
Figure 1: Sodium dodecyl sulphate (SDS) is the soap in your shampoo.

Case Study: Scattering from membrane-based

phases

Amphiphilic molecules

Amphiphilic molecules are molecules containing (at least) two moities which
have very different affinities. For example, SDS, shown in Fig. 1, has a
aliphatic chain that has a high affinity for oil (alkane), chemically-bonded to
an ionic group that has a high affinity for water. Similarly for lecithin.

As a consequence, as shown in Fig. 4 binary or tertiary mixtures of oil-
water-amphiphile self-assemble into more-or-less elaborate structures, which
have the role, e.g. in the case of SDS/water of protecting the aliphatic chains
from water, which in that case, they do by forming micelles.

The molecular geometry (which may be temperature dependent) is key in
determining the morphology of self-organiztion. Thus, while SDS, with one
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Figure 2: Lecithin is a lipid, similar to those that make up the membranes
surrounding your cells.
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Figure 3: Block copolymers are amphiphilic because chemically different
polymers (usually) do not like to mix, because polymers have relatively little
entropy of mixing.
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Figure 4: Various self-assemble structures in binary (solvent-amphiphile)
mixtures.

aliphatic chain, forms spherical micelles in water, lecithin, with two chains
similarly-long aliphatic chains forms extended bilayer membranes.

Phase diagrams

Fig. 5 [Strey et al.(1990)Strey, Shomaker, Doux, Nallet, and Olsson, Roux et al.(1992)Roux, Coulon,
shows the phase diagram of C12E5 – a non-ionic surfactant (a.k.a. non-ionic
amphiphile) in water, plotted on a semilogarithmic scale to emphasize the
behavior at low surfactant concentrations. There are several different phases:

• The L1 phase consists of C12E5-micelles in water.

• The L2-phase is a reverse micelle phase, consisting of spheres of water
in C12E5.

• The Lα phase is a lamellar phase, in which the amphiphiles self-organized
into bilayers, with the hydrophobic moieties protected within the inte-
rior of the bilayer, and in which the bilayers themselves self-organize
into an ordered, periodic structure, with the symmetry of a SmA liq-
uid crystal. item The L3 phase, which we focus on in this presentation,
is also a phase consisting of bilayer membranes, but in this case the
membranes take on a randomly-connected, disordered morphology.
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Figure 5: C12E5-water phase diagram vs. temperature and wt% C12E5. Two
phase regions are lined. One phase regions are clear.
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Figure 6: Phase diagrams vs. homopolymer volume fraction (φH) and tem-
perature for three different block copolymer/homopolymer systems from Ref.
[Hillmyer et al.(1999)Hillmyer, Maurer, Lodge, Bates, and Almdal], (a) PE-

6



Figure 7: Schematic two-dimensional cuts through different three-
dimensional membrane arrangements: Left: Lamellar phase, in which the
membranes are packed in a one-dimensionally ordered phase. Middle: Vesicle
phase, in which the membranes form spherical vesicles, which are positionally
disordered. Right: A disordered phase of randomly-connected membranes.

Morphology of membrane-based phases

Fig. 7 illustrates schematically three possible membrane morphologies, all
of which can be realized experimentally either in two- or three-component
systems. In the 2-component, solvent-ampliphile case, the membranes in
question are symmetric bilayers, the vesicle phase corresponds to an L4

phase, and the randomly-connected phase is a sponge or L3 phase. In the
3-component, solvent-amphiphile-solvent case, the membranes are monolay-
ers, vesicle phase is a microemulsion, while the randomly-connected phase is
a bicontinuous microemulsion.

Actual images of each of these phases can be captured via cryo-transmission
electron microscopy (CTEM) in a block copolymer realization, namely blends
of poly(styrene-ethylene/butylene-styrene) triblock copolymer (PSEBS), which
acts as a bilayer-forming amphiphile and polystyrene homopolymer (PS),
which acts as the solvent.

In this presentation, we will focus on the scattering from the vesicle and
bicontinuous phases. For scattering experiments on lamellar phases, the
static scattering is covered in a classic paper by Cyrus Safinya and co-workers
[Safinya et al.(1986)Safinya, Roux, Smith, Sinha, Dimon, Clark, and Bellocq],
and the dynamics in Ref. [Sikharulidze et al.(2002)Sikharulidze, Dolbnya, Fera, Madsen, Ostrovskii,
for example.
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Figure 8: Lamellar phase in PSEBS-in-PS, realized for PSEBS volume frac-
tions greater than about 0.35

Figure 9: PSEBS-in-PS vesicles, realized for PSEBS volume fractions less
than about 0.20
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Figure 10: PSEBS-in-PS sponge, realized for PSEBS volume fractions greater
than about 0.20 and less than about 0.35.

Membrane free energy

There have been a number of different approaches to understanding the phase
behavior of amphiphilic systems, including

• Lattice models.

• Landau-Ginsberg-type models. I will introduce one later.

• Membrane models:

F =

∫

dA
[κ

2
(c1 + c2 − 2c0)

2 + κ̄c1c2

]

, (1)

where c1 and c2 are the curvatures in two perpendicular directions,
c0 is the spontaneous curvature, κ is the bending rigidity, and κ̄ is
the saddle-splay modulus [Helfrich(1973)]. For a symmetric, bilayer
membrane c0 = 0, i.e.

F =

∫

dA
[κ

2
(c1 + c2)

2 + κ̄c1c2

]

. (2)

which can be re-written

F =

∫

dA

[

κ + κ̄/2

2
(c1 + c2)

2 +
−κ̄

2
(c1 − c2)

2

]

, (3)
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which is an especially convenient form for discussing the stability of
a flat bilayer with respect to the formation of vesicles ( which will
occur when κ + κ̄/2 < 0) or saddles (which will occur when κ̄ > 0).
This is discussed in more detail in two independent, seminal papers
[Morse(1994), Golubovic(1994)].

Droplet oil-water-surfactant microemulsions

The first specific example we consider is the example of elegant neutron scat-
tering experiments [Huang et al.(1987)Huang, Milner, Farago, and Richter,
Farago et al.(1990)Farago, Richter, Huang, Safran, and Milner] on droplet mi-
croemulsions, in which more-or-less dilute, more-or-less spherical droplets of
oil (decane) are thermodynamically stable in water, by virtue of a surfactant
(AOT) monolayer membrane that surrounds each one. The droplet radius is
about 5 nm.

In this experiment, both deterated water and deuterated decane were em-
ployed, both of which are more-or-less readily available, whereas the AOT was
ordinary, hydrogenated AOT. Consequently, the scattering length density of
the oil and water regions turns out to be very similar, but quite different
from that of the AOT. Thus, this is an example of an experiment carried out
in film contrast, in which the scattering experiment is really looking only at
(the behavior of) the amphiphilic film.

In this case, too, the droplets are dilute enough that it is not necessary
to consider correlations between different droplets, and we need only con-
sider the scattering from isolated droplets. An important wrinkle is that the
droplets’ shapes necessarily undergo thermal fluctuations – i.e. the droplets
wobble. To account for this we take the density of a droplet to be that of a
shell, whose radius is a function of spherical polar coordinates [θ and φ] and
time (t):

R(θ, φ, t) = R0[1 + Σl,m(l 6=1)al,m(t)Yl,m(θ, φ)], (4)

where R0 is the mean radius, and the fluctuation amplitudes, al,m, are de-
termined from the membrane free energy (Eq. 2) by equipartition to be

< |al,m|
2 >=

kBT

4κ (3 − 2l(l + 1) + [(l + 1)l/2]2 − (A/2)[1 − l(l + 1)/2])
, (5)

with A = 4R0/RS − 3κ̄/κ, where RS = 2/c0 is the spontaneous radius of
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curvature of the membrane [Milner and Safran(1987)]. (c0 is the spontaneous
curvature.)

Note that l = 0 corresponds to polydispersity, which we treated in the
first lecture.

Also, note that l = 1 corresponds to a translation of the droplet, which
does not alter the droplet shape or size.

Milner and Safran also showed that

< al,m(t)al,m(0) >=< |al,m|
2 > e−Γl,mt (6)

with

Γl,m =
κ

ηR3
0

[

[(l + 3)(l − 2) + A]l(l + 1)(l + 2)(l − 1)

(2l + 1)(2l2 + 2l − 1)

]

(7)

It follows that the scattering length density of a droplet is

b(r, t) = ∆b2Dδ(|r− rV | − R(θ, φ, t)), (8)

where ∆b2D is the excess scattering length per unit area of the membrane,
and rV is the coordinate of the droplet’s center, which in Q-space reads:

b(Q, t) = eiQ·rV
sin(QR)

QR
. (9)

Thus, using the general relationship between the b(Q, t) = Σibie
iQ·ri and the

ISF, it is straightforward to show – using that rV and the collection of all
the al,m are independent, random variables – that

S(Q, t) = e−DQ2t(∆b2D)2

[

< p0(QR0) > +Σl>1
2l + 1

4π
< pl(QR0) >< |al,0|

2 > e−Γl,0t,

]

(10)
where

p0(x) = [j0(x)]2+j0(x)Σl>1
2l + 1

4π
< |al,0|

2 >
[

[2 − x2 + l(l + 1)]j0(x) − 2xj1(x)
]

,

(11)

pl(x) = [(l + 2)jl(x) − xjl+1(x)]2, (12)

jn is the spherical Bessel function of order n [Huang et al.(1987)Huang, Milner, Farago, and Richter,
Farago et al.(1990)Farago, Richter, Huang, Safran, and Milner], and the <
.... > about pl(x) denote an average over the polydispersity, given by <
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Figure 11: Spherical Bessel functions, jn(x) versus x, for n = 0 through 5.

|a0,0|
2 >= KBT/[4κ(6 − A)]. To derive Eq. 10, we also used that <

al,mal′,m′ >= δl,l′δm,m′ < |al,0|
2 >.

Plotted in Fig. 11 are the first few spherical Bessel functions. Interest-
ingly, j0(π) = 0, but j2(π) 6= 0. Therefore, at QR = π, we may expect
NSE measurements to be especially sensitive to the l > 1 modes, i.e. to the
droplet wobble.

The zero time limit of Eq. 10 is the static structure factor. Examples
from Ref. [Farago et al.(1990)Farago, Richter, Huang, Safran, and Milner]
are shown in Fig. 12. The different curves correspond to different amount
of a cosurfactant, butanol, which changes κ and hence the polydispersity,
tending to fill in the minimum near QR0 = π.

Fig. 13 shows the pertinant NSE data from Ref. [Huang et al.(1987)Huang, Milner, Farago, and
These data are plotted on a logarithmic scale for S(Q, t)/S(Q) and a linear
t scale, so that simple, single exponentials appear as straight lines. Looking
at the data, it is clear that the data are consistent with a simple exponential
over the range of times probed, which is short times as far as the ISF is con-
cerned. Indeed, the solid lines correspond to a single exponential form for
the ISF within the time range studied. The corresponding relaxation rate,
we identify with the short-time relaxation rate (ΓS = DeffQ

2, where Deff is
the short-time diffusion coefficient).

How then do these data mesh (or not) with Eq. 10? To make a compari-
son, we may expand S(Q, t)/S(Q) to linear order in t. Specifically, assuming
that only the l = 2 mode gives a significant contribution to S(Q) – note that
< |al,0|

2 > does decrease with increasing l – we find that

S(Q, t)/S(Q) ' 1 − DeffQ
2t. (13)
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Figure 12: SANS profiles for AOT-water-decane microemulsions with added
butanol cosurfactant. The concentration of butanol increases from A0 to A3.

Figure 13: S(Q, t) versus t for a droplet microemulsion. The solid lines are
fits to a single exponential form.
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Figure 14: Short time diffusion coefficient (Deff) vs. Q for an AOT-water-oil
droplet microemulsion.

with

Deff =
D < p0(QR0) > +(D + Γ2,0/Q

2)(5 < |a2,0|
2 > /4π) < p2(QR0) >

< p0(QR0) > +(5 < |a2,0|2 > /4π) < p2(QR0) >
.

(14)
We expect that Deff shows a peak near QR0 = π, since < p0(π) > is small.

In comparison, Fig. 14 shows the measured values of Deff from Ref.
[Huang et al.(1987)Huang, Milner, Farago, and Richter], and indeed Deff shows
a peak near QR0 ' π consistent with theory.

Sponge phases

As we move to now consider the sponge phase and its scattering, we can no
longer focus attention on isolated spheres. So what can we do?

Last time, we discussed that S(Q) was related to the correlation function
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Figure 15: Lines representing bilayer membranes in a sponge phase. Right:
Since the membranes (lines) are assumed not to end, nor to form junctions,
each volume of solvent lies inside (I) or outside (O) the membrane. Thus, we
may introduce an order parameter – the I/O order parameter – that specifies
whether a given point is inside or outside the membrane. Left: The I/O
order parameter is equivalent to the order parameter of an Ising spin model,
with O corresponding to spin up and I to spin down.

of whatever was giving rise to the scattering – inhomogeneities in the elec-
tron density (x-ray), in the scattering length density (neutrons), or in the
refractive index density (light).

So if we can write down a free energy and thus calculate a correlation
function, why then it should be possible to calculate S(Q). This is the
program for the sponge phase.

Cates et al. [Cates et al.(1988)Cates, Roux, Andelman, Milner, and Safran,
Roux et al.(1992)Roux, Coulon, and Cates] noticed that if membranes are
assumed not to have edges, nor to form T-junctions, because these defects
cost too much free energy, why then it is possible to introduce an Ising-type
order parameter (Φ) that specifies whether a given point is inside or outside
the membrane. There may be I/O symmetry, which would correspond to the
disordered phase of the Ising model, or there may be more solvent outside
than inside which would correspond to the ordered phase of the Ising model.

It is important to emphasize that in sponge phases the I and O regions
are actually the same material – both water for example. Therefore, there is
no scattering associated with Φ fluctuations.

In addition, to the I/O order parameter, a Landau-Ginzberg-type de-
scription of the sponge phase should also account for the amphiphile density
via another order parameter (ρ), which is proportional to the difference in
amphiphile density from some reference density. (Since, in general, there is
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scattering constrast associated with the amphiphile density, scattering ex-
periments will measure the ρ correlations.) Incorporating the Φ−ρ coupling
in the simplest-possible fashion [Roux et al.(1992)Roux, Coulon, and Cates],
we arrive at a candidate, in-fact-over-simplified, free energy density, but
which (it turns out) can be solved for what we need:

F (Φ, ρ) = g0(∇Φ)2 + ω2Φ
2 + ω4Φ

4 + βρ2 + γ1ρΦ2, (15)

which is equivalent to the Blume-Emergy-Griffiths model [Blume et al.(1971)Blume, Emery, and Griffiths
which, in turn, describes the behavior of He3-He4 mixtures!! In any case,
minimizing Eq. 15 allows for a symmetric phase (< Φ >= 0) and an asym-
metric phase (< Φ > 6= 0), and either a countinuous (second order) or dis-
continuous (first order) phase transition between them, as the parameters of
Eq. 15 are varied.

Note that Eq. 15 gives rise to a Gaussian probability distribution for ρ
with mean −Φ2(r)/(4β). (Exercise: prove this.) It follows that:

• We can integrate over ρ(r) exactly, so that

F (Φ) = g0(∇Φ)2 + ω2Φ
2 + ω4(1 − γ2

1ω2)Φ
4 (16)

• The surfactant density-density correlation function is [Roux et al.(1992)Roux, Coulon, and Cates

< ρ(r)ρ(r) >= g(r) =
γ2

1

16β
[< Φ2(r)Φ2(0 > − < Φ2 >2]+

1

2β
δ(r) =

γ2
1

8β
< Φ(r)Φ(r) >2 +

1

2β
δ(r

(17)
where the last step further assumed that Φ(r) is a Gaussian random
variable (GRV) (which should be OK far from any second-order phase
transition).

For small enough ω4(1− γ1ω2), Φ(r) is a GRV and it may be shown that

< Φ(r)Φ(0) >=
er/ξ

8πg0r
, (18)

with ξ =
√

g0/ω2. This is the so-called Ornstein-Zernicke form for the cor-
relation function, and gives rise to a correlation function in Q-space:

SΦΦ(Q) =
1

2ω2(1 + (ξQ)2)
, (19)
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but, of course, there is no scattering constrast associated with SΦΦ.
From Eq. 17 and Eq. 18, we deduce that

g(r) =
γ2

1

16ω2

e−2r/ξ

(8πg0r)2
+

1

2ω2

δ(r), (20)

whose Fourier transform is

Sρρ(Q) = C1

[

C2 +
γ2

1 arctan(qξ/2)

Qξ/2

]

, (21)

with C1 = ξ/(256πω2
2g

2
o) and C2 = 128πω2g

2
0/ξ, and which does give rise to

scattering. The first term corresponds to the ρ scattering without coupling
to Φ. The second term is the effect of the ρ − Φ coupling.

The Q-dependence predicted by Eq. 21 for Qξ > 1 is that Sρρ(Q) ' 1/Q.
By constrast, in the more usual case, such as for SΦΦ in Eq. 19, for Qxi > 1,
SΦΦ(Q) ' 1/Q2. Therefore, the sponge phase has an unusual signature in
its scattering.

0.0.1 Comparison to experiment

Is this unusual form realized? Fig. 16 from Ref. [Roux et al.(1990)Roux, Cates, Olsson, Ball, Nallet,
plots measurements of [Sρρ(Q)]−1 versus Q obtained via static light scattering
from a sponge phase in dodecane-SDS mixtures with a pentanol cosurfactant,
which (presumably) has the role of tuning the properties (i.e. κ and ¯kappa)
of the sponge’s constituent bilayer.

Fig. 17 shows how ξ and S(0), determined by fits to a form similar to Eq.
21, vary as a function of cosurfactant (pentanol) volume fraction. Evidently,
both quantities tend to diverge near a volume fraction of 0.02. This is just the
behavior expected near a continuous, second order phase transition. What
is especially remarkable in this case is that the correlation length in question
is not the correlation length of the ρ fluctuations, but of the Φ fluctuations.

0.0.2 Many sponge phases show a peak!

Fig. 18 shows a CCD image of the SAXS pattern from the PSEBS-in-PS
sponge shown in Fig. 19, i.e. Notice that, in addition to a peak in the scatter-
ing at Q = 0, there is also a clear ring of scattering at non-zero Q. This peak
lies outside of the theoretical description presented so far. In fact, as shown
in Fig. 20 [Falus et al.(2004)Falus, Xiang, Borthwick, Russell, and Mochrie],
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Figure 16: Inverse scattering intensity versus Q for a decane-SDS-pentanol
sponge at three different concentrations. Data are the solid points. Lines
through the data are fits to a model for the sponge phase scattering Sρρ(Q),
similar to Eq. 21. The other line is a best fit to the Ornstein-Zernike form
for Sρρ(Q) and evidently does not describe the data.

Figure 17: Correlation length, ξ, and zero-Q inverse scattering intensity,
S−1(Q), plotted versus pentanol volume fraction (φ) for the pseudo-binary
system of water and SDS-pentanol
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Figure 18: Grey-scale representation of a 700×700 pixel region showing the
PSEBS-PS L3-phase SAXS obtained at beamline 8-ID at the Advanced Pho-
ton Source.

Figure 19: PSEBS-in-PS sponge, realized for PSEBS volume fractions greater
than about 0.20 and less than about 0.4.
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the PSEBS-in-PS sponge-phase peak position varies linearly with surfactant
volume fraction, as is the case in many other systems.

0.0.3 Neutron scattering from bicontinuous microemulsions

Sponge phases occur in 2 component bilayer systems, and the bilayer mem-
brane separates the water (say) volume into 2 distinct parts: I and O. On the
other hand, it is easy to envision simultaneously replacing either I or O by oil
and the bilayer by a monolayer. The result is a bicontinuous microemulsion

(BµE).
To understand the peak in the scattering from sponge phases, neutron

scattering experiments from BµE phases using contrast variation have been
very instructive. Fig. 21 shows two SANS profiles. The top curve is SANS
from a sponge phase and the scattering can derive solely from the film. The
lower curve is SANS from a BµE studied in film contrast, so that the oil
and water have essentially identical scattering length densities, which is very
different from the scattering length density of the monolayer that separates
the oil and water. Thus, in this case too the experiment is looking at the
membrane only. Clearly, the profiles are very similar. This is not a surprise,
since we already said that these two phases were analogues of each other.

But now possessing this information, it is possible to now examine the
BµE under bulk contrast, which should allow us to examine our assumptions
about the Φ correlations, since for neutron scattering in bulk contrast, with
e.g. D2O and C10H22, SΦΦ is actually measureable.

Fig. 22 shows two SANS profiles from the same BµE, one obtained under
film contrast, which looks like what we are now used to, and the other ob-
tained under film contrast, whihc shows a sharp peak at a smaller Q than in
film constrast – quite different from what we assumed in our earlier discus-
sion. Why are the peaks under film and bulk contrast at different positions?
For film contrast, the peak corresponds to the mean film-to-film distance,
while for bulk contrast, the peak corresponds to the mean water-to-water
repeat distance, which is roughly twice the film-to-film distance because the
water regions are spaced by oil regions.

Fig. 22 suggests that origin of the usual peak at non-zero Q in the scat-
tering from many realizations of the sponge phase comes from a peak in SΦΦ.
This idea was quantified by Gompper and Schick [Gompper and Schick(1994)]
who used a modified form (Teubner-Strey form) for SΦΦ and added to the
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Landau-Ginsberg free energy all the terms allowed by symmetry:

F (Φ, ρ) = F0 (Φ) + F1 (ρ) + F2 (Φ, ρ) , (22)

where

F0 (Φ) =

∫

d3r [c
(

∇2Φ2
)

+ g0 (∇Φ)2 + ω2Φ
2], (23)

F1 (ρ) =

∫

d3r [α (∇ρ)2 + βρ2], (24)

and

F2 (Φ, ρ) =

∫

d3r [γ1ρΦ2 + γ2

(

∇2ρ
)

Φ2 + γ3ρΦ
(

∇2Φ
)

]. (25)

Implicit in this expression is that

S0
ΦΦ =

1

2c[(Q2 − k2 + ξ−2)2 + 4k2ξ−2)]
, (26)

where

k2 =
1

2

√

ω2

c
+

1

4

g0

c
, (27)

and

ξ−2 =
1

2

√

ω2

c
+

1

4

g0

c
, (28)

are the wavevector and (inverse) correlation length (squared) of the I/O
order.

Using Eq. 25, Gompper and Schick were able to derive a modifed expres-
sion for Sρρ that agree well with experiment as shown by the solid lines in
Fig. 20.

Dynamics of individual membranes

At large enough Qs, the ISF of even a collection of membranes in a vesicle
or sponge phase, we expect to reflect the Brownian motion of an individual
isolated membrane. The sort of dynamics we have in mind is shown in
this movie, which came from an IBM Almaden web site, and which I guess
was created by Farid Abraham.
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Theory of the dynamics of individual membranes

The dynamics of membranes has been discussed by Frey and Nelson [Frey and Nelson(1991)]
and Zilman and Granek [Zilman and Granek(1996), Zilman and Granek(2002)].
As we saw in Sam Safran’s lectures, membrane undulations are naturally
specified by giving the membrane’s height (h) above some arbitrary plane
whose normal is parallel to the membrane’s mean surface normal. We also
saw that these undulations are controlled by an effective Hamiltonian

H =
1

2
κ

∫

d2r[∇2h(r)]2 =
1

2
κΣkk

4hkh−k (29)

It can be shown that this leads to a relaxation rate for a mode of wavenumber
k of

Γk =
1

4ηk
κk4 =

κk3

4η
(30)

i.e. the product of a kinetic coefficient (here the Oseen interaction in k-space)
and an inverse suspectibility to height fluctuations.

It follows that

< hk(t)h−k(0) >=
kBT

κk4
e−Γkt (31)

and, after some algebra,

< [h(r, t)−h(r′, 0)]2 >'
kBT

4πκ
(r−r′)2 log(ξ/|r−r′|)+

[

0.069(
kBT

κ
)1/2 kBT

η
t

]2/3

.

(32)
For a thin membrane, the excess density is a δ-function located at the

membrane, i.e. b(x, t) = (∆b)δ(z − h(r)). (Here x is a 3D position vector,
while r is a 2D position vector, and ∆b is the scattering length per unit area
of the membrane.) Whence we may deduce that the ISF is related to the
mean square height difference via

S(Q, t) =

∫

d2r

∫

d2r′eiQ||.(r−r′)e−Q2
z<[h(r,t)−h(r′,0)]2> ' S(Q)e−[0.025(kBT )3/2Q3

zt/(κ1/2η)]2/3

.

(33)
This is for a membrane with surface normal along z. Averaging over orien-
tations, as is appropriate for vesicle and sponge phases, gives

S(Q, t) ' S(Q)e−(ΓQt)β

, (34)
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with
ΓQ = 0.025kBT (kBT/κ)1/2Q3η (35)

and
β = (2/3)[1 + (kBT )/(4πκ)]. (36)

0.1 X-ray PCS studies of the ISF of polymer mem-

branes

Fig. 23 plots representative x-ray multispeckle PCS intensity autocorrelation
functions obtained at 140◦C for the dilute vesicle phase that occurs in PSEBS-
in-PS blends [Falus et al.(2005)Falus, Borthwick, and Mochrie]. Data at four
different wavevectors are plotted versus delay time on a logarithmic scale to
display the entire range of times studied. Notice that the signal-to-noise
ratio (SNR) gets increasing poorer as Q increases. This is because the scat-
tering strength decreases with Q. Nevertheless, these data are of high enough
quality to make feasible investigations of the autocorrelation line shapes.

Inspired by the Zilman-Granek predictions, we fit the g2s to the form
expected for a stretched-exponential ISF (Eq. 34). The resultant best-fit
model g2s, which are shown as the solid lines in Fig. 23, provide an excellent
description of the experimental data. To clarify the extent to which these
data require a stretched exponential ISF rather than a strictly exponential
form, in Fig. 24, we present ISFs [f(q, t) =

√

(g2 − 1)/A] obtained at 160◦C,
plotted as the open symbols versus reduced delay time, Γt, where t is the
delay time and Γ is the best fit relaxation rate for the data in question.
The solid lines in Fig. 24 are the ISFs corresponding to the best-fit model
g2s. The logarithmic intensity scale and linear time scale of this figure imply
that an exponential ISF (i.e. α = 1) would appear as a straight line. By
contrast, the measured ISFs clearly exhibit a small curvature, demonstrating
a deviation from single-exponential relaxation.

Stretched exponential fits were carried out for data obtained at each tem-
perature studied, and for each wavenumber partition. The best-fit stretch-
ing exponents are shown in Fig. 25 for 180◦C (circles), 160◦C (triangles),
and 140◦C (squares). Evidently, the stretching exponent is only weakly-
dependent on wavevector and temperature with a value of about α ' 0.8±0.1.
A stretched-exponential ISF with a stretching exponent that is slightly larger
than α = 2/3 is consistent with the prediction of Ref. [Zilman and Granek(2002)]
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(Eq. 34), where a stretching exponent in the range between 0.7 and 0.9 would
correspond to a value for κ between 1.7 and 0.23kBT .

The corresponding best-fit relaxation rates increase rapidly and mono-
tonically with increasing wavevector (q) in a more-or-less power-law fashion,
with similar exponents at each temperature. In addition, they show a strong
temperature dependence, with significantly faster relaxations at higher tem-
peratures. Because the PS homopolymer viscosity decreases by a factor of
about forty as the temperature is increased from 140◦C (η ' 240 Poise)
to 180◦C (η ' 6 Poise) [Fox and Flory(1950), Plazek and O’Rourke(1971)],
according to Eq. 35, we should expect the temperature dependence of the
relaxation rate to be dominated by the PS viscosity. For κ ' kBT , ν is
small, and it is sensible to approximate ν ' 0. In this case, the relaxation
rate (Γ) is predicted to vary nearly linearly versus kBTq3/η. Thus, according
to the Zilman-Granek-Nelson-Frey model we expect the reduced relaxation

rate, Γη/(kBTQ3) to be independent of Q and temperature.

NSE measurements of the membrane dynamics of bicontinuous mi-

croemulsions

Similar behavior has also been observed in other membrane-based phases, in-
cluding in highly swollen Lα and L3 phases, which were studied via dynamic
light scattering [Freyssingeas et al.(1997)Freyssingeas, Roux, and Nallet], and
in bicontinuous microemulsion phases, which were studied using the NSE
technique under film contrast conditions [Mihailescu et al.(2001)Mihailescu, Monkenbusch, Endo, Allgaier,
This is illustrated in the latter case in Fig. 27, which shows the ISF of a
water-decane-C10E4 microemulsion at several values of Q.

Notice that at the longest times accessible (160 ns), at the smallest Q
shown (0.3 nm−1, the ISF has fallen to only about 0.8 of its original value.

0.1.1 Dynamics of a polymer sponge phase

Several studies have addressed the dynamical behavior of the L3 phase [Milner et al.(1990)Milner, Cates,
Porte et al.(1991)Porte, Delsanti, Billard, Skouri, Appell, Marignan, and Debeauvais,
Granek and Cates(1992), Waton and Porte(1993), Gompper and Hennes(1994),
Hennes and Gompper(1996), Freyssingeas et al.(1996)Freyssingeas, Nallet, and Roux,
Nonomura and Ohta(1999), Schwarz et al.(2000)Schwarz, Monch, Ilgenfritz, and Strey,
Mihailescu et al.(2001)Mihailescu, Monkenbusch, Endo, Allgaier, Gompper, Stellbrink, Richter, Jak
Komura et al.(2001)Komura, Takeda, Kawabata, Ghosh, Seto, and Nagao, Holderer et al.(2005)Holderer,
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However, except in a few special cases [Freyssingeas et al.(1996)Freyssingeas, Nallet, and Roux,
Mihailescu et al.(2001)Mihailescu, Monkenbusch, Endo, Allgaier, Gompper, Stellbrink, Richter, Jak
it has so-far proven difficult to experimentally examine the relaxation of
equilibrium fluctuations at wavevectors (Q) most characteristic of the L3

phase, near the peak of the static scattering. On the theoretical side, Mil-
ner et al. [Milner et al.(1990)Milner, Cates, and Roux] have given a phys-
ically appealling formulation that postulates three slow modes: one asso-
ciated with Φ, another associated with ρ, and the third corresponding to
topological relaxation, via the creation and dissolution of membrane necks.
The latter processes are activated. Therefore, topological relaxation may
be expected to be especially slow. Alternatively, Gompper and Hennes
[Gompper and Hennes(1994), Hennes and Gompper(1996)] have presented field-
theoretic calculations that incorporate the coupling between ρ and Φ required
to explain the observed L3-phase static scattering. They also incorporate cou-
plings of ρ and of Φ to the transverse momentum density, which they include
as an additional slow variable. In this treatment, the membrane topology
does not appear explicitly.

A selection of normalized ISFs, for the PSEBS-in-PS sponge phase (φ =
0.20) obtained at 180◦C, are plotted in Fig. 29 on a logarithmic scale versus
reduced delay time on a linear scale. The logarithmic intensity and linear
time scale of this figure implies that simple exponentials would appear as
straight lines. Evidently, the measured ISFs at 180◦C exhibit a clear devi-
ation from straight lines, indicating that the ISFs in this case do not show
simple exponential relaxations. Indeed, the positive curvature of these data
imply stretched-exponential or double-exponential behavior of the ISF. The
data were fitted using both a stretched/compressed exponential form for the
ISF, f(Q, t) = exp[−(Γt)β ] with Γ and β as fitting parameters, and a double
exponential form for the ISF, f(Q, t) = aF exp(−ΓF t) + aS exp(−ΓSt), with
aS = 1−aF , ΓF , and ΓS (ΓF > ΓS) as fitting parameters. Both forms yield a
good description of the data, but to better try to make contact with theory,
we focussed on the double exponential description, and the solid lines in the
figure show the double exponential fits. Reduced time in this case is ΓIt,
where ΓI = aF ΓF + aSΓS is the initial decay rate.

In striking contrast to the data at 180◦C, at 120◦C the ISFs, plotted
on logarithmic intensity and linear time axes in Fig. 30, clearly show nega-
tive curvature. Thus, instead of a stretched exponential, at 120◦C, the ISF
exhibits a compressed exponential form (solid lines).

Now, recently, it has been proposed [Liu and Nagel(1998)] that a wide
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range of highly-structured but disordered soft matter – including, gels [Cipelletti et al.(2000)Cipelletti,
foams [O’Hern et al.(2001)O’Hern, Langer, Liu, and Nagel], clays [Bandyopadhyay et al.(2004)Bandy
suspensions [Trappe et al.(2001)Trappe, Prassad, Cipelletti, Segre, and Weitz,
Pham et al.(2002)Pham, Puertas, Bergenholtz, Egelhaaf, Moussaid, Pusey, Schofield, Cates, Fuchs,
Bellour et al.(2003)Bellour, Knaebel, Harden, Lequeux, and Munch], and emul-
sions [Cipelletti et al.(2003)Cipelletti, Ramos, Manley, Pitard, Weitz, Pashkovski, and Johansson]
– can exhibit a jamming transition from a fluid to a solid-like state with ar-
rested dynamics.

Moreover, a variety of materials in a putative jammed state display com-

pressed exponential ISFs [Cipelletti et al.(2000)Cipelletti, Manley, Ball, and Weitz,
Cipelletti et al.(2003)Cipelletti, Ramos, Manley, Pitard, Weitz, Pashkovski, and Johansson,
Bandyopadhyay et al.(2004)Bandyopadhyay, Liang, Yardimci, Sessoms, Borthwick, Mochrie, Harden,
suggesting that such ISFs may be a key signature of the jammed state. Such
a form for the ISF has been explained on the basis of the relaxation of force
dipoles randomly distributed throughout the sample [Cipelletti et al.(2000)Cipelletti, Manley, Ball,
Bouchard and Pitard(2001), Cipelletti et al.(2003)Cipelletti, Ramos, Manley, Pitard, Weitz, Pashk
This picture also predicts a linear variation of the characteristic relaxation
rate with Q. The jammed state often undergoes aging, which is mani-
fest as an decrease in the the characteristic relaxation rate with aging time
[Cipelletti et al.(2000)Cipelletti, Manley, Ball, and Weitz, Bellour et al.(2003)Bellour, Knaebel, Harden,
Cipelletti et al.(2003)Cipelletti, Ramos, Manley, Pitard, Weitz, Pashkovski, and Johansson,
Bandyopadhyay et al.(2004)Bandyopadhyay, Liang, Yardimci, Sessoms, Borthwick, Mochrie, Harden,
In the present case, data obtained at 120◦C after an aging time of 7000 s are
indistinguishable from those obtained after an aging time of 15000 s (data
not shown). It follows that any aging-time dependence of the relaxation rate
at 120◦C within this time range would have to be much weaker than those
reported in Refs. [Cipelletti et al.(2000)Cipelletti, Manley, Ball, and Weitz,
Bellour et al.(2003)Bellour, Knaebel, Harden, Lequeux, and Munch, Bandyopadhyay et al.(2004)Bandy
However, aging-time-independent behavior has also been observed in Pluronic
micellar polycrystals [Cipelletti et al.(2003)Cipelletti, Ramos, Manley, Pitard, Weitz, Pashkovski, and

We summarize in Fig. 31 our results for the Q-dependence of the reduced

relaxation rates, defined as ΓR = ΓM/Γ0, where ΓM is one of ΓF , ΓS or Γ,
and Γ0 = kBTQ2Q0/ηPS, with Q0 the peak of the IO correlation function
(0.036 nm−1), and ηPS the temperature-dependent viscosity of the PS solvent
[Fox and Flory(1950)], which varies from 7 Poise at 180◦C to 2200 Poise at
120◦C. Also shown in this figure is the reduced relaxation rate for PSEBS-in-
PS vesicles from Ref. [Falus et al.(2004)Falus, Xiang, Borthwick, Russell, and Mochrie].
In that case, data from 140◦C, 160◦C and 180◦C collapse quite well to the
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theoretical curve (soild line) for isolated membrane plaquettes, for which the
relaxation rate shows a Q3-variation [Zilman and Granek(1996)]. By con-
trast, for the present data at 140◦C, 160◦C, and 180◦C, although in both
cases the Q-dependence appears similar at the different temperatures, nei-
ther ΓF /Γ0 (solid symbols) nor ΓS/Γ0 collapse to a single curve: ΓF/Γ0

increases by a factor of 1.5-2 as the temperature is decreased from 180◦C to
160◦C and again from 160◦C to 140◦C, while ΓS/ΓF increases by factors of
about 3 for the same temperature steps. These observations suggest that, in
addition to solvent flow, processes, such as solvent permeation through the
membrane, that do not depend on the solvent viscosity, are relevent for both
modes. Both ΓF/Γ0 and ΓS/Γ0 appear independent of Q for Q ≤ 0.03 nm−1,
indicating diffusive behavior on long length scales. A notable feature of both
ΓF/Γ0 and ΓS/Γ0 is a minimum, more pronounced for ΓS/Γ0, occurring at
or close to the value of Q , at which there is a peak in the static scattering
(Fig. ??). This is an example of the general phenomenon of “de Gennes
narrowing” [de Gennes(1956)], namely that relaxations near the peak of the
structure factor are especially slow. ( A peak in the structure factor implies
that density waves with the corresponding Q are highly prevalent. That
their relaxation rate is small implies that they are long lived. This is ac-
tually something that follows in colloidal systems from the f-sum rule, by
substituting S(Q) for χT n̄kBT .)

Surprisingly, at larger Qs the relaxation rates do not show the Q3-dependence
expected for independent membranes [Freyssingeas et al.(1996)Freyssingeas, Nallet, and Roux,
Mihailescu et al.(2001)Mihailescu, Monkenbusch, Endo, Allgaier, Gompper, Stellbrink, Richter, Jak
Komura et al.(2001)Komura, Takeda, Kawabata, Ghosh, Seto, and Nagao, Holderer et al.(2005)Holderer,
and found at smaller Qs in the more dilute system [Falus et al.(2004)Falus, Xiang, Borthwick, Russell,

Turning now to the data obtained at 120◦C, no minimum in Γ/Γ0 is dis-
cernable. Instead, over the range of Qs studied, which includes the peak of
the static scattering, there is a smooth variation of the relaxation rate with
Q, which may be described as a power law with an exponent of 1.16 ± 0.05
(solid line in the figure), similar to, but slightly larger than, the linear vari-
ation observed previously in the case of compressed exponential relaxations
[Cipelletti et al.(2000)Cipelletti, Manley, Ball, and Weitz, Bellour et al.(2003)Bellour, Knaebel, Harden,
Cipelletti et al.(2003)Cipelletti, Ramos, Manley, Pitard, Weitz, Pashkovski, and Johansson,
Bandyopadhyay et al.(2004)Bandyopadhyay, Liang, Yardimci, Sessoms, Borthwick, Mochrie, Harden,

The relative amplitude of the slow mode (aS) for the double exponential
fits at 140◦C, 160◦C and 180◦C is shown versus Q in Fig. 32(a). Overall, the
amplitude of the slow decay increases towards unity with decreasing temper-
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ature, with the effect that the ISFs appear progressively less stretched as the
temperature decreases. In addition, at each temperature, aS shows a peak
occurring at the Q of the peak of the static scattering, which we interprete
as a further manifestation of de Gennes narrowing. Fig. 32(b) shows the
best-fit exponent (β) versus Q, determined from the stretched/compressed-
exponential fits at 120◦C. Evidently, the stretching/compression exponent
varies from a peak of about 1.35 at 0.07 nm−1 – the peak of the static scat-
tering again – to 1.07 at the largest Qs studied (0.2 nm−1). The compressed
exponential relaxation found for the PSEBS-in-PS L3 phase at 120◦C [Fig.
30 and Fig. 32(b)], together with a relaxation rate that varies approximately
linearly with Q, supports the idea that the PSEBS-in-PS L3 phase becomes
jammed on cooling to 120◦C.

How could jamming occur in this case? Beyond Ref. [Milner et al.(1990)Milner, Cates, and Roux
several experiments indicate that topological relaxations can be very slow in
the L3 phase [Waton and Porte(1993), Schwarz et al.(2000)Schwarz, Monch, Ilgenfritz, and Strey,
Porcar et al.(2004)Porcar, Hamilton, Butler, and Warr], and in the analo-
gous bicontinuous microemulsion phase [Peter et al.(2001)Peter, Roux, and Sood].
Therefore, we propose that the origin of jamming in the present case involves
arrest of topological relaxation. Specifically, we hypothesize that, although
the static structure is similar at the different temperatures studied, never-
theless changing the temperature causes the equilibrium topology to vary,
for example, by changing slightly the equilibrium mean separation between
membranes and the equilibrium thickness of the membrane. We further hy-
pothesize that, for 140◦C and above, the membrane topology is able to equi-
librate, but that, because topological equilibration is activated and hence
increasingly slow at lower temperatures and because collective diffusion is
itself slowed because of the increased PS viscosity, at 120◦C, the membrane
topology does not equilibrate within the duration of the experiment. Under
this constraint, the sponge structure will be subject to internal stresses asso-
ciated with its topological frustration. Specifically, there will be a free energy
cost per unit area associated with the deficit/surplus of membrane necks, i.e.

the membrane will acquire a surface tension. Acccording to this interpreta-
tion, the deformations that occur as a result of these internal stresses, are
then the origin of the relaxation of the ISF observed at 120◦C, following Refs.
[Cipelletti et al.(2000)Cipelletti, Manley, Ball, and Weitz, Cipelletti et al.(2003)Cipelletti, Ramos,
Bandyopadhyay et al.(2004)Bandyopadhyay, Liang, Yardimci, Sessoms, Borthwick, Mochrie, Harden,
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Figure 20: X-ray scattering cross-sections for PSEBS-PS blends vs. wavevec-
tor. Data for φ = 0.07, 0.11, 0.15, 0.17, 0.19 in the vesicle phase and for
φ = 0.22, 0.25, 0.28, 0.31, 0.34, 0.37, 0.40 and 0.43 in the sponge phase
plotted from 0.02 to 0.2 nm−1 on a log-log scale. These profiles have been
multiplied by 312, 311, 310, 39, 38, 37, 36, 35, 34, 33, 32, 3, and 1, respectively.
Solid lines correspond to the model discussed in the text. The dashed line
through the profile for φ = 0.22 corresponds to coexistence of 40% φ = 0.25-
volume fraction material with 60% φ = 0.19-volume fraction material. The
sharp peak that appears at larger volume fractions corresponds to the lamel-
lar phase.
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Figure 21: Comparison of the SANS profiles for, on the one hand, a sponge
phase (top curve) and, on the other a BµE phase (bottom curve), studied in
film contrast, so that the oil and water have essentially identical scattering
length densities, which is very different from the scattering length density of
the monolayer that separates the oil and water.
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Figure 22: Comparison of the SANS profiles for a BµE phase, obtained, on
the one hand, under film constrast (lower curve) and, on the other hand
under bulk contrast (upper curve).
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φ=0.03
T=140oC

q=0.016 nm−1

q=0.039 nm−1

q=0.067 nm−1

q=0.095 nm−1

Figure 23: Intensity autocorrelation functions (g2) vs. delay time at 140◦C
for wavevectors of 0.016 nm−1 (open circles), 0.039 nm−1 (open triangles),
0.067 nm−1 (open crosses), and 0.095 nm−1 (open squares). The solid lines
correspond to least-squares fits to a stretched exponential form for the ISF.
For clarity the curves have been shifted by 0.1 from each other.
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T=160oC, φ=0.03
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Figure 24: Normalized intermediate scattering functions [f ] plotted vs. re-
duced delay time (Γt) at 160◦C for wavevectors of 0.012 nm−1 (open circles),
0.018 nm−1 (open triangles), 0.027 nm−1 (open crosses), and 0.049 nm−1

(open squares), plotted on a logarithmic intensity scale and a linear reduced-
delay-time scale. The solid lines are a stretched-exponential form, as dis-
cussed in the text. a single exponential fit would be a straight line. The solid
curves are stretched exponential fits clearly deviating from straight lines.
For clarity, data and model have been multiplied 8, 4, 2, 1 for wavevectors
of 0.012 nm−1, 0.018 nm−1, 0.027 nm−1, and 0.049 nm−1, respectively.
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Figure 25: Stretching exponents for the φ = 0.03-sample, for 180◦C (open
squares), 160◦C (open crosses), and 140◦C (open triangles).

0.01 0.10.02 0.05

0.01

0.02

0.004

0.04

0.006

0.008

φ = 0.03

Wavevector [nm−1]

R
ed

uc
ed

 R
el

ax
at

io
n 

R
at

e

140oC

160oC

180oC

Figure 26: Reduced relaxation rate [Γ̃ = Γη/(kBTQ3) ] of the 0.03-
copolymer-volume-fraction for 180◦C (open squares), 160◦C (open crosses),
and 140◦C (open triangles), determined from stretched-exponential fits.
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Figure 27: Measurements of the normalized ISF of water-decane-C10E4.
Open symbols are ILL data. Solid symbols are Julich data. The solid lines
are fits to a stretched exponential form, with Γ and β as fitting parameters.
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Figure 28: Summary of the relaxation rates, ΓQ, vs. Q, obtained in film
contrast for water-oil-C10E4 with (open triangles) and without (open circles)
added PEP10-PEO10 cosurfactant. At large Q, these results correspond to
stretched exponential fits with β ' 2/3, as predicted. At small Q, single
exponential fits were used, in part, because rates of about 1 MHz are at the
limit of what is possible to measure with NSE. Also shown are the scattering
intensities under bulk and film contrast.
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180oC
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Figure 29: ISFs (f) vs. reduced delay time (ΓIt) for several wavevectors at
180◦C. For clarity, successive ISFs have been multiplied by factors of 1, 2, 4,
8, 16, 32, and 64, respectively. Solid lines are best-fits to a double-exponential
form for the ISF.
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Figure 30: ISFs (f) vs. reduced delay time (Γt) for several wavevectors
at 120◦C. For clarity, successive ISFs have been multiplied by factors of
1, 2, 4, 8, 16, 32, and 64, respectively. Solid lines are the best fits to a
stretched/compressed form for the ISF.
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Figure 31: Reduced relaxation rate vs. Q. At 120◦C, the open di-
amonds correspond to the Γs from stretched-exponential fits. At 140,
160, and 180◦C, respectively, the solid aquares, triangles, and circles cor-
respond to the fast mode (ΓF ), while the open squares, triangles, and
circles correspond to the slow mode (ΓS), as determined from double-
exponential fits. The solid line through the 120◦C-data corresponds to a
Q1.16-variation of the relaxation rate. Also shown are the relaxation rates
from Ref. [Falus et al.(2004)Falus, Xiang, Borthwick, Russell, and Mochrie]
obtained at 140◦C, 160◦C and 180◦C for a PSEBS volume fraction of
φ = 0.03. The line through these data corresponds to the theoretical predic-
tion of Ref. [Zilman and Granek(1996)].
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Figure 32: (a) Best-fit relative ampltude of the slow relaxation (aS) vs. Q
from fits using a double-exponential form for the ISF at 140◦C (squares),
160◦C (triangles), and 180◦C (circles). (b) Best-fit stretching/compression
exponent from fits using a stretched/compressed-exponential form for the
ISF.
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