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Abstract. We have analyzed quantization and con�nement e�ects in nano-
structured superconductors. Three di�erent types of nanostructured samples
were considered: individual structures (line, loop, dot), 1-dimensional (1D) clus-
ters of loops and 2D clusters of antidots, and �nally large lattices of antidots.
Hereby, a crossover from individual elementary "plaquettes" (=dot, loop, etc.),
via their clusters, to huge arrays of these elements, is realized. The main idea of
our review was to investigate the e�ect of the boundary conditions on con�nement
of the superconducting condensate and the vortices, by taking samples of di�er-
ent topology and, through that, modifying the lowest Landau level ELLL(H).
Since the critical temperature versus applied magnetic �eld Tc(H) is, in fact,
ELLL(H) measured in temperature units, it is varied as well when the sample
topology is changed through nanostructuring. We demonstrate that in all con-
sidered nanostructured superconductors the shape of the Tc(H) phase boundary
is determined by the con�nement topology in a unique way.

Lateral nanostructuring can also be eÆciently used to control 
ux con�ne-
ment phenomena. This will be illustrated by considering pinning phenomena in
superconductors with regular arrays of microholes ("antidot lattices").

Optimizing, for the same material, the con�nement topology for the super-
conducting condensate and for the penetrating magnetic 
ux, two important
critical parameters, Tc(H) and the critical current jc(H) can be increased up to
their theoretical limits.

1) Short version of the book chapter in `Handbook of Nanostructured Materials and Nano-
technology', Vol. 3, Chap. 9, p. 451-525, eds. H. S. Nalwa, Academic Press, San Diego,
1999.



I INTRODUCTION

A Quantization and con�nement

"Con�nement" and "quantization" are two closely related de�nitions: if a
particle is "con�ned" then its energy is "quantized", and vice versa. According
to the dictionary, to "con�ne" means to "restrict within limits", to "enclose",
and even to "imprison". A typical example, illustrating the relation between
con�nement and quantization, is the restriction of the motion of a particle by
enclosing it within an in�nite potential well of size LA. Due to the presence
of an in�nite potential U(x) (Fig. 1) for x < 0 and x > LA, the wave function
	(x) describing the particle is zero outside the well: 	 = 0 for x < 0 and
x > LA and, in the region with U(x) = 0 (0 � x � LA), the solutions of the
one-dimensional Schr�odinger equation correspond to standing waves with an
integer number n of half wavelengths � along LA : n �n=2 = LA.

FIGURE 1. Con�nement and quantization of the motion of a particle by an in�nite

potential well applied on the length scale LA for n = 1, 2 and 3. (adapted from Ref. [1])

This simple constraint results in the well-known quantized energy spectrum
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Here kn is the wave number and m is the free electron mass. To have an idea
about the characteristic energy scales involved and their dependence upon the



con�nement length LA, the energies E1 (Eq. (1)) for electrons con�ned by an
in�nite potential well with the sizes 1 �A, 1 nm and 1�m, are given in Table 1.

TABLE 1. Con�nement by the in�nite potential well

Con�nement length LA Energy E1 Temperature T

1 �A 40 eV 4� 105 K
1 nm 0:4 eV 4� 103 K
1 �m 0:4 �eV 4 mK

B Nanostructuring

Recent impressive progress in nanofabrication has made it possible to realize
the whole range of con�nement lengths LA : from 1 �m (photo-and e-beam
lithography), via 1 nm to 1 �A (single atom manipulation) and, through that,
to control the con�nement energy (temperature) from a few mK higher up to
far above room temperature (Table 1).
This progress has stimulated dramatically the experimental and theoretical

studies of di�erent nanostructured materials and individual nanostructures.
The interest towards such structures arizes from the remarkable principle of
"quantum design", when quantum mechanics can be eÆciently used to tailor
the physical properties of nanostructured materials.
Nanostructuring can also be considered as a sort of arti�cial modulation.

We can identify then the main classes of nanostructured materials using the
idea of their modi�cation along one-, two- or three-axes, thus introducing
1-dimensional (1D)-, 2D- or 3D- arti�cial modulation (Fig. 2).
The 1D or "vertical" modulation represents then the class of superlattices

or multilayers (Fig. 2a) formed by alternating individual �lms of two (A,
B) or more di�erent materials in a stack. Some examples of di�erent types
of multilayers are superconductor/insulator (Pb/Ge, WGe/Ge,...), super-
conductor/metal (V/Ag,...), superconductor/ferromagnet (Nb/Fe, V/Fe,...),
ferromagnet/metal (Fe/Cr, Cu/Co,...), etc. [2{13].
The "horizontal" (lateral) superlattices (Fig. 2b) correspond to the 2D ar-

ti�cial modulation achieved by a lateral repetition of one (A), two (A,B) or
more elements (further on we shall call them "elementary plaquettes"). As
examples, we should mention here antidot arrays or antidot lattices, when
A=microhole ("antidot"), or arrays and lateral superlattices consisting of mag-
netic dots.
If the 2D lateral modulation is applied to each individual layer of a multi-

layer or superlattice, then we deal with the 1D+2D=3D arti�cial modulation
(Fig. 2c). For example, if arrays of antidots are made in a multilayer, then



FIGURE 2. Schematic presentation of the vertical modulation in superlattices or multi-

layers (a), of the horizontal modulation achieved by a lateral repetition of elements A and

B (b) and of the 1D+2D=3D arti�cial modulation (c). (adapted from Ref. [1])

we have a system with 3D arti�cial modulation which combines 2D lateral
"horizontal" with the 1D "vertical" modulation.

Finally, macroscopic nanostructured samples, with a huge number N of re-
peated elementary nanoplaquettes (A,B,...), are examples of very complicated
systems if the con�ned charge carriers or 
ux lines are strongly interacting
with each other and the relevant interaction is of a long range. In this case
the essential physics of such systems can be understood much better if one
uses clusters of elements (N ' 10), instead of their huge arrays (N ! 1)
(Fig. 3). Schematic presentation of the vertical modulation in superlattices or
multilayers (a), of the horizontal modulation achieved by a lateral repetition
of elements A and B (b) and of the 1D+2D=3D arti�cial modulation (c).
(adapted from Ref. [1])

These clusters, occupying an intermediate place between individual nano-
structures (N = 1) and nanostructured materials (N !1), are very helpful
model objects to study the interactions between 
ux lines or charge carriers
con�ned by �nite arrays (clusters) of elements A. The "growth" of clusters on
the way from an individual object A to a huge array of A's can be done either
in a 1D or 2D fashion (Fig. 3), thus realizing 1D chains or 2D-like clusters of
elements A.



FIGURE 3. Schematic presentation of an individual structure (A="nanoplaquette"), a

cluster of nanoplaquettes and a huge array of nanoplaquettes. (adapted from Ref. [1])

C Con�ning the superconducting condensate

The nanostructured materials and individual nanostructures, introduced
in the previous section, can be prepared using modern facilities for nano-
fabrication. It is worth, however, �rst asking ourselves a few simple questions
like: why it is important to make such structures, what interesting new physics
should be expected, and why it is of interest to focus on superconducting (and
not, for example, normal metallic) nanostructured materials?
First of all, by making nanostructured materials, one creates an arti�cial

potential in which charge carriers or 
ux lines are con�ned. The size LA

of an elementary "plaquette" A, gives roughly the expected energy scale in
accordance with Table 1, while the positions and topology of the elements
A determine the pattern of the potential modulation. The concentration of
charge carriers or 
ux lines can be controlled by varying a gate voltage (in 2D
electron gas systems) [14] or the applied magnetic �eld (in superconductors)
[15]. In this situation, di�erent commensurability e�ects between the �xed
number of elements A in an array and a tunable number of charge or 
ux
carriers are observed.
Secondly, modifying the sample topology in nanostructured materials cre-

ates a unique possibility to impose the desired boundary conditions, and
through that to change the properties of the sample. A Fermi liquid or a
superconducting condensate con�ned within such materials will be subjected
to severe constraints and, as a result, the properties of these materials will be
strongly a�ected by the boundary conditions.
While a normal metallic system should be considered quantum-mechanically

by solving the Schr�odinger equation:

1

2m

�
�{�h~r� e ~A

�2
	+ U 	 = E 	 ; (2)

a superconducting system is described by the two coupled Ginzburg-Landau



(GL) equations:

1

2m?
(�i�h~r� e? ~A)2	s + �j	sj2	s = ��	s (3)

~j = ~r� ~h =
e?

2m?

h
	?

s(�{�h~r� e? ~A)	s +	s({�h~r� e? ~A)	?
s

i
; (4)

with ~A the vector potential which corresponds to the microscopic �eld ~h =
rot ~A=�0, U the potential energy, E the total energy, � a temperature de-
pendent parameter changing sign from � > 0 to � < 0 as T is decreased
through Tc, � a positive temperature independent constant, m? the e�ective
mass which can be chosen arbitrarily and is generally taken as twice the free
electron mass m.
Note that the �rst GL equation (Eq. (3)), with the nonlinear term �j	sj2	s

neglected, is the analogue of the Schr�odinger equation (Eq. (2)) with U = 0,
when making a few substitutions: 	s $ 	, e? $ e, �� $ E and m? $ m.
The superconducting order parameter 	s corresponds to the wave function 	
in Eq. (2). The e�ective charge e? in the GL equations is 2e, i.e. the charge
of a Cooper pair, while the temperature dependent GL parameter �

�� =
�h2

2m? �2(T )
(5)

plays the role of E in Schr�odinger equation. Here �(T ) is the temperature
dependent coherence length:

�(T ) =
�(0)q
1� T

Tc0

: (6)

Schematic presentation of an individual structure (A="nanoplaquette"), a
cluster of nanoplaquettes and a huge array of nanoplaquettes. (adapted from
Ref. [1])
The boundary conditions for interfaces normal metal-vacuum and

superconductor-vacuum are, however, di�erent (Fig. 4):

		?jb = 0 (7)

(�{�h~r� e? ~A)	s

���
?;b

= 0 (8)

i.e. for normal metallic systems the density is zero (Dirichlet boundary condi-
tion), while for superconducting systems, the gradient of 	s (Neumann bound-
ary condition) has no component perpendicular to the boundary. As a conse-
quence, the supercurrent cannot 
ow through the boundary. The nucleation



FIGURE 4. Boundary conditions for interfaces normal metal-vacuum (quantum particle

in a box) and superconductor-vacuum (con�ned superconducting condensate). (adapted

from Ref. [1])

of the superconducting condensate is favored at the superconductor/ vacuum
interfaces, thus leading to the appearance of superconductivity, at the third
critical �eld Hc3(T ), in a surface sheet with a thickness �(T ) (Fig. 5).

For bulk superconductors the surface-to-volume ratio is negligible and there-
fore superconductivity in the bulk is not a�ected by a thin superconducting
surface layer. For nanostructured superconductors with antidot arrays, how-
ever, the boundary conditions (Eq. (8)) and the surface superconductivity
introduced through them, become very important if LA � �(T ). The advan-
tage of superconducting materials in this case is that it is not even necessary
to go to nm scale (like for normal metals), since for LA of the order of 0.1-
1.0 �m the temperature range where LA � �(T ), spreads over 0:01 � 0:1 K
below Tc due to the divergence of �(T ) at T ! Tc0 (Eq. (6)).

In principle, the mesoscopic regime LA � �(T ) (and LA � �(T ), with
� the magnetic penetration depth) can eventually be reached even in bulk
superconducting samples with LA � 1 cm-1 m, since �(T ) (and �(T ) as well)
diverges at T ! Tc0. However, the temperature window where LA � �(T )
is so narrow, not more than � 1 nK below Tc0, that one needs ideal sample
homogeneity and perfect temperature stability.

In the mesoscopic regime LA � �(T ), which is quite easily realized in nano-
structured materials, the surface superconductivity can cover the whole avail-
able space occupied by the material, thus spreading superconductivity all over
the sample. It is then evident that in this case the surface e�ects play the role
of bulk e�ects (see Fig. 5).

Using the similarity between the linearized GL equation (Eq. (3)) and the
Schr�odinger equation (Eq. (2)), the approach to determine Tc(H) can be



(a) (b)

superconducting

normal

FIGURE 5. Schematic illustration of the surface superconductivity nucleated at the third

critical �eldHc3(T ). (a) In a bulk superconductor the surface superconducting sheet appears

only at the external sample boundary, (b) while in a laterally nanostructured superconductor

the surface superconductivity appears around each antidot, thus covering the whole sample

interior. In the latter case the role of Hc2(T ) is played by Hc3(T ).

formalized as follows: since the parameter -� (Eqs. (3) and (5)) plays the
role of energy E (Eq. (2)), then the highest possible temperature Tc(H) for
the nucleation of the superconducting state in presence of the magnetic �eld
H always corresponds to the lowest Landau level ELLL(H) found by solving
the Schr�odinger equation (Eq. (2)) with "superconducting" boundary condi-
tions (Eq. (8)).
Figure 6 illustrates the application of this basic rule to the calculation of the

upper critical �eld Hc2(T ): indeed, if the well-known classical Landau solution
for the lowest level in a bulk sample ELLL(H) = �h!=2, where ! = e?�0H=m

?

is the cyclotron frequency, is taken, then, from -� = ELLL(H), we have

�h2

2m? �2(T )
=

�h!

2

�����
H=Hc2

(9)

with the help of Eq. (5). We obtain:

�0Hc2(T ) =
�0

2��2(T )
; (10)

with �0 = h=e? = h=2e the superconducting 
ux quantum.
In nanostructured superconductors, where the boundary conditions

(Eq. (8)) strongly in
uence the Landau level scheme, ELLL(H) has to be



FIGURE 6. Landau level scheme for a particle in a magnetic �eld. From the lowest

Landau level ELLL(H) = �h!=2 the second critical �eld Hc2(T ) is derived (solid line).

(adapted from Ref. [1])

calculated for each speci�c con�nement geometry. By measuring the shift of
the critical temperature Tc(H) in a magnetic �eld, one can compare the exper-
imental phase boundary Tc(H) with the calculated level ELLL(H) and thus
check the e�ect of the con�nement topology on the superconducting phase
boundary for a series of nanostructured superconducting samples. The tran-
sition between normal and superconducting states is usually very sharp and
therefore the lowest Landau level can be easily traced as a function of ap-
plied magnetic �eld. The midpoint of the resistive transition from the super-
conducting to the normal state is usually taken as the criterion to determine
Tc(H). After the introduction, we are now ready to formulate the layout of
this review article: we present the systematic analysis of the in
uence of the
con�nement geometry on the superconducting phase boundary Tc(H) in a
series of nanostructured samples. We start with individual nanostructures of
di�erent topologies (lines, loops, dots) (Section II) and then focus on "interme-
diate" systems: clusters of loops fabricated in the form of a 1D chain of loops
(Section III.A) or 2D antidot clusters (Section III.B). Huge arrays of antidots
are considered in Section IV where we deal, �rst of all, with the Tc(H) bound-
ary for superconducting �lms with antidot lattices. We then brie
y discuss

ux con�nement phenomena in superconductors with an antidot lattice.



II INDIVIDUAL NANOSTRUCTURES

To begin this section, we present the experimental results on the Tc(H)
phase boundary of individual superconducting mesoscopic structures of dif-
ferent topology. It is important to keep other parameters of these samples
constant, like material from which they are made (Al), the width of the lines
(w = 0:15 �m) and the �lm thickness � = 25 nm the same for all three struc-
tures, thus directly relating the di�erences in Tc(H) to topological e�ects. The
magnetic �eld H is always applied perpendicular to the structures.

A Line

In Fig. 7a the phase boundary Tc(H) of a mesoscopic line [16] is shown.
The solid line gives the Tc(H) calculated from the well-known formula [17]:

Tc(H) = Tc0

2
41� �2

3

 
w �(0)�0H

�0

!2
3
5 (11)

which, in fact, describes the parabolic shape of Tc(H) for a thin �lm of thick-
ness w in parallel magnetic �eld. Since the cross-section, exposed to the ap-
plied magnetic �eld, is the same for a �lm of thickness w in a parallel magnetic
�eld and for a mesoscopic line of width w in a perpendicular �eld, the same
formula can be used for both [16]. Indeed, the solid line in Fig 7a is a parabolic
�t of the experimental data with Eq. (11) where �(0) = 110 nm was obtained
as a �tting parameter. The coherence length obtained using this method, co-
incides reasonably well with the dirty limit value �(0) = 0:85(�0`)

1=2=132 nm
calculated from the known BCS coherence length �0=1600 nm for bulk Al [18]
and the mean free path ` = 15 nm, estimated from the normal state resistivity
� at 4:2K [19].
Another simple argument can be used as well to explain the parabolic rela-

tion Tc(H) / H2: the expansion of the energy E(H) in powers of H, as given
by the perturbation theory, is [20]:

E(H) = E0 + A1LH + A2SeH
2 + � � � (12)

where A1 and A2 are constant coeÆcients, the �rst term E0 represents the
energy levels in zero �eld, the second term is the linear �eld splitting with the
orbital quantum number L and the third term is the diamagnetic shift, with
Se the area exposed to the applied magnetic �eld.
Now, for the topology of the line with a width w much smaller than the

Larmor radius rH � w, any orbital motion is impossible due to the constraints
imposed by the boundaries onto the electrons inside the line. Therefore, in
this particular case L = 0 and E(H) = E0+A2SeH

2, which immediately leads
to the parabolic relation Tc / H2. This diamagnetic shift of Tc(H) can be



understood in terms of a partial screening of the magnetic �eld H due to the
non-zero width of the line [21].

FIGURE 7. The measured superconducting/normal phase boundary as a function of the

reduced temperature Tc(H)=Tc0 for a) the line, and b) the loop and the dot. The solid line

in (a) is calculated using Eq. (11) with �(0) = 110 nm as a �tting parameter. The dashed

line represents Tc(H) for bulk Al. Comparing Tc(H) for these three di�erent mesoscopic

structures, made of the same material, one clearly sees the e�ect of topology on Tc(H).

(adapted from Ref. [1])

B Loop

The Tc(H) of the mesoscopic loop [16], shown in Fig. 7b, demonstrates very
distinct Little-Parks (LP) oscillations [22] superimposed on a monotonic back-
ground. A closer investigation leads to the conclusion that this background
is very well described by the same parabolic dependence as the one which we
just discussed for the mesoscopic line [16] (see the solid line in Fig. 7a). As
long as the width of the strips w, forming the loop, is much smaller than the
loop size, the total shift of Tc(H) can be written as the sum of an oscillatory
part, and the monotonic background given by Eq. (11) [16,23]:

Tc(H) = Tc0

2
41� �2

3

 
w �(0)�0H

�0

!2

� �2(0)

R2

�
n� �

�0

�235 (13)

where R2 = R1 R2 is the product of inner and outer loop radius, and the
magnetic 
ux threading the loop � = �R2�0H. The integer n has to be
chosen so as to maximize Tc(H) or, in other words, selecting ELLL(H).



The LP oscillations originate from the 
uxoid quantization requirement,
which states that the complex order parameter 	s = j	sj exp ({') should be
a single-valued function when integrating along a closed contour

I
~r' � dl = n 2� n = � � � ;�2;�1; 0; 1; 2; � � � (14)

Fluxoid quantization gives rise to a circulating supercurrent in the loop
when � 6= n�0, which is periodic with the applied 
ux �=�0.
Using the sample dimensions and the value for �(0) obtained before for the

mesoscopic line (with the same width w = 0:15 �m), the Tc(H) for the loop
can be calculated from Eq. (13) without any free parameter. The solid line in
Fig. 7b shows indeed a very good agreement with the experimental data [16].
It is worth noting here that the amplitude of the LP oscillations is about a
few mK - in qualitative agreement with the simple estimate given in Table 1
for LA ' 1 �m.
The susceptibility of a single mesoscopic Al ring, showing LP oscillations,

has been studied recently by Zhang and Price [24], who found an excellent
agreement with the GL theory for the susceptibility below Tc.
The lower critical �eld of a loop is found from the condition that half a 
ux

quantum is applied, thus giving [25]:

�0H
loop
c1 =

1

2

�0

� R2
; (15)

which is totally di�erent from the Hc1 value of a bulk superconductor.
In order to measure the resistance of a mesoscopic loop, electrical contacts

have, of course, to be attached to it, and as a consequence, the con�nement
geometry is changed. A loop with attached contacts and the same loop with-
out any contacts are, strictly speaking, di�erent mesoscopic systems. This
"disturbing" or "invasive" aspect ("Schr�odinger cat") of probing a quantum
object can now be exploited for the study of nonlocal e�ects [26]. Due to the
divergence of the coherence length �(T ) at T = Tc0 (Eq. (6)) the coupling of
the loop with the attached leads is expected to be very strong for T ! Tc0.
The measured superconducting/normal phase boundary as a function of the

reduced temperature Tc(H)=Tc0 for a) the line, and b) the loop and the dot.
The solid line in (a) is calculated using Eq. (11) with �(0) = 110 nm as a �tting
parameter. The dashed line represents Tc(H) for bulk Al. Comparing Tc(H)
for these three di�erent mesoscopic structures, made of the same material, one
clearly sees the e�ect of topology on Tc(H). (adapted from Ref. [1])
Fig. 8 shows the results of these measurements [26]. Both "local" (poten-

tial probes across the loop V1=V2) and "nonlocal" (potential probes aside of
the loop V1=V3 or V2=V4) LP oscillations are clearly observed. For the "local"
probes there is an unexpected and pronounced increase of the oscillation am-
plitude with increasing �eld, in disagreement with previous measurements on



FIGURE 8. Local (V1=V2) and nonlocal (V1=V3 or V2=V4) phase boundaries Tc(H). The

measuring current is sent through I1=I2. The solid and dashed lines correspond to the

theoretical Tc(H) of an isolated loop and a one-dimensional line, respectively, both made

of strips of width w. The inset shows a schematic of the structure, where the distance

P = 0:4 �m. (adapted from Ref. [26])

Al microcylinders [23]. In contrast to this, for the "nonlocal" LP e�ect, the
oscillations rapidly vanish when the magnetic �eld is increased.

When increasing the �eld, the background suppression of Tc (Eq. (11))
results in a decrease of �(T ). Hence, the change of the oscillation amplitude
with H is directly related to the temperature-dependent coherence length. As
long as the coherence of the superconducting condensate protuberates over
the nonlocal voltage probes, the nonlocal LP oscillations can be observed.

On the other hand, the importance of an "arm" attached to a mesoscopic
loop, was already demonstrated theoretically by de Gennes in 1981 [27]. For
a perfect 1D loop (vanishing width of the strips) adding an "arm" will result
in a decrease of the LP oscillation amplitude, what was observed indeed at
low magnetic �elds, where �(T ) is still large. With these experiments, it has
been proved that adding probes to a structure considerably changes both the
con�nement topology and the phase boundary Tc(H).

The e�ect of topology on Tc(H), related to the presence of the sharp corners
in a square loop, has been considered by Fomin et al. [28]. In the vicinity of
the corners the superconducting condensate sustains a higher applied magnetic
�eld, since at these locations the super
uid velocity is reduced, in comparison
with the ring. Consequently, in a �eld-cooled experiment, superconductivity



will nucleate �rst around the corners [28]. Eventually, for a square loop, the
introduction of a local superconducting transition temperature seems to be
needed. As a result of the presence of the corner, the Hc3(T ) of a wedge with
an angle � [29] will be strongly enhanced at the corner resulting in the ratio
Hc3=Hc2 � 3:79 for � � 0:44 � [29].

Another interesting possibility for a superconducting ring has been ana-
lyzed in Refs. [30{34]: under certain conditions superconductivity sponta-
neously breaks at some spot along the perimeter of the ring, so that the
superconducting area changes from multiple to single connectivity. The physics
behind this interesting theoretical prediction is the following. The oscillatory
Tc(�) phase boundary is caused by a periodic variation of a circular super-
current (when the applied 
ux �=�0 is not integer, see Fig. 9a) which is
induced in a ring in order to ful�ll 
uxoid quantization. The highest current
(and therefore the strongest reduction of Tc(�) is realized for half integer 
ux
when �=�0 � n = 1=2 (see Fig. 7b and 8). In this situation it may turn
out, however, that somewhere in the ring the order parameter 	s is sponta-
neously suppressed and a sort of 'normal core' is created somewhere along
the ring circumference (see Fig. 9b). The energy of this normal state core,
below the Tc(�) line, is, of course, higher than the energy corresponding to
a superconducting state everywhere in the ring, but, at the expense of that,
the circular supercurrent is interrupted, thus e�ectively opening the ring for
entrance and removal of 
ux. While Horane et al. [30] predicted the existence
of the singly connected state for rings made of "1D" strips, Berger and Ru-
binstein [33] showed that the temperature region where the singly connected
state exists, can be enhanced by proper tuning the nonuniform 'strip width'
pro�les along the ring.

(a)

Supercurrent

normal
spot

normal
spot

(b)

FIGURE 9. Schematic view of a mesoscopic loop in (a) the multiply connected state,

(b) the singly connected state, where a normal spot is spontaneously created and conse-

quently no supercurrent 
ows.



C Dot

For a cylindrical symmetry, the choice of the coordinates (r; '; z) and the

gauge ~A = (Hr=2)~e', where ~e' is the tangential unit vector, is well suited.
The solution of the Hamiltonian (Eq. (3) with the nonlinear term neglected)
in cylindrical coordinates has the following form [35]:

	s(r; ') = e�{L'rL
(L+1)=2 exp

 
�
r

2

2

!
M(�N;L + 1; 
r2) : (16)

Here 
 = e? �0H=h and the energy E? of the motion in the plane perpendicular
to H is determined by the orbital quantum number L and parameter N , which
is not necessarily an integer number, as we shall see later:

E? =
e?�h�0H

2m?
(2N � L+ L + 1) : (17)

The function M is the Kummer function de�ned as:

M(a; c; y) = 1 +
a

c
y +

a(a+ 1)

c(c+ 1)

y2

2!
+
a(a+ 1)(a+ 2)

c(c+ 1)(c+ 2)

y3

3!
+ � � � ; (18)

where a = �N , c = L + 1, y = 
r2. Introducing the dimensionless radius
R =

p

 r2 = �=�0, the superconducting order parameter can be written in

the form

	L(R;') = e�{L'RL exp

 
�R

2

2

!
M(�N;L + 1; R2) : (19)

The representation of the order parameter 	s =
P

L cL	L as an expansion
over states with di�erent L for in�nite samples has been analyzed in Ref. [36],
where M(0; L + 1; R2) = 1 has been taken. Under these conditions, the
functions j	Lj have their maxima at R2 = L, i.e., the area enclosed by the
circle with the radius corresponding to the j	Ljmaximum is always penetrated
by an integer number L of the 
ux quanta: �=�0 = L. Here in this review,
we shall analyze the case of �nite samples, where the N value has to be found
from the boundary condition (Eq. (8)). It is very important to note that
in the general form (Eq. (16) and Eq. (17)) there are no limitations on the
parameter N : it is not necessarily an integer number. The only argument,
which is usually given in favor of taking integer N , is a possibility to get a cut
o� in the summation (Eq. (18)). Indeed, if one inserts an integer N into the
summation, then by adding 1 to N in each new term one eventually comes to
the situation where �N +N = 0 and all subsequent terms in the summation
will be equal to zero. Thus by the cuto� we just use a �nite number of terms
in the summation (Eq. (18)) and of course M is �nite in this case. But we
should keep in mind that any converging, but in�nite row also gives a �nite



solution for M . Therefore, not only positive integer N in Eq. (17), but also
noninteger and even negative N values are possible. In �nite size samples
the N value, which we further denote as N(L;R0), has to be found from the
boundary condition at R = R0 (Eq. (8)), where R0 is the normalized disk
radius:

@j	s(R)j
@R

�����
R=R0

: (20)

Since we are looking for the lowest possible energy state, we should take the
minus sign in the argument of the exponent exp(�{L') in the solution given
by Eq. (18). In this case �L and +L in Eq. (17) cancel and for any L the
energy levels are given by:

E? = �h!
�
N +

1

2

�
; (21)

where ! = e?�0H=m
? is the cyclotron frequency.

This result coincides with the well-known Landau quantization, but now N
is any real number, including negative real number, which is to be calculated
from Eq. (20). Using the expression

dM(a; c; y)

dy
=

a

c
M(a + 1; c+ 1; y) (22)

for the derivative of the Kummer function, we can �nd the N(L;R0) value,
which obeys the boundary condition (Eq. (20)), from the equation:

(L� R2
0)M(�N;L + 1; R2

0)�
2NR2

0

L + 1
M(�N + 1; L+ 2; R2

0) = 0: (23)

The remarkable thing about the N(L;R0) values, found from the solutions
of Eq. (20), is that they are negative, which immediately gives the energy
E? in Eq. (21) lower than �h!=2. As a result of the con�nement with the
superconducting boundary conditions, the energy levels in �nite samples lie
below the classical value �h!=2 for in�nite samples [37]. The whole energy
level scheme (Fig. 10), found by Saint-James [37], can be reconstructed by
calculating E? vs. R2

0 for di�erent L values. From this diagram one can easily
go to the �eld versus temperature plot, using the relation E? = ��.
To conclude this discussion, we note that in �nite samples N is a bad

quantum number. It is rather a parameter which has to be found from the
boundary condition. A good quantum number for the problem is L. By
forming a superconducting condensate with a proper �nite L andN(L;R0) < 0
we conserve the rotational momentum and at the same time reduce the energy
below �h!=2 [38].



FIGURE 10. Energy levels versus normalized 
ux �=�0 for a superconducting cylinder

in a parallel magnetic �eld. The lowest lying cusplike Hc3(T ) line is formed due to the

change of the orbital quantum number L. (adapted from Ref. [38])
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As shown above, because of the onset of surface superconductivity at
Hc3(T ), corresponding to negative N in Eq. (21), the superconductivity can
appear at magnetic �elds well above the Hc2(T ) line (found for N = 0). By
changing the variable E? in Fig. 10 into T , we obtain the cusplike phase
boundary Hc3(T ) as shown in Fig. 11, which is due to switching between
di�erent orbital momenta L. The phase boundary of the superconducting
disk (Fig. 11) has been observed experimentally by Buisson et al. [37] and by
Moshchalkov et al. [16]. It should be emphasized here that the presence of the
oscillations in the Hc3(T ) curve is crucially dependent on the imposed Neu-
mann boundary conditions [25]. Contrary to that, the equivalent eigenvalue
spectrum with Dirichlet boundary conditions does not show any oscillations,
if one follows the lowest Landau level ELLL(H) [39].
The Landau level scheme for a cylindrical dot with "superconducting"

boundary conditions (Eq. (8)) is presented in Fig. 10. Each level is character-
ized by a certain orbital quantum number L where 	s = j	sj exp (�{L') [38].
The levels, corresponding to the sign "+" in the argument of the exponent are
not shown since they are situated at energies higher than the ones with the
sign "-". The lowest Landau level in Fig. 10 represents, in fact, a cusplike en-
velope, obtained from the switching between di�erent L values with changing
magnetic �eld. Following our main guideline that ELLL(H) determines Tc(H),
for the dot, a cusplike superconducting phase boundary with nearly perfect
linear background is expected. The measured phase boundary Tc(H), shown
in Fig. 7b, can be nicely �tted by the calculated one (Fig. 10), thus proving
that Tc(H) of a superconducting dot indeed consists of cusps with di�erent L's
[37]. Each �xed L describes a giant vortex state which carries L 
ux quanta
�0. The linear background of the Tc(H) dependence is very close to the third
critical �eld Hc3(T ) ' 1:69 Hc2(T ), which is obtained in the L ! 1 limit
[18,40]. Contrary to the loop, where the LP oscillations are perfectly periodic,
the dot demonstrates a certain aperiodicity [41], in very good agreement with
the theoretical calculations [25,37].
The lower critical �eld of a cylindrical dot Hdot

c1 corresponds to the change
of the orbital quantum number from L = 0 to L = 1, i.e. to the penetration
of the �rst 
ux line [25]:

�0H
dot
c1 = 1:924

�0

� R2
: (24)

For a long mesoscopic cylinder described above, demagnetization e�ects
can be neglected. On the contrary, for a thin superconducting disk, these
e�ects are quite essential [42{44]. For a mesoscopic disk, made of a Type-I
superconductor, the phase transition between the superconducting and the
normal state is of the second order if the expulsion of the magnetic �eld
from the disk can be neglected, i.e. when the disk thickness is comparable
with � and �. When the disk thickness is larger than a certain critical value
�rst order phase transitions should occur. The latter has been con�rmed in



ballistic Hall magnetometry experiments on individual Al disks [45{47]. A
series of �rst order transitions between states with di�erent orbital quantum
numbers L have been seen in magnetization curvesM(H) [45] in the �eld range
corresponding to the crossover between the Meissner and the normal states.
Besides the cusplike Hc3(T ) line, found earlier in transport measurements
[16,37], transitions between the L = 2 and L = 1 states have been observed
[45] by probing the superconducting state below the Tc(H) line with Hall
micromagnetometry. Still deeper in the superconducting area the recovery
of the normal �0-vortices and the decay of the giant vortex state might be
expected [44]. The former has been considered in Ref. [48] in the London limit,
by using the image method. Magnetization and stable vortex con�gurations
have been recently analyzed in mesoscopic disks in Refs. [42{44].

III CLUSTERS OF LOOPS AND ANTIDOTS

A 1D Clusters of loops

FIGURE 12. AFM micrographs of the studied structures: a) the bola, b) the double loop,

and c) the triple loop. (adapted from Ref. [49])

After the description of the con�nement e�ects of several individual super-
conducting structures (A = line, loop, dot) we are ready to move further on
to clusters of elements A (Fig. 3) on our way from "single plaquette" samples
to materials nanostructured by introducing huge arrays of plaquettes A. First
we take A = loop and consider one-dimensional multiloop structures: "bola",
double and triple loop Al structures. Figure 12 shows a AFM image of the
structures. For these geometries some interesting theoretical predictions have
been made, for which no experimental veri�cation has been carried out up to
now (see more in Ref. [49]). The loops in all three structures have the same
dimensions, thus leading to the same magnetic �eld period �0�H = 1:24mT .
The strips forming the structures are 0:13 �m wide and the �lm thickness
� = 34 nm. In all the experimental data shown here, the parabolic back-
ground (Eq. (11)) is already subtracted in order to allow a direct comparison
with the theory. In the temperature interval where the Tc(H) boundary was



measured, the coherence length �(T ) is considerably larger than the width w
of the strips. This makes it possible to use the one-dimensional models for
the calculation of ELLL(H) and thus Tc(H). The basic idea is to consider j	sj
= constant across the strips forming the network and to allow a variation of
j	sj only along the strips. In the simplest approach j	sj is assumed to be spa-
tially constant (London limit) [50,51], in contrast to the de Gennes-Alexander
(dGA) approach [67,27,52], where j	sj is allowed to vary along the strips. In
the latter approach one imposes:

X
n

 
{
@

@x
+
2�

�0
Ak(x)

!
	s(x) = 0 (25)

at the points where the current paths join. The summation is taken over all
strips connected to the junction point. Here, x is the coordinate de�ning the
position on the strips, and Ak is the component of the vector potential along
x. Eq. (25) is often called the generalized �rst Kirchho� law, ensuring current
conservation [67]. The second Kirchho� law for voltages in normal circuits is
now replaced by the 
uxoid quantization requirement (Eq. (14)), which should
be ful�lled for each closed contour in the superconducting network (around
each loop).
In Figs. 13-15 the Tc(H) boundaries of the three structures are shown. The

dashed lines are the phase boundaries calculated in the London limit, while
the solid lines give the results from the dGA approach. As we discussed in
Section II.B for a mesoscopic loop, attaching contacts modi�es the con�nement
topology, so that the amplitude of the local LP oscillations is reduced at low
magnetic �elds. Here as well, the inclusion of the leads decreases the amplitude
of the oscillations. The dash-dotted line in Figs. 13-15 gives the result of the
dGA calculation where the presence of the leads has been included. The values
for �(0) obtained from the �ts agree within a few percent with the �(0) values
found independently from the monotonic background of Tc(�) (see Eq. (11)).
First, in Fig. 13, we consider the mesoscopic "bola" - two loops connected

by a wire. Fink et al. [67] showed that, in the complete magnetic 
ux interval,
the spatially symmetric solution, with equal orientation of the supercurrents
in both loops, has a lower energy than the antisymmetric solution. Coming
back to the similarity between a mesoscopic loop and a hydrogen atom, we
discussed in Section II.B, we can then compare the bola with a H2 molecule,
where the symmetric and the antisymmetric solutions correspond to singlet
and triplet states, respectively. In fact, Tc(�) of the bola is the same as for a
single loop provided that the length of the strip connecting the two loops is
short, as con�rmed by the LP oscillations observed in the experimental Tc(�)
(Fig. 13).
In what follows we will focus on the results obtained by Bruyndoncx et

al. [49] on the phase boundaries of the double (Fig. 14) and the triple loop
(Fig. 15). To facilitate the discussion we divide the 
ux period in two intervals:



FIGURE 13. Experimental Tc(�) data for the bola with the parabolic background

(Eq. (11)) subtracted. The dots are the experimental data points, while the lines cor-

respond to the di�erent theoretical results as explained in the text. a) Single period of

Tc(�), b) A few periods of the experimental Tc(�) curve. (adapted from Ref. [1])


ux regime I for �=�0 < g or �=�0 > (1�g) and 
ux regime II for g < �=�0 <
(1� g). In the 
ux regime I the phase boundaries, predicted by the di�erent
models, are nearly identical. Near �=�0 = 1=2 (
ux regime II), however, clear
di�erences are found between the dGA approach and the London limit. The
dGA result �ts better the experimental data with respect to the crossover point
g between regimes I and II, and the amplitude of the Tc oscillations. Using
the dGA approach, the spatial modulation of j	sj and the supercurrents for
di�erent values at the Tc(�) boundary has been calculated. In the 
ux regime I
j	sj varies only slightly and therefore the results of the London limit and the
dGA models nearly coincide. The elementary loops have an equal 
uxoid
quantum number (and consequently an equal supercurrent orientation) for
both the double and the triple loop geometry. For the double loop this leads
to a cancellation of the supercurrent in the middle strip, while for the triple
loop the 
uxoid quantization condition (Eq. (14)) results in a di�erent value
for the supercurrent in the inner and the outer loops. As a result, the common
strips of the triple loop structure carry a �nite current.

In the 
ux regime II, qualitatively di�erent states are obtained from the
London limit and the dGA approach: the states calculated within the dGA
approach have strongly modulated j	sj along the strips. This is most severe
for the double loop: 	s shows a node (j	sj = 0) in the center of the common
strip, the phase ' having a discontinuity of � at this point. This node is a
one-dimensional analog of the core of an Abrikosov vortex, where the order



FIGURE 14. Experimental Tc(�) data for the double loop with the parabolic back-

ground (Eq. (11)) subtracted. The dots are the experimental data points, while the lines

correspond to the di�erent theoretical results as explained in the text. a) Single period of

Tc(�), b) A few periods of the experimental Tc(�) curve. (adapted from Ref. [1])

parameter also vanishes and the phase shows a discontinuity. In Fig. 16 the
spatial variation of j	sj along the strips is shown for �=�0 = 0:36 close to
the crossover point g. The dashed curve gives j	sj in 
ux regime I, which is
quasi-constant. The strongly modulated solution, which goes through zero in
the center, is indicated by the solid line. Although there exists a �nite phase
di�erence across the junction points of the middle strip, no supercurrent can

ow through the strip due to the presence of the node. This node is predicted
to persist when moving below the phase boundary into the superconducting
state [53,54]. Already in 1964 Parks [55] anticipated that, in a double loop,
"a part of the middle link will revert to the normal phase", and that "this
in e�ect will convert the double loop to a single loop", giving an intuitive
explanation for the maximum in Tc(�) at �=�0 = 1=2. Such a modulation of
j	sj is obviously excluded in the London limit, where the loop currents have
an opposite orientation and add up in the central strip, thus giving rise to a
rather high kinetic energy. An extra argument in favor of the presence of the
node is given by the much better agreement for the crossover point g when the
presence of the leads is taken into account in the calculations (see dash-dotted
line in Fig. 14).

For the triple loop (Fig. 15a) the modulation of j	sj is still considerable in

ux regime II, but it does not show any nodes. Therefore the supercurrent
orientations can be found from the 
uxoid quantum numbers fnig, obtained
from integrating the phase gradients along each individual loop. When passing



FIGURE 15. Experimental Tc(�) data for the triple loop with the parabolic background

(Eq. (11)) subtracted. The dots are the experimental data points, while the lines correspond

to the di�erent theoretical results as explained in the text. a) Single period of Tc(�), b) A

few periods of the experimental Tc(�) curve. (adapted from Ref. [1])

through the crossover point between 
ux regime I and regime II only the
supercurrent in the middle loop is reversed, while increasing the 
ux above
�=�0 = 1=2 implies a reversal of the supercurrent in all loops.

Surprisingly, the behavior of a microladder with a linear arrangement of m
loops appears to be qualitatively di�erent for even and for odd m in the sense
that m determines the presence or absence of nodes in the common strips. For
an in�nitely long microladder j	sj was found to be spatially constant below a
certain � < �c [56], which is analogous to the states in 
ux regime I. For 
uxes
� > �c modulated j	sj states, with an incommensurate 
uxoid pattern, were
found. At �=�0 = 1=2, nodes appear at the center of every second common
(transverse) branch.

A variety of other structures (micronets) (coupled rings, bola's, a yin-yang,
in�nite microladders, bridge circuits, like a Wheatstone bridge, wires with
dangling branches, etc.) formed by 1D wires, have been analyzed in a se-
ries of publications [27,53,54,56{67] using the approach, initiated in 1981 by
de Gennes [27] and further developed by Alexander [52] and Fink et al. [67].
For all these structures very pronounced e�ects of topology on Tc(�) and
critical current have been predicted.



FIGURE 16. Calculated variation of j	sj along the circumference of the double loop,

at the phase boundary (�=�0 = 0:36). The dashed line is the solution with j	sj nearly

spatially constant, while the solid line is the state with a node in the center of the strip

connecting points A and D. (adapted from Ref. [1])

B 2D Clusters of antidots

As a 2D intermediate structure between individual elements A and their
huge arrays (Fig. 3), we shall consider the superconducting microsquare with a
2�2 antidot cluster [68,69]. In this case, the symbol A from Figure 2 indicates
an "antidot".
This microsquare with the 2�2 antidot cluster consists of a 2�2 �m2 super-

conducting square with four antidots (i.e. square holes of 0.53 � 0.53 �m2).
A Pb/Cu bilayer with 50 nm of Pb and 17 nm of Cu was used as the super-
conducting �lm for the fabrication of this structure [69]. The thin Cu layer
was deposited on the Pb to protect it from oxidation and to provide a good
contact-layer for the wire-bonding to the experimental apparatus. An AFM
image of the Pb/Cu 2�2 antidot cluster, is shown in Fig. 17 together with a
reference sample (i.e. a Pb/Cu microsquare of 2�2 �m2 without antidots).
The Pb(50 nm)/Cu(50 nm) bilayer behaves as a Type-II superconductor with
a Tc0 = 6:05K, a coherence length, �(0) � 35 nm and a dirty limit penetra-
tion depth, �(0) � 76 nm. The Tc(H) measurements on the reference sample
[68] revealed characteristic features originating from the con�nement of the
superconducting condensate by the dot geometry (see Section II.C). The ad-
ditional features observed in the Tc(H) phase boundary of the antidot cluster
can therefore be attributed to the presence of the antidots.
The experimental Tc(H) phase boundary is shown in Fig. 18. It was mea-

sured by keeping the sample resistance at 10% of its normal state value and
varying the magnetic �eld and temperature [68].



FIGURE 17. AFM image of the Pb/Cu 2�2 antidot cluster (on the left) and of the

reference sample (on the right). (adapted from Ref. [68])

Strong oscillations are observed with a periodicity of 2.6 mT and in each
of these periods, smaller dips appear at approximately 0.75 mT, 1.3 mT and
1.8 mT. The parabolic background superimposed on Tc(H) can again be de-
scribed by Eq. (11).

De�ning a 
ux quantum per antidot as �0 = h=2e = BS, where B = �0H
and S is an e�ective area per antidot cell (S= 0.8 �m2), the minima observed
in the magnetoresistance and the Tc(H) phase boundary at integer multiples
of 2.6 mT can be correlated with a magnetic 
ux quantum per antidot cell,
� = n�0. The ones observed at 0.75 mT, 1.3 mT and 1.8 mT correspond to
the values �=�0=0.3, 0.5 and 0.7.

The solutions obtained from the London model de�ne a phase boundary
which is periodic in � with a periodicity of �0. Within each parabola �Tc =

(�=�0)

2, where the coeÆcient 
 characterizes the e�ective 
ux penetration
through the unit cell. The 
-value is determined by the combination of �
and the e�ective size of the current loops. In Fig. 19, the �rst period of this
phase boundary, �Tc(�) = Tc0 � Tc(�) versus �=�0, is shown. There are
six parabolic solutions given by a di�erent set of 
ux quantum numbers fnig,
each one de�ning a speci�c vortex con�guration. In Fig. 19a, this is indicated
by the numbers shown inside the schematic drawings of the antidot cluster.
Note that some vortex con�gurations are degenerate.

From all these possible solutions, for each particular value of �=�0, only
the branch with a minimum value of �Tc(�) is stable (indicated with a solid
line in Fig. 19a). For the phase boundary, calculated within the 1D model
of 4 equivalent and properly attached squares, no �tting parameters were
used since the variation of Tc(�) was calculated from the known values for
� and the size. One period of the phase boundary of the antidot cluster
is composed of �ve branches and in each branch a di�erent stable vortex



FIGURE 18. Experimental phase boundary, �Tc(H) for the Pb/Cu 2�2 antidot cluster.

(adapted from Ref. [68])

con�guration is permitted. For the middle branch (0.37< �=�0 <0.63), the
stable con�guration is the diagonal vortex con�guration (antidots with equal
ni at the diagonals) instead of the parallel state (dashed line in Fig. 19a).

The net supercurrent density distribution circulating in the antidot cluster
for di�erent values of �=�0 has been determined using the same approach.
Circular currents 
ow around each antidot. For the states ni=0 and ni=1
currents 
ow in the opposite direction, since currents corresponding to ni=0
must screen the 
ux to ful�ll the 
uxoid quantization condition (Eq. (14)),
whereas for ni=1 they have to generate 
ux. At low values of �=�0, currents
are canceled in the internal strips and screening currents only 
ow around
the cluster. When the �eld range corresponding to the second branch of the
phase boundary is entered, a vortex (ni=1) is pinned around one antidot of
the cluster (see Fig. 19a). At the third branch, the second vortex enters the
structure and is localized in the diagonal. In the fourth branch of the phase
boundary the third vortex is pinned in the antidot cluster. And �nally, the
current distribution for the �fth branch is similar to that of the �rst branch
although currents 
ow in opposite direction [69].

Figure 19c shows the �rst period of the measured phase boundary Tc(�)
after subtraction of the parabolic background. The �rst period of the exper-
imental phase boundary is composed of �ve parabolic branches with minima
at �=�0 = 0, 0.3, 0.5, 0.7, 1. If we compare it with the theoretical predic-
tion given in Figure 19a, the overall shape can be reproduced although the
experimental plot has two major peaks at �=�0 = 0.2 and 0.8 whereas the



FIGURE 19. (a) Theoretical phase boundary, Tc(�=�0), calculated in the London limit

of the Ginzburg-Landau theory without any �tting parameter (solid line). All possible

parabolic solutions are represented by dotted lines. The dashed line indicates the non-stable

parallel con�guration. The schematic representation of the fnig quantum numbers at the

antidots and characteristic current 
ow patterns for each parabolic branch are also sketched.

(b) The Tc(�=�0) phase boundary, calculated as in Fig. 19a , but with the curvature "
"

of the parabolae taken as a free parameter. The 
-value was increased by a factor of two

with respect to its calculated value used in Fig. 19a. (c) First period of the measured phase

boundary shown in Fig. 18 after subtraction of the parabolic background. (adapted from

Ref. [68])



theoretical curve only predicts cusps around these positions.

The agreement between the measured and the calculated Tc(�) is improved
if we assume that the coeÆcient 
 can be considered as a �tting parameter.
This seems to be feasible if we take into account the simplicity and limitation
of the used 1D model. Due to the relatively large width of the strips forming
the 2�2 cluster, the sizes of the current loops can change since they are "soft"
in this case and not de�ned very precisely.

As a result, the coeÆcient 
 can not be treated as a known constant. If
we use it as a free parameter (Fig. 19b) then the curvature of all parabolae
forming Tc(H) can be changed and the calculated Tc(H) curve becomes closer
to the experimental one though the amplitude of the maxima at �=�0 = 0.2
and 0.8 is still lower than in the experiment (Fig. 19c). The discrepancy in
the amplitude of the maxima at �=�0= 0.2 and 0.8 could also be related to
the pinning of vortices by the antidot cluster when potential barriers between
di�erent vortex con�gurations may appear. At the same time, the achieved
agreement between the positions of the measured and calculated minima of the
Tc(H) curves con�rms that the observed e�ects are due to 
uxoid quantization
and formation of certain stable vortex con�gurations at the antidots [68,69].

An extrapolation of the results obtained from small to larger 2D antidot
clusters (3� 3, 4� 4, etc.) gives an idea about possible vortex con�gurations,
which can be expected in superconductors with huge regular arrays of antidots
(antidot lattices).

IV HUGE ARRAYS OF NANOSCOPIC

PLAQUETTES IN LATERALLY

NANOSTRUCTURED SUPERCONDUCTORS

The periodic repetition of a certain nanoscopic plaquette A over a macro-
scopic area makes it possible to implement the idea of an arti�cial lateral
modulation in nanostructured superconductors. Several di�erent types of ele-
mentary cells A have been used for that: antidots [70{72,41,73{76] (complete
microholes in a �lm), blind holes [77,78] (no perforation but a thickness mod-
ulation at the sites of the blind holes), magnetic [79{82], normal metallic [79],
or insulating dots [79] covered by (or grown on top of) a superconducting �lm.
These huge regular arrays of nanoscopic plaquettes can be used for systematic
studies of the con�nement and quantization phenomena in the presence of a
2D arti�cial periodic pinning potential. We begin in this section from the ef-
fect of lateral nanostructuring on the Tc(H) phase boundary and then brie
y
discuss pinning phenomena in superconductors with an antidot lattice.



A The Tc(H) phase boundary of superconducting �lms
with an antidot lattice

Superconducting �lms with a regular array of antidots are convenient model
objects to study the e�ects of the con�nement topology on the Tc(H) phase
boundary in two di�erent regimes [78]:
(i) The �rst or "collective" regime corresponds to the situation where all

elements A, forming an array, are coupled. From the experimental Tc(H)
data on antidot clusters we expect for �lms with an antidot lattice higher
critical �elds at � = n�0, which is in agreement with the appearance of the
Tc(H) cusps at � = n�0 in superconducting networks [83]. Here, the 
ux �
is calculated per unit cell of the antidot lattice.
(ii) On the other hand, by applying suÆciently high magnetic �elds, the

individual circular currents 
owing around antidots, can be decoupled and
the crossover to a "single object" behavior could be observed. In this case the
relevant area for the 
ux is the area of the antidot itself and we deal with
surface superconductivity around an antidot.
Figure 20 shows the critical �eld for a Pb(50 nm) sample with a square

antidot lattice (period d = 1 �m and the antidot radius ra = 0:24 �m). The
Tc(H) boundary is determined at 10% of the normal state resistance, Rn. In
this graph two distinct periodicities are present:
(i) Below � 8 mT cusps are found with a period of 2.07 mT, corresponding

to one 
ux-quantum per lattice cell. These cusps or "collective" oscillations
[78] are reminiscent of superconducting wire networks [83] and arize from the
phase correlations between the di�erent loops which constitute the network.
These cusps are obtained by narrowing the minima at n�0 with increasing
size N of the N � N antidot cluster (see the sharpening of the minima at
� = 0; �0 in Fig. 21; note that the phase boundary in the N ! 1 case has
a similar shape as the lowest energy level of the Hofstadter butter
y [15,84]).
An important observation is that the amplitude of these "collective" oscilla-
tions depends upon the choice of the resistive criterion. This is similar to
the case of Josephson junction arrays and weakly coupled wire networks [86]
where phase 
uctuations dominate the resistive behavior. The inset of Fig. 20
shows the �rst collective period, measured using three di�erent criteria. As
the criterion is lowered the cusps become sharper and the amplitude increases
well above the prediction based on the mean �eld theory for strongly cou-
pled wire networks [83]. At the same time, cusps appear at rational �elds
�=�0=1/4, 1/3, 1/2, 2/3 and 3/4 arizing from the commensurability of the
vortex structure with the underlying lattice.
(ii) Above � 8 mT, the collective oscillations die out and "single object"

cusps appear, having a periodicity which roughly corresponds to one 
ux
quantum �0 per antidot area, r

2
a. These cusps are due to the transition be-

tween localized superconducting edge states [78] having a di�erent angular



FIGURE 20. Critical �eld of a superconducting Pb(50 nm) �lm measured at 10% Rn

(Rn is the normal state resistance just above Tc), with d = 1 �m, ra = 0:24 �m. The inset

shows a zoom of the Tc(H) data determined using di�erent criteria 50% Rn, 10% Rn and

0.5% Rn. (adapted from Ref. [73])

momentum L. These states are formed around the antidots and are, just as
the dot in Section II.C, described by an orbital momentum quantum number
L.

Figure 22 shows the same critical �eld as presented in Fig. 20, but nor-
malized by the upper critical �eld Hc2 of a plain �lm without antidots,
�0Hc2 = �0=2��

2(T ) (�(0)=36 nm). The dashed line is the calculation of
the reduced critical �eld for a plain �lm with a single circular antidot with
radius ra = 0:24 �m. The positions of the cusps correspond reasonably well
to the experimental ones, taking into account that the model only considers
a single hole. From this comparison, an e�ective area �r2a = 0:187 �m2 is
determined which is close to the experimental value 0:16 �m2.

From Figures 20 and 22 it is possible to show that the transition from the
network regime to the "single object" regime takes place at a temperature T �

approximately given by the relation w � 1:6 �(T �), (where w is the width of
the superconducting region between two adjacent antidots) [85].

Experiments on systems with other antidot sizes demonstrate that the ra=d
ratio determines the relative importance of the "collective regime" and changes
the cross-over temperature T �. The relation w � 1:6�(T �), seems nevertheless



FIGURE 21. Calculations of the �rst Tc(H) period for an N � N antidot system

(N = 1; 2; 3; 4;1) in the London limit. The minima at integer �=�0 for a single loop

(N = 1) are transformed to sharp cusps as N !1. (adapted from Ref. [85])

FIGURE 22. The critical �eld of Fig. 20 normalized by �0=2��
2(T ) versus the applied

�eld. The dashed line (right axis) shows the theoretical result [78] for a single circular hole

with a radius ra = 0:24 �m.



to hold reasonably well and is similar to the transition from bulk nucleation of
superconductivity to surface nucleation in a thin superconducting slab parallel
to the magnetic �eld [40], which happens at a temperature Tcr satisfying
w = 1:8 �(Tcr).
Comparing the bulk Hc2(T ) curve with the Tc(H) boundary for �lms with

an antidot lattice, we clearly see a qualitative di�erence between the two,
caused by the lateral nanostructuring. For a superconducting network, Tc(H)
can be related to the lowest ELLL level in the Hofstadter butter
y [15,84] with
pronounced cusps at n�0 and a substructure within each period. In the case of
an antidot lattice, the size of the antidots is substantially smaller in compared
to a network. Here as well, Tc(H) is substantially modi�ed, but the cusps at
n�0 are still clearly seen [73].
Besides a substantial increase in Tc(H), lateral nanostructuring can also be

used to optimize 
ux pinning in order to enhance jc up to its theoretical limit
- the depairing current. We would like to emphasize the unique possibilities to
stabilize novel 
ux phases in superconducting �lms by making regular arrays
of pinning centers (antidots or magnetic dots). These phases are (for further
details we refer to Ref. [87]) :
(i)Multiquanta vortex lattices. They can be realized if the antidots are suÆ-

ciently large and �eld does not exceed the value Hns de�ned by the saturation
number ns � ra=2�(T ) [88]. This saturation number de�nes the maximum
number of vortices which can be trapped by an antidot with radius ra.
(ii) Composite 
ux lattices. These 
ux lattices are observed when the nor-

malized radii of the antidots ra=2�(T ) are suÆciently small and H exceeds
the limiting �eld Hns. Also the pinning potential at interstices should not be
very shallow to provide a weaker, but still suÆcient pinning to form a softer
interstitial 
ux solid. The composite 
ux lattices are characterized by the co-
existence of the two-weakly and strongly pinned-interpenetrating 
ux lattices
at interstices (�0 vortices) and antidots (n�0 vortices), respectively. [70,89]
(iii) Multiquanta vortex lattice coexisting with the interstitial 
uid of �0

vortices. This 
ux phase is formed when T ! Tc and the interstitial pinning
potential becomes very shallow and thus cannot prevent the melting of the
caged interstitial pinning �0 vortices.
The 
ux phases listed above can exist at temperatures not too far from Tc,

when a "single terrace" critical state is established [76]. At lower temper-
atures the tendency to form a conventional Bean pro�le starts to dominate
and matching anomalies are suppressed, for example for Pb/Ge, any M(H)
matching anomalies below 5 K can barely be seen.
Since in superconductors with antidot lattices the vortex con�nement is

well-controlled, it is interesting to use them as a model system to study the
problem of the "optimum pinning". The systematic measurements of the ef-
�ciency of antidots, as arti�cial pinning centers, as a function of their radius
ra (Fig. 23) have revealed [76] that for core pinning combined with the elec-
tromagnetic pinning the optimum size of the antidots is not �(T ) at all, but
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rather 2ra � �(T ) [76,90]. As a result, the highest critical currents have been
obtained for the multiquanta vortex lattices that can be stabilized by these
suÆciently large antidots, since their saturation number is ns � ra=2�(T )� 1.
At the same time it is quite evident that by increasing the antidot diameter
we are inducing a crossover to another regime (Fig. 24) when eventually 2ra
becomes nearly the same as the antidot lattice period d. In this case the width
of the superconducting strips w between the antidots is so small that at tem-
peratures not too far below Tc the superconducting network regime w � �(T )
can be realized.

For this regime the M vs. H curves are characterized by the presence of
sharp peaklike anomalies at integer matching �elds Hn (Fig. 24) and a re-
producible structure between Hn, which may correspond to rational matching
peaks. Both integer and rational matching peaks have been observed before
in various superconducting networks [15] and Josephson networks [91]. Visu-
ally the M(H) curves in the network regime are quite di�erent from those in
the multiquanta vortex regime: the former demonstrate the M(H) peaks at
H = Hn (Fig. 24), while the latter show pronounced cusps at integer matching
�elds (Fig. 25b).

In the regime of a superconducting network, critical currents in moderate
�elds are already substantially smaller than for the regime of the multiquanta
vortex lattices (see Fig. 23). At higher �elds, however, at least for the ra-
dius ra = 0:3 �m, critical currents are higher for the largest studied antidot
diameter, i.e., the optimum antidot size for pinning is �eld-dependent. The
reduction of the width of the superconducting "stripes" between the antidots,
needed to obtain high jc in high �elds, re
ects actually a well-known designer
rule for making superconducting cables, which usually consist of a bunch of
very �ne superconducting �laments embedded into a normal metallic matrix.
Therefore, the optimum size of the pinning centers turns out to be �eld de-
pendent: smaller antidots are more eÆcient in low �elds, while in higher �elds
larger antidots are needed to optimize jc.

Summarizing brie
y the analysis of the multiquanta vortices, it is worth
noting that the superconducting �lm with a lattice of relatively large antidots
seems to demonstrate the single-terrace critical state which appears due to
the multiple connectivity of the �lm and the stabilization of the n�0-
ux
lattices. The separation of the areas where 
ux penetrates from those where
the superconducting order parameter nucleates provides a kind of a "peaceful
coexistence" of FL's pinned by antidots with the superconducting condensate
in the space between them. Fabricating an antidot lattice to let 
ux go through,
we are thus helping the order parameter between the antidots to sustain much
higher currents and magnetic �elds.



V CONCLUSIONS

We have carried out a systematic analysis of quantization and con�nement
phenomena in nanostructured superconductors. The main idea of this study
was to vary the boundary conditions for con�ning the superconducting con-
densate by taking samples of di�erent topology and, through that, to modify
the lowest Landau level ELLL(H) and therefore the critical temperature Tc(H).
Three di�erent types of samples were used: (i) individual nanostructures
(lines, loops, dots), (ii) clusters of nanoscopic elements - 1D clusters of loops
and 2D clusters of antidots, and (iii) �lms with huge regular arrays of anti-
dots (antidot lattices). We have shown that in all these structures, the phase
boundary Tc(H) changes dramatically when the con�nement topology for the
superconducting condensate is varied. The induced Tc(H) variation is very
well described by the calculations of ELLL(H) taking into account the im-
posed boundary conditions. These results convincingly demonstrate that the
phase boundary in Tc(H) of nanostructured superconductors di�ers drasti-
cally from that of corresponding bulk materials. Moreover, since, for a known
geometry, ELLL(H) can be calculated a priori, the superconducting critical
parameter, i.e. Tc(H), can be controlled by designing a proper con�nement
geometry. While before, the optimization of the superconducting critical para-
meters has been done mostly by looking for di�erent materials, we now have
a unique alternative - to improve the superconducting critical parameters of
the same material through the optimization of the con�nement topology for
the superconducting condensate and for the penetrating magnetic 
ux.
The critical current enhancement due to the presence of the antidots, used

as arti�cial pinning arrays, has been analyzed. Di�erent pinning regimes can
be distinguished in dependence upon the antidot diameter. Controlling the
periodic pinning potential through lateral nanostructuring, the critical cur-
rent density jc(H) can be eventually enhanced up to the theoretical limit -
the depairing current. Therefore, the two important superconducting critical
parameters, Tc(H) and jc(H), can be drastically improved by using the con-
cept of "quantum design" : creating the proper con�nement topology for the
superconducting condensate and the penetrating 
ux lines to optimize Tc(H)
and jc(H).
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