtained using the dynamical or-
der parameter, shown by the round and square data points.
The insets to Fig. 2 also illustrate typical cell shapes: cells
are isotropic on average in the solid phase and anisotropic
in the fluid phase. This provides a new explanation of why
the q = 3.813 prediction works perfectly in identifying a jam-
ming transition in in-vitro experiments involving primary hu-
man tissues, where cells are clearly motile [10]. Although this
prediction was originally developed using a non-motile vertex

model, the results presented here confirm that it should also
work in tissues with finite cell motility.

III. A THREE-DIMENSIONAL JAMMING PHASE
DIAGRAM FOR TISSUES

Having studied the glass transition as function of v0 and
p0 at a large value of Dr, we next investigate the full three-
dimensional phase diagram by characterizing the effect of Dr
on tissue mechanics and structure. Dr controls the persistence
time τ = 1/Dr and persistence length or Péclet number Pe ∼
v0/Dr of cell trajectories; smaller values of Dr correspond to
more persistent motion.

In Fig. 3(a), we show several 2D slices of the three di-
mensional jamming boundary. Solid lines illustrate the phase
transition line identified by the structural order parameter
q = 3.813 as function of v0 and p0 for a large range of Dr val-
ues (from 10−2 to 103). (In Appendix B 2 we demonstrate that
the structural transition line q = 3.813 matches the dynamical
transition line for all studied values of Dr.) In contrast to re-
sults for particulate matter [20], this figure illustrates that the
glass transition lines meet at a single point (p0 = 3.81) in the
limit of vanishing cell motility, regardless of persistence.

Fig. 3(b) shows an orthogonal set of slices of the jamming
diagram, illustrating how the phase boundary shifts as func-
tion of p0 and Dr at various values of v0. This highlights the
interesting result that a solid-like material at high value of Dr
can be made to flow simply by lowering its value of Dr.

These slices can be combined to generate a three-
dimensional jamming phase diagram for confluent biological
tissues, shown in Fig. 3(C). This diagram provides a concrete,
quantifiable prediction for how macroscopic tissue mechanics
depends on single-cell properties such as motile force, persis-
tence, and the interfacial tension generated by adhesion and
cortical tension.

We note that Fig. 3(C) is significantly different from the
jamming phase diagram conjectured by Sadati et al [11],
which was informed by results from adhesive particulate mat-
ter [14]. For example, in particulate matter adhesion enhances
solidification, while in confluent models adhesion increases
cell perimeters/surface area and enhances fluidization. In ad-
dition, we identify “persistence” as a new axis with a poten-
tially significant impact on cell migration rates in dense tis-
sues.

To better understand why persistence is so important in
dense tissues, we first have to characterize the transitions be-
tween different cellular structures. In the limit of zero cell
motility, the system can be described by a potential energy
landscape where each allowable arrangement of cell neigh-
bors corresponds to a metastable minimum in the landscape.
There are many possible pathways out of each metastable
state: some of correspond to localized cell rearrangements,
while others correspond to large-scale collective modes. The
maximum energy required to transition out of a metastable
state along each pathway is called an energy barrier [29].

We observe that tissue fluidity can increase drastically with
increasing Dr at finite cell speeds. This suggests that different
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FIG. 3. (A) The glass transition in v0− p0 phase space shifts as the persistence time changes. Lines represent the glass transition identified
by the structural order parameter q = 3.81. The phase boundary collapse to a single point at p∗0 = 3.81, regardless of Dr, in the limit v0→ 0.
(B) The glass transition in p0−Dr phase space shifts as a function of v0 (from top to bottom: v0 = 0.02,0.08,0.14,0.2,0.26) (C) The phase
boundary between solid and fluid as function of motility v0, persistence 1/Dr and p0 which is tuned by cell-cell adhesion can be organized
into a schematic 3D phase diagram in.

Dr = 0.01 10.1

A B C

FIG. 4. (A-C) Instantaneous cell displacements at p0 = 3.65 and
v0 = 0.5. They are different from the displacements shown in
Fig. 1(D) which are averaged over the structural relaxation timescale.
(A) At the lowest value of Dr = 0.01, the cells are able to flow by
collectively displacing along the ‘soft’ modes of the system (Ap-
pendix. B 1). (B) At Dr = 0.1, collective displacements are less
pronounced. (C) For Dr = 1 and larger, the displacements appear
disordered and uncorrelated.

pathways (with lower energy barriers) must become dynami-
cally accessible at higher values of Dr.

One hint about these pathways comes from the instanta-
neous cell displacements, shown for different values of Dr in
Fig. 4. At high values of Dr, (p0 = 3.78, v0 = 0.1) the instan-
taneous displacement field is essentially random and largely
uncorrelated, as shown in Fig. 4, and the material is solid-
like. There is no collective behavior among cells, and each
cell ‘rattles’ independently near its equilibrium position.

However, as Dr is lowered, the instantaneous displacement
field becomes much more collective (Fig. 4) and the tissue
begins to flow, presumably because these collective displace-
ment fields correspond to pathways with lower transition en-
ergies.

Two obvious questions remain: How does a lower value
of Dr generate more collective instantaneous displacements?
Why should collective instantaneous displacements generi-
cally have lower energy barriers? The first question can be

answered by extending ideas first proposed by Henkes, Fily
and Marchetti [17] to explain why motion in self-propelled
particle models seems to follow the ‘soft modes’ of a solid.
This argument is based on a simple, yet powerful observation:
in the limit of zero motility (v0 = 0), a solid-like state will have
a well-defined set of normal modes of vibration (with frequen-
cies {ων}), and a corresponding set of eigenvectors ({êν}) that
forms a complete basis. At higher motilities (v0 > 0) near the
glass transition, the motion of particles in the system can be
expanded in terms of the eigenvectors. As discussed in Ap-
pendix B 1, one can use this observation to show that in the
limit of Dr → 0, motion along the lowest frequency eigen-
modes is amplified – the amplitude along each mode is pro-
portional to 1/ω2

ν). These low-frequency normal modes are
precisely the collective displacements observed for low Dr.

The second question is more difficult to answer because it
is impossible to enumerate all of the possible transition path-
ways and energy barriers in a disordered material. However,
a partial answer comes from recent work in disordered par-
ticulate matter showing that low-frequency normal modes do
have significantly lower energy barriers [36, 37] than higher
frequency normal modes. This is an interesting avenue for
future research.

IV. A CONTINUUM MODEL FOR GLASS TRANSITIONS
IN TISSUES

Although continuum hydrodynamic equations of motion
have been developed by coarse graining SPP models in the
dilute limit, there is no existing continuum model for a dense
active matter system near a glass transition. Here we propose
that a simple trap [38] or Soft Glassy Rheology (SGR) [39]
model provides an excellent continuum approximation for the
phase behavior in the large Dr Brownian regime, but fails in
the small Dr limit.

For large Dr it is known that partilce behave like Brownian
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particles with an effective temperature Te f f = v2
0/2µDr [18].

This mapping becomes exact when Dr→∞ at fixed “effective
inertia” (µDr)

−1 [21]. In other words, like in granular sys-
tems [40, 41], the effective temperature in SPP is dominated
by kinetic effects. Guided by this result we conjecture that
in our model the temperature also scale quadratically with the
velocity,

Te f f ∝ cv2
0. (4)

Physically, this effective temperature gives the amount of en-
ergy available for individual cells to vibrate within their cage
or ‘trap’.

The next important question is how to characterize the ‘trap
depths’, or energy barriers between metastable states. In the
Brownian regime (large Dr) there is no dynamical mechanism
for the cells to organize collectively, and therefore a reason-
able assumption is that the rearrangements are small and lo-
calized.
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FIG. 5. Comparison between SPV glass transition and an analytic
prediction based on a Soft Glass Rheology (SGR) continuum model.
The dashed line corresponds to an SGR prediction with no fit param-
eter based on previously measured vertex model trap depths [29].
Data points correspond to SPV simulations with Dr = 10−3 and
where we have defined Te f f = cv2

0 with c= 0.1 as the best-fit normal-
ization parameter. Blue points correspond to simulations which are
solid-like, with De f f < 10−3, and the boundary of these points define
the observed SPV glass transition line. (Inset) L2 difference between
SPV glass transition line (at best-fit value of c) and the predicted SGR
transition line at various values of Dr. The SGR prediction based on
localized T1 trap depths works well in the high Dr limit, but not in
the low Dr limit.

In [29], some of us explicitly calculated the statistics of en-
ergy barriers for localized rearrangements in the equilibrium
vertex model. In the 2D vertex model, one can show that
localized rearrangements must occur via so-called T1 tran-
sitions [42]. Using a trap model [38] or Soft Glassy Rheol-
ogy(SGR) [39] framework, we were able to use these statis-
tics to generate an analytic prediction, with no fit parameters,
for the glass transition temperature Tg as function of p0.

To see if the SGR prediction for the glass transition holds
for the SPV model in the large Dr limit, we simply overlay

the data points corresponding to glassy states from the SPV
model with the glass transition Tg line predicted in [29]. There
is one fitting parameter c that characterizes the proportionality
constant in Eq. 4. Fig 5, shows that the SPV data for Dr = 103

is in excellent agreement with our previous SGR prediction.
The reason the effective temperature SGR model works

here is that, like in SPP models of spherical active Brownian
colloids, the angular dynamics of each cell evolves indepen-
dently of cell-cell interactions and of the angular dynamics of
other cells. An additional alignment interaction that couples
the angular and translational dynamics may therefore modify
this behavior.

To our knowledge, this is the first time that a SGR/trap
model prediction has been precisely tested in any glassy sys-
tem. This is because, unlike most glass models, we can enu-
merate all of the trap depths for localized transition paths in
the vertex model.

However, for small values of Dr, we have shown that cell
displacements are dominated by collective normal modes, and
therefore the energy barriers for localized T1 transitions are
probably irrelevant in this regime. The inset to Fig 5 shows
the deviation (L2-norm) between glass transition lines in the
SPV model and T1-based SGR prediction as a function of Dr.
We see that the SGR prediction fails in the small Dr limit,
as expected. A better understanding of the energy barriers
associated with collective modes will be required to modify
the theory at small Dr.

V. DISCUSSION AND CONCLUSIONS

We have shown that a minimal model for confluent tissues
with cell motility exhibits glassy dynamics. This model al-
lows us to make a quantitative prediction for how the fluid-
to-solid/jamming transition in biological tissues depends on
parameters such as the cell motile speed, the persistence time
associated with directed cell motion, and the mechanical prop-
erties of the cell (governed by adhesion and cortical tension).
We define a simple, experimentally accessible structural order
parameter – the cell shape index – that robustly identifies the
jamming transition, and we show that a simple analytic model
based on localized T1 rearrangements precisely predicts the
jamming transition in the large Dr limit. We also show that
this prediction fails in the small Dr limit, because the instanta-
neous particle displacements are dominated by collective nor-
mal modes.

One important question is how to measure model param-
eters in experiments. This may be achieved by combining
measurement of cell shape fluctuations with force traction
microscopy (FTM) in wound healing assays. After locating
the glass transition by imaging cell shape changes, it may be
possible to extract information on cell motility v0 from cel-
lular stresses and pressure inferred from FTM in the fluid
phase near the glass transition. In the limit of zero motility
our model predicts that shape and pressure fluctuations van-
ish when the jamming transition is approached from the solid
side, and remain zero in the fluid. A finite motility v0 will,
however, induce such fluctuations in the fluid phase, as con-

https://www.researchgate.net/publication/239635044_The_Physics_of_Foams?el=1_x_8&enrichId=rgreq-561d5c54-288d-4927-b9f5-43eb657b2248&enrichSource=Y292ZXJQYWdlOzI4MjE4MTk5OTtBUzozMjk1NjA2MTM3NjkyMTZAMTQ1NTU4NDc4MTQ4MQ==
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firmed by preliminary explicit calculation of cellular stresses
and pressure in the SPV model [43]. This suggests that one
may estimate cell motility by examining the changes in cel-
lular stresses and pressure in the cell monolayer near the un-
jamming transition and assuming that the local velocity of the
monolayer is very small just above the transition. The latter
assumption can also be verified independently via particle im-
age velocimetry (PIV).

Another result of this work is the surprising and unexpected
differences between confluent models (such as the vertex and
SPV models) and particle-based models (such as Lennard-
Jones glasses and SPP models). For example, works by
Berthier [20], Fily and Marchetti in SPP models suggest that
the location of the zero motility glass transition packing den-
sity φG (defined as the density at which dynamics cease in the
limit of v0→ 0) depends the value of noise, Dr. This is also re-
lated to the observation that the jamming and glass transition
are not controlled by the same critical point in non-active sys-
tems [44, 45]. We find this is not the case in the SPV model.
Fig. 3(a & b) show that while the glass transition point p∗0
shifts with Dr at finite values of v0, in the limit of vanishing
motility, all glass transition lines merge on to a single point in
the limit v0→ 0, namely p∗0 = 3.81.

Given these differences, it is important to ask which type
of model is appropriate for a given system. We argue that
SPV models are may be more appropriate for many biological
tissues. Whereas SPP models interact with two-body interac-
tions that only depend on particle center positions, both SPV
and vertex models capture more information because they take
into account the intercellular forces due to shape deforma-
tions that are inherently multi-body interactions. Unlike ver-
tex models, SPV models account for cell motility, and they are
also much easier to simulate in 3D (which is nearly impossible
in practice for the vertex model.)

In our version of the SPV model, we have assumed that cell
polarity is controlled by simple rotational white noise. It is
also possible to include more complex mechanisms. For ex-
ample, external chemical or mechanical cues could be mod-
eled by coupling v0 and n̂nni to chemoattractant or mechanical
gradients, allowing waves or other pattern formation mecha-
nisms to interact with the jamming transition. Similarly, sim-
ple alignment rules (such as those in the Viscek model [46])
could lead to collective flocking modes that also affect glassy
dynamics. These are interesting areas for future research.

Another interesting extension of the SPV model would be
to study the role of cell-cell friction. Our current model in-
cludes viscous frictional coupling of cell to the 2D substrate
and cell-cell adhesion enters as a negative line tension on in-
terfaces. However, it would be possible to add a frictional
force between cells proportional to the length of the edge
shared between two cells, and we know from previous work
on particulate glasses that these localized frictions can change
the location of jamming/glass transition and the nature of spa-
tial correlations in a glass [47, 48].

In the SPV model, the jamming transition occurs at fixed
area density, which makes it an appropriate model for conflu-
ent tissues where there are no spaces between cells. However,
it is clear that in many of these tissues, cells change their num-

ber density through cell division, apoptosis, or growth. De-
pending on the precise mechanism, changes to number density
alter the ratio between the cell area A0 and the cell perimeter
P0, resulting in systematic changes to the model parameter
p0. Understanding how p0 changes with cell division, for ex-
ample, and making predictions about how tissue solidification
changes with number density is an interesting avenue for fu-
ture research.

It is also tempting to speculate about the relationship be-
tween the unjamming transition captured by our model and the
epithelial-mesenchimal transition (EMT) that precedes cell
escape from a solid tumor mass. The EMT involves significant
changes in cell-cell adhesion and cytoskeletal composition,
with associated changes in cell shape and motility. This sug-
gests that escape from the tumor mass is controlled not just by
the chemical breakdown of the basement membrane, but also
by specific changes in mechanical properties of both individ-
ual cells and the surrounding tissue. One could then hypoth-
esize that the collective unjamming described here may pro-
vide the first necessary step towards the mechanical changes
needed for cell escape from primary tumors.

In particular, recent work suggests that cancer tumors are
mechanically heterogeneous, with mixtures of stiff and soft
cells that have varying degrees of active contractility [34]. Our
jamming phase diagram suggests that the soft cells, which of-
ten exhibit mesenchymal markers and presumably correspond
to higher values of p0, might unjam and move towards the
boundary of a primary tumor more easily than their stiff coun-
terparts. Examining the effects of tissue heterogeneity on tis-
sue rigidity and patterns of cell motility is therefore a very
promising avenue for developing predictive theories for tumor
invasiveness and metastasis.

Appendix A: Simulation algorithm for the SPV model

To create an initial configuration for the simulation, we first
generate a seed point pattern using random sequential addi-
tion (RSA) [49] and anneal it by integrating Eq. 2 with v0 = 0
for 100 MD steps. The resulting structure then serves as an
initially state for all simulations runs. The use of (RSA) only
serves to speed up the initial seed generation as using a Pois-
son random point pattern does not change the results presented
in this paper.

At each time step of the simulation, a Voronoi tesselation is
created based on the cell centers. The intercellular forces are
then calculated based on shapes and topologies of the Voronoi
cells (see discussion below). We employ Euler’s method to
carry out the numerical integration of Eq. 2, i.e., at each time
step of the simulation the intercellular forces is calculated
based on the cell center positions in the previous time step.

In a Delaunay triangulation, a trio of neighboring Voronoi
centers define a vertex of a Voronoi polygon. For example in
Fig. 6, (~ri,~r j,~rk) define the vertex~h3, which is given by

~h3 = α~ri +β~r j + γ~rk, (A1)
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where the coefficients are given by

α = ‖~r j−~rk‖2(~ri−~r j) · (~ri−~rk)/D

β = ‖~ri−~rk‖2(~r j−~ri) · (~r j−~rk)/D

γ = ‖~ri−~r j‖2(~rk−~ri) · (~rk−~r j)/D

D = 2‖(~ri−~r j)× (~r j−~rk)‖2.

(A2)

~ri

~rj

~rk

~rl
~h1

~h2

~h3

~h4

~h5

~h6

~h7

~h8

FIG. 6. Cell centers positions are specified by vectors {~r}. They
form a Delaunay triangulation (black lines). Its dual is the Voronoi
tessellation (red lines), with vertices given by {~h}.

In the vertex model, the total mechanical energy of a tissue
depends only on the areas and perimeters of cells:

E =
N

∑
i=1

[
KP(Ai−A0)

2 +KP(Pi−P0)
2] . (A3)

In a Voronoi tessellation, the area and perimeter of a cell i can
be calculated in terms of the vertex positions

Pi =
zi−1

∑
m=0
‖~hm−~hm+1‖;

Ai =
1
2

zi−1

∑
m=0
‖~hm×~hm+1‖,

(A4)

where zi is the number of vertices for cell i (also number of
neighboring cells) and m indexes the vertices. We use the con-
vention~hzi =

~h0.
With these definitions, the total force on cell-i can be cal-

culated using Eq. A3

Fiµ ≡−
∂E
∂riµ

=− ∑
j∈n.n.(i)

∂E j

∂riµ
− ∂Ei

∂riµ
, (A5)

here µ denotes the cartesian coordinates (x,y). The first term
on the r.h.s. of Eq. A5 sums over all nearest neighbors of cell
i. It is the force on cell i due to changes in neighboring cell
shapes. The second term is the force on cell i due to shape
changes brought on by its own motion.

It maybe tempting to treat ∂E j
∂riµ

as the force between cells-i
and j, but

∂E j

∂riµ
6= ∂Ei

∂r jµ
(A6)

since the interaction is inherently multi-cellular in nature and
interactions between i and j also depend on k and l (see
Fig. 6).

For the typical configuration shown in Fig. 6, the first term
in Eq. A5 can be expanded using the chain rule and calculated
using Eq. A1

∂E j

∂riµ
= ∑

ν

(
∂E j

∂h2ν

∂h2ν

riµ
+

∂E j

∂h3ν

∂h3ν

riµ

)
. (A7)

In Eq. A7, only terms involving~h2 and~h3 are kept since E j
does not depend on other vertices of cell i. ν is a cartesian
coordinate index. The energy derivative in Eq. A7 can be cal-
culated in a straightforward way, by using Eqs. A3 and A4

∂E j

∂h2x
=2KA(A j−A0)

∂A j

∂h2x
+2KP(Pj−P0)

∂Pj

∂h2x

=KA(A j−A0)(h3y−h7y)

+2KP(Pj−P0)

(
h2x−h7x

‖~h7−~h2‖
+

h2x−h3x

‖~h2−~h3‖

) (A8)

and

∂E j

∂h2y
=2KA(A j−A0)

∂A j

∂h2y
+2KP(Pj−P0)

∂Pj

∂h2y

=KA(A j−A0)(h3x−h7x)

+2KP(Pj−P0)

(
h2y−h7y

‖~h7−~h2‖
+

h2y−h3y

‖~h2−~h3‖

)
.

(A9)

Similarly, the second term on the r.h.s. of Eq. A5 can be cal-
culated in a similar way.

Appendix B: Cell displacements and structural order parameter
as a function of Dr

1. Expanding cell displacements in an eigenbasis associated
with the underlying dynamical matrix

In the absence of activity (v0 = 0), the tissue is a solid
for p0 < p∗0 = 3.81. As v0 is increased, the solid behavior
persists up to v0 = v∗0(p0), which is given by the glass tran-
sition line in Fig. 2. In order for the tissue to flow, suffi-
cient energy input is needed to overcome energy barriers in
the potential energy landscape, which are a property of the
underlaying solid state at v0 = 0. In this limit, the instan-
taneous cell center positions {~ri(t)} can be thought of as a
small displacement {~di(t)} from the nearest solid reference
state {~r0i} [17] where ~di(t) =~ri −~r0i. The ~r0i correspond
to positions of cell in a solid, which has a well-defined lin-
ear response regime [23]. The linear response is most con-
veniently expressed as the eigen-spectrum of the dynamical
matrix Di jαβ. Since the eigenvectors {êi,ν} of Di jαβ form a
complete orthonormal basis, the cell center displacement can
then be expressed as a linear combination of {êi,ν}

~di(t) = ∑
ν

aν(t)êi,ν (B1)
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For simplicity, we will adopt the Bra-ket notation and express
the eigenbasis simply as |ν〉 and Eq. B1 becomes

|d〉= ∑
ν

aν(t)|ν〉, (B2)

where

D̂|ν〉= ω
2
ν|ν〉 (B3)

and ω2
ν are the eigenvalues of the dynamical matrix.

The polarization vector n̂i can also be expressed as a linear
combination of eigenvectors

|n〉= ∑
ν

bν(t)|ν〉. (B4)

Since the polarization vector and eigenvector are both unit
vectors, it follows that bν(t) = 〈n|ν〉= cos(θν−ψ). Where ψ

is the angle of the polarization and θν the angle of the eigen-
vector.

Then the equation of motion for ~di (Eq. 2), can be rewritten
as

~̇d =−µ
∂E
∂~ri

∣∣∣∣
~r0,i

+ v0n̂i (B5)

Using Eqs. B2–B5, we find

d
dt
〈ν|d〉=−µ〈ν|D̂ d〉+ v0〈ν|n〉 ,or

d
dt

aν(t) =−µω
2
νaν(t)+ v0bν(t).

(B6)

Then the equation of motion for each amplitude is

d
dt

aν(t) =−µω
2
νaν(t)+ v0cos(θν−ψ)

ψ̇ = η.
(B7)

This is just the equation of motion for a self-propelled particle
tethered to a spring with active forcing that is strongest along
the direction of the eigenvector. The solution is then:

aν(t) = aν(t = 0)e−kt + v0

∫ t

0
dt ′e−k(t−t ′)cos(θν−ψ), (B8)

where k = µω2
ν.

Solving for the ensemble averaged quantity:

〈aν(t)〉= aν(t = 0)e−kt +
v0

ξ

∫ t

0
dt ′e−k(t−t ′)〈cos(θν−ψ)〉,

(B9)
and using the relations

〈cosψ(t)〉= cosψ(0)e−Drt ;

〈sinψ(t)〉= sinψ(0)e−Drt

cos(θν−ψ) = sin(θν)sin(ψ)+ cos(θν)cos(ψ),

(B10)

to get the ensemble averaged solution for the amplitude be-
comes

〈aν(t)〉= aν(0)e−kt +
v0

ξ
cos(θν−ψ(0))

e−kt − e−Drt

Dr− k
.

(B11)
In the Brownian limit Dr→ ∞ and Eq. B11 becomes

〈aν(t)〉= aν(0)e−kt +
v0

ξ
cos(θν−ψ(0))

e−Drt

Dr
. (B12)

This suggests that while normal modes control the rate of de-
cay, they do no addect the long-time behavior.

However as Dr→ 0, Eq. B11 becomes

aν(t) = aν(0)e−µω2
νt +

v0

µω2
ν

cos(θν−ψ(0))
(

1− e−µω2
νt
)

(B13)
The second term in this equation scales as∼ 1/ω2

ν. Therefore,
at short times (corresponding to instantaneous response), the
mode amplitude aν is much larger for modes at lower frequen-
cies. Since the reference state is an elastic solid with Debye
scaling D(ω) ∼ ω as ω→ 0 [23], this suggests that the dis-
placement will be heavily dominated by the lowest frequency
modes that are spatially more collective in nature.

2. Effect of Dr on glass transition boundary
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FIG. 7. Comparison between glass transition boundaries obtained
using shape order parameter (red line) and De f f (blue squares and
orange circles).

Figure. 7 shows that the location in phase space where the
shape index q = 3.81 is in excellent agreement with the dy-
namical solid-fluid phase boundary determined by De f f , at all
values of Dr.
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