
Scattering instruments

Figure 1 shows a schematic of the small-angle neutron scattering (SANS)
spectrometer LOQ at ISIS at Rutherford Laboratory in the UK. LOQ shows
many features that are common to SANS and small-angle x-ray scattering
(SAXS) facilities around the world, namely a collimated incident beam of
probe particles, neutrons or photons, and a detector that measures the inten-
sity of probes scattered through some angle Φ. Of course, SANS instruments
are invariably located at large facilites, since the neutron beam requires a re-
actor or a spallation source of neutrons. There are also many SAXS facilities
located at synchrotron x-ray sources, where the finest angular resolution can
be achieved and the most weakly scattering samples can be studied. (BTW,
many of these facilities themselves hold yearly summer (or winter or spring
or fall) schools to introduce potential new users to their capabilities. More
generally, access is straightforward via a short peer-reviewed proposal sys-
tem.) For coarser resolution and strongly scattering samples in-house SAXS

Figure 1: LOQ SANS spectrometer at ISIS (from the ISIS web site).
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facilities are suitable and available. Optical light scattering setups, of course,
are in-house.

In the case of LOQ, and in many cases, the detector is actually an area
detector that resolves the scattering over a range of angles simultaneously.
These sorts of instruments determine the scattered intensity, which in turn
enables the experimenter to deduce something about the static structure of
the sample. SANS and SAXS experiments are generally sensitive to struc-
tures with length scales in the range from 1 nm or less to 100 nm or more.
This is just the range relevant to typical soft matter systems.

In principle, not only can the scattering angle of a given scattered probe
particle be determined, but so can its energy, and in particular its energy loss
to the samples. Measurements of the energy/frequency spectrum of the scat-
tered probe particles, tell us about the sample’s dynamics. Usually, however,
in soft matter systems the probe particles’ energy change is very small, corre-
sponding to the low energy of dynamical modes within soft matter systems.
Consequently, it is often convenient to characterize the sample’s dynamics in
the time domain, rather than the frequency domain. The methods used for
this will be described in more detail below.

Above are a picture of the Advanced Photon Source at Argonne National
Laboratory – currently, the US’s brightness synchrotron – together with pic-
tures inside the hutch at beamline 8-ID which is set up for SAXS and so-called
x-ray photon correlation spectroscopy experiments.

Scattering cross-sections

Let’s examine what actually happens in a scattering measurement and what
is measured. In general, there is a more-or-less collimated source of incident
“particles” – photons or neutrons – which impinges onto a sample of thickness
W . We will suppose that the mean wavevector of the incident particles is
ki = kŷ and that their mean energy is Ei. The cross-sectional area of the
incident beam (A), the number of particles incident per second (ni), and,
consequently, the incident flux (Ji = ni/A) are known.

Inhomogeneities within the sample then give rise to scattering, which may
be characterized by means of a detector, counting the number of particles
scattered each second (ns) into the solid angle subtended by the detector
(∆Ω). The scattering angle defined by the detector acceptance determines
the wavevector of the detected particles (kf ). A key quantity for scattering
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experiments is the scattering wavevector Q = ki − kf .
In terms of the experimental quantities (ignoring the effect of absorption),

the scattering cross-section (dσ/dΩ) and the cross-section per unit volume
(Σ) are given by

dσ

dΩ
=

ns

Ji∆Ω
(1)

and
Σ =

ns

niW∆Ω
(2)

It is typical to present experimental measurements of the cross-section per
unit volume, because that quantity is independent of the experimental con-
figuration, depending solely on the material of the sample. Conventionally,
the dimensions of Σ are inverse centimeters.

In the case that the detection scheme allows the energies of the scattered
particles (Ef) to be determined to within a precision ∆E, we have

d2σ

dΩdEf
=

ns

Ji∆Ω∆E
. (3)

Inelastic neutron scattering

An important example to consider for soft matter studies is the scattering of
neutrons by the nucleii within a sample. To calculate the neutron scattering
cross-section, we consider a neutron within a cube of volume V = L3, initially
in a plane wave state |ki >= L

−3

2 eiki·r. For such a state, the particle flux is
simply Ji = (v/L)/L2, where v = h̄ki/m is the neutron velocity. Meanwhile,
the initial state of the sample is |λi >. We are interested in the probability
per unit time that the neutron makes a transition to a state |kf >, which
is a plane wave state for which the wavevector lies within ∆Ω, while at the
same time the sample makes a transition to state |λf >. Time-dependent
perturbation theory (Fermi’s Golden Rule) gives the general formula for the
transition probability per unit time (Wif ). Specifically,

Wif =
2π

h̄
| < ki, λi|U |kf , λf > |2ρ(Ef ), (4)

where U is the probe-sample interaction, ρ(Ef ) = L3mh̄kf∆Ω/(2πh̄)3 is the
density of final states appropriate for a particle of mass m. This is just the
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value of ns corresponding to an incident flux of Ji = h̄ki/mL3. It follows
from Eq. 1 that

dσ

dΩ
=

mL3

h̄ki

Wif
1

∆Ω

= L6

(

m

2πh̄2

)2
kf

ki
| < ki, λi|U |kf , λf > |2. (5)

Conservation of energy is implicit in Eq. 5, so that Ef + Eλf
= Ei + Eλi

.
It is convenient to make this condition explicit, so that

d2σ

dΩdEf
= L6

(

m

2πh̄2

)2
kf

ki
| < ki, λi|U |kf , λf > |2

× δ(h̄ω − Eλf
+ Eλi

), (6)

where h̄ω = Ei − Ef is the energy loss of the neutron, and Eλf
and Eλi

are the energies corresponding to |λf > and |λi >, respectively. Ordinarily,
the sample will initially be in one of many of possible initial states – with
probability pλi

– and there will be a number of possible final states. Thus,
the measured cross-section will be an average over initial states and a sum
over final states, i.e.

d2σ

dΩdEf
= L6

(

m

2πh̄2

)2
kf

ki

×
∑

λf

∑

λi

pλi
| < ki, λi|U |kf , λf > |2

× δ(h̄ω − Eλf
+ Eλi

), (7)

The interaction interaction potential experienced by a neutron located at
r will be of the form

U = U(r) =
∑

l

Ul(r − rl), (8)

where rl is the position of nucleus l and Ul describes its interaction with the
neutron. Thus, where Q = ki − kf and

Ul(Q) =

∫

d3reiQ·rUl(r). (9)
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It is now convenient to write

δ(h̄ω + Eλi
− Eλf

) =
1

2πh̄

∫ ∞

−∞

dte
−i(ω+Eλi

/h̄−Eλf
/h̄)t

, (10)

so that

dσ

dΩdEf

=

(

m

2πh̄2

)2
kf

ki

×
1

2πh̄

∫ ∞

−∞

dte−iωt

×
∑

λf

∑

λi

pλi
< λi|

∑

l

Ul(−Q)e−iQ·rl|λf >

× < λf |e
iEλf

t/h̄
∑

m

Um(Q)eiQ·rle−iEλi
t/h̄|λi > . (11)

Using the Heisenberg representation for operators and states, we have, for
example, that

< λf |e
iEλf

t
eiQ·rme−iEλi

t|λi >=< λf |e
iQ·rm(t)|λi > . (12)

Since the |λf > form a complete set of states, the sum over λf can be per-
formed, and it follows that

dσ

dΩdEf

=

(

m

2πh̄2

)2
kf

ki

×
1

2πh̄

∫ ∞

−∞

dte−iωt

×
∑

l

∑

m

< e−iQ·rlUl(−Q)Um(Q, t)eiQ·rm(t) >, (13)

where we have introduced the notation
∑

λi
pλi

< λi|...|λi >=< ... >.
For non-magnetic materials, neutron scattering arises from the neutron-

nucleus interaction. In this case, neutron scattering is sensitive to the dis-
tribution of nucleii within a sample. Theory does not (yet) predict what
this interaction will be for a given nucleus. However, because the range of
this interaction is so small compared to the neutron wavelength of thermal
neutrons, the scattering is isotropic and may be characterized by a single
quantity for each nucleus – the s-wave scattering length, usually called b –
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whose value is tabulated for different nucleii and which may be positive or
negative. For a nucleus of type l, the scattering length is bl. To ensure the
correct dimensions (so that bl is a length), we must take Ul(Q) = 2πh̄2bl/m.
Therefore, for neutron-nuclear scattering

dσ

dΩdEf
=

kf

ki

×
1

2πh̄

∫ ∞

−∞

dte−iωt

×
∑

l

∑

m

< e−iQ·rlblbmeiQ·rm(t) > . (14)

This expression informs us that neutron scattering is sensitive to the distri-
bution of scattering lengths within the sample.

Even in an elemental material the scattering length can depend on posi-
tion, firstly, because different isotopes have different scattering lengths, and,
secondly, because states of different total angular momentum – note that the
neutron has spin 1

2
– have different scattering lengths. In fact, one of the

most powerful aspects of neutron scattering follows from the fact that the
scattering length of hydrogen is very different from the scattering length of
the chemically identical deuterium.

In cases that the configurational average over isotopes and spin states is
independent of the average over the nuclear coordinates – they are indepen-
dent, random variables – we have

< blbm > = b̄2, rmfor l 6= m

= b̄2, rmfor l = m,

= b̄2 + δlm(b̄2 − b̄2). (15)
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It follows that

dσ

dΩdEf

= b̄2 kf

ki

×
1

2πh̄

∫ ∞

−∞

dte−iωt

×
∑

l

∑

m

< e−iQ·rleiQ·rm(t) >

+ (b̄2 − b̄2)
kf

ki

×
1

2πh̄

∫ ∞

−∞

dte−iωt

×
∑

l

< e−iQ·rleiQ·rl(t) > . (16)

The first of these terms corresponds to what is called “coherent scattering”.
The second term is “incoherent scattering”. The double sum in the expression
for coherent scattering can give rise to strong interference effects between
different nucleii, leading to a strong variation of the coherent scattering cross-
section versus wavevector. By contrast, the incoherent scattering, which
depends on motions of the individual nucleii, varies weakly with wavevector.

The connexion between scattering and corre-

lation functions

It is now useful to introduce the nuclear number density that is, the number
of nucleii per unit volume,

n(r, t) =
∑

l

δ(r − rl(t)). (17)

We may introduce the Fourier transform of the number density, n(Q, t), via

n(Q, t) =

∫

d3rn(r, t)e−iQ·r =
∑

l

e−iQ·rl(t). (18)
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It follows that

<
∑

j

e−iQ·rj(0)
∑

l

eiQ·rl(t) > =< n(Q)n(−Q, t) >

=

∫

d3rd3r′e−iQ·(r′−r) < n(r′, 0)n(r, t) >

= V

∫

d3reiQ·r < n(0, 0)n(r, t) >,

= V

∫

d3reiQ·rG(r, t), (19)

where V is the sample volume, and the last equality defines G(r, t). We may
use Eq. 19 to write

dσ

dΩdEf

= b̄2 kf

ki

×
1

2πh̄

∫ ∞

−∞

dte−iωt

× V

∫

d3reiQ·rG(r, t)

+ (b̄2 − b̄2)
kf

ki

×
1

2πh̄

∫ ∞

−∞

dte−iωt

×
∑

l

< e−iQ·rleiQ·rl(t) > . (20)

This equation expresses the basic and important result that we have been
aiming towards. Specifically, it is that the coherent cross-section is the prod-
uct of two parts:

• A bit that depends on the interaction of neutrons with the nucleii of the
sample, independent of the arrangement and motions of those nucleii:
kf

ki
b̄2N/h̄

• A bit, called the dynamic structure factor [S(Q, ω)] that depends on
the collective properties – its structure and dynamics – of the sample:

S(Q, ω) =
1

2πN

∫ ∞

−∞

dte−iωt < n(Q)n(−Q, t) > (21)
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=
1

2πn̄

∫ ∞

−∞

dte−iωt

∫

d3reiQ·rG(r, t) (22)

This separation, which is always found for weakly interacting probes, is one
of the reasons that makes weak scattering probes so informative. i.e. It is
not necessary to worry about disentangling the physics of the sample from
the physics of the measurement.

Detailed balance and sum rules

There are a number of additional key properties of S(Q, ω).

• Detailed balance:

S(Q,−ω) = e−h̄ω/(kBT )S(Q, ω). (23)

This reflects the fact that in order to take energy out of the system, the
system must be in a higher energy state, whose population is suppressed
by a Boltzmann factor.

• The fluctuation-dissipation theorem:

S(Q, ω) =
2h̄

1 − e−h̄ω/(kBT )
χ′′(Q, ω) '

2kBT

ω
χ′′(Q, ω), (24)

where the last equality holds in the classical limit. The FDT relates
spontaneous thermal fluctuations, expressed via S(Q, ω), to energy loss
(dissipation), expressed via the imaginary part of the dynamic susep-
tibility [χ′′(Q, ω)].

• The f-sum rule:
∫ ∞

−∞

dω2ωχ′′(Q, ω) =
Q2

m
. (25)

This is the f-sum rule for the particle density correlation function. (m
is the mass of the particles in question.) Classically, this reads

∫ ∞

−∞

dωω2S(Q, ω) =
kBTQ2

m
. (26)
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Figure 2: Dynamic structure factor for diffusion – a Lorentzian lineshape.
Note the pronounced tails of the profile.

As a simple example, we calculate the coherent inelastic scattering cross-
section for a system in which particle diffusion is the dominant process at
long distances and times, i.e. small Q and ω. To carry out this program,
according to Eq. 22 we need to calculate G(r, t), which we can do by em-
ploying Onsager’s Regression Hypothesis. The Regression Hypothesis states
that spontaneous fluctuations relax according to the same equations as do
imposed disturbances. In the case of a dilute system of diffusing particles, an
imposed disturbance [n(r, t)] will relax according to the diffusion equation:

∂n(r, t)

∂t
= D∇2n(r, t), (27)

where D is the diffusion coefficient. Eq. 27 is most easily solved by taking
the spatial Fourier transform, so that

n(Q, t) = e−DQ2tn(Q, 0). (28)

The Regression Hypothesis then implies [with n(Q, 0) = n(Q)] that

< n(Q)n(Q, t) >= e−DQ2|t| < |n(Q)|2 > . (29)

A basic result of statistical mechanics is that, in the limit of small wavevec-
tors,

< |n(Q)|2 >= Nn̄kBTχT , (30)
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where χT is the isothermal (osmotic) compressibility and n̄ is the mean num-
ber density.

Now, we can write down the dynamic structure factor as

S(Q, ω) ==
n̄kBTχT

2π

2DQ2

ω2 + (DQ2)2
. (31)

Note that or uncorrelated particles, χT = (n̄kBT )−1 from statistical me-
chanics.

At fixed Q, Eq. 31 corresponds to a Lorentzian function of ω. The half-
width-at-half-maximum (HWHM) equals DQ2 and the peak intensity equals
(DQ2)−1, so that considered as a function of ω the area is independent of Q.

An interesting aspect of Eq. 31 is that it actually violates the f-sum
rule (Eq. 26), because of a divergence in the sum rule integral that is the
result of a too-slow decay of S(Q, ω) at large ω. Therefore, the Lorentzian
lineshape cannot be the whole story. To investigate where the f-sum rule
leads, let’s suppose that the the Lorentzian is correct at small ω, but that at
large ω there’s a new microscopic time, τ , that causes S(Q, ω) to fall below
the diffusion result. To account for τ , let’s add an ad hoc additional term to
the denominator that will serve to make the integral convergent:

S(Q, ω) =
n̄kBTχT

2π

2DQ2

ω2 + ω4τ 2 + (DQ2)2
. (32)

In this case, the f-sum rule is satisfied, and implies approximately (ignoring
constant factors) that

n̄kBTχT
2DQ2

τ
'

kBTQ2

m
(33)

whence
D ' τ/(n̄χT m). (34)

This is a (crude) example of a sum rule calculation.

The intermediate scattering function (ISF)

It is rather straightforward to conceive of how an inelastic scattering mea-
surement might be carried out. Such measurements require the source of
radiation to have a well-defined energy and the detection scheme to be able
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to resolve energy. Bragg reflection from crystals is one way to perform the
monochromatization needed. However, it is difficult to resolve very small
energy changes. Therefore, to study low-energy, i.e. slow, processes – which,
typically, are of principal interest in soft matter systems – techniques have
been devised that instead of directly determining the dynamic structure fac-
tor [S(Q, ω)] yield the inverse Fourier transform of the dynamic structure
factor, namely the intermediate scattering function (ISF):

S(Q, t) =

∫ ∞

−∞

dωeiωtS(Q, ω). (35)

For example, in the case of diffusion, by substituting Eq. 31 into Eq. 35 we
find

S(Q, t) = n̄kBTχT e−DQ2t, (36)

corresponding to a simple exponential decay of the ISF versus t.

Static structure factor

In fact, in many (even most) cases, scattering experiments do not energy
resolve the scattered radiation. Instead, scattered radiation of all frequencies
is accepted by the detector and what is measured is then the integral of
S(Q, ω) over frequency:

dσ

dΩ
= Nb̄2

∫ ∞

−∞

dω
kf

ki
S(Q, ω). (37)

In many cases, it is also an excellent approximation that kf ' ki, whence

dσ

dΩ
= Nb̄2

∫ ∞

−∞

dωS(Q, ω) = Nb̄2S(Q, 0), (38)

where S(Q, 0) = S(Q) is the ISF evaluated at t = 0. S(Q) is generally called
the static structure factor. It is imperative to understand that a measurement
of S(Q) corresponds to a t = 0 correlation function, i.e. a measure of the
instantaneous correlations – a snapshot.

How exactly is S(Q) related to correlation functions? The answer is that

S(Q) =
∑

l

∑

m

< e−iQ·rleiQ·rm >= V

∫

d3reiQ·rG(r, 0). (39)
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That is, S(Q) is the space Fourier transform of G(r, 0).
For an ideal gas, the particles are uncorrelated with each other. It follows

that G(r, 0) =< n(r)n(0) >=< n(r) >< n(0) >= n̄2. It is conventional to
introduce the pair correlation function, g(r) = G(r, 0)/n̄2, often also called
the radial distribution function (in the case of an isotropic system) or the pair
distribution function. For an ideal gas, g(r) = 1. We can get further insight
into the pair correlation function by noting that the number of particles in a
volume ∆V at the origin is n(0)∆V . It follows that the probability of there
being a particle in ∆V at the origin is < n(0) > ∆V/N = n̄∆V/N , where
N is the total number of particles in the system. Similarly, the probability
of there being a particle in ∆V at the origin and in ∆V at position r is
(∆V )2 < n(r)n(0)n(r) > /N2. A theorem of probability theory now informs
us that the ratio of these probabilities, i.e. (∆V/N) < n(r)(n(0) > /n̄ =
(∆V/N)n̄g(r), is the conditional probability that a particle will be found in
∆V at r, given that a particle is at the origin. Alternatively, n̄g(r) is the
mean density of particles at r, given that a particle is at the origin.

Neutron spin echo

The method employed to measure the ISF using neutrons is the neutron
spin echo (NSE) technique [Mezei(1972)], which is capable of probing times
between about 10−9 and 2 × 10−7 second. NSE uses the precession of the
neutron spin in a transverse magnetic field in order to probe changes in the
neutron velocity and thus energy. Conceptually, a NSE experiment is car-
ried out as follows. A beam of neutrons is polarized initially parallel to the
neutron momentum. Then a π/2 flipper is used to change the polarization
to be perpendicular to the neutron momentum and then passes through a
region where there is a magnetic field whose direction is transverse to the
neutron polarization, and parallel to the neutron’s momentum. Thus, each
neutron spin precesses through an angle that depends on the time the neu-
tron spends in the magnetic field region, hence on the neutron velocity and
energy. Typically, neutrons perform several thousand precessions. Then, the
neutron beam scatters from the sample. Any neutron that is to be detected
preserves its spin in the scattering process, so that NSE probes coherent
scattering. Immediately after scattering at the sample position, the neutron
passes through a π flipper, so that in the same magnetic field, it will precess
in the opposite sense. Next, indeed the scattered neutron does pass into an-
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Figure 3: A schematic drawing of the neutron spin echo spectrometer in-
stalled at beamline 15 at the Spallation Neutron Source.
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other region where the magnetic field is equal to that in the first precession
region. For elastically scattered neutrons, the effect of this second precession
region, which is supposed to be of precisely the same length as the first, is to
undo the original precession, so that elastically scattered neutrons exit this
region with a well-defined polarization. Next, there is another π/2 flipper
to prepare the beam for polarization analysis. The final polarization anal-
ysis of the neutron beam yields unity for elastically scattered neutrons. By
contrast, inelastically scattered neutrons have either precessed too far (for
neutrons that have lost energy) or too little (for neutrons that have gained
energy) for the initial precession to be exactly undone. This is by virtue of
the longer or shorter time, respectively, spend in the second precession re-
gion. Consequently, polarization analysis of inelastically scattered neutrons
generally yields an average that is less than unity. Specifically, for a given
change in the neutron energy of h̄ω, the corresponding neutron polarization
may be shown to be P (ω) ' cos(2πN0h̄ω/E), where N0 is the number of
precessions made in the first precession region, and E is the mean neutron
energy. On the other hand, the fraction of the neutrons suffering an energy
change of h̄ω is S(Q, ω)/S(Q), where S(Q) =

∫ ∞

−∞
dωS(Q, ω). Thus, for a

given setting of N0, the polarization of the neutron beam is

P̄ =

∫ ∞

−∞
dωP (ω)S(Q, ω)

S(Q)
=

∫ ∞

−∞
dωS(Q, ω) cos(2πN0h̄ω/E)

S(Q)
=

S(Q, 2πN0h̄/E)

S(Q)
,

(40)
which is just the normalized intermediate scattering function for a “time”
2πN0h̄/E. It is therefore possible to measure S(Q, t)/S(Q) versus t by mea-
suring the polarization at different magnetic field strengths, because N0 de-
pends on magnetic field.

Picturesquely, we may say that the neutron spin is like the hand of an
internal clock attached to each individual neutron, which may be used to
measure the difference in time spent in the two precession regions, and hence
the change in the neutron energy upon scattering.

Notice that to achieve long times, or equivalently small energy transfers,
N0 should be as large as possible. There are important requirements on the
uniformity and extent of the magnetic fields which limit the longest times
achievable.
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Figure 4: Aerogel speckle pattern, obtained with a partially coherent x-ray
beam.

Photon correlation spectroscopy

The method alternately known as photon correlation spectroscopy (PCS),
quasielastic light scattering (QELS), intensity fluctuation spectroscopy (IFS),
or dynamic light scattering (DLS) also measures S(Q, t). Key to performing
PCS measurements is a partially coherent beam. What is a coherent beam?
Crudely, we can say that in a partially coherent beam the value of the electric
field at a given point in the sample is correlated with the value at another,
distant point in the sample. If such a beam is used in a scattering experi-
ment, fluctuations in the scattered intensity arise as a result of interference
among the fields scattered by different particles. This is speckle. Fig. 4 il-
lustrates a CCD image of x-ray speckle from a completely static sample –
a piece of aerogel. The implementation of PCS requires a certain coherence
of the incident light and detection scheme, that is not required for inelas-
tic scattering techniques, nor for NSE. Useful coherence, however, requires
brightness, which precludes the use of neutrons.
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PCS with laser light has long been employed to investigate the dynamics
of condensed matter on micrometer length scales and time scales from sub-
microseconds to hundreds of seconds or longer [Chu(1974)]. More recently,
with very bright synchrotron sources, it has become possible to carry out
PCS experiments with x-rays on time scales of milliseconds, or less, under
special circumstances. (X-ray PCS is one of the things I do, so my examples
will often involve x-rays.) In either case, the speckle pattern varies in time
as the sample undergoes thermal fluctuations, so that the time variations of
the speckle pattern directly mirror the time variations of density/refractive
index fluctuations within the sample. Here is x-ray speckle from a dynamic
sample of 190-nm-radius colloidal particles suspended in water.

The determine the characteristic relaxation rates of the sample, therefore,
is it necessary to characterize the time variations of the speckle intensity. This
may be done by determining the time autocorrelation of the intensity (g2)
in a speckle as it fluctuates on and off. For the multispeckle data shown in
the movie above, we calculate g2 pixel-by-pixel and then average together
all g2 with the same Q (within some chosen resolution). The results are
shown in Fig. 5, which indeed shows autocorrelation functions obtained at
several representative Qs for 190 nm-radius silica spheres suspended in water.
The resultant time autocorrelation function of the intensity scattered with
wavevector Q [g2(Q, t)] is related to the dynamic structure factor [S(Q, t)] of
the sample via

g2(t) = 1 + β[f(Q, t)]2, (41)

where β is the speckle contrast, and f(Q, t) = S(Q, t)/S(Q, 0) is the normal-
ized intermediate scattering function.

Consider a scattering experiment in which a highly-collimated photon
beam with mean wavevector ki = kŷ is incident on a sample, for which the lo-
cal electron density is ρ(r, t), at location r and time t. The corresponding in-
cident electric field at r and t may be written Einc(r, t) = Ei(r, t)êie

i(ki.r−ω̄)t,
where ω̄ = ωi = ck is the mean frequency, êi is the polarization of the inci-
dent photons and c is the speed of light. We suppose that Ei is a complex
amplitude that varies slowly in time compared to 2π/ω̄ and slowly in space
compared to 2π/k. With the further assumption that the the electron density
at any point varies slowly compared to 2π/ω̄, the electric field at a distance
R from the sample, scattered to wavevector kf , is

Ef(t
′) = êf

êf · êir0e
iω̄t

4πR

∫

V

d3reiQ·rρ(r, t)Ei(r, t +
kf .r

ω̄
), (42)
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Figure 5: Intensity autocorrelation functions vs. time for 190-nm-radius
silica spheres in water at the wavevectors indicated. For clarity, different g2s
have been shifted from each other.

where êf is the polarization of the scattered photon, Q = ki − kf is the
wavevector transfer, t′ = t + R/c is the time at which x-rays scattered at
time t are detected, and r0 is the Thomson radius of the electron. (In fact,
this expression is appropriate for x-rays. For light, it should be replaced
by an expression that involves the refractive index density, rather than the
charge density.) The integration volume (V ) in Eq. 42 is the illuminated
sample volume, which we will take to be a right-angled parallelopiped of
dimensions L along x, M along z, and W along y. Since the incident field
is a plane wave to a good approximation, Ei only depends on y and t in the
combination y− ct. It follows that Ei(x, y, z, t) = Ei(x, 0, z, t− y/c), so that

Ef(t
′) = êf

êf · êir0e
iω̄t

4πR

∫

V

d3reiQ·rρ(r, t)Ei(x, 0, z, t −
Q.r

ω̄
), (43)

Using the fact that Ei and ρ are translationally invariant, independent
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random variables, the corresponding mean scattered intensity is

< |Ef |
2 > = (

êf · êi)
2r2

0V

4πR2

∫

V

d3reiQ·r

× < ρ(0, 0)ρ(r, 0) >< Ei(0, 0, 0, 0)E∗
i (x, 0, z,−

Q · r

ω̄
) > . (44)

Typically, the correlation length of fluctuations in the charge density within
the sample is much shorter than the coherence lengths of the electric field.

Therefore, Eq. 44 can be written

< |Ef |
2 > =

(êf .êi)
2r2

0V

4πR2
< |Ei|

2 >

×

∫

V

d3reiQ·r < ρ(0, 0)ρ(r, 0) > . (45)

The scattering cross-section per unit volume (Σ = Σ(Q)) is defined, anal-
ogously to that for neutrons, in terms of the rate of incident x-rays (ni) and
the rate of x-rays scattered into a solid angle ∆Ω (ns) via

ns

ni
=

< |Ef |
2 > R2∆Ω

< |Ei|2 > A
= ΣW∆Ω, (46)

where A is the cross-sectional area of the incident beam and W is the sample
thickness along the beam. Comparison of Eq. 45 and Eq. 46 yields the result

Σ = (êf · êi)
2r2

0

∫

V

d3reiQ·r < ρ(0, 0)ρ(r, 0) > . (47)

The more-general formula, that also applies to optical scattering experiments,
is

Σ =
(êf · êi)

2k4

16π2

∫

V

d3reiQ·r < ε(0, 0)ε(r, 0) >, (48)

where ε(r, t) is the dielectric constant density at r and t.
The quantity measured in PCS experiments is the normalized intensity

autocorrelation function, averaged over the accumulation time (T ) and the
detector area (A):

g2(t, T, A) =
1

A2T 2

∫ T/2

−T/2

dt1

∫ t+T/2

t−T/2

dt2

∫

A

ds2
1

∫

A

ds2
2 g2(s1−s2, t1− t2) (49)
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where

g2(s1 − s2, t1 − t2) =
< |Ef(t1)|

2|Ef(t2)|
2 >

< |Ef |2 >2
, (50)

and s1 and s2 are deviations from an origin defined on the acceptance area
of the detector [Jakeman(1973), Pusey(1976)]. We start by substituting Eq.
43 into Eq. 50, which yields the result that

g2(s1 − s2, t) =

(êf · êx)
4r4

0

4πR4 < |Ef |2 >2

∫

V

d3r1

∫

V

d3r2

∫

V

d3r3

∫

V

d3r4

e−i(Q+s1)·(r1−r2)e−i(Q+s2)·(r3−r4)

< ρ(r1, 0)ρ(r2, 0)ρ(r3, t)ρ(r4, t) >

< Ei(x1, 0, z1, i −
(Q + s1) · r1

ω̄
)E∗

i (x2, 0, z2,−
(Q + s2) · r2

ω̄
) (51)

Ei(x3, 0, z3, t −
(Q + s1) · r3

ω̄
)E∗

i (x4, 0, z4, t −
(Q + s2) · r4

ω̄
) > .

Significant contributions to the integrals of Eq. 51 occur for r1 ' r2 and
r3 ' r4 and for r1 ' r4 and r2 ' r3, so that, in the realistic case that the
coherence time of the source is much shorter than the correlation time of the
sample, we find

g2(s1 − s2, t) = 1 +
(êf · êx)

4r4
0

4πR4 < |Ef |2 >2

∫

V

d3r1

∫

V

d3r2

∫

V

d3r3

∫

V

d3r4e
iQ·(r1−r4)e−iQ·(r2−r3)

< ρ(r1, 0)ρ(r4, t) >< ρ(r2, 0)ρ(r3, t) > e−i(s1−s2)·(r1−r2)

< Ei(x1, 0, z1,−
(Q + s1) · r1

ω̄
)E∗

i (x2, 0, z2,−
(Q + s2) · r2

ω̄
) >

< Ei(x2, 0, z2, t +
(Q + s1) · r2

ω̄
)E∗

i (x1, 0, z1, t +
(Q + s2) · r1

ω̄
) >

= 1 + γ(s1 − s2)

∣

∣

∣

∣

S(Q, t)

S(Q)

∣

∣

∣

∣

2

, (52)

where

S(Q, t) =
V

N

∫

V

d3reiQ·r < ρ(0, 0)ρ(r, t) >, (53)

20



and

γ(s1 − s2) =

∫

V

d3r1

∫

V

d3r2e
−i(s1−s2).(r1−r2) ×

| < Ei(0, 0, 0, 0)E∗
i (x2 − x1, 0, z2 − z1,Q.(r2 − r1)/ω̄) > |2

V 2 < |Ei|2 >2
(54)

Eq. 52 demonstrates the relationship between the experimentally mea-
sured intensity autocorrelation function, on the one hand, and the ISF on
the other. Carrying out the integrals over s1 and s2 yields

g2(t, A) = 1 + β |f(Q, t)|2 , (55)

where β depends on the source and the experimental set-up, in a fashion that
is in principle understood,

In addition to averaging over the area of detector, experimentally we
average over the accumulation time, T . Except in the special case of a
simple exponential, temporal averaging gives rise to distortion of the ISF for
large enough ΓT , as is shown by Jakeman [Jakeman(1973)]. Therefore, it is
highly desirable to ensure that the product characteristic decay rate of the
sample (Γ) and the accumulation time (T ) is small. In this case, the quantity
measured by PCS is

g2(t, T, A) = 1 + β |f(Q, t)|2 , (56)

and f(Q, t) is the normalized ISF of the sample under study.

Exercise: A sample is illuminated by an electric field Ei = E0 cos ω̄t. Sup-
pose that the corresponding electric field scattered from a sample into a
detector is Ef = E ′ cos ωt + E ′′ sin ωt. E ′ and E ′′ are independent random
variables, both with a Gaussian probability density with zero mean and with
variance σ2. Calculate the probability density of the intensity, defined as
I = (E ′)2 + (E ′′)2?

Coil-globule transition in a single polymer chain

Now you know how the intermediate scattering function (IFS), S(Q, t), can
be measured. we also derived the form of S(Q, t) for objects whose dynamics
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follow the diffusion equation. A dilute suspension of particles in a fluid is an
example. For such a system

S(Q, t) = Nn̄kBTχT e−DQ2t, (57)

so that the IFS decays versus time with a time constant (DQ2)−1. Evidently,
therefore, measurements of S(Q, t) may be used to determine the diffusion
coefficient D of the consituents of the suspension.

An elegant experiment to characterize the collapse of individual poly-
mers as the solvent goes from good to bad was carried out by Nishio et

al. [Nishio et al.(1979)Nishio, Sun, Swislow, and Tanaka] by using photon
correlation spectroscopy (PCS) to measure the polymer diffusion coefficient.
The Stokes-Einstein relation relates the diffusion coefficient (D) of a par-
ticle in a viscous medium with its hydrodynamic radius (RH), via D =
kBT/6πηRH . (The solution viscosity is η.) Thus, PCS measurements can
be used to determine RH . Fig. 6 shows Nishio et al.’s measurements of
the hydrodynamic radius (open circles) of polyacrylamide polymers in di-
lute solution in water-acetone as a function of the acetone concentration.
Evidently, at about 40 percent acetone by volume, the polymer radius drops
sharply from about 48 nm to about 20 nm. This is termed the coil-globule
transition. A computer-generate rendition of the corresponding polymer con-
formations are shown in Fig. 7.

A simple theory (see below), based upon minimizing the free energy of an
individual polymer, explains this behavior [Grosberg and Khokhlov(1997)].
Consider a polymer composed of N monomers, each of length `, so that if the
polymer’s conformation were that of a random walk, its r.m.s. radius would
be R ' N

1

2 `. (In this discussion, we will not be concerned with precise

numerical coefficients – actually R = (N/6)
1

2 ` for a random walk in three-
dimensional space with step size ` – rather we will get the correct functional
dependences on parameters of interest.)

In general, the polymer experiences interactions which tend to expand or
shrink the polymer compared to a random walk to a radius αR. We may
determine the effect of the interactions as follows. First, we write down the
energy of a chain as

U(α) ' V kBT (b2n
2 + b3n

3 + ...) ' kBT (
b2N

1

2

α3`3
+

b3

α6`6
], (58)

where, b2 and b3 are the second and third virial coefficients, respectively,
characterizing the monomer-monomer interactions, V ' α3R3 is the volume
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Figure 6: Hydrodynamic radius (open circles) and radius of gyration (solid
circles) of polyacrylamide in water-acetone vs. acetone concentration.
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Figure 7: Conformation of (a) a compact polymer globule and of (b) a poly-
mer coil. From Ref. [Grosberg and Khokhlov(1997)].
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of the coil and n ' N/(αR)3 is the number density of monomers within the
polymer.

Irrespective of b2, b3 is positive corresponding to a hard core that prevents
complete collapse of the polymer. In a good solvent, we expect b2 to be
positive, corresponding to excluded-volume interactions. In this case, U(α)
decreases monotonically with increasing α, favoring an expanded polymer.
However, in a poor solvent, the momomers are attracted to each other, so
that b2 is negative anf U(α) exhibits a minimum at some non-zero α.

In addition to the energy, the polymer’s entropy is the second key in-
gredient for determining the minimum free-energy state of the polymer via
F = U − TS The entropy of a stretched or squeezed chain is reduced com-
pared to that of a random walk. Specifically, it is possible to show that the
entropy as a function of α is approximately

S(α) ' S(0) − kB(α2 +
1

α2
− 2). (59)

The equilibrium conformation is then found by minimizing the free energy

F (α) = U(α)−TS(α) ' kBT (
b2N

1

2

α3`3
+

b3

α6`6
)+kBT (α2+

1

α2
−2)−TS(0). (60)

This function is shown in Fig. 8 for several values of b2 with b3 fixed. Ev-
idently, for the least negative value of b2, F (α) has a minimum for α > 1
only. For more negative values of b2, however, a second minimum appears
for α < 1. At sufficiently negative values of b2, the second minimum be-
comes the lower in free energy, and a transition between an expanded coil
and a collapsed globule occurs. Thus, this simple (qualitative) theory mimics
the behavior seen experimentally by Nishio et al. via their measurements of
S(Q, t).

Exercise: In the case that the polymer is swollen, calculate how α depends
on N , and hence how R depends on N .

Static scattering from dilute spheres

We will consider the static scattering from several different objects. The
first is perhaps the simplest, namely a sphere of uniform scattering length
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Figure 8: The free energy, F (α)/kBT , of a polymer as a function of its

expansion, α, relative to a Gaussian coil for several values of B2 = b2N
1

2 /`3

and B3 = b3/`
6 = 0.001.
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