
Chapter 7

Dynamics: correlation and
response

Much of what we observe in nature is either time- or frequency- dependent.
In this chapter, we will introduce language to describe time and frequency
dependent phenomena in condensed matter systems near thermal equilib-
rium. We will focus on dynamic correlations and on linear response to time
dependent external fields that are described by time-dependent generaliza-
tions of correlation functions and susceptibilities introduced in Chapters 2
and 3. These functions, whose definitions are detailed in Sec. 7.1, contain
information about the nature of dynamical modes. To understand how
and why, we will consider linear response in damped harmonic oscillators
in Secs. 7.2 and 7.3, and in systems whose dynamics are controlled by
diffusion in Sec. 7.4. These examples show that complex poles in a com-
plex, frequency-dependent response function determine the frequency and
damping of system modes. Furthermore, the imaginary part of this re-
sponse function is a measure of the rate of dissipation of energy of external
forces.

A knowledge of phenomenological equations of motion in the presence
of external forces is sufficient to determine dynamical response functions.
The calculation of dynamical correlation functions in dissipative systems
requires either a detailed treatment of many degrees of freedom or some
phenomenological model for how thermal equilibrium is approached. In
Sec. 7.5, we follow the latter approach and introduce Langevin theory,
in which thermal equilibrium is maintained by interactions with random
forces with well-prescribed statistical properties. Frequency-dependent cor-
relation functions for a diffusing particle and a damped harmonic oscillator
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2 CHAPTER 7. DYNAMICS: CORRELATION AND RESPONSE

are proportional to the imaginary part of a response function. This is the
classical version of the very important fluctuation-dissipation theorem.

Having discussed correlation and response in simple, phenomenological
models, we turn in Sec. 7.6 to a general formal treatment of response and
correlation functions. This treatment is valid at all temperatures for both
classical and quantum systems, and includes a discussion of symmetry and
sum rules and a derivation of the general fluctuation-dissipation theorem.
Finally, in Sec. 7.7, we will show how inelastic scattering of neutrons mea-
sures dynamic correlation functions.

7.1 Dynamic correlation and response func-
tions

7.1.1 Correlation functions

The time dependence of both classical and quantum mechanical dynamical
variables is governed by equations of motion determined by a Hamiltonian
H. A quantum mechanical operator (or field) φi(x, t) evolves in time in the
Heisenberg representation according to

φi(x, t) = eiHt/h̄φi(x, 0)e−itH/h̄. (7.1.1)

We will often be interested in the frequency rather than time dependence
of operators, and it is useful to introduce the temporal Fourier transforms,

φi(x, t) =
∫ ∞

−∞

dω

2π
e−iωtφi(x, ω),

φi(x, ω) =
∫ ∞

−∞
dteiωtφi(x, t). (7.1.2)

We will frequently study time-dependent correlations of variables such as
the position xα(t) of particle α or simple functions of such variables such
as the density,

n(x, t) =
∑
α

δ
(
x− xα(t)

)
. (7.1.3)

Here, both n(x, t) and xα(t) evolve according to Eq. (7.1.1). Classically,
operators such as xα(t) evolve according to Newton’s equations

Time-dependent correlation functions can be introduced in strict anal-
ogy with the static correlations introduced in Secs. 3.5 and 3.6. Thus, we
define

Cφiφj
(x,x′, t, t′) = 〈φi(x, t)φj(x′, t′)〉 (7.1.4)
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and

Sφiφj
(x,x′, t, t′) = 〈(φi(x, t)− 〈φi(x, t)〉

)(
φj(x′, t′)− 〈φj(x′, t′)〉)〉

≡ Cφiφj
(x,x′, t, t′)− 〈φi(x, t)〉〈φj(x′, t′)〉, (7.1.5)

where, as for the static case, 〈 〉 signifies an average with respect to an
equilibrium ensemble. Because the time evolution of the fields φi(x, t) is
governed by the Hamiltonian according to Eq. (7.1.1), there is no ambigu-
ity in the meaning of these averages: for each value of t and t′, they are
evaluated by tracing over all points in phase space or all quantum states
weighted by the appropriate equilibrium weight function. When t = t′,
these correlation functions reduce to the static correlation functions dis-
cussed in Chapter 3:

Cφiφj
(x,x′, t, t) ≡ Cφiφj

(x,x′),
Sφiφj

(x,x′, t, t) ≡ Sφiφj
(x,x′). (7.1.6)

Unless otherwise specified, we will consider only Hamiltonians that
are independent of time so that all thermodynamic averages are invari-
ant under time translations. This implies that 〈φi(x, t)〉 ≡ 〈φi(x)〉 is in-
dependent of time and that the correlation functions Cφiφj

(x,x′, t, t′) and
Sφiφj

(x,x′, t, t′) depend only on the difference t− t′ rather than on t and t′

individually. Thus, the correlation function of the temporal Fourier trans-
form variables can be written as

〈φi(x, ω)φj(x′, ω′)〉 = Cφiφj
(x,x′, ω)2πδ(ω + ω′) , (7.1.7)

where

Cφiφj
(x,x′, ω) =

∫ ∞

−∞
d(t− t′)eiω(t−t′)Cφiφj

(x,x′, t− t′). (7.1.8)

The correlation function Cφiφi
(x,x, ω) is often called the power spectrum of

φi(x). Eqs. (7.1.7) and (7.1.8) are generalizations of theWiener-Khintchine
theorem relating a power spectrum to the Fourier transform of a time-
dependent correlation function. Similarly, we define

Sφiφj
(x,x′, ω) =

∫ ∞

−∞
d(t− t′)eiω(t−t′)Sφiφj

(x,x′, t− t′). (7.1.9)

Equ. (7.1.5) then implies

Cφiφj
(x,x′, ω) = Sφiφj

(x,x′, ω) + 〈φi(x)〉〈φj(x′)〉2πδ(ω) , (7.1.10)

indicating that the 〈φi(x)〉〈φj(x′)〉 contributes only to the zero-frequency
or static part of Cφiφj

(x,x′, ω).
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7.1.2 Response functions

Just as the static susceptibilities χφiφj
(x,x′) relate changes δ〈φi(x)〉 in

averages of fields to changes in external fields δhj(x′) conjugate to φj(x),
the dynamic response function χ̃φiφj

(x,x′, t, t′) relates changes δ〈φi(x, t)〉
in averages of time-dependent fields to time-dependent changes δhj(x′, t′)
in external fields:

δ〈φi(x, t)〉 =
∫

ddx′dt′χ̃φiφj
(x,x′, t, t′)δhj(x′, t′). (7.1.11)

It is important to recognize the difference between the temporal and spa-
tial variables in this equation. Disturbances at x′ can lead to changes in
〈φi(x, t)〉 at all points x. Disturbances at time t′ can lead to changes in
〈φi(x, t)〉 only for times t later than t′, i.e., the response of 〈φi(x, t)〉 to
hj(x′, t′) is causal. This means that the response function χ̃φiφj

(x,x′, t, t′)
can be nonzero only for t > t′. It is very useful to incorporate this step-
function dependence on time into the definition of the response function by
writing

χ̃φiφj
(x,x′, t, t′) = 2iη(t− t′)χ̃′′

φiφj
(x,x′, t, t′), (7.1.12)

where

η(t− t′) =
{
1 if t > t′;
0 if t < t′ (7.1.13)

is the Heaviside unit step function. The factor of 2i (i =
√−1) is at this

stage arbitrary, but it will make comparisons with our later more formal
development more straightforward. Eq. (7.1.12) can be viewed as a def-
inition of χ̃′′

φiφj
(x,x′, t, t′), which is pure imaginary if φi and φj are both

real. Time translational invariance again implies that χ̃(x,x′, t, t′) and
χ̃′′
φiφj

(x,x′, t, t′) depend only on t− t′.
We will now discuss some of the analytic properties of the response

function and its Fourier transform with respect to time. In order to keep
notation compact, we will consider the response of a single position in-
dependent field φ(t) to its conjugate external field h(t). In this case, we
have

〈δφ(t)〉 =
∫ ∞

−∞
dt′χ̃(t− t′)δh(t′), (7.1.14)

where χ̃(t) = 2iη(t)χ̃′′(t). Both 〈φ(t)〉 and h(t) are real so that χ̃′′(t) is pure
imaginary. We will be interested in response as a function of frequency
rather than time. We therefore need to calculate the temporal Fourier
transform of χ̃(t). Because of the causal step-function prefactor in χ̃(t),
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it is useful to introduce the Laplace transform as a function of complex
frequency z:

χ(z) =
∫ ∞

−∞
eiztχ̃(t)dt =

∫ ∞

0

eiztχ̃(t)dt. (7.1.15)

The function χ̃′′(t) is bounded as t → ∞ because a disturbance at time
t = 0 will only produce a finite change in φ(t) at later times. Thus, because
t is positive in the above integral, χ(z) is analytic in the upper half z-plane
(Imz > 0). The function χ̃′′(t, t′) = χ̃′′(t−t′) is bounded, and we can define
its Fourier transform with respect to a real frequency variable,

χ̃′′(t) =
∫ ∞

−∞

dω

2π
e−iωtχ′′(ω)

χ′′(ω) =
∫ ∞

−∞
dteiωtχ̃′′(t). (7.1.16)

If χ̃′′(t) approaches a constant as t → ∞, then χ′′(ω) will have delta-
function parts. Quite general arguments to be discussed in Sec. 7.6 show
that χ̃′′(t) = −χ̃′′(−t). This, along with the fact that χ̃′′(t) is pure imag-
inary, implies that χ′′(ω) is real and odd in ω. Eqs. (7.1.12), (7.1.15) and
(7.1.16) imply

χ(z) =
∫ ∞

0

dteizt2i
∫ ∞

−∞

dω

2π
e−iωtχ′′(ω)

=
∫ ∞

−∞

dω

π

χ′′(ω)
ω − z

(7.1.17)

for z in the upper half plane. This representation of χ(z) shows clearly that
it only has singularities on the real axis and is, therefore, analytic in the
upper half plane. The time-dependent response function χ̃(t) is the inverse
Laplace transform of χ(z), which in the present case is an integral along a
contour in the upper half plane:

χ̃(t) =
∫ ∞+ic

−∞+ic

dze−iztχ(z), (7.1.18)

where c is any real number. This result is most easily derived using Eq.
(7.1.17). If t > 0, the contour [−∞+ ic,∞+ ic] can be closed in the lower
half plane, and there is a contribution to the integral at z = ω. If t < 0,
the contour can be closed in the upper half plane where χ(z) is zero. Thus
χ̃(t) is zero for t < 0 and equal to 2iχ̃′′(t) for t > 0.

The response function χ(ω) relating 〈δφ(ω)〉 to δh(ω) can be obtained
by using the Fourier representation,

η(t) = lim
ε→0

∫ ∞

−∞

dω

2πi
eiωt

1
ω − iε

, (7.1.19)
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for the step function. From this and Eq. (7.1.14) we obtain

〈δφ(ω)〉 =
∫ ∞

−∞
dteiωt

∫ ∞

−∞
dt′2iη(t− t′)χ̃′′(t− t′)δh(t′)

= χ(ω)δh(ω), (7.1.20)

with
χ(ω) ≡ lim

ε→0
χ(ω + iε), (7.1.21)

where χ(ω+ iε) is given by Eq. (7.1.17) with z = ω+ iε. Thus the response
function χ(ω) is the limit as z approaches the real axis of the function
χ(z), which is analytic in the upper half plane. When the frequency of
the external perturbation tends to zero, χ(ω) must reduce to the static
susceptibility:

lim
ω→0

χ(ω) =
∫ ∞

−∞

dω′

π

χ′′(ω′)
ω′ =

∂〈φ〉
∂h

= χ. (7.1.22)

This is a sum rule relating an integral over χ′′(ω) to a static quantity,
the static susceptibility. Because the static quantity is a thermodynamic
derivative, this is often called the thermodynamic sum rule. It is one of a
hierarchy of sum rules which we will discuss in more detail in Sec. 7.6.

The function χ(ω), unlike its static limit, has a real part and an imagi-
nary part, as can be seen using the identity

1
ω′ − ω − iε

= P 1
ω′ − ω

+ iπδ(ω − ω′) (7.1.23)

(P signifies the principal part) in Eqs. (7.1.17) and (7.1.20). The result is

χ(ω) = χ′(ω) + iχ′′(ω) , (7.1.24)

where

χ′(ω) = P
∫ ∞

−∞

dω′

π

χ′′(ω′)
ω′ − ω

. (7.1.25)

Since χ′′(ω) is a real function, χ′(ω) is also. Thus, χ′(ω) and χ′′(ω) are,
respectively, the real and imaginary parts of the complete response func-
tion χ(ω). Eq. (7.1.25) is a Kramers-Kronig relation between the real
and imaginary parts of χ(ω). There is also a complementary expression
relating χ′′(ω) to −χ′(ω). This is most easily derived by using the Cauchy
representation for χ(z):

χ(z) =
∮

Γ

dζ

2πi
χ(ζ)
ζ − z

, (7.1.26)
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z

Γ

Figure 7.1.1: Contour in the complex plane for the integral in Eq. (7.2.26).

where the contour Γ is the semicircle shown in Fig. 7.1.1. This equation
follows because χ(z) is analytic in the upper half plane. As we shall see
in Sec. 7.7, χ(z) tends to zero faster than 1/z, as z → ∞ in most cases
of interest. In this case, the integral in Eq. (7.1.26) reduces to an integral
along a line just above the real axis, i.e., from −∞+ iε′ to ∞+ iε′. Then,
setting z = ω + iε with ε′ < ε, we obtain

χ(ω + iε) = P
∫

dω′

2πi
χ(ω′ + iε′)
ω′ − ω

+
1
2
χ(ω + iε). (7.1.27)

Taking the imaginary part of both sides of this equation, we obtain

χ′′(ω) = −P
∫

dω′

π

χ′(ω′)
ω′ − ω

. (7.1.28)

The real part of Eq. (7.1.27) yields Eq. (7.1.25). Eqs. (7.1.25) and (7.1.28)
are the usual Kramers-Kronig relations. They require slight modification
if χ(z) does not fall off more rapidly than 1/z at infinity. Often it is easier
to measure χ′′(ω) (say by an absorption experiment) than χ′(ω). If the
measurements of χ′′(ω) are made over a sufficiently large frequency range,
the real response can be obtained via Eq. (7.1.25).

The above analysis of the response of a single scalar field applies without
change to more general response functions. Thus, the Laplace transform of
χ̃φiφj

(x,x′, t, t′) satisfies

χφiφj
(x,x′, z) =

∫ ∞

−∞

dω

π

χ′′
φiφj

(x,x′, ω)

ω − z
. (7.1.29)

Following Eqs. (7.1.21) and (7.1.24), we have

χφi,φj
(x,x′, ω) = χφiφj

(x,x′, ω) + iχφiφj
(x,x′, ω), (7.1.30)

where χ′
φiφj

(x,x′, ω) is related to χ′′
φiφj

(x,x′, ω) by a Kramers-Kronig rela-
tion analogous to Eq. (7.1.25). In Sec. 7.6, we will show that χ′′

φiφj
(x,x′, ω)
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is real provided φi and φj have the same sign under time reversal and there
are no external fields or order parameters that break time reversal sym-
metry. In this case, χ′

φiφj
(x,x′, ω) is the real part of and χ′′

φiφj
(x,x′, ω)

the imaginary part of the complex response function χφiφj
(x,x′, ω). The

zero-frequency limit of Eq. (7.1.31) leads to the thermodynamic sum rule,

χφiφj
(x,x′) =

δ〈φi(x)〉
δhj(x′)

=
∫ ∞

−∞

dω

π

χ′′
φiφj

(x,x′, ω)

ω
. (7.1.31)

The spatial Fourier transform in the zero-wavenumber limit of this equation
gives, as before, the usual static susceptibility.

7.2 The harmonic oscillator

7.2.1 The undamped oscillator

The dynamical properties of condensed matter systems are very often domi-
nated by harmonic oscillator-like modes. These modes include sound waves
in fluids, elastic waves and phonons in solids, and spin waves in magnets.
Detailed information about the frequency and damping of these modes is
contained in both dynamical response and correlation functions. In this
section, we will explore in detail the response function of a simple damped
harmonic oscillator. Its properties generalize directly to any system with
well defined modes at finite frequency.

The Hamiltonian for an undamped oscillator of mass m and spring
constant k is

H =
p2

2m
+
1
2
kx2. (7.2.1)

The equations of motion for position x(t) and momentum p(t) are calculated
by taking their Poisson brackets with the Hamiltonian:

ẋ ≡ v = {H, x} =
(
∂H
∂p

∂x

∂x
− ∂H

∂x

∂x

∂p

)
=

p

m
, (7.2.2)

ṗ = {H, p} = −∂H
∂x

= −kx. (7.2.3)

The mode structure implied by these equations is obtained by assuming
that both x(t) and p(t) are proportional to e−iωt and solving the resulting
characteristic equation

det
[ −iω

k
−1/m
−iω

]
= −ω2 + k/m = 0. (7.2.4)



7.2. THE HARMONIC OSCILLATOR 9

There are two solutions to this equation:

ω = ±ω0 ≡ ±
√
k/m. (7.2.5)

Each of these solutions corresponds to a mode of the harmonic oscillator.
Note that there is one mode per degree of freedom (x and p). The time
dependence of each degree of freedom is governed by a first-order differen-
tial equation in time. Thus, there is one mode per first-order differential
equation in the equations of motion. This property is quite general and
will be encountered again in our study of hydrodynamics of conserved and
broken symmetry variables.

The variables x(t) and p(t) have opposite signs under the operation of
time reversal (i.e., under change in the sign of time t): x(−t) = +x(t),
whereas p(−t) = −p(t). The Hamiltonian [Eq. (7.2.1)] and its associated
equations of motion [Eqs. (7.2.2) and (7.2.3)] are invariant under time re-
versal. The equations of motion relate the time derivative of a variable
with one sign under time reversal to the variable with the opposite sign.
These relations lead to the off-diagonal terms in the characteristic determi-
nant and to real and non-zero solutions to the characteristic equation. This
property is again quite general: modes at non-zero real frequency invariably
arise from the coupling of variables with opposite sign under time reversal
via first-order differential equations in time.

We have taken the trouble to discuss the undamped oscillator in terms
of the first-order differential equations determined by the Poisson bracket
relations with the Hamiltonian to point out features of such equations that
will generalize to more complicated dynamical problems. The first-order
Poisson bracket relations can of course be converted into the second-order
differential equation of Newton’s second law by substituting Eq. (7.2.2)
into Eq. (7.2.3). The result is

ẍ+ ω2
0x = 0. (7.2.6)

This equation, like Eqs. (7.2.2) and (7.2.3), is invariant under time reversal
and predicts modes with frequencies ±ω0.

7.2.2 The damped oscillator

To introduce damping in an intuitive way, we place the particle of mass
m into a viscous fluid. In constant motion, it experiences a friction force
proportional to its velocity at small velocities. This force can be written as

fvis = −αv, (7.2.7)
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where α is a friction constant with units of [mass]/[time]. For a sphere of
radius a moving in a fluid with shear viscosity η, α is given by Stokes’s law

α = 6πηa. (7.2.8)

We will discuss the meaning of the shear viscosity in the next chapter.
The viscosity η has units of [energy×time]/[volume] (poise) and is of order
nflτcT in a fluid with number density nfl at temperature T in which the
average time between molecular collisions is τc. For the moment, both α
and η can be regarded as phenomenological parameters. The viscous force
law, Eq. (7.2.7), is strictly speaking only valid for a time-independent (i.e.,
zero frequency) velocity. It must approach zero, as we shall see in Sec. 7.7,
at frequencies greater than τ−1

c . For low frequencies or for masses with
densities much larger than that of the surrounding fluid (see Problem 7.6),
however, it is a very good approximation to the exact force, and we will
use it without further apology.

In the presence of a viscous force and an external force f , Newton’s
equation for a one-dimensional harmonic oscillator becomes

ẍ+ ω2
0x+ γẋ = f/m, (7.2.9)

where
γ = α/m. (7.2.10)

The characteristic decay time γ−1 = m/(6πηa) is of order m/(anflτcT ).
If the average interparticle spacing d = n

−1/3
fl and the mean free path

vτc = (2T/mfl)1/2τc, wheremfl is the mass of a fluid particle, are of the same
order, then γ−1 ∼ (m/mfl)(d/a)τc. Thus, for all but the most microscopic
of particles, m � mfl and γ−1 � τc. The viscous force breaks time-reversal
invariance in Eq. (7.2.9). Any microscopic Hamiltonian and its associated
equations of motion must be invariant under time reversal. In the present
case, the microscopic Hamiltonian is that describing the Harmonic oscillator
and all of the degrees of freedom of the fluid in which it moves. The viscous
force describes the average effect on the harmonic oscillator of interactions
with the many incoherent degrees of freedom of the fluid. In general, any
energy in the harmonic oscillator will tend to flow irreversibly into the many
modes of the fluid. This is reflected in the sign of the viscous force which
leads to the decay of x(t) with time. The irreversible flow of energy into
incoherent degrees of freedom is called dissipation, and fvis is a dissipative
force. We will return in Sec. 7.5 to a description of the harmonic oscillator
when it is in thermal equilibrium with the fluid so that it receives energy
from as well as transmits energy to the fluid.
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The mode structure of the damped harmonic oscillator is determined
by the equation

−ω2 + ω2
0 − iγω = 0 (7.2.11)

with solutions

ω = ±[ω2
0 − (γ2/4)]1/2 − iγ/2 ≡ ±ω1 − iγ/2. (7.2.12)

If ω2
0 > γ2/4, ω1 is real, and solutions for x(t) will oscillate with frequency

ω1 and decay in time with time constant τ = 2/γ. If ω2
0 < γ2/4, ω1 is

imaginary, and there will be no oscillatory component to x(t). In this case,
the oscillator is said to be overdamped, with inverse decay times

τ−1
f =

1
2
γ[1 + (1− 4ω2

0γ
−2)1/2]

ω0�γ/2→ γ,

τ−1
s =

1
2
γ[1− (1− 4ω2

0γ
−2)1/2]

ω0�γ/2→ ω2
0/γ = k/α. (7.2.13)

When ω2
0 � γ2/4, the fast decay time τf is much shorter than the slow

decay time τs. Thus for times long compared to τf , the first mode can be
neglected. This corresponds in the original equations of motion to neglect-
ing the inertial term mẍ. The resulting equation of motion is

αẋ = −kx+ f. (7.2.14)

This approximate equation of motion is often written as

ẋ = − k

α
x+

1
α
f = −Γ∂HT

∂x
, (7.2.15)

where Γ = α−1 and HT = H − fx is the total Hamiltonian including
Hext = −fx. It is very useful in describing the dynamics of systems, such
as polymers in solution, dominated by viscous effects.

7.2.3 The response function

The frequency-dependent response of x to an external force is easily calcu-
lated using Eqs. (7.1.20) and (7.2.9):

χ(ω) =
x(ω)
f(ω)

=
1
m

1
−ω2 + ω2

0 − iωγ
. (7.2.16)

The denominator of this equation is precisely the characteristic equation
[Eq (7.2.11)] determining the mode structure. Thus, there are poles in
χ(ω) at complex mode frequencies of the oscillator. This result is quite
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general. A static external force f will lead to an equilibrium displacement
of x = f/k. This result is correctly described by the zero-frequency limit
of Eq. (7.2.16):

lim
ω→0

χ(ω) =
1

mω2
0

=
1
k
=

∂x

∂f
= χ. (7.2.17)

At high frequency, χ(ω) is negative and falls off as ω−2 with a coefficient
that depends only on the mass:

lim
ω→∞χ(ω) = − 1

mω2
. (7.2.18)

We will reconsider this result in Sec. 7.6.
The imaginary part of the response function is

χ′′(ω) =
1
m

ωγ

(ω2 − ω2
0)2 + (ωγ)2

(7.2.19)

=
1

2mω1

[
γ/2

(ω − ω1)2 + (γ/2)2
− γ/2
(ω + ω1)2 + (γ/2)2

]
γ→0→ πω

m | ω |δ(ω
2 − ω2

0) =
π

2mω0
[δ(ω − ω0)− δ(ω + ω0)].

We see from this that χ′′(ω) is real and odd in ω, and it has peaks with
Lorentzian line shapes centered at ω = ±ω1 (when ω1 is real) with half-
width at half-maximum equal to γ/2. Furthermore, when the viscous damp-
ing is set to zero, χ′′(ω) has delta-function spikes at the frequencies ±ω0 of
the undamped oscillator. The real part of the response function is

χ′(ω) =
1
m

ω2
0 − ω2

(ω2 − ω2
0)2 + ω2γ2

. (7.2.20)

χ′(ω) is positive for ω < ω0, tending to 1/k as ω → 0; it is negative for
ω > ω0, tending to −1/(mω2) as ω → ∞; and it is zero at exactly ω = ω0.
χ′′(ω) and χ′(ω) are plotted in Fig. 7.2.1.

The steady-state time dependence of x(t) in the presence of a force
f(t) = f0 cosωt is obtained from the real part of χ(ω)f0e

−iωt:

x(t) = f0 | χ(ω) | cos[ωt− φ(ω)], (7.2.21)

where
| χ(ω) |= 1

m

1
[(ω2 − ω2

0)2 + ω2γ2]1/2
(7.2.22)

and

tanφ(ω) =
χ′′(ω)
χ′(ω)

=
ωγ

ω2
0 − ω2

. (7.2.23)
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-1 1

0 ω/ω

χ′′(ω)

χ′(ω)

Figure 7.2.1: χ′′(ω) and χ′(ω) for a harmonic oscillator when ω1 is real.

Thus, the amplitude of x(t) reaches a maximum for driving frequencies
in the vicinity of the natural frequency ω0 of the oscillator. Furthermore,
the phase shift describing the degree to which x(t) lags behind f(t) passes
through π/2 at precisely ω0. | χ(ω)| and φ(ω) are plotted in Fig. 7.2.2.

In the overdamped case, the imaginary part of χ(ω) is peaked at the
origin rather than at nonzero frequencies. In the extreme overdamped limit
at frequencies ωτf � 1 where inertial terms can be ignored,

χ(ω) =
1
m

1
ω2

0 − iωγ
= χ

1
1− iωτs

(7.2.24)

and
χ′′(ω)
ω

= χ
τ−1
s

ω2 + τ−2
s

. (7.2.25)

Thus, χ′′(ω)/ω is a Lorentzian centered at the origin with width τ−1
s = Γχ,

as shown in Fig. 7.2.4. Its integral over ω trivially satisfies the thermody-
namic sum rule, Eq. (7.1.22).

The high frequency behavior of χ(z) is determined by the frequency
moments of χ′′(ω), as can be seen by expanding the integral representation
[Eq. (7.1.17)] in powers of 1/z:

χ(z) = −1
z

∫
dω

π

χ′′(ω)
1− ω/z

= −1
z

∫
dω

π
ω
χ′′(ω)
ω

− 1
z2

∫
dω

π
ω2χ

′′(ω)
ω

+ · · · . (7.2.26)
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0 0.5 1 1.5 2 2.5
ω/ω

φ(ω)

|χ(ω)|

Figure 7.2.2: The amplitude and phase functions | χ(ω) | and φ(ω) for n
harmonic oscillator.

We shall see in Secs. 7.5 and 7.6 that χ′′(ω) ≡ χ′′
xx(ω) is related via the

fluctuation-dissipation theorem to S(ω) ≡ Sxx(ω) measuring fluctuations
in x via χ′′(ω)/ω = S(ω)/2T . Frequency moments of S(ω) are simply
equal-time correlation functions of x(t) and its time derivatives, which are
all finite:∫

dω

2π
ωnS(ω) = in

〈(
d

dt

)n

x(t)x(t′)
〉
t′=t

= T

∫
dω

2π
ωnχ

′′(ω)
ω

. (7.2.27)

This equation says that all moments of χ′′(ω)/ω exist and are finite. The
odd nmoments are all zero because χ′′(ω) is odd in ω. The first two nonzero
moments of the phenomenological form for χ′′(ω) in Eq. (7.2.19) are finite.
The zeroth moment is simply χ, as required by the thermodynamic sum
rule. The second moment is −〈ẍ(t)x(t)〉/T = 〈(ẋ(t))2〉/T = 1/m because
the average kinetic energy m〈v2〉/2 is T/2. This agrees with Eq. (7.2.18)
and the high-frequency expansion Eq. (7.2.27). The higher moments of Eq.
(7.2.19) are infinite. The problem is that the phenomenological damping
parameter γ does not provide a correct description of high-frequency behav-
ior. In order for all moments of χ′′(ω)/ω to exist, γ must be replaced by a
function γ(z) of complex z that tends to zero more rapidly than any power
of z. An often-used phenomenological form for γ is γ(z) = γ/(1 − izτ),
where τ is some microscopic collision time. This form leads to a finite
fourth moment of χ′′(ω)/ω but to infinite higher moments.
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(a)

(b)

Figure 7.2.3: (a) Schematic of a nanometer scale mechanical resonator fab-
ricated from bulk silicon by Cleland and Roukes [Appl. Phys. lett. 69
2653 (1996)]. The resonator is a suspended silicon nanobar. There is a
magnetic field perpendicular to the bar as shown. An alternating current
passes through the bar generating a vertical Lorentz force. The EMF is pro-
portional to the B-field times the velocity, which is proportional to B. Thus
the magnitude of the EMF is proportional to B2 times the displacement.
(b) The measured EMF as a function of frequency for different values of B.
The curves are proportional to Eq. (7.2.22) times B2. Note the resonant
frequency is 70 MHz. This high frequency is a direct result of the small
size of the resonator.
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0

χ′′(ω)/ω

ω

Figure 7.2.4: χ′′(ω)/ω in the overdamped limit when τf � τs.

7.2.4 Dissipation

In steady state, the external force does work on the oscillator that is even-
tually dissipated as heat in the viscous fluid. The rate at which the external
force does work is

dW

dt
= f(t)ẋ(t). (7.2.28)

Since in the steady state, both f(t) and ẋ(t) are periodic functions of t with
period T = 2π/ω, the average power dissipated is

P =
1
T

∫ T

0

dtf(t)ẋ(t) = − 1
T

∫ T

0

dtx(t)ḟ(t). (7.2.29)

Using Eq. (7.2.21) for x(t), we obtain

P = −f2
0

T

∫ T

0

dtω | χ(ω) | cosωt sin[ωt− φ(ω)]

=
1
2
ωf2

0 | χ(ω) | sinφ(ω) = 1
2
f2
0ωχ

′′(ω). (7.2.30)

Thus, we arrive at the very important result that the rate of energy dis-
sipation is proportional to ωχ′′(ω). For this reason, χ′′(ω) is sometimes
referred to as the dissipation. Note that χ′′(ω) is odd in ω so that ωχ′′(ω)
is even. In thermodynamic equilibrium, the power dissipation must be pos-
itive, implying that ωχ′′(ω) must be positive. The positivity of ωχ′′(ω)
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in the present case is associated with the positivity of the dissipative co-
efficient γ. Its sign was chosen so that the viscous force opposes motion
of the oscillator mass. This sign is consistent with energy transfer to the
incoherent degrees of freedom of the fluid and to positive power absorption.

7.3 Elastic waves and phonons

7.3.1 Sound waves in an elastic continuum

As we discussed in Chapter 6, an elastic medium in the Eulerian picture is
the continuum limit of a collection of mass points connected by Hooke’s law
springs. The position of each point in the medium relative to its unstretched
position is given by the displacement variable u(x). The velocity of each
mass point is therefore v(x, t) = u̇(x, t), and the kinetic energy of mass
motion is

K.E. =
1
2

∫
ddxρ(x)v2(x), (7.3.1)

where ρ(x) is the mass density at x. In the absence of dissipation, Newton’s
equation determining the time dependence of the displacement of each mass
point is

ρüi = − δHT

δui(x)
= ∇jσij + f ext

i (x), (7.3.2)

where σij is the elastic stress tensor of Eq. (??) and HT = Hel+Hext, with
Hel the elastic Hamiltonian of Eq. (??) and Hext = − ∫

ddxu(x) · f ext(x)
the Hamiltonian arising from an external force density f ext. Dissipation
can be introduced by adding a phenomenological term to the stress tensor
proportional to the velocity and thus odd under time reversal. A spatially
uniform velocity is equivalent to a Gallilean transformation to a moving
coordinate system, which will not lead to any dissipation. The dissipative
part of the stress tensor is, therefore, proportional to the gradient of the
velocity rather than to the velocity itself:

σdis
ij = ηijkl∇kvl, (7.3.3)

where ηijkl is the viscosity tensor of the solid (viscosity tensors in fluids and
solids will be discussed in more detail in Chapter 8). In an isotropic elastic
medium, the viscosity tensor, like the elastic tensor, has two independent
components,

ηijkl = ζδijδkl + η

(
δikδjl + δilδjk − 2

d
δijδkl

)
, (7.3.4)
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where ζ is the bulk viscosity and η is the shear viscosity.
The equations of motion for the longitudinal and transverse parts of u

decouple in an isotropic medium. In Fourier space they are

[−ω2ρ+ q2µ− iωηq2]uT (q, ω) = f ext
T (q, ω), (7.3.5)

[−ω2ρ+ q2(λ+ 2µ)− iω(ζ + 2(d− 1)η/d)q2]uL = f ext
L (q, ω), (7.3.6)

where u(q) = (q/q)uL + uT and similarly for f ext. These equations yield
sound modes whose frequencies go to zero linearly with wave number q and
whose widths (imaginary parts) are of order q2

ωT = ±cT q − i
η

2ρ
q2, (7.3.7)

ωL = ±cLq +
i

2ρ

[
ζ +

2(d− 1)
d

η

]
q2, (7.3.8)

where cT = (µ/ρ)1/2 is the transverse sound velocity and cL = [(λ +
2µ)/ρ]1/2 > cT is the longitudinal sound velocity. Note there are 2(d − 1)
transverse and two longitudinal modes for each q. This corresponds to one
mode per degree of freedom.

The transverse response function is the ratio of uT to f ext
T :

χT (q, ω) =
1
ρ

1
−ω2 + (µ− iωη)q2/ρ

. (7.3.9)

This function reduces to the static susceptibility 1/(µq2) [Eq. (??)] when
ω = 0. The imaginary part of the response function is

χ′′
T (q, ω) =

1
ρ2

ωηq2

(ω2 − µq2/ρ)2 + (ηωq2/ρ)2
. (7.3.10)

This function is sketched in Fig. 7.3.1. A similar expression applies for
longitudinal sound waves.

7.3.2 Acoustic phonons in a harmonic lattice

The dynamical properties of the classical harmonic lattice described in Sec.
6.6 are easily calculated. The complete Hamiltonian for this system, in-
cluding the kinetic energy, is

H =
∑
l

p2
l

2m
+
1
2

∑
l,l′,i,k

Cik(Rl −Rl′)ul,iul′,k , (7.3.11)
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ω

ω = cq
q

Figure 7.3.1: The imaginary part of the transverse elastic response function
showing Lorentzian peaks at frequencies proportional to q.

where m is the mass and pl = mu̇l is the momentum of the particle at site
l. The equations of motion for the displacements ul are

mül,i = −
∑
l′,k

Cik(Rl −Rl′)ul′,k + fl,i, (7.3.12)

where fl is an external force acting at site l. The spatial part of this equation
can be diagonalized by Fourier transforming. Introducing

ul =
1√
N

∑
eiq·Rlu(q) (7.3.13)

and a similar expression for the force and Fourier transforming in time, we
have

mω2ui(q, ω) = Cik(q)uk(q, ω) + fi(q, ω). (7.3.14)

where
Cik(q) =

∑
l

eiq·RlCik(Rl). (7.3.15)

Finally, we diagonalize Cik(q):

Cik(q)eλk(q) = mω2
λ(q)e

λ
i (q). (7.3.16)
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mω2
λ(q) (λ = 1, ..., d) are the d eigenvalues of Cik(q) and eλi (q) are the

associated orthonormalized eigenvectors satisfying∑
λ

eλ∗i (q)e
λ
j (q) = δij ,

∑
i

eλ
′∗

i (q)eλi (q) = δλλ
′
. (7.3.17)

We can now write Eq. (7.3.14) in terms of independent normal modes

ω2uλ(q, ω) = ω2
λ(q)uλ(q, ω) + fλ(q, ω)/m, (7.3.18)

where
uλ(q, ω) = eλ∗i (q)ui(q, ω) (7.3.19)

and similarly for fλ(q, ω). Eq. (7.3.18) is identical to that of the simple
harmonic oscillator, Eq. (7.2.9). It implies, therefore, a response function

χλ(q, ω) =
uλ(q, ω)
fλ(q, ω)

=
1
m

1
[−ω2 + ω2

λ(q)]
. (7.3.20)

This, in turn, implies that the response function for a displacement at l in
response to a force at l′ is

χij(l, l′, ω) =
1
N

∑
q

eiq·(Rl−Rl′ )eλ∗i (q)
1
m

1
[−ω2 + ω2

λ(q)]
eλj (q). (7.3.21)

The spatial Fourier transform of the imaginary part of this response func-
tion is

χ′′
ij(q, ω) =

∑
λ

eλ∗i (q)e
λ
j (q)

π

m

ω

| ω |δ(ω
2 − ω2

λ(q)). (7.3.22)

Thus, χ′′
ij(q, ω) provides a direct measure of the phonon spectrum. We

will see in Sec 7.7 how neutron scattering determines this function. In an
anharmonic lattice where there are interactions among phonons, the plane
wave phonon states will generally be damped, and the δ function in Eq.
(7.3.22) should be replaced by a Lorentzian.

7.4 Diffusion

7.4.1 Fick’s law

Consider particles dissolved or suspended in a fluid. The nature of these
particles is, for the moment, arbitrary. They can simply be molecules of
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a species different from those composing the fluid, or they can be specks
of dust or polystyrene spheres with diameters of order 0.1 microns. The
number of these particles does not change with time. Thus, their number
density n(x, t) (represented in terms of particle positions by Eq. (7.1.3))
obeys a conservation law:

∂n(x, t)
∂t

+∇ · j(x, t) = 0, (7.4.1)

where
j(x, t) =

∑
α

vα(t)δ(x− xα(t)) (7.4.2)

is the particle current, with vα(t) = ẋα(t) the particle velocity. In thermal
equilibrium, the particles are distributed uniformly throughout the fluid,
and the thermal average 〈n(x, t)〉 of the density is independent of both
x and t. What happens, however, if, as a result either of spontaneous
fluctuations or of an external force, there exists at some time a spatially
non-uniform density, as depicted in Fig. 7.4.1? If external forces are turned
off, the density must eventually tend to the spatially uniform equilibrium
state. This can only occur as a result of particle motion. Thus, we expect
a spatially non-uniform density to give rise to a non-zero current j. If the
density varies very slowly in space, then the density is nearly in equilibrium
at each point in space, and currents should be very small. These consid-
erations lead one to expect the current to be proportional to gradients of
the density. The current j must transform like a vector so that the simplest
relation between j and ∇n is

j = −D∇n. (7.4.3)

This equation is known as Fick’s law. It is a phenomenological relation
analogous to that of Eq. (7.2.7) relating the viscous force to the velocity. It
says that a spatially non-uniform density will lead to currents in directions
opposite to the direction of changes in densities, i.e., to currents tending
to reestablish spatial uniformity of n(x, t). The coefficient D is a diffusion
constant. It has units of [length]2/[time]. The current j is odd under time
reversal, whereas n(x, t) and its gradient are even. Thus, the two sides
of Eq. (7.5.2) have opposite signs under time reversal, and the diffusion
constant is a type of dissipative coefficient.

When Fick’s law for the current is substituted into the conservation law,
the result is the diffusion equation,

∂n

∂t
= D∇2n. (7.4.4)
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2π/λ

Figure 7.4.1: Spatially modulated distribution of particles. Random motion
of these particles will restore spatial homogeneity in times that diverge as
the square of the wavelength of the spatial modulation.

The modes predicted by this equation are again obtained by assuming
n(x, t) ∼ e−iωt. The resulting mode frequency is

ω = −iDq2, (7.4.5)

where q = 2π/λ is the wave number of the spatial modulation of the density.
This frequency is purely imaginary, implying, as for the overdamped oscilla-
tor, that the response of n(x, t) to external forces or non-equilibrium bound-
ary conditions will decay exponentially to zero in times of order D−1λ2.
There will be no oscillatory part to this decay.

7.4.2 The Green function and dynamic response

The density at position x and time t is related to the density at position x′

and time t′ via

n(x, t) =
∫

ddx′G(x− x′, t− t′)n(x′, t′), (7.4.6)

where G(x, t) is the diffusion Green function satisfying the boundary con-
dition

G(x, t = 0) = δ(x). (7.4.7)

For times t > 0, G(x, t) satisfies the same equation as n(x, t):

∂G(x, t)
∂t

−D∇2G(x, t) = 0. (7.4.8)

The solution to this equation subject to the boundary condition Eq. (7.4.7)
can be obtained via Laplace transformation in time and Fourier transfor-
mation in space. The results are

G(q, z) =
1

−iz +Dq2
(7.4.9)
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and

G(q, t) =
∫ ∞+iε

−∞+iε

dz

2π
e−iztG(q, z) = e−Dq2|t|, (7.4.10)

G(x, t) =
∫

ddq

(2π)d
eiq·xG(q, t) =

1
(4πD | t|)d/2 e

−|x|2/(4D|t|).

This says that particle density initially localized at the origin will spread
out with time, occupying a region with mean square radius

〈| x |2〉 = 2dD | t |, (7.4.11)

where as usual d is the dimension of space. The diffusion constant, there-
fore, measures the mean-square displacement per unit time interval.

7.4.3 The response function

The Green function allows us to determine the density at time t if we know
the density at some earlier time t′. It does not, however, give us directly
the density response function. To obtain the response function, we create
a spatially non-uniform density at time t < 0 that is in equilibrium with an
external chemical potential with a small spatially varying part δµ(x). We
then turn off the external chemical potential at time t = 0. For t > 0, the
equilibrium state is again spatially uniform, and the decay to equilibrium
is controlled by the Green function. The external Hamiltonian creating the
spatially varying 〈n(x, t = 0)〉 is

Hext = −
∫

ddxn(x, t)δµ(x)η(−t)eεt, (7.4.12)

where ε is an infinitesimal. The Fourier transform of the change in the
density at t = 0 brought about by this external Hamiltonian is

〈δn(q, t = 0)〉 = χ(q)δµ(q), (7.4.13)

where χ(q) is the static density response function discussed in Chapter 3.
The density for t > 0 is then determined by its Laplace-Fourier transform
satisfying

〈δn(q, z)〉 = G(q, z)〈δn(q, t = 0)〉 = χ(q)δµ(q)
−iz +Dq2

. (7.4.14)

Our next step is to determine how 〈δn(q, z)〉 is related to the dynamic
susceptibility χnn(q, z) ≡ χ(q, z). From the definition of χ̃(x,x′, t, t′) [Eq.
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(7.1.11)], and the fact that δµ(x, t) = η(−t)eεtδµ(x), we have

δ〈n(q, t)〉 =
∫ 0

−∞
dt′χ̃(q, t− t′)eεt

′
δµ(q), (7.4.15)

from which we obtain

δ〈n(q, z)〉 =
∫ ∞

0

dteizt
∫ 0

−∞
dt′

∫
dω

2π
2iχ′′(q, ω)e−iω(t−t′)eεt

′
δµ(q)

=
∫

dω

πi

χ′′(q, ω)
(ω − z)(ω − iε)

δµ(q)

=
∫

dω

πi
χ′′(q, ω)

1
z

(
1

ω − z
− 1

ω

)
δµ(q)

=
1
iz
[χ(q, z)− χ(q)]δµ(q). (7.4.16)

This equation and Eq. (7.4.14) then imply

G(q, z) =
1
iz

[
χ(q, z)
χ(q)

− 1
]

(7.4.17)

and

χ(q, z) = χ(q)
Dq2

−iz +Dq2
. (7.4.18)

This response function has exactly the same form as that of the overdamped
oscillator [Eq. (7.2.24)] except that the inverse decay timeDq2 now depends
on wave number. The imaginary part of χ(q, ω) is

χ′′(q, ω)
ω

= χ(q)
Dq2

ω2 + (Dq2)2
. (7.4.19)

This is a Lorentzian with integrated intensity χ(q), height χ(q)/Dq2, and
a width that goes to zero as q → 0, as shown in Fig. 7.4.2.

As in the case of the harmonic oscillator discussed in the preceding
section, the high-frequency moments of χ′′(ω)/ω must all be finite. As
for the harmonic oscillator, the dissipative function χ′′(q, ω) is related to
the correlation function Snn(q, ω) via the fluctuation-dissipation theorem,
which in the classical limit is

χ′′(q, ω)
ω

=
Snn(q, ω)

2T
. (7.4.20)
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The second moment of χ′′(q, ω)/ω is thus∫
dω

π
ω2χ

′′(q, ω)
ω

=
1
T

∫
dω

2π
ω2Snn(q, ω) = − 1

V T

〈
∂2

∂t2
n(q, t)n(−q, t)

〉

=
1

V T
q2〈j(q, t) · j(−q, t)〉 = 1

V T

∑
α

〈v2
α〉

=
nq2

m
, (7.4.21)

where m is the mass of the diffusing particles. This is the f -sum rule,
which, as we shall see in Sec. 7.6, is always valid for both classical and
quantum systems.

Only the zeroth moment of Eq. (7.4.19) is finite. In order to make
all moments finite and to reproduce Eq. (7.4.18) at low frequency, we
can introduce a frequency-dependent diffusion constant D(z) that tends to
zero faster than any power of 1/z at large z and reduces to D at z = 0.
D(z) will have an integral representation similar to Eq. (7.1.17) for χ(z)
(see Problem 7.4). The phenomenological expression D(z) = D/(1 − izτ)
produces a finite second moment but infinite higher moments. Following
Eq. (7.2.26), the second moment of χ′′(q, ω)/ω is the coefficient of −1/z2

in the high-frequency expansion of χ(q, z), which for the above form for
D(z) is −χDq2/τ . Identifying this result with the f -sum rule, we find
D = nτ/mχ. This provides a phenomenological connection between the
diffusion constant, the susceptibility, and a “microscopic” collision time τ .
We will obtain this result in a different way in shortly.

7.4.4 External potentials and the Einstein relation

Fick’s law is appropriate to situations when there is no external potential,
such as that of a gravitational field. When there are external potentials,
it must be modified. To see why, consider, as Einstein did, densities of
diffusing particles sufficiently dilute that interactions between them can
be neglected. In this case, the only forces acting on a given particle are
those arising from external potentials and from collisions with molecules
comprising the fluid. We have already argued [Eq. (7.2.7)] that the effect of
the latter is to introduce a friction force on a particular particle proportional
to its velocity. In steady state, this force must equal any external forces,
implying particles will drift with velocity

vD =
1
α
f ext ≡ − 1

α
∇U , (7.4.22)

where α is the friction constant introduced in Eq. (7.2.7) and U is the
external potential determining the force f ext = −∇U . The coefficient 1/α
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0

χ′′(ω)/ω

ω

Figure 7.4.2: The imaginary part of the diffusive response function over ω
[Eq. (7.5.19)] at different values of q. The half width at half maximum is
Dq2, so that a measurement of this quantity as a function of q gives the
diffusion constant D. The static susceptibility is the area under this curve,
or alternatively Dq2 times its height.
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is also referred to as a mobility. This drift gives rise to a drift current
jD = nvD, in addition to the diffusion current, about any average flow
predicted by Fick’s law. The total current is, therefore,

jtot = −D∇n+ jD = −D∇n− α−1n∇U. (7.4.23)

In thermodynamic equilibrium, the total particle current must be zero, and
the density must satisfy the Boltzmann relation

neq ∼ e−U(x)/T . (7.4.24)

These two conditions can only be satisfied if

D =
T

α
=

T

6πηa
. (7.4.25)

This is the Einstein relation published in his famous 1905 paper on Brown-
ian motion. It is the first of the fluctuation-dissipation relations expressing
an equilibrium average

D = lim
t→∞

〈[x(t)− x(0)]2〉
2dt

= lim
t→∞

1
2d

d

dt
〈[x(t)− x(0)]2〉 (7.4.26)

in terms of a dissipative quantity α.
The total current can be expressed as a coefficient times a gradient of

a scalar:
jtot = −α−1n∇(T lnn+ U). (7.4.27)

Apart from unimportant constants, T lnn is just the equilibrium chemical
potential µ(n) = δF/δn of a non-interacting gas of particles at density n
[Eq. (??)]. The external potential U is equivalent to minus the externally
fixed chemical potential µext(x) ≡ µ(x) appearing in Hext [Eq. (7.4.12)].
The total current can, therefore, be written as

jtot = −Γ(n)∇[µ(n)− µext(x)] = −Γ(n)∇[δFT /δn(x)], (7.4.28)

where FT = F [n(x)]− ∫
ddxµext(x)n(x) and

Γ(n) =
n

α
=

n

mγ
(7.4.29)

is a density-dependent dissipative coefficient. Note the appearance of the
“total” free energy FT in Eq. (7.4.28). This is similar to the appearance of
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the total Hamiltonian in Eqs. (7.2.15) and (7.3.2). FT is identical to the
function W introduced in Eq. (??). In equilibrium, the equation of state,

δF

δn(x)
= µext(x), (7.4.30)

is satisfied, and there is no current. Current only flows when the function
µ(n) differs from the externally imposed chemical potential µext.

When n(x, t) differs from its equilibrium value neq determined by the
equation of state, there will be a current, which for small and slowly varying
δn(x, t) = n(x, t)− neq is

j = −Γ(n)∇[(∂µ(n)/∂n)δn]
= −Γ(n)(∂µ/∂n)∇n. (7.4.31)

This leads to an alternative expression for the diffusion constant:

D = Γ/χ = Γ/(∂n/∂µ). (7.4.32)

This is exactly the result for D we obtained using sum and a phenomenolog-
ical frequency-dependent D(z) with the identification γ with τ−1. Though
Eq. (7.4.27) was motivated by considerations of a dilute gas of diffusing
particles, it and Eq. (7.4.32) for D are also applicable to denser systems
when interactions between particles become important. In this case, the
dissipative coefficient Γ is not simply a linear function of n, and the chemical
potential µ(n) is that appropriate to the interacting system.

7.4.5 Brownian motion

As just discussed, particles do not interact with each other in the dilute
limit. In this case, we can focus on an individual diffusing particle. It
is constantly subjected to collisions with the molecules of the fluid, and
it describes an erratic trajectory in space. Such erratic motion was first
reported in 1828 by the botanist Robert Brown, who used a microscope
to observe particles of pollen floating on the surface of water. He found
that the pollen particles would appear to jump some distance in a random
direction, then remain at rest for a period, then jump again in another di-
rection. He subsequently observed similar motion of very fine particles of a
number of substances including minerals and fragments of the Sphinx. He
concluded that this motion occurred independently of the composition and
origin of the particle. The explanation of the origin of this phenomenon
of Brownian motion is due to Einstein, who apparently was unaware of
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Figure 7.4.3: Schematic representation of two trajectories of a Brownian
particle.

Brown’s observations. Random motion consisting of a sequence of appar-
ently discrete steps is often referred to as a random walk or more colorfully
as a drunkard’s walk (see Sec. 2.12).

The position x(t) of the Brownian particle is a random function of time.
Such a randomly fluctuating variable is called a stochastic variable. The
series of values of a random variable as a function of time is generally called
a stochastic process. The conditional probability P (x, t | x0, t0) that the
particle is at position x at time t, given that it was at position x0 at time
t0, can be expressed as

P (x, t | x0, t0) = 〈δ(x− x(t))〉x0,t0 , (7.4.33)

where x(t) is the instantaneous position of the particle moving under the
influence of a random force originating from collisions with fluid particles.
The brackets in the above equation signify an average over this random
force, and the condition that the particle was at position x0 at t0 is imple-
mented by the boundary condition x(t0) = x0.

In the dilute limit, the probability 〈δ(x− xα(t))〉xα
0 ,t0

that particle α is
at x at time t, given that it was at xα0 at time t0, is simply P (x, t | xα0 t0).
The average density of particles at x at time t, given that the density was
n(x, t0) =

∑
α δ(x− xα0 ) at t = t0, is, therefore,

〈n(x, t)〉 =
∑
α

〈δ(x− xα(t))〉xα
0 ,t0

=
∑
α

P (x, t | xα0 , t0)

=
∫

ddx0P (x, t | x0, t0)
∑
α

δ(x0 − xα0 )
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=
∫

ddx0P (x, t | x0, t0)n(x0, t0). (7.4.34)

This equation is identical to Eq. (7.4.6) and allows us to identify P (x, t |
x0, t0) with the diffusion Green function in the dilute limit:

P (x, t | x0, t0) = G(x− x0, t− t0). (7.4.35)

The mean-square displacement of a single Brownian particle, therefore,
satisfies Eq. (7.4.11) with d = 3 and with the diffusion constant Eq. (7.4.25)
appropriate to non-interacting particle diffusing in a fluid with viscosity η:

〈(∆x)2〉 = 〈[x(t)− x0]2〉 = 6Dt =
kBT

πηa
t, (7.4.36)

where we have explicitly displayed Boltzmann’s constant kB . This equa-
tion was used in one of the early determinations of kB . The fluid viscosity
and radius of a diffusing particle can be measured with reasonable accu-
racy. Measurements of x(t) by observations under a microscope then yield
〈(∆x)2〉 as a function of time. It is then straightforward to determine kB
from Eq. (7.4.36). A typical fluid such as water has a viscosity of order 0.1
poise. Eq. (7.4.36) then predicts that a particle with a radius of order 0.1
microns will diffuse a distance of order one micron in one second. Thus,
diffusion of a particle of this size is observable in laboratory times.

7.4.6 Cooperative diffusion versus self-diffusion

We have considered diffusion of both the average density of particles and
of an individual particle. These two processes are referred to, respectively,
as cooperative diffusion and self-diffusion. They are different and are con-
trolled by different diffusion constants Dc and Ds that become equal only
when interactions between diffusing particles can be ignored (as they can
in the dilute limit discussed above). Both constants can be measured ex-
perimentally. As just discussed, self-diffusion can be detected in dilute
systems by observations under a microscope. It can also be observed by
more sophisticated techniques in which individual particles are tagged, ei-
ther by rendering them radioactive or by treating them with a photochromic
dye that changes from transparent to opaque when exposed to ultraviolet
light. In the latter case, quantitative measurements can be made by “forced
Rayleigh” scattering experiments in which a suspension is first irradiated
with spatially modulated ultraviolet light. Light from a second source is
then diffracted from the sample. Its diffracted intensity determines Ds.
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Self-diffusion can also be detected, as we shall see in Sec. 7.8, via incoher-
ent neutron scattering, which measures the function

Sself(x,x′, t− t′) =
∑
α

〈δ(x− xα(t))δ(x′ − xα(t′))〉. (7.4.37)

This is a self-correlation function because it involves temporal and spatial
correlations of a single particle rather than a collection of particles. It can
be related to the conditional probability of Eq. (7.4.33) using

Pα(xt | x′t′) =
〈δ(x− xα(t))δ(x′ − xα(t′)〉

〈δ(x′ − xα(t′))〉 , (7.4.38)

where we have indicated the possibly different behavior for different parti-
cles by the subscript α. For translationally invariant systems with volume
V , 〈δ(x′ − xα(t′)〉 = V −1, Pα is independent of α, and from Eqs. (7.4.38)
and (7.4.37)

Sself(x,x′, t− t′) = nP (xt | x′t′), (7.4.39)

implying

Sself(q, ω) = n

∫ ∞

−∞
dteiωte−Dsq

2|t|

= 2n
Dsq

2

ω2 + (Dsq2)2
(7.4.40)

is a Lorentzian with a width determined by the self-diffusion constant.
Cooperative diffusion gives rise to density changes and can be probed

by inelastic light scattering that, as we shall see at the end of this chapter,
measures the density correlation function Snn(q, t) related to χ′′

nn(q, ω) via
the fluctuation-dissipation theorem,

Snn(q, t) =
∫

dω

π

χ′′
nn(q, ω)
βω

e−iωt = Tχ(q)e−Dcq
2|t|. (7.4.41)

Various data for both Dc and Ds in suspensions of polystyrene spheres
(polyballs) with varying interaction strengths are shown in Figs. 7.4.4
and 7.4.5. These data confirm the general time dependence of correlations
predicted by Fick’s law. They also show that the self-diffusion constant
invariably decreases as interactions between particles are increased, either
because the diffusing particle is trapped in a cage by repulsive interactions
or because it is attracted to other particles. Cooperative diffusion increases
for repulsive interactions (repulsion strongly favors uniform density) or de-
creases for attractive interactions where higher density may be favored by
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Figure 7.4.4: Inverse decay time as a function of q2 for self-diffusion mea-
sured by forced Rayleigh scattering. (W.D. Dozier, Thesis, UCLA 1986)

an approaching phase separation. The case for repulsive interactions is
shown in Fig. 7.4.5 from experiments in which the electrostatic interac-
tion between particles is decreased by increasing the concentration of acid
(HCl), which leads to an increase in screening.

7.4.7 Master equation for diffusion on a lattice

Diffusion is not limited to particles in solution. It often occurs when there
are processes whose time dependence is controlled by random processes.
Here we will consider diffusion on a lattice. We imagine that sites l on
a lattice can be occupied by an atom or some localized excitation. The
probability that site l is occupied at time t is P (l, t). As time progresses,
the atom can hop to other sites. Let P (l, t+∆t | l′, t) ≡ R(l, l′,∆t) be the
probability that the atom is at site l at time t+∆t, given that it was at site
l′ at time t. Then the probability that the atom is at site l at time t+∆t
is

P (l, t+∆t) =
∑
l′

R(l, l′,∆t)P(l′, t). (7.4.42)
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Figure 7.4.5: (a) Intensity cor-
relation function F (t) = (〈I(q, 0)I(q, t)〉/〈I(q)〉2) − 1 where I(q, t) is the
intensity of scattered light and (b) characteristic decay time as a function
of q2 for polystyrene spheres in methanol. (Courtesy of J. Xue)



34 CHAPTER 7. DYNAMICS: CORRELATION AND RESPONSE

Because R(l, l′,∆t) is a probability, it must satisfy∑
l

R(l, l′,∆t) = 1. (7.4.43)

As the time difference ∆t goes to zero, the probability that an atom initially
at site l′ is at a site different from l′ must go to zero. Thus, for small ∆t,
we can write

R(l, l′,∆t) =
{
1− ∑

l1
wl→l1∆t if l = l′;

wl′→l∆t if l �= l′,
(7.4.44)

where wl′→l is a transition rate (with units of 1/[time]) from site l′ to l
defined to be zero for l = l′. Eqs. (7.4.42) and (7.4.44) lead to a differential
equation for P (l, t):

∂P (l, t)
∂t

=
∑
l′

wl′→lP (l′, t)−
(∑

l1

wl→l1

)
P (l, t). (7.4.45)

This equation has a simple interpretation: P (l, t) increases as a result of
hops, which occur at rates wl′→l, from sites l′ �= l to the site l, and it
decreases as a result of hops, which occur at rates wl→l1 , from l to sites
l1 �= l.

There are no restrictions on the hopping rates wl′→l in Eq. (7.4.45).
They can connect any sites on the lattice, and the rate wl′→l does not
necessarily have to equal wl→l′ . A simplified model is one in which there is
hopping only between nearest neighbor sites on a lattice and in which the
rate for hopping from l to l′ is equal to that for hopping from l′ to l. In
this case,

wl′→l = wl→l′ = τ−1γl,l′ , (7.4.46)

where τ is a hopping time and γl,l′ is unity if l′ and l are nearest neighbor
sites on the lattice and zero otherwise. The equation governing P (l, t) then
becomes

∂P (l, t)
∂t

=
1
τ

∑
l′

γl,l′ [P (l′, t)− P (l, t)]. (7.4.47)

Thus, if the Fourier transform of P (l, t = 0) is P (q, t = 0), it will decay to
zero as

P (q, t) = e−t/τ(q)P (q, t = 0) (7.4.48)

with

τ−1(q) = τ−1[γ(0)− γ(q)] = τ−1
∑
δ

(1− eiq·δ)

∼ a2

τ
q2 forq → 0, (7.4.49)
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where δ is a nearest neighbor vector of magnitude a of the lattice and where
the numerical coefficient of q2 in the last equation is that appropriate to
a hypercubic lattice. Thus, at long wavelengths, P (q, t) decays diffusively
[see Eq. (7.4.10)] with diffusion constant

D = a2/τ. (7.4.50)

This is the form of D that one might have predicted simply on the basis of
dimensional analysis. The value of τ(q) at higher values of q depends on
the lattice in question. In one dimension,

τ−1(q) = 2τ−1(1− cos qa). (7.4.51)

This function is plotted in Fig. 7.4.6
The decay time τ can vary widely from system to system. It is often

determined by processes involving thermal activation over some barrier. In
this case,

τ−1 ∼ e−∆E/T , (7.4.52)

where ∆E is the barrier energy. For temperatures much less than ∆E, τ
becomes very long. In some situations, it can be so long that the probability
that a hop occurs in the time scale of a laboratory experiment can be
vanishingly small.

It is interesting to observe that Eq. (7.4.47) is precisely the equation
governing the voltage in a resistor network consisting of sites connected by
resistances of conductance σl,l′ with capacitance to ground C. The equation
for the voltage V (l, t) at site l,

C
∂V (l, t)

∂t
=

∑
l′

σl,l′ [V (l′, t)− V (l, t)], (7.4.53)
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Figure 7.4.7: Schematic representation of a resistor network with capaci-
tances to ground.

is determined by Kirchhoff’s laws. When resistors connect only nearest
neighbor sites, σl,l′ = σγl,l′ , and Eq. (7.4.53) reduces to Eq. (7.4.47) with
τ = (C/σ). Resistor networks are often used to model diffusive transport
problems (see Fig. 7.4.7).

7.5 Langevin theory

7.5.1 Random forces and thermal equilibrium

The erratic motion of a Brownian particle is due to collisions with molecules
in the fluid in which it moves. These collisions allow an exchange of energy
between the fluid at temperature T and the Brownian particle and for the
establishment of thermal equilibrium between the degrees of freedom of
the particle and those of the fluid. This means that the mean-square of
each component of the velocity of the Brownian particle averaged over a
sufficiently long time must have the value T/m predicted by Boltzmann
statistics. This average is maintained through constant collisions.

To understand how thermal equilibrium can be brought about by ran-
dom forces, let us focus on a particle diffusing in one dimension. Individual
molecules of the fluid collide with the diffusing particle in a random fash-
ion and exert a force whose time average is simply the viscous force −αv
introduced in Eq. (7.2.7). We can, therefore, break the force exerted on
the particle by the fluid into two parts: the average viscous force −αv and
a random force ζ(t) whose time average is zero. This random force is well
approximated by a sequence of independent impulses of random sign and
magnitude as shown in Fig. 7.5.1; it is a stochastic process whose time
average is zero. Rather than considering averages over time, we will con-
sider averages over the ensemble of possible random forces and represent
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(a)

(b)

Figure 7.5.1: (a) Schematic representation of the random force ζ(t) as a
function of time. (b) ζ(t) approximated by a series of random impulses.

averages over this ensemble with brackets, 〈 〉, in the same way that we
represented averages over equilibrium thermodynamic ensembles. We will
choose the ensemble of random forces so that averages over it are identical
to averages over an equilibrium ensemble. Thus, we have

〈ζ(t)〉 = 0. (7.5.1)

If each impulse is considered an independent random event, then the prob-
ability distribution for ζ(t) is independent of ζ(t′) for t′ �= t. This implies

〈ζ(t)ζ(t′)〉 = Aδ(t− t′) (7.5.2)

is local in time. A is a constant that remains to be determined. Finally,
ζ(t) in the independent impulse approximation is the sum of a large number
of independent functions. The central limit theorem then implies that the
probability distribution for ζ(t) is Gaussian with a width determined by its
variance, Eq. (7.5.2):

P [ζ(t)] =
1√
2πA

e−
1

2A

∫
dtζ2(t). (7.5.3)

Random forces such as ζ(t) give rise to erratic or noisy behavior of observ-
ables and are often referred to as noise sources, especially in the context of
electrical circuits.



38 CHAPTER 7. DYNAMICS: CORRELATION AND RESPONSE

Eqs. (7.5.1) to (7.5.3) provide a sufficiently precise characterization of
the stochastic collision force ζ(t) to allow us to discuss the establishment
of thermal equilibrium. The detailed form of ζ(t) is determined by the
temporal statistics of the molecules of the fluid. Thus, one expects the
approximation of independent random events to break down for time dif-
ferences t − t′ less than a characteristic collision time τc of the fluid. As
discussed in Sec. 7.3, however, the characteristic time γ−1 for motion of
the Brownian particle is much larger than τc, and the independent collision
approximation will be very good for times of interest.

The power spectrum of ζ(t), or the Fourier transform of 〈ζ(t)ζ(t′)〉,

I(ω) ≡ Cζζ(ω) = A (7.5.4)

is independent of ω in the independent collision approximation. A noise
source with a frequency-independent power spectrum is called a white noise
source.

7.5.2 Correlation functions for diffusion

We will now show how knowledge of statistics of the stochastic force al-
lows us to calculate correlation functions rather than response functions
(Langevin 1908). In the absence of external forces, the equation of motion
of a diffusing particle is

mv̇ + αv = ζ(t). (7.5.5)

The solution to this equation for v(t) has a homogeneous part determined by
initial conditions and an inhomogeneous part proportional to ζ(t). Since the
homogeneous part, which depends on initial conditions, will decay to zero
in a time of order γ−1, the long-time properties of v(t) will be determined
entirely by the inhomogeneous part and be independent of initial conditions.
In Fourier space the inhomogeneous part of v is simply

v(ω) =
ζ(ω)

−iωm+ α
. (7.5.6)

Using Eqs. (7.1.7) and (7.5.4), we can calculate Cvv(ω) by averaging
v(ω)v(−ω) over the random forces:

Cvv(ω) =
I(ω)

| −iωm+ α |2 =
A

m2[ω2 + γ2]
. (7.5.7)

The constant A characterizing the variance of the random force is as yet
unspecified. We can now use Eq. (7.5.7) to calculate the instantaneous
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Figure 7.5.2: The velocity correlation function 〈v(t)v(0)〉 showing exponen-
tial decay to zero.

mean square velocity in terms of A and thereby determine the value of A
needed to ensure thermal equilibrium:

〈v2〉 =
∫

dω

2π
Cvv(ω) =

A

2mα
. (7.5.8)

In thermal equilibrium 〈v2〉 = T/m, and we conclude

A = 2αT = 2mγT. (7.5.9)

Thus, the amplitude of white noise fluctuations is fixed by the requirements
of thermal equilibrium.

The correlation function Cvv(ω) determines Cvv(t, t′) = 〈v(t)v(t′)〉 as
well as the instantaneous average 〈v2〉. Neglect of the homogeneous term
in the solution for v(ω) is only valid for times long compared to γ−1. The
Fourier transform of Cvv(ω) in Eq. (7.5.7) therefore gives the function
Cvv(t) = limτ→∞ Cvv(τ + t, τ):

Cvv(t− t′) =
∫

dω

2π
e−iω(t−t′)Cvv(ω) =

T

m
e−γ|t−t′|. (7.5.10)

This equations shows that v(t) and v(0) become decorrelated for times
greater than γ−1, and that 〈v(t)v(0)〉 is of order the equal-time thermal
average T/m for times less than γ−1, as shown in Fig. 7.5.2.

The Fourier transform x(ω) of position is v(ω)/(−iω). Thus, we can
determine the position correlation function,

Cxx(ω) =
2γT

mω2(ω2 + γ2)
, (7.5.11)
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from Eq. (7.5.7) for Cvv(ω). The integral of Cxx(ω) over ω gives the
mean-square displacement 〈x2(t)〉. This integral is divergent because of the
extra factor of ω2 in the denominator of Cxx(ω), and we correctly conclude
that 〈x2(t)〉 is infinite. This result is analogous to the result, discussed in
Chapter 6, that the mean-square of an elastic variable is infinite below its
lower critical dimension. The average 〈[x(t) − x(t′)]2〉 ≡ 〈[∆x(t − t′)]2〉 is,
however, finite. Using Eq. (7.5.11), we obtain

〈[∆x(t)]2〉 =
∫

dω

2π
2Cxx(ω)[1− e−iωt]

=
4T
mγ

∫
dω

2π

(
1
ω2

− 1
ω2 + γ2

)(
1− e−iωt

)
. (7.5.12)

The second term in this expression is easily evaluated by contour integra-
tion; the first term, which is proportional to |t|, can be obtained from the
second by taking the limits γ → 0. The result is

〈[∆x(t)]2〉 = 2D
(
| t | −1− e−γ|t|

γ

)
, (7.5.13)

where we used the Einstein relation D = T/mγ. For times t � γ−1, this
equation reduces to the result, Eq. (7.4.11), predicted by the diffusion
equation in one spatial dimension. At short times,

〈[∆x(t)]2〉 ∼ Dγt2 = 〈v2〉t2, (7.5.14)

indicating that the Brownian particle moves ballistically in this limit.
The Einstein relation [Eq. (7.4.26)] can be reexpressed in various ways

in terms of the velocity correlation function. First we have

〈[∆x(t)]2〉 =

〈(∫ t

0

dt′v(t′)
)2

〉
=

∫ t

0

dt1

∫ t

0

dt2Cvv(t1 − t2)

= 2
∫ t

0

dt1

∫ t1

0

dt2Cvv(t1 − t2) = 2
∫ t

0

dt1

∫ t1

0

dτCvv(τ)

= 2
∫ t

0

(t− τ)Cvv(τ), (7.5.15)

where the final expression in this equation can be obtained from the pre-
ceding line by integrating by parts. From this, we can easily calculate a
time-dependent diffusion constant,

D(t) =
1
2
d

dt
〈(∆x(t))2〉,

=
∫ t

0

dτCvv(τ), (7.5.16)
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that approaches the diffusion constant,

D =
∫ ∞

0

dτCvv(τ) =
1
2
Cvv(ω = 0), (7.5.17)

in the infinite time limit. The last expression could have been obtained
directly from Eqs. (7.5.7), (7.5.9), and the relation D = T/(mγ).

7.5.3 Short-time behavior

In the above analysis, we argued we could neglect initial conditions if we
are interested in long-time limits and thermal equilibrium. Initial condi-
tions are, however, often of interest and can be treated almost as easily as
the long-time limits. The solution to Eq. (7.5.5) for v(t) subject to the
boundary condition that v(t = 0) = v0 is

v(t) = v0e
−γt +

∫ t

0

dt1e
−γ(t−t1)ζ(t1)/m. (7.5.18)

The average velocity is then

〈v(t)〉 = v0e
−γt. (7.5.19)

The velocity correlation function is

〈v(t)v(t′)〉 = v2
0e

−γ(t+t′) +
∫ t

0

dt1

∫ t′

0

dt2e
−γ(t−t1)−γ(t′−t2)

2γT
m

δ(t1 − t2)

=
(
v2
0 − T

m

)
e−γ(t+t′) +

T

m
e−γ|t−t′|, (7.5.20)

and the variance of the velocity is

∆v(t) = 〈[v(t)− 〈v(t)〉]2〉 = T

m
(1− e−2γt), (7.5.21)

where we used Eq. (7.5.2) for 〈ζ(t)ζ(t′)〉 with A = 2mγT . These equations
show that the velocity correlation function tends to the thermal equilibrium
result of Eq. (7.5.10) for times t and/or t′ much greater than the decay
time γ−1, regardless of the initial velocity v0. Furthermore, if the initial
velocity is averaged over an equilibrium Maxwell-Boltzmann distribution
at temperature T , then 〈v(t)v(t′)〉 has its thermal equilibrium form at all
times.

The displacement variable x(t) can be obtained from the velocity by
simple integration:

x(t) = x0 +
∫ t

0

v(t1)dt1, (7.5.22)
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where x(t = 0) = x0. From this and Eq. (7.5.19), we can calculate the the
average displacement as a function of time:

〈x(t)〉 = x0 + (v0/γ)(1− e−γt). (7.5.23)

Similarly, we can calculate correlations in the displacement at different
times t > 0 and t′ > 0:

〈[x(t)− x(t′)]2〉 =
〈(∫ t

t′
dt1v(t1)

)2
〉
. (7.5.24)

Using Eq. (7.5.20) for the velocity correlation function, we obtain

〈[x(t)− x(t′)]2〉 =
(
v2
0 − T

m

)
1
γ2

(
e−γt′ − e−γt

)2

+
2T
γm

[
|t− t′| − 1

γ

(
1− e−γ|t−t′|

)]
. (7.5.25)

If both t and t′ are much greater than γ−1, this reduces to Eq. (7.5.13)
independent of v0. If, on the other hand, both t and t′ are much less than
γ−1, 〈[x(t)− x(t′]〉 = v2

0(t− t′)2, i.e., the Brownian particle moves ballisti-
cally with the specified initial velocity. The average of Eq. (7.5.25) over an
equilibrium ensemble of initial velocities also reduces to Eq. (7.5.13). The
average 〈[x(t)−x0]2〉 is obtained from Eq. (7.5.25) by setting t′− 0 so that
x(t′) = x0. Finally, we can calculate the variance of the position,

∆x(t) = 〈[x(t)− 〈x(t)〉]2〉
= 2

T

γm

[
t− 1

γ

(
1− e−γt

) − 1
γ2

(
1− e−γt

)2
]
. (7.5.26)

Note that ∆x(t) is not equal to 〈[∆x(t)]2〉 in Eq. (7.5.13) because it ex-
plicitly retains the memory that initial motion was ballistic rather than
diffusive. The variance, 〈[x(t)− x(t′)− 〈x(t)− x(t′)〉]2〉 does not, and is in
fact identical to 〈[∆x(t− t′)]2〉.

The noise ζ(t) is a Gaussian random variable. Both v(t) and x(t) are
linear functions of ζ(t). Since linear functions of Gaussian random variables
are also Gaussian random variables, the probability distribution functions
for v(t) and x(t) are Gaussian and are completely determined by the expec-
tation values and variances of these variables. We leave a formal derivation
of these results to the problems at the end of the chapter.
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7.5.4 Fluctuation-dissipation theorem for the harmonic
oscillator

A harmonic oscillator in a viscous fluid, like a free particle in the same
fluid, will reach thermal equilibrium as a result of collisions with the fluid
molecules. This means that the average energy per degree of freedom of the
oscillator will be T/2, or that 〈x2(t)〉 = T/(mω2

0) and 〈v2(t)〉 = T/m. The
equation of motion for an oscillator in a random force is Eq. (7.2.9), with
f replaced by ζ(t). In the long-time limit, we need only concern ourselves
with the inhomogeneous solution to this equation, which as a function of
frequency is

x(ω) = χ(ω)ζ(ω) =
ζ(ω)

m[−ω2 + ω2
0 − iωγ]

, (7.5.27)

where χ(ω) is the response function of Eq. (7.2.16). The nature of the
random force ζ(t) does not depend on whether our particle is attached to
a spring or not. The noise correlation function Cζζ(ω) is thus independent
of ω0 and has the same form as for ω0 = 0. From this, and the correlation
function for ζ(t), we obtain

Cxx(ω) = 2mγT |χ(ω)|2 = 2γT
m

1
(ω2 − ω2

0)2 + ω2γ2
. (7.5.28)

We leave it as an exercise to verify that 〈x2〉 obtained by integrating this
function over ω is, in fact, T/(mω2

0). Then, using Eq. (7.2.19) and the fact
that 〈x(t)〉 = 0 so that Cxx(ω) = Sxx(ω), we obtain the very important
result

χ′′
xx(ω) =

1
2
βωSxx(ω), (7.5.29)

where β ≡ 1/T . This is the classical fluctuation-dissipation theorem the
complete quantum mechanical version of which was originally derived by
Callen and Welton (1952). It relates χ′′

xx(ω), which, as we saw in Sec. 7.3,
is proportional to the rate at which work done by external forces is dis-
sipated as heat, to the Fourier transform of the mean square fluctuation
〈[(x(t)− 〈x(t)〉][x(0)− 〈x(0)〉]〉. Thus, absorption or response experiments
that probe χxx(ω) contain the same information as scattering or related
measurements that probe Sxx(ω). Although we derived the fluctuation-
dissipation theorem for a single classical oscillator in equilibrium in a vis-
cous fluid, the theorem applies to all response and correlation functions
of systems in equilibrium. Furthermore, it is applicable, as we shall see
in the next section, to situations where the classical approximation is not
applicable.
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7.5.5 The Fokker-Planck and Smoluchowski equations

In the preceding discussion, we focused on the correlation functions of ve-
locity and position. The Langevin equations can be used to derive not
only these correlation functions but also the equations determining the
entire probability distribution function for these variables. The equation
for the velocity probability function for a diffusing particle is called the
Fokker-Planck equation; its generalization to displacement and other vari-
ables is generally called the Smoluchowski equation. These equations show
how probability distributions decay to Maxwell-Boltzmann distributions
describing thermal equilibrium at long times. They are applicable not only
for harmonic Hamiltonians but also for anharmonic Hamiltonians contain-
ing other than quadratic terms in the fundamental variables. This latter
result is important because it implies that Langevin equations provide a
correct phenomenological description of dynamics for all arbitrarily com-
plicated interacting systems as well as for the simple free particles and
harmonic oscillator we have considered so far.

We will begin our derivation of the Fokker-Planck equation by rewriting
the equation of motion in terms of the momentum p to produce a form that
will most easily generalize to other variables:

dp

dt
= −γp+ ζ = −Γ∂H

∂p
+ ζ, (7.5.30)

where Γ ≡ α = γm and

〈ζ(t)ζ(t′)〉 = 2ΓTδ(t− t′). (7.5.31)

This equation is now in a form that could in general include anharmonicities
in the Hamiltonian H.

We now consider the probability

P (p, t | p0, t0) = 〈δ(p− p(t)
)〉p0,t0 (7.5.32)

that a diffusing particle has momentum p at time t, given that it had
momentum p0 at time t0. The probability that the particle has a momentum
p at time t+∆t is

P (p, t+∆t | p0, t0) =
∫

dp′P (p, t+∆t | p′, t)P (p′, t | p0, t0). (7.5.33)

The conditional probability

P (p, t+∆t | p′, t) = 〈δ(p− p(t+∆t)
)〉p′,t (7.5.34)
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can be calculated from the equation of motion for p(t):

p(t+∆t) = p′ − Γ∂H
∂p′

∆t+
∫ t+∆t

t

dt′ζ(t′). (7.5.35)

The average of the third term in this equation is zero; its square, however,
is proportional to ∆t:∫ t+∆t

t

dt1

∫ t+∆t

t

dt2〈ζ(t1)ζ(t2)〉 = 2ΓT∆t. (7.5.36)

Terms higher order in
∫
dtζ(t) are higher order in ∆t because ζ(t) is a

Gaussian random variable and averages of products of ζ(t) can be expressed
as products of the variance 〈ζ(t1)ζ(t2)〉. Thus, for example 〈(

∫
dtζ(t))4〉 ∼

(
∫
dt1dt2〈ζ(t1)ζ(t2)〉)2 ∼ (∆t)2. Using this result, we now expand the left

hand side of Eq. (7.5.34) to first order in ∆t:

〈δ(p− p(t+∆t))〉p′,t =
[
1 + ∆tΓ

∂H
∂p′

∂

∂p
+∆tΓT

∂2

∂p2

]
δ(p− p′). (7.5.37)

This result and Eq. (7.5.32) then allow us to calculate

∂P

∂t
= TΓ

∂

∂p

[(
1
T

∂H
∂p

+
∂

∂p

)
P

]
. (7.5.38)

The left hand side of this equation is zero when

P = Peq ∼ e−H(p)/T , (7.5.39)

i.e., when P has the equilibrium form predicted by Maxwell-Boltzmann
statistics. In fact, P decays in time to Peq.

The probability distribution for any variable φ satisfying a linear differ-
ential equation in time of the form of Eq. (7.5.30) will satisfy Eq. (7.5.38)
with p replaced by φ. For example, the equation for an overdamped oscil-
lator Eq. (7.2.15) has exactly the same form of Eq. (7.5.30). The equation
for P (x, t), which is identical to Eq. (7.5.38) with p replaced by x, is the
Smoluchowski equation.

The probability distribution [Eq. (7.5.32)] appearing in the Fokker-
Planck equation [Eq. 7.5.38] is for the momentum subject to the boundary
condition p(t = 0) = p0. We have calculated both the expectation value
〈p(t)〉 = m〈v(t)〉 and the variance ∆p(t) = m2∆v(t) of the momentum
subject to this boundary condition. The force ζ(t) is a Gaussian random
process governed by the probability distribution of Eq. (7.5.3). Since the
velocity is linearly proportional to ζ(t), it should also be a Gaussian random
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process with a Gaussian probability distribution (i.e., characterized only by
its mean and variance). One can easily verify that

P (p, t | p0, 0) =
1

(2π∆p(t))1/2
e−(p−〈p(t)〉)2/2∆p(t) (7.5.40)

satisfies the Fokker-Planck equation.

7.6 Formal properties of response functions

7.6.1 Response to external fields

In Sec. 7.2, we defined the dynamic response function χ̃φiφj
(x,x′, t, t′)

relating the deviation δ〈φi(x, t)〉 of the average of the field φi(x, t) from
its equilibrium value to first-order changes in the time-dependent external
field hj(x′, t′) thermodynamically conjugate to φj(x′, t′). We then showed
how this function could be calculated from phenomenological equations of
motion. We also found that the imaginary part of the frequency depen-
dent response function for a classical harmonic oscillator was related in a
simple way to an equilibrium correlation function [Eq. (7.5.29]. In this sec-
tion, we will develop a general formalism for describing dynamic response
functions. The important result of this general treatment is that response
functions can be expressed in terms of equilibrium expectation values of
commutators of operators. From this follow a number of general symme-
try properties of response functions and the general quantum mechanical
fluctuation dissipation theorem relating the the dissipative part of the sus-
ceptibility to an equilibrium correlation function. Our development will be
fully quantum-mechanical. Classical results follow simply from the classical
limit of quantum mechanics.

The Hamiltonian of a system in the presence of an external field hj(x, t)
can be expressed as

HT = H+Hext, (7.6.1)

where H is the Hamiltonian describing the system when hj is zero, and

Hext = −
∫

ddx
∑
j

φj(x)hj(x, t), (7.6.2)

expressed in the Schrödinger representation where the field φj(x) is inde-
pendent of time. Hext is a perturbation introduced to measure response.
There can, of course, be terms in H linear in φj(x) that look like Hext. We
will be interested in the limit hj(x, t)→ 0, and we will assume that hj(x, t)
is zero for times less than some time t0, which we will eventually allow to
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go to −∞. Expectation values of operators in the presence of the external
field can be expressed as

〈φi(x, t)〉h = Trρh(t, t0)φi(x, t0) (7.6.3)

where ρh(t, t0) is the time-dependent density matrix for nonzero hj(x, t)
that reduces to the statistical equilibrium density matrix ρeq(h = 0) for
times less than t0. The time evolution of ρh(t, t0) is governed by the
Schrödinger equation,

ih̄
∂ρh
∂t

= [H+Hext, ρh], (7.6.4)

with the boundary condition ρh(t0, t0) = ρeq ≡ ρ. Thus

ρh(t, t0) = U(t, t0)ρU−1(t, t0) (7.6.5)

where

ih̄
dU(t, t0)

dt
= (H+Hext)U(t, t0) (7.6.6)

with U(t0, t0) = 1 and U(t, t0)U−1(t, t0) = 1. Because of the cyclic invari-
ance property of the trace, Eq. (7.6.3) can also be expressed as

〈φi(x, t)〉h = Trρh(t, t0)φi(x, t0) = TrρU−1(t, t0)φi(x, t0)U(t, t0). (7.6.7)

The final form puts time variation in the field operator, expressed in the
Heisenberg representation, rather than in the density matrix.

In order to discuss the time dependence of φi(x, t) when hj is nonzero,
it is convenient to introduce the interaction representation for U(t, t0) via

U(t, t0) = U0(t, t0)U ′(t, t0), (7.6.8)

where U ′(t0, t0) = 1 and

ih̄
dU0

dt
= HU0. (7.6.9)

From this and Eqs. (7.6.6) and (7.6.8), it follows that

ih̄
dU ′

dt
= [U−1

0 HextU0]U ′ ≡ HI
extU

′, (7.6.10)

where the superscript on HI
ext indicates that it is expressed in the interac-

tion representation where time evolution is determined by H rather than
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by the total Hamiltonian H + Hext. Equation (7.6.10) can be integrated
perturbatively to yield U ′(t, t0) as a power series in HI

ext. The result is

U ′(t, t0) = 1 +
1
ih̄

∫ t

t0

HI
ext(t

′)dt′

+
(
1
ih̄

)2 ∫ t

t0

HI
ext(t

′)
∫ t′

t0

HI
ext(t

′′)dt′dt′′ + · · ·(7.6.11)

≡
[
exp

(
1
ih̄

∫ t

t0

HI
ext(t

′)dt′
)]

+

,

where [ ]+ indicates that all operators within the brackets are to be or-
dered from right to left according to increasing time t. Defining φIi (x, t)
to be the operator φIi (x, t) = U−1

0 (t, t0)φi(x, t0)U0(t, t0) in the interaction
representation, we can write

〈φi(x, t)〉h = TrρU ′−1(t, t0)φIi (x, t)U
′(t, t0)

≈ Trρ
[(
1− 1

ih̄

∫ t

t0

HI
ext(t

′)dt′
)
φIi (x, t)

×
(
1 +

1
ih̄

∫ t

t0

HI
ext(t

′)dt′
)]

(7.6.12)

≈ TrρφIi (x, t) + Trρ
(
1
ih̄

∫ t

t0

dt′[φIi (x, t),HI
ext(t

′)]
)

where [φIi ,HI
ext] is the commutator of φ

I
i with HI

ext. The first term in
this equation is merely the equilibrium expectation value 〈φi(x, t)〉 in the
absence of the external field hj , and the second term reflects the effects of
the external potential to lowest (i.e., linear) order in hj(x, t). Allowing the
initial time t0 to go to −∞, we obtain

δ〈φi(x, t)〉 = 〈φi(x, t)〉h − 〈φi(x, t)〉

= −
∫ t

−∞
dt
1
ih̄

∫
ddx′〈[φi(x, t), φj(x′, t′)]〉hj(x′, t′)

=
∫ ∞

−∞
dt

∫
ddx′ i

h̄
η(t− t′)〈[φi(x, t), φj(x′, t′)]〉hj(x′, t′),

(7.6.13)

where we have dropped the now superfluous superscript I and where, as
usual, 〈 〉 signifies as average with respect to the equilibrium density matrix
ρ. The field φi(x, t) is the Heisenberg operator, evolving in time according
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to the Hamiltonian H. Comparing Eqs. (7.1.11), (7.1.12), and (7.6.13), we
obtain

χ̃φiφj
(x,x′, t− t′) = η(t− t′)

i

h̄
〈[φi(x, t), φj(x′, t′)]〉,

χ̃′′
φiφj

(x,x′, t− t′) =
1
2h̄

〈[φi(x, t), φj(x′, t′)]〉, (7.6.14)

where we have indicated explicit dependence on the time difference t −
t′. This equation gives us the desired expressions for χ̃′′

φiφj
(x,x′, t − t′)

and χφiφj
(x,x′, t − t′) in terms of average values of products of operators

evaluated in an equilibrium ensemble.
In classical systems, the commutators in Eq. (7.6.14) become Poisson

brackets:

χ̃′′
φiφj

(x,x′, t− t′) = − i

2
〈{φi(x, t), φj(x′, t′)}〉 (7.6.15)

≡ i

2

∑
α

〈
∂φi(x, t)
∂qα(t)

∂φj(x′, t′)
∂pα(t′)

− ∂φi(x, t)
∂pα(t)

∂φj(x′, t′)
∂qα(t′)

〉

where (qα, pα) is a complete set of canonically conjugate coordinates.

7.6.2 Symmetry properties of response functions

There are a number of symmetry properties of χ̃′′
φiφj

(x,x′, t−t′) that follow
directly because it is an equilibrium average of a commutator. It must be
anti-symmetric under interchange of all indices:

χ̃′′
φiφj

(x,x′, t− t′) = −χ̃′′
φjφi

(x′,x, t′ − t)

χ′′(x,x′, ω) = −χ′′
φjφi

(x′,x,−ω). (7.6.16)

The fields φi(x, t) are observables and thus Hermitian operators. Therefore,

[χ̃′′
φiφj

(x,x′, t− t′)]∗ =
(
1
2h̄

〈[φi(x, t), φj(x′, t′)]〉
)∗

=
1
2h̄

〈[φj(x′, t′), φi(x, t)]〉, (7.6.17)

and
[χ̃′′

φiφj
(x,x′, t− t′)]∗ = χ̃′′

φjφi
(x′,x, t′ − t). (7.6.18)

Or from Eq. (7.6.16),

[χ̃′′
φiφj

(x,x′, t− t′)]∗ = −χ̃′′
φiφj

(x,x′, t− t′). (7.6.19)
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Hence, χ̃′′
φiφj

(x,x′, t − t′) is pure imaginary and χ̃φiφj
(x,x′, t − t′) is pure

real as they should be. Finally, using Eq. (7.6.18), we obtain

[χ′′(x,x′, ω)]∗ = χ′′
φjφi

(x′,x, ω). (7.6.20)

It follows from Eqs. (7.6.16) and (7.6.20) that if χ′′(x,x′, ω) is even under
interchange of (x, i) and (x′, j), it is real and odd in ω. If it is odd under
the same interchange, it is imaginary and even in ω. The former case is the
most common, but the latter can occur.

The behavior of the fields φi(x, t) and the density matrix ρ under time
reversal determine further symmetry properties of χ̃′′

φiφj
(x,x′, t, t′). The

time-reversal operator θ applied to an operator φi leads to a new operator
φ′
i = θφiθ

−1. Fields φi(x, t) can be classified according to their signature
εφi

= ±1 under time reversal:

φ′
i(x, t) = θφi(x, t)θ−1 = εφi

φi(x,−t). (7.6.21)

Operators such as mass and energy density are even (ε = +1) whereas those
such as momentum density and magnetization are odd (ε = −1) under time
reversal. The density matrix depends on externally applied fields (such
as magnetic fields) and the nature of order in the system. Thus, in the
absence of external fields breaking time-reversal symmetry and in states
with no order parameter breaking time reversal, ρ is invariant under θ. If,
however, there are external fields or order parameters, which we represent
by B, breaking time reversal, then ρ will change under θ: θρ(B)θ−1 =
ρ(−B). The time-reversal operator θ is anti-unitary. Let |m′〉 = (θ|m〉)
and 〈m′| = (〈m|θ) be, respectively, the images of |m〉 and 〈m| under time
reversal. Then for any operatorA, 〈m|A|n〉 = 〈m|θθA|n〉 = [〈m′|(θA|n〉]∗ =
〈m′|A′|n′〉∗ = 〈n′|A†|m′〉 where A′ = θAθ−1. Applying this relation to
A = ρφiφj and noting that if {|m〉} is a complete set of states, then {|m′〉}
is also, we obtain

χ̃′′
φiφj

(x,x′, t− t′, B) = −εφi
εφj

χ̃′′
φiφj

(x,x′, t′ − t,−B)

= εφi
εφj

χ̃φjφi
(x′,x, t− t′,−B)

χ′′(x,x′, ω,B) = −εφi
εφj

χ′′(x,x′,−ω,−B) (7.6.22)
= εφi

εφj
χ′′
φjφi

(x′,x, ω,−B).

In a classical system, these results follow from Eq. (7.1.21) and the fact
that Poisson brackets change sign under time-reversal because ∂/∂pα(t)→
−∂/∂pα(−t). When there is no external field or order parameter breaking
time-reversal invariance, Eqs. (7.6.16), (7.6.18), and (7.6.22) imply that
χ′′(x,x′, ω) is real, odd in ω, and symmetric under interchange of (x, i) and
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(x′, j) when φi and φj have the same sign under time reversal and imagi-
nary, even in ω, and antisymmetric under interchange of (x, i) and (x′, j)
when they have the opposite sign. Symmetry properties of χ′

φiφj
(x,x′, ω)

follow from

χ′
φiφj

(x,x′, ω) = P
∫ ∞

−∞

dω′

π

χ′′(x,x′, ω′)(ω′ + ω)
ω′2 − ω2

. (7.6.23)

For example, when B = 0, χ
′
φiφj

(x,x′, ω) is real, even in ω, and symmetric
under interchange of (x, i) and (x′, j) when εφi

= εφj

In addition to the symmetries involving time coordinates, there are also
symmetries involving spatial coordinates. For example in homogeneous,
isotropic systems, χ′′(x,x′, t − t′) must be a function only of | x − x′ |
and its spatial Fourier transform a function only of q =| q |. In more
complicated crystalline systems, point and space group symmetries lead to
other spatial symmetries for χ′′(x,x′, ω).

7.6.3 Dissipation

In our discussion of the harmonic oscillator, we found that power dissipated
was proportional to ωχ′′(ω). We will now show that this result is more
generally valid. The rate at which work is done on the system can be
calculated using a generalization of Eq. (7.2.28). The rate dW/dt at which
the external field hi(x, t) does work on the system is equal to the rate
of change of the total energy of the system: dE/dt = (d/dt)Trρ(t)HT =
Trρ(t)dHT /dt + Tr(dρ(t)/dt)HT . In the Schrödinger representation, the
fields φi(x) are independent of time, and dHT /dt = dHext/dt. In addition,
Tr(dρ/dt)HT = (1/ih̄)Tr[HT , ρ]HT = (1/ih̄)Trρ[HT ,HT ] = 0. Therefore,
the rate at which work is done on the system is

dW

dt
= −

∑
i

∫
ddx〈φi(x, t)〉hḣi(x, t)

= −
∑
i

∫
ddx〈φi(x, t)〉0ḣi(x, t)

−
∑
ij

∫
ddxddx′

∫ t

−∞
[dt′ḣi(x, t)2iη(t− t′)

×χ̃′′
φiφj

(x,x′, t− t′)hj(x′, t′)] +O(h3
j ). (7.6.24)

Now, consider an external field oscillating at a single frequency ω:

hi(x, t) = Rehi(x)e−iωt =
1
2
[hi(x)e−iωt + h∗

i (x)e
iωt] (7.6.25)
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Then

dW

dt
= −

∑
ij

∫
ddxddx′ 1

2

{∫ t

−∞
dt′iω[h∗

i (x)e
iωt − hi(x)e−iωt]

×2iχ̃′′
φiφj

(x,x′, t− t′)[h∗
j (x

′)eiωt
′
+ hj(x′)e−iωt′ ]

}
(7.6.26)

where the first term in Eq. (7.6.24) has been dropped because it will disap-
pear on averaging over a cycle of the external potential. Upon performing
this average, we obtain

dW

dt
= −1

4
iω

∫ t

−∞

∫
dt′ddxddx′[2ih∗

i (x)χ̃
′′
φiφj

(x,x′, t− t′)hj(x′)eiω(t−t′)

−2ihi(x)χ̃′′
φiφj

(x,x′, t− t′)h∗
j (x

′)e−iω(t−t′)] (7.6.27)

since the terms proportional to e±iω(t+t′) disappear on averaging. Changing
variables to t1 = t− t′, we obtain

dW

dt
=

1
2
ω

∑
ij

∫
ddxddx′

∫ ∞

0

dt1[h∗
i (x)χ̃

′′
φiφj

(x,x′, t1)hj(x′)eiωt1

−hi(x)χ̃′′
φiφj

(x,x′, t1)h∗
j (x

′)e−iωt1 ]. (7.6.28)

Then interchanging (x, i) and (x, j) and letting t1 → −t1 in the second
term of this expression and using the symmetry property of Eq. (7.6.16),
we obtain

dW

dt
=
1
2
ω

∑
ij

∫
ddxddx′h∗

i (x)χ
′′(x,x′, ω)hj(x′). (7.6.29)

For systems in thermal equilibrium, power is absorbed from external sources,
and dW/dt must be positive definite. Thus, ωχ′′(x,x′, ω) is a positive defi-
nite matrix. This in turn implies that the real part of the response function
χ

′
φiφj

(x,x′, ω) is positive for small ω and negative for large ω when ρ is in-
variant under time reversal and εφi

= εφj
:

χ′
φiφj

(x,x′, ω) = P
∫ ∞

−∞

dω′

π

χ′′(x,x′, ω′)
ω′ − ω

= P
∫ ∞

−∞

dω′

π

ω′χ′′(x,x′, ω′)
ω′2 − ω2

(7.6.30)

→ P
∫ ∞

−∞

dω′

π

1
ω′2ω

′χ′′(x,x′, ω′) > 0 ω → 0,

→ − 1
ω2

P
∫ ∞

−∞

dω′

π
ω′χ′′(x,x′, ω′) < 0 ω → ∞.
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The simple harmonic oscillator discussed in Sec. 7.3 demonstrated a simple
example of this behavior.

7.6.4 Spectral representations of χ′′

It is instructive to express χ′′(x,x′, ω) in terms of the matrix elements of
φi(x, t) with respect to energy eigenstates of the system. Let |n〉 be an
eigenstate of H with energy h̄ωn, and assume that ρ is diagonal in the
energy basis with matrix elements 〈n | ρ | m〉 = ρnδnm. Then we can write

〈[φi(x, t), φj(x′, 0)]〉 = Trρ[eiHt/h̄φi(x, 0)e−iHt/h̄, φj(x′, 0)](7.6.31)

=
∑
nm

ρn[ei(ωn−ωm)t〈n | φi(x, 0) | m〉〈m | φj(x′, 0) | n〉

−e−i(ωn−ωm)t〈n | φj(x′, 0) | m〉〈m | φi(x, 0) | n〉].

This then implies

χ′′(x,x′, ω)

=
π

h̄

∑
nm

ρn{〈n | φi(x, 0) | m〉〈m | φj(x′, 0) | n〉δ(ω + ωn − ωm)

−〈n | φj(x′, 0) | m〉〈m | φi(x, 0) | n〉δ(ω − ωn + ωm)}. (7.6.32)

If φi(x, t) = φ(t) is independent of x and i, Eq. (7.6.32) reduces in the
canonical ensemble to

χ′′(ω) =
π

h̄

∑
nm

e−βh̄ωn

Z
| 〈n | φ | m〉 |2 [δ(ω + ωn − ωm)− δ(ω − ωn + ωm)],

(7.6.33)
where Z =

∑
n e

−βh̄ωn is the partition function.
Thus, χ′′ consists of a series of delta function spikes with weights de-

termined by the equilibrium density matrix and the matrix elements 〈n |
φi(x, 0) | m〉. This in turn implies that the complex response function
has poles along the real axis at frequencies ±(ωn − ωm) corresponding to
the possible excitation frequencies of the system. Using Eqs. (7.1.29) and
(7.6.32), we obtain

χφiφj
(x,x′, z) =

1
h̄

∑
nm

ρn

{ 〈n|φi(x, 0) | m〉〈m | φj(x′, 0) | n〉
ωm − ωn − z

(7.6.34)

− 〈n|φj(x′, 0)|m〉〈m|φi(x, 0) | n〉
ωn − ωm − z

}
.
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Im z

Re z

(a) (b)

Figure 7.6.1: (a) Pole structure for χ(z) for finite systems. There are
poles along the real axis separated by a minimum distance. χ(z) is analytic
everywhere in the complex z plane except at these poles and is in particular
analytic in the upper half plane as required by the considerations of Sec.
7.2. (b) Singularity structure for an infinite system. The poles merge
together to form a branch cut separating the upper and lower half planes.
χ(z) remain analytic in the upper half plane.

For a finite system, there is a minimum excitation energy, and thus a min-
imum distance between poles of χ(z) as shown in Fig. 7.6.1. This means
that χ(z) can be analytically continued to the negative half plane directly
using Eq. (7.6.34). As the characteristic length L of the system tends to
infinity, as it does in most systems of interest in condensed matter physics,
the energy level spacing goes to zero as L−2. In this case, the poles in χ(z)
push closer and closer together until, finally, when L → ∞, the discrete set
of poles becomes a branch cut. χ(z) defined by the spectral representation
of Eq. (7.1.29) is analytic function fro z in the upper half plane or in the
lower half plane. It, however, reaches different values on opposite sides of
the cut

lim
η→0

χ(ω + iη) �= lim
η→0

χ(ω − iη). (7.6.35)

Each pole in χ(z) corresponds to a delta function in χ′′(ω). Thus in a finite
system, χ′′(ω) will consist of separated spikes with intensities determined
by the matrix elements in Eq. (7.6.34) as shown in Fig. 7.6.2a. When
L → ∞, the spikes merge into a continuous curve as shown in Fig. 7.6.2b
that can, for example, have the Lorentzian shape discussed in Sec. 7.3.
This illustrates how dissipation characterized by a finite width in χ′′(ω)
results when L → ∞.

7.6.5 The fluctuation-dissipation theorem

In the preceding section, we saw that there is a simple relation between
the dissipation function χ′′

xx(ω) and the correlation function Sxx(ω) for the
classical harmonic oscillator. We will now use the formalism developed in
this section to show that an obvious generalization of this result applies to
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(a) (b)

Figure 7.6.2: (a) χ′′(ω) consisting of a set of discrete delta-function spikes
corresponding to the pole structure of Fig. 7.6.1a. (b) χ′′(ω) when L → ∞
(corresponding to the branch cut of Fig. 7.6.1b).

all systems in thermal equilibrium. For simplicity, we will consider only
systems described by the canonical density matrix,

ρ =
1
Z
e−βH, Z = Tre−βH. (7.6.36)

A proof of the theorem rests on the observation that e−βH is an imaginary
time translation operator. Thus, we can write

Tre−βHφi(x, t)φj(x′, t′) = Tre−βHφi(x, t)eβHe−βHφj(x′, t′)
= Trφi(x, t+ iβh̄)e−βHφj(x′, t′),
= Tre−βHφj(x′, t′)φi(x, t+ iβh̄).

(7.6.37)

where the last step follows from the cyclic invariance property of the trace.
We can use this result to express the correlation function Sφiφj

(x,x′, ω) in
terms of Sφjφi

(x′,x,−ω):

Sφiφj
(x,x′, ω) =

∫ ∞

−∞
dteiωtSφiφj

(x,x′, t, 0)

=
∫ ∞

−∞
dtSφjφi

(x′,x,−t− iβh̄, 0)eiωt

= eβh̄ω
∫ ∞

−∞
dtSφjφi

(x′,x, t, 0)e−iωt. (7.6.38)

Thus
Sφiφj

(x,x′, ω) = eβh̄ωSφjφi
(x′,x,−ω). (7.6.39)
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By definition,

χ′′(x,x′, ω) =
1
2h̄
[Sφiφj

(x,x′, ω)− Sφjφi
(x′,x,−ω)] (7.6.40)

so that
χ′′(x,x′, ω) =

1
2h̄
(1− e−βh̄ω)Sφiφj

(x,x′, ω). (7.6.41)

Note that this result reduces to the classical result χ′′(x,x′, ω) = 1
2βωSφiφj

(x,x′, ω)
when h̄ → 0 and agrees with the harmonic oscillator result of the preceding
section.

7.6.6 Sum rules and moment expansions

The representation of χ′′ as the expectation value of a commutator, allows
us to express the high-frequency moments of χ′′ in terms of expectation
values of equilibrium commutators. At high frequency, we can expand in
powers of 1/z:

χφiφj
(x,x′, z) =

∫
dω

π

χ′′(x,x′, ω)
ω − z

= −
∞∑
p=1

1
zp

∫ ∞

−∞

dω

π
ωpχ

′′(x,x′, ω)
ω

≡ −
∞∑
p=1

1
zp
[ωp

ij(x,x
′)]χφiφj

(x,x′, 0), (7.6.42)

where we introduced the pth frequency moment of χ′′(x,x′, ω) defined as

[ωp
ij(x,x

′)]χφiφj
(x,x′, 0) ≡

∫ ∞

−∞

dω

π
ωpχ

′′(x,x′, ω)
ω

(7.6.43)

These frequency moments are defined so that the zeroth moment is one.
They can be evaluated in terms of commutators of the time derivatives af
the field φi(x, t). It follows directly from Eq. (7.6.17) that

1
h̄
〈[(id/dt)nφi(x, t), φj(x′, 0)]〉 =

∫ ∞

−∞

dω

π
ωnχ′′(x,x′, ω)

=
1
h̄
〈[[...[φi(x, t),H/h̄],H/h̄]...], φj(x′, t)]〉. (7.6.44)

Thus, the high-frequency moments can be obtained from equal-time com-
mutators. Note that since the left hand side of Eq. (7.6.44) is bounded, all
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moments of χ′′(x,x′, ω) for p ≥ 0 must exist, and as a result χ′′(x,x′, ω)
must die off at large ω faster than any power of ω.

One particularly important sum rule is the f -sum rule for the particle
density. We first note that∫

dω

π
ωχ′′

nn(x,x
′ω) =

1
h̄
〈[∂n(x, t)/∂t, n(x′, t)]〉

=
1
h̄
∇i〈[ji(x, t), n(x′, t)]〉, (7.6.45)

where n(x, t) is the density operator and ji(x, t) =
∑

α pαi δ(x−xα(t))/m is
the current operator. The current-density commutator is easily calculated
to be ∫

dω

π
ωχ′′

nn(x,x
′, ω) =

1
m
∇ · ∇′〈n(x)〉δ(x− x′). (7.6.46)

The Fourier transform of this is Eq. (7.4.21).

7.7 Memory Functions and Kubo Formulae

7.7.1 Current Response

Until now, we have assumed that transport coefficients like Γ [Eq. (7.4.29)]
in the diffusion problem or the friction coefficient α for a particle in a fluid
are constants. In fact in general, these coefficients like dynamic response
functions are frequency or equivalently time dependent. Thus, we should
rewrite the relationship between current and chemical potential gradient in
the diffusion problem as

j(x, t) =
∫ ∞

−∞
dt′Γ̃(t− t′)∇µ(x, t′), (7.7.1)

where Γ̃(t) is the dynamic response of the current to gradients in the chem-
ical potential. Γ̃ could also depend on distance, but we will restrict our
attention to slow spatial variations where such dependence is unimportant.
The response of the current to chemical potential gradients must be causal,
and Γ̃(t) like the response function χ̃(t) is proportional to a step function.
For reasons that will be come more clear shortly, we will define Γ̃(t) without
the factor of i that appeared in our definition of χ̃(t) [Eq. (7.1.12]:

Γ̃(t) = 2η(t)Γ̃′(t). (7.7.2)
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As already indicated, there is no i in this equation, and it contains Γ̃′(t)
rather than Γ̃′′(t). We can Fourier-Laplace transform Γ̃(t) exactly as we
transformed χ̃(t). The result is

Γ(z) =
∫ ∞

0

dteiztΓ̃(t)

=
∫ ∞

−∞

dω

πi

Γ′(ω)
ω − z

(7.7.3)

where Imz > 0 and Γ′(ω) is the Fourier transform of Γ̃(t). Setting z = ω+iε,
we obtain

Γ(ω) ≡ Γ(ω + iε) = Γ′(ω) + iΓ′′(ω), (7.7.4)

where

Γ′′(ω) = −P

∫ ∞

−∞

dω′

πi

Γ′(ω)
ω′ − ω

. (7.7.5)

The correlation and response functions for the density are identical in form
to what we calculated previously [Eq. (7.4.28], except that D should be
replaced by D(z) = Γ(z)/χ.

The functions Γ′(ω) and Γ(z) can be expressed in terms of commuta-
tors/correlation functions of the particle current j, much as the density
response can be expressed in terms of commutators of the density. The
resulting formula, particulary in the zero-frequency limit is called a Kubo
formula. From Eq. (7.4.28), we see that Γ is simply the response of j to
∇µext in the spatially uniform equilibrium state with n a constant and
∇µ(n) = 0.1 We, therefore, consider

δ〈ji(q, ω)〉 = χjin(q, ω)µ
ext(q, ω) =

∫
dω′

π

χ′′
jin
(q, ω′)

ω′ − ω − iε
µext(q, ω). (7.7.6)

Since j is the current associated with the conserved density n, we have

∂′
tχ̃jin(x,x

′, t, t′) = −∂′
kχ̃jijk

(x,x′, t, t′) (7.7.7)
iωχ′′

jin(q, ω) = iqkχjijk
(q, ω), (7.7.8)

Where ∂′
t = ∂/∂t′ and ∂′

k = ∂/∂x′
k. Thus

〈ji(q, ω)〉 =
∫

dω′

π

χ′′
jijk

(q, ω′)
iω′(ω′ − ω − iε)

iqkδµ
ext(q, ω). (7.7.9)

1We continue to use the convention, which is common in the physics community,
in which the temporal Fourier transform of a field φ(t) is defined with a −iωt in the

exponent: φ(t) =
∫
(dω/(2π))e−iωtφ(ω). In the engineering and rheology literature the

opposite convention is usually used. As a result, the signs of some of the equations that
follow will differ from those often encountered in the literature.
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The spatial Fourier transform of ∂kµext(x, ω) is iqkµext(q, ω). The response
to the gradient of the external chemical potential µext when the density is
spatially uniform is just the negative of the response to the gradient of the
internal chemical potential µ [See Eq. (7.4.28)] when the external gradient
is zero, and we conclude that in the limit of slow spatial variations in which
∂kµ

ext(x, ω) is essentially constant that

〈ji(x, ω)〉 = −Γik(ω)∂kµ(x, ω), (7.7.10)

where

Γik(ω) =
∫

dω′

π

χ′′
jijk

(q = 0, ω′)
iω′(ω′ − ω − iε)

. (7.7.11)

Comparing this equation with Eq. (7.7.3), we obtain

Γ′
ik(ω) =

χ′′
jijk

(q = 0, ω)
ω

(7.7.12)

=
1− e−h̄ω/T

2h̄ω
Sjijk

(q = 0, ω) (7.7.13)

→ 1
2T

Sjijk
(q = 0, ω), (7.7.14)

where we used the fluctuation-dissipation theorem [Eq. (7.6.41] and the last
form is valid in the classical limits, h̄ → 0. The zero-frequency transport
coefficient Γik = δikΓ is

Γik =
1
2T

Sjijk
(0, 0) (7.7.15)

=
1
T

∫
ddx

∫ ∞

0

dt〈ji(x, t)jk(0, 0)〉, (7.7.16)

where we used Sjijk
(x,x′, ω) = Sjijk

(x,x′,−ω). This is the Kobo formula
for the static transport coefficient. Because of the zero-frequency limit, it
is valid for both quantum and classical systems.

Kubo formulae can be derived for any transport coefficients. They have
formal value in that they express these coefficients in terms of correla-
tion functions whose symmetry properties we know and understand. Using
them, we can prove symmetry relations among transport coefficients. For
example in a two-component fluid, a gradient in the chemical potential dif-
ference µ̃ between the two species produces a heat current Q in addition to
a relative diffusion current J, and a gradient in the temperature produces
a diffusion current in addition to heat current: Q = −κ∇T − TγTnµ̃ and
J = −Γ∇µ̃− γnT∇T . The Kubo relations guarantee that γTn = γnT .
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7.7.2 Shear Viscosity and Complex Shear Modulus

Of particular interest is the Kubo formula for the shear viscosity. In a fluid,
the momentum is a conserved quantity, and the momentum density g(x, t)
satisfies a conservation law,

∂gi
∂t

= ∇jσij , (7.7.17)

where the stress tensor σij is the negative of the momentum current. The
momentum density is the mass density ρ times the local velocity v, which
is the field conjugate to g (just as the chemical potential is the field conju-
gate to the number density n). The dissipative part of the stress tensor is
proportional to the gradient of the local velocity:

σij = η(δikδjl + δilδjk − 2
3
δijδlk)∂kvl + ζ∇ · v, (7.7.18)

where η is the shear viscosity and ζ is the bulk viscosity. The shear viscosity
η like Γij depends on frequency, and it has a Kubo-like expression in terms
of correlations of the stress tensor:

η(ω) =
∫

dω′

πi

χ′′
σxyσxy

(q = 0, ω′)
ω′(ω′ − ω − iε)

(7.7.19)

=
1
T

∫
d3x

∫ ∞

0

eiωt〈σxy(x, t)σxy(0, 0)〉 (7.7.20)

= η′(ω) + iη′′(ω). (7.7.21)

In simple fluids, we are normally interested in very low frequencies for
which η′(ω) = η is a constant and η′′(ω) = 0. If the fluid is characterized
by a single relaxation time τ , then

η(ω) =
η0

1− iωτ
(7.7.22)

η′(ω) = η0
1

1 + ω2τ2
(7.7.23)

η′′(ω) = η0
ωτ

1 + ω2τ2
, (7.7.24)

where η0 is the zero-frequency viscosity. These relations define the Maxwell
model for a fluid. Note that both the real and the imaginary parts of the
viscosity vanish at high frequencies.

An isotropic elastic solid is characterized by a zero-frequency shear mod-
ulus µ. The stress tensor is µ times gradients of the displacement vector
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u. The velocity vector is the time derivative of the displacement: ∂tu = v
and

σxy = (µ− iωη)∂yux ≡ G∗(ω)∂yux (7.7.25)

if ∂yux is the only non-vanishing component of ∂iuj . G∗(ω) is the complex
shear modulus, which is usually represented as

G∗(ω) = −iωη(ω) = G′(ω) + iG′′(ω) (7.7.26)

where G′(ω) is the storage modulus and G′′(ω) is the loss modulus. This
equation expresses G∗(ω) in terms of the frequency-dependent viscosity.
If there is a non vanishing shear modulus, then η(ω) has a part equal to
µ/(−iω) at low frequency. In the Maxwell model,

G∗(ω) = η0
−iω

1− iωτ
(7.7.27)

G′(ω) = η0
ω2τ

1 + ω2τ2
(7.7.28)

G′′(ω) = −η0
ω

1 + ω2τ2
. (7.7.29)

Thus, G′′(ω) → η0/τ ≡ µ∞ as ω → ∞. µ∞ is a high-frequency shear
modulus. Note that the sign G′(ω) is negative as it should be with our sign
convention for Fourier transforms. G ∗ (ω) is really the inverse response of
the strain (i.e., displacement) to stress (i.e., force). The imaginary part of
ωG∗−1(ω) must, therefore, be positive definite as it is.

With the above definitions, we can express σxy ≡ σ in terms of the
strain γ = ∂yux or strain rate γ̇ = ∂yvx as

σ(ω) = G∗(ω)γ(ω) = η(ω)γ̇(ω) (7.7.30)

σ(t) =
∫ ∞

−∞
dt′G̃∗(t− t′)γ(t′) =

∫ t

∞
dt′η̃(t− t′)

dγ(t′)
dt′

. (7.7.31)

A common experimental condition is to apply a specific strain γ at time
t = 0+. This will set up a time-dependent stress

σ(t) = η̃(t)γ. (7.7.32)

7.8 Microrheology

Recall from Sec. 7.2 that a particle in a fluid experiences a friction force pro-
portional to its velocity times the viscosity of fluid. Thus, measurements of
the particle’s motion can be used to determine the viscosity of the fluid, for
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example via 〈r2(t)〉 = 6Dt = [T/(πηa)]t, where r(t) is the particle displace-
ment. Measurements of the response or fluctuations of particles embedded
in complex media such as gels, polymer solutions, colloidal dispersions of
both isotropic and anisotropic particles, and even living cells can provide
information about the complex shear modulus G∗(ω) of the medium[5]. If
the radius a of a particle is large compared to any characteristic length of
the medium with a complex shear modulus in which it moves, it’s equation
of motion can be shown to be

m
∂vi
∂t

+
∫ t

−∞
dt′α̃(t− t′)vi(t′) = fi(t) + ζi(t), (7.8.1)

where α̃(t) = 6πaη̃(t), fi is the external force, and ζi(t) is the Langevin
noise. From this, we can calculate directly the response of the velocity to
the external force:

χvirj
(z) = δij

1
−izm+ α(z)

. (7.8.2)

From this we can calculate χrirj
(z)

χrirj
(z) =

∫
dω

π

χ′′
rirj

(ω)
ω − z

(7.8.3)

=
∫

dω

π

χ′′
virj

(ω)
−iω(ω − z)

(7.8.4)

=
1

−iz

∫
dω

π

(
1

ω − z
− 1

ω

)
χ′′
virj

(ω) (7.8.5)

=
1

−iz
χvirj

(z) = δij
1

−iz(−izm+ 6πaη(z))
(7.8.6)

≈ δij
1

6πaG∗(z)
, (7.8.7)

where we used the fact that χ′′
virj

(ω) is even in ω so that the second term in
Eq. (7.8.5) is zero, and where in the final form [Eq. (7.8.7)], we assume that
frequencies are low enough that the inertial term −z2m can be neglected.
A similar analysis yields

χvivj
(z) = δij

iz

−izm+ 6πaη(z)
(7.8.8)

χ′′
vivj

(ω) = δij
ωα′(ω)

| − iωm+ α(ω)|2 . (7.8.9)

Thus a measurement of the response χrirj
(ω) of the particle displacement

to an external force yields the complex shear modulus G∗(ω), which is
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measured directly in more macroscopic rheology experiments. Equivalently,
the Laplace transform of the response χrirj

(is) yields the Laplace transform
G∗(is) of the complex shear modulus. As usual, the response function can
be determined experimentally by measuring the amplitude and phase of the
displacement in response to a frequency-dependent external force.

Rather than measuring the response to an external force, it is often
easier experimentally to measure directly the Brownian motion of a particle
in a complex medium, i.e. to measure 〈∆r2(t)〉 = 〈(r(t)−r(0))·(r(t)−r(0))〉
or its Laplace transform 〈∆r2(s)〉. The Laplace transform

Cvivj
(s) =

∫ ∞

0

e−stCvivj
(t, 0) (7.8.10)

of the velocity can be calculated directly from Eq. (7.8.1):

Cvivj
(s) =

1
ms+ 6πaη(s)

m〈vi(0)vj(0)〉 = δij
T

ms+ 6πaη(s)
. (7.8.11)

Then, using

〈∆ri(t)∆rj(t)〉 =
∫ t

0

dt1

∫ t

0

dt2〈vi(t1)vj(t2)〉 = 2
∫ t

0

dt′(t− t′)Cvivj
(t′, 0),

(7.8.12)
we obtain

〈∆r2(s)〉 =
2
s2

Cvivi
(s) (7.8.13)

=
6T

ms2 + 6πas2η(s)
≈ T

πaG∗(s)
. (7.8.14)

Thus, the Laplace transform of the displacement correlation function yields
the Laplace transform G∗(s) of the the complex shear modulus. The con-
version G∗(s) to G∗(ω) is in principal straightforward, but it does require
some care. One approach is to fit G(s) with a functional form, and merely
replace s by −iω.

Figures 7.8.1 to 7.8.3 show 〈∆r2(t)〉, G∗(s), and G′(ω) and G′′(ω) for
microrheological measurements in solutions of F-actin taken by Gisler and
Weitz [Phys. Rev. Lett. 82, 1606 (1999)]. F-actin is a long semi-flexible
polymer. The data show that the system has a nearly constant storage
modulus G′(ω) and that the reactive (storage) part of G∗ dominates over
the dissipative (loss) part at low frequency. At high frequency, both G′(ω)
and G′′(ω) are proportional to ω3/4.

Our analysis above of a system in which the dissipative coefficient is a
memory function rather than simply a constant did not consider the noise.
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Figure 7.8.1: Mean-square displacements 〈∆r2(t)〉 of polystyrene latex
beads in 1.5 mg/ml phalloidin-stabilized F-actin measured with diffusing-
wave spectroscopy; symbols denote different bead sizes.

When the dissipative coefficient is a constant α, the noise fluctuation in
an equilibrium systems is simply 〈ζi(t)ζj(t′)〉 = 2αTδ(t − t′). When the
dissipative coefficient α̃(t) depends on time, the noise spectrum must be
modified to drive the system to equilibrium. To determine what the noise
spectrum must be, we calculate the response of vi to the noise from Eq.
(7.8.1) from which we obtain

vi(ω) =
ζi(ω)

−iωm+ α(ω)
. (7.8.15)

Then setting
〈ζi(t)ζj(t′)〉 = A(t− t′)δij (7.8.16)

we obtain

Cvivj
(ω) = δij

A(ω)
| − iωm+ α(ω)|2 (7.8.17)

=
A(ω)
α′(ω)

χvivj
(ω)

ω
(7.8.18)

=
A(ω)
α′(ω)

1
2T

Cvivj
(ω), (7.8.19)
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Figure 7.8.2: G(s) scaled with low-frequency value G0(s) as a function
of the normalized frequency s/ω0. Symbols correspond to actin monomer
concentrations between 1 and 2 mg/ml and bead diameters between 0.52
and 3 µm. The solid line is a fit of the ansatz G(s)/G0 = 1+ c1(s/ω0)1/3+
c2(s/ω0)3/4 to the averaged data. Best-fit parameters are c1 = 0.5 and
c2 = 1.0.
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Figure 7.8.3: Storage modulus G′(ω) (closed circles) and loss modulus
G′′(ω) (closed squares) calculated from the light scattering data. The
crossover regions is broadened by a term scaling as ω1/3.

where we used Eq. (7.8.9) for χ′′
vivj

(ω). From this we conclude that

A(ω) = 2Tα′(ω) (7.8.20)

and
〈ζi(t)ζj(t′)〉 = δij2T α̃′(t− t′). (7.8.21)

This is relation between noise and the time-dependent dissipative memory
coefficient generalizes to more complex situations.



REFERENCES. 67

References

Dynamical correlation and response functions

Dieter Forster Hydrodynamic Fluctuations, Broken Symmetry, and Cor-
relation Functions, (Addison Wesley, Reading, Mass., 1983).

P.C. Martin,in Many-Body Physics, edited by C. De Witt and R. Balian
(Gordon and Breach, New York, 1967).

Langevin Theory and stochastic processes

R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, second
edition (Springer-Verlag, Berlin, 1978).

Nelson Wax, editor, Selected Papser on Noise and Stochastic Processes,
(Dover Publications, Inc., New York, 1954). The articles by S. Chan-
drasekhar, G.E. Uhlenbeck and L.S. Ornstein, and Ming Chen and
G.E. Uhlenbeck are particularly useful. Other useful references for
Langevin theory and stochastic processes include

J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Claren-
don Press, Oxford, 1990).

Neutron Scattering

G. L. Squires, Thermal Neutron Scattering (Cambridge University Press,
Cambridge, 1978).



68 CHAPTER 7. DYNAMICS: CORRELATION AND RESPONSE



Bibliography

[1] H.B. Callen and R.F. Welton, Phys. Rev. 86, 702 (1952).

[2] W.D. Dozier, unpublished thesis, UCLA, (1986).

[3] A. Einstein, Ann. d. Physik 17, 549 (1905).

[4] P. Langevin, Comptes Rendus Acad. Sci. Paris 146, 530 (1908).

[5] T.G. Mason and D.A. Weitz, Phys. Rev. Lett. 74 1250 (1995); F.
Amblard, A.C. Maggs, B. Yurke, A.N. Pargellis, and S. Leibler, Phys.
Rev. Lett. 77, 4470 (1996).

Problems

7.1 Consider the coupled LRC electrical circuit shown in Fig 7P.1.

(a) Calculate the frequency-dependent response function χij(ω) for
the charge qi on capacitor i = 1, 2 produced by a voltage at
source j = 1, 2 at frequency ω.

(b) Calculate χ′′
11(ω) and plot it as a function of frequency. Discuss

the limit R → 0.

(c) Calculate limω→0 χij(ω) and limω→∞ χij(ω) and compare these
results with sum rules that can be calculated indepedently (you
may assume R = 0 here).

(d) Calculate the thermal equilibrium charge correlation function
Sqiqj

(ω).

7.2 Calculate the transverse position-velocity and velocity-velocity re-
sponse functions for the harmonic continuum elastic model of Sec.
7.3. Determine, in particular, the low-frequency form of χvv(q, z)
and the long-wavelength form for χ′′

vv(q, ω).
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V1 V2

L R L R

C C C

1 2

Figure 7P.1: LRC circuit for Prob. 7.1

7.3 Calculate the density-density response function using Eq. (7.4.28)
for the current and a time-dependent external chemical potential
µext(x, t).

7.4 If the diffusion constant depends on frequency, then

χ(q, z) = χ(q)
D(q, z)q2

−iz +D(q, z)q2
.

Express D(q, z) in terms of χ(q, z) and then, using the analyticity
properties of χ(q, z), show that D(q, z) is analytic in the upper half
plane and can be written as

D(q, z) =
∫

dω

π

D′(q, ω)
ω − z

,

where D′(q, ω) is the real part of D(q, ω + iε).

7.5 Generalize the resistor network equation [Eq. (7.4.47)] to in include
a current I(t) inserted at the origin and a current −I(t) extracted at
site x. Show that the complex impedance for current flowing from
the origin to x is

Z(x, ω) =
∫

ddq

(2π)d
2(1− cosq · x)

−iωC + σ[γ(0)− γ(q)]
.

From this, calculate the time-dependent impedance Z(x, t) for t > 0
and express your result in the continuum limit in terms of the diffusion
Green function [Eq. (7.4.10)].
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7.6 (a) Show that the equilibrium displacement correlation function for
a damped harmonic oscillator is

Cxx(t) =
T

mω2
0

(
cosω1t

γ

2ω1
+ sinω1t

)
e−γt/2.

Use this function to calculate the velocity-velocity correlation
function Cvv(t) and the velocity-displacement correlation func-
tions Cxv(t) and Cvx(t).

(b) Calculate the frequency-dependent correlation functions Cvv(ω),
Cxv(ω), and Cvx(ω). Then use the fluctuation-dissipation theo-
rem to calculate χ′′

vv(ω), χ
′′
xv(ω), and χ′′

vx(ω). Discuss the sym-
metry properties of these response functions.

7.7 (Memory effects) In our treatment of a Brownian particle in a viscous
fluid, we assumed that the friction force was simply a constant friction
coefficient times the velocity. In general, however, the dissipative
force at time t should depend on the velocity at earlier times, and the
dissipative coefficient γ should be a time-dependent memory function
γ̃(t) = 2η(t)γ̃′(t). In the presence of an external force F (t), the
velocity equation then becomes

∂v

∂t
= −

∫ ∞

−∞
γ̃(t− t′)v(t′)dt′ +

1
m
F (t) +

1
m
ζ(t).

(a) Using arguments similar to those used to derive Eq. (7.1.17),
show that

γ(z) =
∫ ∞

0

dteiztγ̃(t) =
∫

dω

πi

γ′(ω)
ω − z

and that γ(ω) = limε→0 γ(ω + iε) = γ′(ω) + iγ′′(ω), where
the imaginary part γ′′(ω) is related to the real part γ′(ω) by
a Kramers-Kronig relation. Show also that γ∗(ω) = γ(−ω)

(b) Calculate the mobility µ(ω) relating the velocity to the exter-
nal force via v(ω) = µ(ω)F (ω) in terms of γ(ω). What is the
complex electrical conductivity of a system with a density n, of
non-interacting Brownian particles, each carrying a charge e.

(c) Show that noise correlations must satisfy

Cζζ(ω) = I(ω) = 2Tmγ′(ω)

to produce thermal equilibrium. Then show that the velocity
correlation function is

Cvv(ω) =
2T
m

γ′(ω)
| − iω + γ(ω)|2 .
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You may wish to use the fact that γ(ω) is analytic in the upper
half plane to obtain this result.

(d) (difficult) If a particle of radius a and density ρ0 moves with
a time-dependent velocity in a fluid of density ρ, it will excite
viscous shear waves in the fluid with frequency ωv = −iηq2/ρ
(see the next chapter). This leads to a singular memory function

γ(ω) = −2iωρ/ρ0 + γ[(−iωτv)1/2 + 1],

where τv = ρa2/η is the viscous relaxation time (the time for a
shear wave to diffuse across a particle radius). Show that

Cvv(t) =
T

m∗F (τ),

where m∗ = m[1 + ρ/(2ρ0)], τ = (m/m∗)γt,

F [τ ] =
σ

π
τ−3/2

∫ ∞

0

e−u2
u2du

(τ−1u2 − 1)2 + σ2τ−1u2
,

where σ2 = (m/m∗)(γτv) = (9/2)ρ/[ρ0 + (ρ/2)]. This implies
that F (τ) → στ−3/2/(2

√
π) as τ → ∞. Such algebraic rather

than exponential fall-off of correlation functions at long times is
often referred to as a long-time tail. Use the above expression
for Cvv(t) and Eq. (7.5.16) to show that

D(t)→ D[1− (τv/t)1/2]
as t → ∞, where D = T/mγ is the diffusion constant. Thus, the
Einstein relation is satisfied even though the approach to this
result at long time is algebraic rather than exponential. Note
that when the density of the Brownian particle is much greater
than the fluid density, σ → 0, m∗ → m, and F (t)→ e−γ|t|, and
Eq. (7.5.10) is regained.

7.8 (a) Show that the conditional probability function P (v, t|v0, t0) de-
fined in Eq. (7.5.32) satisfies∫

dvP (v, t|v0, t0) = 1,
∫

dvF (v)P (v, t|v0, t0) = 〈F (v(t))〉.

(b) Show that

P (v, t|v0, t0) =
∫ ∞

−∞
dλ

〈
eiλ(v−v(t))

〉
v0,t0

.
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Then use Eq. (7.5.18) and the fact that〈
exp

[
iλ

∫ t

0

f(t′)ζ(t′)dt′
]〉

= exp
[
−mγTλ2

∫ t

0

f2(t′)dt′
]

for any function f(t) to show that

P (v, t|v0, t0) =
1√

2π∆v(t)
e−(v−〈v(t)〉)2/2∆v(t).

(c) The function

P (x, t|x0, v0, t0) = 〈δ(x− x(t))〉x0,v0,t0

is the probability that x = x(t) at time t, given that x = x0 and
v = v0 at time t0. Using Eqs. (7.5.18) and (7.5.22), show that

x(t)− 〈x(t)〉 =
∫ t

0

dt′
(
1− eγ(t′−t)

)
ζ(t′)/m,

where 〈x(t)〉 is given in Eq. (7.5.23). Then, following the same
reasoning as in part (a), show that

P (x, t|x0, v0, t0) =
1√

2π∆x(t)
e−(x−〈x(t)〉)2/2∆x(t),

where ∆x(t) is given in Eq. (7.5.26). Finally, average the prob-
ability P (x, t|x0, v0, t0) over a Maxwell-Boltzmann distribution
for v0 to obtain

P (x, t|x0) =
1√

2π〈[∆x(t)]2〉e
−(x−x0)

2/2〈[∆x(t)]2〉,

where 〈[∆x(t)]2〉 is given by Eq. (7.5.13).
7.9 (Diffusion in an external force field)

(a) Show that the stochastic equation for a three dimensional posi-
tion x(t) for a Brownian particle in an external force F for times
long compared to 1/γ where inertial effects can be ignored is

∂x
∂t

= ΓF+ η = −Γ∇xH+ η,

where Γ = 1/α and η = ζ/γ is a vector noise.
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(b) Now consider a particle of mass density ρ in a fluid of density
ρ0 in a gravitational field g = gez. Show that the Smoluchowski
equation for the probability P (x, t) that the particle is at posi-
tion x at time t satisfies the equation

∂P

∂t
= D∇2P + c · ∇P ≡ −∇ · j,

where D = TΓ = T/(γm), c = g[1 − (ρ/ρ0)]/γ, and j =
−(D∇P + cP ) is the current. This defines a directed diffusion
problem in which there is an average drift along ez.

(c) Show that the solution to this equation in an infinite system
subject to the boundary condition P (x, 0) = δ(x− r0) is

P (r, t) =
1

(4πD|t|)3/2 e
−|x−x0+ct|2/(4D|t|).

This shows that there is an average drift in the direction of the
applied force. As a result diffusion in an external field is often
referred to as directed diffusion

(d) (Sedimentation: difficult) A physical container is not infinite,
and no current can flow through the boundaries of the container.
Assume P (x, t) = P (z, t) does not depend on x or y and solve the
directed diffusion equation for P (z, t) subject to the boundary
condition P (z, 0) = δ(z − z0) and jz = 0 at z = 0.

7.10 Show that the probability P (x, p, t|x0, p0, t0) that a particle has posi-
tion x and momentum p at time t, given that it had position x0 and
momentum p0 at time t0, satisfies Kramer’s equation

∂P

∂t
= αT

∂

∂p

[
1
T

∂H
∂p

+
∂

∂p

]
P +

∂

∂p

(
∂H
∂x

P

)
− ∂

∂x

(
∂H
∂p

P

)
,

whereH = p2/2m+U(x) is the Hamiltonian for a particle in an exter-
nal potential U(x). Show that a stationary solution to this equation
is P = e−H/T .

7.11 Calculate the high-frequency moments
∫
(dω/π)ωnχ′′

xx(ω) for n = 1
and n = 3 for the quantum anharmonic oscillator with Hamiltonian

H =
p2

2m
+
1
2
kx2 + ux4.

7.12 Use the spectral representations for χ′′
φiφj

(x,x′, ω) and Sφiφj
(x,x′, ω)

to derive the fluctuation-dissipation theorem.



Chapter 8

Hydrodynamics

Thermodynamics provides a description of the equilibrium states of systems
with many degrees of freedom. It focuses on a small number of macroscopic
degrees of freedom, such as internal energy, temperature, number density,
or magnetization, needed to characterize a homogeneous equilibrium state.
In systems with a broken continuous symmetry, thermodynamics can be ex-
tended to include slowly varying elastic degrees of freedom and to provide
descriptions of spatially nonuniform states produced by boundary condi-
tions or external fields. Since the wavelengths of the elastic distortions are
long compared to any microscopic length, the departure from ideal homo-
geneous equilibrium is small. In this chapter, we will develop equations
governing dynamical disturbances in which the departure from ideal homo-
geneous equilibrium of each point in space is small at all times.

8.1 Conserved and broken-symmetry variables

Thermodynamic equilibrium is produced and maintained by collisions be-
tween particles or elementary excitations that occur at a characteristic time
interval τ . In classical fluids, τ is of order 10−10 to 10−14 seconds. In low-
temperature solids or in quantum liquids, τ can be quite large, diverging as
some inverse power of the temperature T . The mean distance λ between col-
lisions (mean free path) of particles or excitations is a characteristic velocity
v times τ . In fluids, v is determined by the kinetic energy, v ∼ (T/m)1/2,
where m is a mass. In solids, v is typically a sound velocity. Imagine
now a disturbance from the ideal equilibrium state that varies periodically
in time and space with frequency ω and wave number q. If ωτ � 1 and
qλ � 1, the disturbance varies slowly on time and length scales set by τ
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and λ, and there will be many equilibrating collisions in each of its tempo-
ral and spatial cycles. Thus, each point in space is close to thermodynamic
equilibrium at each instant of time, and one would expect to be able to
treat such disturbances as perturbations from thermodynamic equilibrium
even though they vary in time. Most disturbances in many body systems
have characteristic frequencies that are of order τ−1. If excited, they de-
cay rapidly to equilibrium. There are, however, certain classes of variables
that are guaranteed to have slow temporal variations at long wavelengths.
These are

(1) densities of conserved variables, and

(2) broken-symmetry elastic variables.

A conserved density such as the number density n obeys a conservation law
of the form

∂n

∂t
+∇ · j = 0, (8.1.1)

where j is the particle current. When Fourier transformed, such equa-
tions imply frequencies ω that go to zero with wave number q. Indeed,
in the preceding chapter, we found that the characteristic frequency as-
sociated with the conserved density of particles suspended in a fluid was
−iDq2. In Chapter 6, we saw that the free energy is invariant with respect
to the spatially uniform displacement of broken-symmetry elastic variables
such as the angle θ in the xy-model. Thus, spatially uniform changes in
elastic variables lead to new equilibrium states that are stationary in time.
This implies that the frequency associated with zero wave number displace-
ments of broken-symmetry elastic variables is zero. Spatially non-uniform
displacements will, however, have nonzero characteristic frequencies.

Historically, the first system whose long-wavelength, low-frequency dy-
namics was given serious attention was water. The dynamics of water in
motion is called hydrodynamics. Today, the term hydrodynamics is used
for the long-wavelength, low-frequency dynamics of conserved and broken-
symmetry variables in any system. Thus, for example, spin systems and
crystalline solids as well as water hav a well defined hydrodynamics. They
will be the subject of this chapter.

The time dependence of each conserved variable is determined by a cur-
rent as in Eq. (8.1.1). Currents for broken-symmetry variables can, as we
shall see, also be introduced. For slowly varying disturbances, these cur-
rents are local functions of the fields thermodynamically conjugate to the
hydrodynamical variables. Thus, as we saw in the Chapter 7, the current for
particles suspended in a fluid is proportional to the gradient of their chem-
ical potential. The equations relating currents to thermodynamic fields are
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called constitutive relations. The hydrodynamics of a given system is de-
termined by its hydrodynamical variables and their currents and associated
constitutive relations. As we discussed in the preceding chapter, fields can
be classified according to their sign under time reversal. Currents have
the opposite sign under time reversal from their associated hydrodynami-
cal variables. Coefficients relating a current and a field with the same sign
under time reversal are nondissipative and are ultimately responsible for
propagating modes such as sound waves. These nondissipative coefficients
can usually be determined by straightforward invariance arguments. For
example, the time derivative ∂u/∂t of the displacement variable u in a
crystal in motion at constant velocity v must be equal to v. In addition,
the momentum density g must be equal to the mass density times v. The
equation ∂u/∂t = v provides a coupling between the hydrodynamical vari-
ables u and g that does not involve any dissipation since it applies to a
steady state situation. Relations between a current and a field with the
opposite sign under time reversal are necessarily irreversible. They imply
entropy production and are thus dissipative.

Our program for obtaining hydrodynamical equations is the following.
First, since hydrodynamics is basically a perturbation about thermody-
namic equilibrium, we have to generalize our treatment of thermodynamics
and statistical mechanics to include all conserved and broken-symmetry
variables, including for example the momentum in fluids. Second, we must
identify the time dependence induced in hydrodynamical variables of one
sign under time reversal by nonzero values of variables of the opposite sign,
i.e., we must identify reactive couplings. Finally, we must derive irreversible
dissipative couplings.

The hydrodynamics of water is quite complicated because there are five
hydrodynamical variables arising from the five conservation laws (mass,
energy and momentum) in a one-component fluid. The imposition of a
broken symmetry, as in a liquid crystal, leads to even greater complex-
ity. We will, therefore, study first the hydrodynamics of a simple model
with only two conserved variables and a single broken-symmetry variable
in the low-temperature, ordered phase. This model will introduce all of
the ingredients essential to the understanding of hydrodynamics, including
generalization of thermodynamics to include variables describing states of
nonzero motion, derivation of reactive and dissipative constitutive relations,
determination of the linearized mode structure, and calculation of response
functions. We will then derive and discuss the hydrodynamics of spin sys-
tems, one- and two-component fluids, liquid crystals, crystalline solids and
superfluids.

It is possible for variables other than conserved or broken-symmetry
variables to have characteristic frequencies that are much slower than the
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inverse collision time. For example, decay times of a nonconserved order
parameter diverge as a second-order phase transition is approached. In
Sec. 8.6, we will discuss dynamic scaling of correlation functions and char-
acteristic frequencies near second-order critical points. This is a natural
generalization of the static scaling discussed in Chapter 5. We will then
discuss stochastic dynamical equations for both hydrodynamical and slow
critical variables. These are the natural generalizations to continuous fields
of the Langevin equations discussed in Sec. 7.5.

8.2 A tutorial example – rigid rotors on a lat-
tice

The hydrodynamics of real physical systems is either quite complicated be-
cause of the large number of hydrodynamic variables (e.g., fluids, liquid
crystals and solids) or confusing because of possibly unfamiliar time evolu-
tion (e.g., spin systems). We will, therefore, study a simple model system
that has no known physical realization but that will illustrate all of the
essential features of hydrodynamics. The study of real systems will then be
almost straightforward though sometimes tedious.

8.2.1 Description of the model

The model we will investigate is one with a symmetric rigid rotor or bar
at each of N sites l on a d-dimensional lattice as shown, in Fig. 8P.1.
Each rotor can rotate frictionlessly in the two-dimensional xy-plane. The
direction of the rotor at site l can be specified by the unit vector

νl = (cosϑl, sinϑl), (8.2.1)

where ϑl is the angle of the rotor relative the x-axis. Neighboring rotors
do not touch, but there is an exchange-like interaction potential favoring
parallel alignment. At high temperature, the rotors are randomly oriented
like spins in the paramagnetic phase. At low temperature, they align along
a common axis like the molecules of a nematic liquid crystal, as shown in
Fig. 8P.1b. The ordered phase, like the nematic phase of liquid crystals, is
characterized by a symmetric, traceless tensor order parameter,

〈Qij(x)〉 =

〈∑
l

(
νliνlj − 1

2
δij

)
δ(x−Rl)

〉

= (N/V )S
(
ninj − 1

2
δij

)
(i, j = x, y), (8.2.2)
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(a) (b)

Figure 8P.1: (a) Disordered phase of the rigid rotor model. Rigid rotors at
lattice sites l rotate freely about a fixed axis. The direction of the rotors is
random. (b) Ordered phase of the rigid rotor model. Rotors align along a
common axis as in a nematic liquid crystal. The order parameter 〈Qij〉 is
nonzero.

where V is the volume and n(x) = [cos θ(x), sin θ(x)] is the director speci-
fying the direction of average alignment at x. The distinction between the
microscopic angle ϑl specifying the direction of the local rotor at site l and
the coarse-grained angle θ(x) specifying the direction of the director n(x) is
identical to that introduced in Sec. 6.1 in our discussion of fluctuations in
the xy-model. A potential energy favoring parallel rotors which is invariant
under the inversion operation νl → −νl (ϑl → ϑl + π) is

U [ϑl] = −J
∑
<l,l′>

cos[2(ϑl − ϑl′)]. (8.2.3)

Except for the factor of two in the cosine assuring inversion symmetry, this
is identical to the classical xy-Hamiltonian of Eq. (??).

Because the lattice is rigidly fixed and the rotors rotate without fric-
tion, the rotational angular momentum of the rotors about the z-axis is
conserved. Thus, there are two, and only two, conserved variables in this
system: the energy E and the angular momentum L. The energy den-
sity and angular momentum density operators (in the sense of Chapter 3),
ε̂(x, t) and l̂(x, t), obey local conservation laws,

∂ε̂

∂t
+∇ · ĵε = 0, ∂l̂

∂t
+∇ · τ̂ = 0, (8.2.4)

where ĵε and τ̂ are, respectively, the energy and angular momentum cur-
rent operators. Ensemble or coarse-grained averages of the above conser-
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vation equations lead to identical equations relating the averaged densi-
ties, ε(x, t) = 〈ε̂(x, t)〉 and l(x, t) = 〈l̂(x, t)〉, to the averaged currents,
jε(x, t) = 〈̂jε(x, t)〉 and τ (x, t) = 〈τ̂ (x, t)〉. It is important to remember
that ε and τ are even under time reversal whereas l and jε are odd under
the same operation.

In the ordered phase, the angle θ(x) is an elastic variable with associated
free energy [Eq. (??)],

Fel =
1
2

∫
ddxρs(∇θ)2 ≡ 1

2

∫
ddxρsv2

θ , vθ ≡ ∇θ. (8.2.5)

If θ = 0 in the equilibrium state, then n = (1, 0), 〈Qxx〉 = −〈Qyy〉 =
(N/V )S/2, and 〈Qxy〉 = 0. Small changes of θ produce a non-vanishing
〈Qxy〉 = 2〈Qxx〉δθ. Thus, for small deviations from the ground state,
θ = 〈Qxy〉/(2〈Qxx〉). As in a nematic liquid crystal, the bars are inversion
invariant, and all physical quantities must be invariant under the transfor-
mation n → −n. θ is even under time reversal.

8.2.2 The disordered phase

In the disordered phase, the only hydrodynamic variables are ε and l. Be-
fore we can study the hydrodynamics of this system, we must first include
the angular momentum in its statistical mechanics and thermodynamics.
We begin by constructing the Lagrangian, from which we can obtain the
Hamiltonian that controls statistical averages. If each rod has a moment
of inertia I, then the Lagrangian is

L = 1
2

∑
l

Iϑ̇2
l − U [ϑl], (8.2.6)

where U is the potential energy like that of Eq. (8.2.3). From this, we can
construct the angular momentum of each site,

pl =
∂L
∂ϑ̇l

= Iϑ̇l, (8.2.7)

and the Hamiltonian,

H =
∑
l

p2
l

2I
+ U. (8.2.8)

Since U depends only on ϑl − ϑl′ , it is straightforward to verify that the
total angular momentum,

L =
∑
l

pl , (8.2.9)



8.2. A TUTORIAL EXAMPLE – RIGID ROTORS ON A LATTICE 81

is independent of time, i.e., a conserved quantity. The associated angular
momentum density is

l̂(x, t) =
∑
l

plδ(x−Rl). (8.2.10)

Since L is conserved, it is possible to have stationary states (i.e., states that
do not vary in time) in which 〈L〉 = V 〈l̂〉 is nonzero. Thus, stationary states
are characterized by their angular momentum density l = 〈l̂〉 as well as by
their energy density ε. If 〈l̂(x, t)〉 is independent of x, then the average
angular velocity of each rotor is the same, and we can introduce an angular
velocity Ω via

l = 〈l̂〉 = ĨΩ, (8.2.11)

where Ĩ = NI/V is the moment of inertia per unit volume. The angular
frequency Ω(l) is determined completely by the value of the stationary
angular momentum density. More generally, Ĩ could be a function of l and
ε, and Ω(l, ε) would be a function of both l and ε.

Having established that stationary states with a nonzero l are possible,
we next need to identify ensembles that lead to equilibrium nonzero values
of l. Clearly, the canonical ensemble constructed from the Hamiltonian
of Eq. (8.2.8) will lead to l = 0 because it is a minimum at pl = 0 for
every l and it is an even function of pl. To create an ensemble favoring
l �= 0, we need only add a term −ΩeL = −Ωe

∑
l pl to H. Rather than

adding such a term directly, we will show how it arises naturally from a
Lagrangian expressed in terms of angular velocities relative to a coordinate
system rotating with angular velocity Ωe. Define the relative angle ϑ′

l and
its angular velocity ωl = ϑ̇′

l via

ϑl = Ωet+ ϑ′
l

ϑ̇l = Ωe + ωl. (8.2.12)

Then, because ϑl − ϑl′ = ϑ′
l − ϑ′

l′ , the Lagrangian as a function of ϑ′
l is

L = 1
2
I

∑
l

(Ωe + ωl)2 − U [ϑ′
l]. (8.2.13)

This Lagrangian differs by a total time derivative from one in which the
kinetic energy is 1

2I
∑

l ω
2
l rather than

1
2I

∑
l(Ωe + ωl)2. The equations of

motion for ϑ′
l predicted by these two Lagrangians are thus identical. Either

can be used to construct momentum conjugate to ωl and a Hamiltonian.
The Lagrangian of Eq. (8.2.13) will be more useful to us. The momentum
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conjugate to ωl is

pl =
∂L
∂ωl

= I(Ωe + ωl) = I
∑
l

ϑ̇l. (8.2.14)

Thus, the value of the canonical momentum pl is Iϑ̇l, independent of
the value of Ωe. The Hamiltonian associated with the Lagrangian of Eq.
(8.2.13) is then

HT =
∑
l

plωl − L

=
1
2

∑
l

(p2
l /I) + U [θl]− ΩeL (8.2.15)

≡ H− ΩeL,

where H is the Hamiltonian in the frame with Ωe = 0 and L =
∑

l pl =∑
l I(Ωe + ωl) is the total angular momentum. It is a straightforward ex-

ercise to verify the Poisson bracket relation, {H,L} = 0, and that L is
conserved. Note that L is the rest frame angular momentum regardless of
the value of Ωe. Note also that the Ωe is thermodynamically conjugate to
the angular momentum (see Chapter 2).

Thermodynamic functions can now be determined via the partition
function,

Ξ(T,Ωe) = Tre−(H−ΩeL)/T ≡ eS−(E−Ωe〈L〉)/T

(8.2.16)

=
1
N !
(2πIT )dN/2eNIΩ2

e/(2T )
∏
l

∫
dϑle

−U [ϑl]/T ,

where S is the entropy and E = 〈H〉 is the internal energy. From this, the
average angular momentum in thermal equilibrium is easily found to be

〈L〉 = ∂ ln Ξ
∂βΩe

= NIΩe. (8.2.17)

Thus, in thermal equilibrium, the frequency Ω introduced in Eq. (8.2.11)
is equal to Ωe. This is really just the statement that when there is an
equilibrium angular momentum, the average angular velocity of each rotor
will be 〈ϑ̇l〉 = Ω = l/Ĩ, and the average angular velocity measured relative
to the frame rotating with frequency Ωe = Ω will be zero, since by Eq.
(8.2.12)

〈ωl〉 = Ω− Ωe. (8.2.18)
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In what follows, we will generally measure all angular velocities in the rest
frame so that Ωe will be zero. It is useful, however, to remember that
there is the same distinction between Ω and Ωe that there is between the
equilibrium and external chemical potential µ and µext that we encountered
in our discussion of diffusion in Sec. 7.4.

The thermodynamic potential associated with the partition function of
Eq. (8.2.16) is

W (T,Ω) = −T ln Ξ(T,Ω) = E − Ω〈L〉 − TS. (8.2.19)

It satisfies the differential thermodynamic relation

dW = −SdT − 〈L〉dΩ. (8.2.20)

Here, since we are considering only relations valid in thermodynamic equi-
librium, we have dropped the distinction between Ω and Ωe; they are equal
in this case. This equation implies a relation (the volume V is constant),

Tds = dε− Ωdl, (8.2.21)

between intensive densities ε, l and s = S/V of extensive quantities. This
equation is the analog of Eq. (??) for isotropic fluids. The entropy density
s is a thermodynamic potential that is a functions of the variables ε and l.
The variables Ω and T are also function of ε and l via the relations

Ω(ε, l) = −T
∂s

∂l

)
ε

, T−1(ε, l) =
∂s

∂ε

)
l

. (8.2.22)

We will be principally interested in states near the equilibrium state with
l = 0. In this case, the entropy density can be expanded in powers of l as

s(ε, l) = s0(ε)− 1
2T Ĩ

l2, (8.2.23)

where Ĩ−1 = ∂Ω/∂l)ε.
The fundamental thermodynamic identity, Eq. (8.2.21), and the conti-

nuity equations (8.2.4) can now be used to tell us how the entropy changes
in response to changes in the conserved hydrodynamical variables:

T
∂s

∂t
=

∂ε

∂t
− Ω∂l

∂t
= −∇ · jε +Ω∇ · τ

= −∇ · (jε − Ωτ )− τ · ∇Ω. (8.2.24)

Then, using the identity

∇ ·Q = T∇ · (Q/T ) +Q · (∇T/T ), (8.2.25)
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we obtain

T

(
∂s

∂t
+∇ · (Q/T )

)
= −Q · (∇T/T )− τ · ∇Ω, (8.2.26)

where
Q = jε − Ωτ (8.2.27)

is the heat current. Integrating Eq. (8.2.26) over a large volume subject to
the boundary condition that the heat current is zero at its outer surface,
we obtain an expression for the total rate of entropy production,

T
dS

dt
=

∫
ddx[−Q · (∇T/T )− τ · ∇Ω], (8.2.28)

which must be non-negative.
In reversible, non-dissipative processes, the entropy remains constant,

i.e., dS/dt is zero. Thus, in the absence of dissipation, the currents τ and
Q must be zero:

τ = 0; Q = jε − Ωτ = 0. (8.2.29)

Since by the second law of thermodynamics, the entropy always increases
when constraints are removed from the system, the rate of entropy produc-
tion must be strictly positive when dissipation is allowed. When T and Ω
are spatially uniform, the currents are zero. We therefore expect τ and Q
to be linearly proportional to ∇T and ∇Ω. The constitutive relations be-
tween these variables must be chosen so that dS/dt is positive. In addition,
dissipative currents of one sign under time reversal must be proportional
to variables of the opposite sign. These constraints imply

Q = −κ∇T, τ = −Γ∇Ω , (8.2.30)

with κ > 0 and Γ > 0 because

T
dS

dt
=

∫
ddx[κ(∇T )2/T + Γ(∇Ω)2] > 0. (8.2.31)

κ and Γ are transport coefficients; κ is the thermal conductivity. Eqs.
(8.2.30) are constitutive relations expressing the currents in terms of a
spatial derivative of the fields T and Ω conjugate to E and 〈L〉. There is no
term relating τ to ∇T because they have the same signs under time reversal
(or l and T have opposite signs). Similarly, there is no term coupling Q to
∇Ω.
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The equations for the energy and angular momentum densities lin-
earized about the state with zero angular momentum and Ω = 0 are, there-
fore,

∂ε

∂t
= −∇ · jε = κ∇2T,

∂l

∂t
= −∇ · τ = Γ∇2Ω. (8.2.32)

These equations can be closed with the aid of the thermodynamic relations

dΩ = Ĩ−1dl, dT = C−1
l dε, (8.2.33)

where Cl is the specific heat at constant l. Cl and Ĩ are particular real-
izations of a susceptibility relating changes of conjugate variables. We now
obtain

∂ε

∂t
= Dε∇2ε,

∂l

∂t
= Dl∇2l, (8.2.34)

where
Dε = κ/Cl, Dl = Γ/Ĩ (8.2.35)

are, respectively, the thermal and angular momentum diffusion constants.
Thus, both ε and l relax diffusively. Dε and Dl, like the diffusion constant
[Eq. (7.4.32)] for particles in a fluid, are the ratio of a transport coefficient Γ
to a susceptibility χ. This form is quite general. The dissipative parts of the
response functions can be obtained directly using the methods introduced
in Sec. 7.4:

χ′′
εε(q, ω)
ω

= Cl
Dεq

2

ω2 + (Dεq2)2
, (8.2.36)

χ′′
ll(q, ω)
ω

= Ĩ
Dlq

2

ω2 + (Dlq2)2
. (8.2.37)

From this we see that there is one mode (one peak in a response function)
for each of the conserved variables ε and l. This result is quite general.
There is always one mode associated with each conserved variable and, as
we shall see shortly, with each broken-symmetry variable.

Eqs. (8.2.34) are the phenomenological diffusive dynamical equations
for the conserved densities ε and l. Identical equations control the time
development of the conjugate fields T and Ω as long as the linear thermody-
namic relations of Eqs. (8.2.33) hold. Thus, for example, ∂T/∂t = Dε∇2T .
This is the equation of thermal diffusion. We regard the equations in terms
of ε and l as more fundamental than those for T and Ω because the former
variables obey microscopic conservation laws.
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8.2.3 The ordered phase

The free energy of the ordered phase is completely independent of the spa-
tially uniform angle variable θ. Gradients of θ do, however, increase the
free energy, and vθ = ∇θ must be included as an independent thermo-
dynamic variable. vθ is also a broken-symmetry hydrodynamical variable
whose characteristic excitation frequencies go to zero with wave number
q. ε, l and vθ are the only hydrodynamic variables. All other variables
relax to equilibrium values determined by local values of ε, l and vθ in
microscopic times τ ; they do not need to be considered at any stage in the
derivation of hydrodynamical equations. It is possible, however, to include
non-hydrodynamical variables in a non-rigorous way by a slight generaliza-
tion of the methods presented here.

Thermodynamic functions describing the ordered phase must be a func-
tion either of vθ or its conjugate field hθ in addition to T and Ω. The
function W̃ ′(T,Ω,hθ) = E−Ω〈L〉−TS− ∫

ddxhθ ·vθ is a natural function
of hθ, whereas

W̃ = W̃ ′(T,Ω,hθ) +
∫

ddxhθ · vθ = E − Ω〈L〉 − TS (8.2.38)

is a natural function of T , Ω and vθ satisfying

dW̃ = −SdT − LdΩ+
∫

ddxhθ · dvθ. (8.2.39)

From this follows the fundamental relation

Tds = dε− Ωdl − hθ · dvθ (8.2.40)

among intensive quantities. The potential W̃ (T,Ω,vθ) can be expanded in
a power series in vθ for small vθ. It must reduce to W (T,Ω) when vθ is
zero. There is no linear term in vθ because vθ is zero when hθ is zero. The
coefficient of v2

θ is independent of Ω for small Ω. Thus, for small vθ and Ω,
we have

W̃ (T,Ω,vθ) =W (T,Ω) + Fel(T,vθ). (8.2.41)

The conjugate field hθ satisfies

hθi = − T
∂s

∂vθi

)
ε,l

=
1
V

∂W̃

∂vθi

)
T,Ω

= ρsvθi. (8.2.42)

The first line of Eq. (8.2.42) is generally valid. The second line is valid only
to lowest order in vθ. Since we will be most interested in modes associated
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with the equilibrium state with vθ = 0, the latter form will suffice for our
purposes. In this case, the entropy density can be expanded about the state
with l = 0 and vθ = 0 as

s(ε, l,vθ) = s0(ε)− 1
2T Ĩ

l2 − 1
2T

ρsvθ · vθ. (8.2.43)

To treat the dynamical properties of θ and vθ, we define the “current”
X via

dθ

dt
+X = 0. (8.2.44)

We first consider the reactive part of X. In the ordered phase with nonzero
〈Qij〉, the director n(x, t) will rotate with the average angular frequency
of the rotors. Thus, in an ordered stationary state with nonzero angular
momentum,

dθ

dt
= Ω = Ĩ−1l. (8.2.45)

Alternatively, the angle θ′ measured with respect to a frame rotating with
frequency Ωe will satisfy dθ′/dt = Ω − Ωe. There is no dissipation in
the above relation; it will be satisfied so long as there are no external
perturbations. Ω is the reactive or nondissipative part of the current X. As
we have seen, reactive parts of currents always couple the time derivative
of one variable to another variable with opposite sign under time reversal.
The dissipative parts of currents couple the time derivative of one variable
to other variables with the same sign under time reversal. We define the
dissipative “current” X ′ via

X = −Ω+X ′. (8.2.46)

Since θ is a broken, symmetry hydrodynamic variable, we expect X ′ to tend
to zero with wave number. The equation of motion for vθ is

∂vθ
∂t

= −∇(X ′ − Ω). (8.2.47)

Then the thermodynamic relation [Eq. (8.2.40)] and the conservation laws
[Eqs. (8.2.4)] for ε and l imply

T
∂s

∂t
= −∇ · jε +Ω∇ · τ − hθ∇ · (Ω−X ′) (8.2.48)

so that the entropy production equation becomes

T

(
∂s

∂t
+∇ · (Q/T )

)
= −Q · (∇T/T )− (τ +hθ) ·∇Ω−X ′∇·hθ, (8.2.49)
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where
Q = jε − Ωτ − hθX ′ (8.2.50)

is the heat current.
In the absence of dissipation, entropy production is zero,

τ = −hθ, Q = 0, X ′ = 0, (8.2.51)

and
∂l

∂t
= ∇ · hθ = ρs∇2θ, (8.2.52)

∂θ

∂t
= Ω = Ĩ−1l. (8.2.53)

These are the equations determining the modes of the system in the ab-
sence of dissipation. Note their similarity to Poisson bracket equations [Eq.
(7.2.2)] for the harmonic oscillator.

We should pause at this point to assess what our formal manipulations
have told us. We began with a statement that dθ/dt is equal to Ω in steady
state situations when there is a nonzero angular momentum. The require-
ment that there be no entropy production for non-dissipative processes then
told us that there must be a reactive term in the angular momentum current
equal to −hθ. This term could not have been predicted using arguments
with spatially uniform fields since hθ is nonzero only when there is spatial
variation of θ. The end result is that the equations for l and θ, which have
opposite signs under time reversal, are coupled. This is analogous to the
coupling between p and x in the simple harmonic oscillator discussed in
Sec. 7.2. A linear relation between the time derivative of a variable u with
one sign under time reversal and a variable v with the opposite sign will in-
variably lead to a reciprocal linear relation between the time derivatives of
v and u. Usually, one relation can be obtained using invariance arguments
(such as those used to obtain the relation between θ and Ω); the other then
follows from requirement of zero entropy production. The derived relation
usually involves more gradients than the fundamental relation following
from invariance arguments. The time derivative of either of Eqs. (8.2.52)
or (8.2.53) leads to second-order sound-like equations,

∂2l

∂t2
= ρsĨ

−1∇2l or
∂2θ

∂t2
= ρsĨ

−1∇2θ, (8.2.54)

and predict undamped propagating modes with a sound-like dispersion re-
lation

ω = ±
(
ρs

Ĩ

)1/2

q. (8.2.55)
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Reactive couplings between variables with opposite sign under time reversal
usually lead to propagating modes with linear dispersion in q and a velocity
proportional to the square root of a rigidity divided by some measure of
inertia. There are cases, as we shall see, however, where these modes can
become overdamped and be effectively diffusive.

Constitutive relations for the dissipative parts of the currents can be
derived just as in the disordered state. They are

Q′
i = −κij∇jT,

τ = −hθ + τ ′, τ ′i = −Γij∇jΩ, (8.2.56)

X ′ = −γ∇ · hθ = −γρs∇2θ.

γ is a new dissipative coefficient not present in the disordered phase. It
must be positive for positive entropy production. The ordered phase is
anisotropic, and dissipative currents can depend on the direction of spatial
variation (∇) relative to the local director n(x). Thus, the dissipative
coefficients κ and Γ of the disordered phase become tensors,

κij = κ‖ninj + κ⊥(δij − ninj),
Γij = Γ‖ninj + Γ⊥(δij − ninj), (8.2.57)

in the ordered phase. X ′ and Q have the same sign under time reversal,
and in general there could be dissipative cross-couplings of the form

X ′ ∼ ∇T, Q ∼ ∇ · hθ. (8.2.58)

Other symmetries, however, prevent such couplings. Q is a vector. The
only possible way to create a vector from ∇·hθ would be to use the director
n in n∇ ·hθ. This is not permitted because all physical quantities must be
invariant under n → −n.

The complete linearized hydrodynamic mode equations in the ordered
phase are

∂ε

∂t
= C−1

l κij∇i∇jε,

∂θ

∂t
= Ω+ γρs∇2θ = Ĩ−1l + γρs∇2θ, (8.2.59)

∂l

∂t
= ρs∇ · vθ + Γij∇jΩ = ρs∇2θ + Ĩ−1Γij∇i∇j l.

The energy mode decouples from the others and remains diffusive as it was
in the disordered phase. Its frequency,

ω = −i(κ‖ cos2 θ0 + κ⊥ sin2 θ0)C−1
l q2, (8.2.60)
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depends on the direction of q relative to n0, the uniform equilibrium direc-
tion of n (q · n0 = q cos θ0). The “sound wave” arising from the coupling
of θ and l is now damped:

ω =
1
2

[
−i(Dθ +Dl)q2 ± [4ρsĨ−1q2 − (Dθ −Dl)2q4]1/2

]
≈ ±cq − i

1
2
Dq2, (8.2.61)

where

Dθ = γρs, Dl = Ĩ−1(Γ‖ cos2 θ0 + Γ⊥ sin2 θ0) (8.2.62)

and
D = (Dθ +Dl) (8.2.63)

and where
c = (ρs/Ĩ)1/2 (8.2.64)

is the “sound velocity”. There are in reality two sound modes at positive
and negative frequencies. Thus, the ordered phase, which has one more
hydrodynamical variable than the disordered phase, has one more mode
than the disordered phase, with a total of three.

The response functions for θ and l can be obtained from the equations
of motion, Eqs. (8.2.59), via the Laplace transform technique we used to
obtain the diffusive response function in Sec. 7.4. The Laplace transform
of Eqs. (8.2.59) yields the matrix equation,(

θ(q, ω)
l(q, ω)

)
=
1
∆

( −iω +Dlq
2

−ρsq
2

Ĩ−1

−iω +Dθq
2

)(
θ(q, t = 0)
l(q, t = 0)

)
, (8.2.65)

for θ(q, ω) and l(q, ω), where

∆ = (−iω +Dlq
2)(−iω +Dθq

2) + ρsĨ
−1q2

≈ −ω2 + c2q2 − iωDq2. (8.2.66)

To calculate response functions from Eq. (8.2.65), we need the matrix
generalization of Eqs. (7.4.14) and (7.4.17),

θα(q, ω) =
1
iω
[χαβ(q, ω)− χαβ(q)]χ−1

βγ (q)θγ(q, t = 0), (8.2.67)

where θα ≡ (θ, l) and summation over repeated indices is understood. Both
χ′′
θθ(q, ω) and χ′′

ll(q, ω) are real and odd in ω. They can, therefore, be
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obtained by taking the real parts of the θ − θ and l − l components of Eq.
(8.2.65):

χ′′
θθ(q, ω)

ω
=

1
ρsq2

ω2Dq2 − (ω2 − c2q2)Dlq
2

(ω2 − c2q2)2 + (ωDq2)2
,

χ′′
ll(q, ω)
ω

= Ĩ
ω2Dq2 − (ω2 − c2q2)Dθq

2

(ω2 − c2q2)2 + (Dωq2)2
. (8.2.68)

Note that the same modes appear in both χ′′
θθ and χ′′

ll. The intensity of χ
′′
θθ

is much larger, however, because the susceptibility χθθ = (ρsq2)−1 diverges
at small q. The angular momentum density l and the angle θ have opposite
signs under time reversal. Thus, the general symmetry arguments of Sec.
7.6 require that χ′′

θ,l(q, ω) be imaginary and even in ω and χ′
θ,l(q, ω) be

imaginary and odd in ω. This implies that χ′′
θ,l(q, ω) = −iReχθ,l(q, ω) or,

from Eq. (8.2.65):

χ′′
θl(q, ω) = i

ω2Dq2

(ω2 − c2q2)2 + (ωDq2)2
. (8.2.69)

When the dissipation goes to zero, the peaks in χ′′
αβ become delta functions

at the “sound” wave frequencies

χ′′
θθ

ω
=

1
ρsq2Ĩ

χ′′
ll

ω
=

1
ρsq2

χ′′
θl

i
=

1
ρsq2

π

2
[δ(ω − cq) + δ(ω + cq)]. (8.2.70)

The correlation functions,

Sθθ(q, ω) =
2h̄

1− e−βh̄ω
χ

′′
θθ(q, ω),

Sεε(q, ω) =
2h̄

1− e−βh̄ω
χ

′′
εε(q, ω), (8.2.71)

are plotted in Fig. 8P.2. Note that the intensity of the “sound” peak at
negative frequency is less than that at positive frequency.

8.2.4 Excitations from the classical ground state

The hydrodynamical equations derived above determine the long wave-
length, low frequency dynamics throughout the ordered phase. Near zero
temperature, when there is nearly perfect alignment of all spins, the inter-
action energy between rotors [Eq. (8.2.3)] can be expanded in powers of
ϑl − ϑl′ . The leading term leads to the harmonic Hamiltonian,

H =
∑
l

p2
l /(2I) + J

∑
l,l′

γl,l′(ϑl − ϑl′)2 − zJN, (8.2.72)
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Figure 8P.2: (a) Sθθ(q, ω) and (b) Sεε(q, ω) for fixed q. Note that the
thermal factor in Sθθ causes the peak at −cq to have a lower intensity for
T > 0 than the peak at +cq. Both the diffusive and propagating peaks
have widths proportional to q2.

whose mode structure is easily calculated. (γl,l′ is the nearest-neighbor
matrix introduced in Eq. (??).) The equation of motion for ϑl is

Iϑ̈l = −2J
∑
l′

γl,l′(ϑl − ϑl′), (8.2.73)

or

ω2(q, ω) = (4J/I)[γ(0)− γ(q)] ≈ (2zJ/dI)a2q2. (8.2.74)

Thus, the elementary excitations from the ground state are propagating
waves with a linear dispersion. The velocity of these modes is c = (zJ/dIa2)1/2.
On the other hand, the low temperature rigidity [Eq. (??)] is ρs(T ≈
0) = (zJ/d)a2−d, and Ĩ = I/ad. Thus c = (ρs/Ĩ)1/2, in agreement with
the hydrodynamical result. The hydrodynamical result is, however, valid
throughout the ordered phase, even when thermal (or quantum) fluctua-
tions depress ρs(T ) considerably below its zero temperature classical value
of zJa2−d. In addition, the hydrodynamical equations determine the form
of the damping (imaginary part of ω) of modes. In a harmonic theory, each
mode is independent and there is no damping. When anharmonic terms are
added to the harmonic Hamiltonian, collisions between elementary excita-
tions occur, and there can be damping. The dissipative coefficients κ and Γ
can, therefore, be calculated at low temperatures by considering collisions
between elementary excitations.
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8.2.5 The Goldstone theorem

The existence of a new zero-frequency mode in the ordered phase is inti-
mately connected with the facts that the conserved angular momentum L
is a generator of rotations and that rotational symmetry is broken in the
ordered phase. The Poisson bracket-commutation relation of νl with L is

{νli(t), L} = 1
ih̄
[νli(t), L] = −εijνlj(t), (8.2.75)

where εij is the two-dimensional antisymmetric matrix with εxy = 1. This
equation is valid for any time t because L is a conserved, and thus time-
invariant quantity. The commutator of L with the xy-component of the
order parameter is thus

[Qxy(x, t), L] = 2ih̄Qxx(x, t). (8.2.76)

When L is expressed as the integral over x′ of the angular momentum
density l(x′, t′), this equation implies∫

ddx′χ̃′′
Qxy,l(x,x

′, t, t′) = i〈Qxx(x, t)〉 (8.2.77)

or
χ′′
Qxy,l(q = 0, ω) = 2πi〈Qxx〉δ(ω). (8.2.78)

There is no factor of 2h̄ on the right hand side of Eqs. (8.2.77) and
(8.2.78) because of the factor of 1/2h̄ in the definition [Eq. (7.6.14)] of
χ′′
Qxy,l

(x,x′, t, t′) in terms of the commutator of Qxy(x, t) and l(x′, t′).
Thus, the existence of a broken continuous symmetry implies that there
is a zero-frequency pole in the zero wave number order-parameter gener-
ator response function, χQxy,l(q = 0, z), or, equivalently, that there is a
zero-frequency mode at zero wave number. This is the content of the Gold-
stone theorem (Goldstone 1961, Nambu 1960). The new mode is generally
called the Goldstone mode.

The Goldstone theorem, Eq. (8.2.78), strictly speaking applies only at
q = 0. In the absence of long range forces, however, one can usually argue
that the limit of response functions as q → 0 is equal to their value at
q = 0. In this case, the Goldstone theorem implies that there is a mode
whose frequency goes continuously to zero as the wave number goes to
zero. Indeed, our hydrodynamical analysis leads to precisely such a mode.
If continuity is assumed, then, with the replacement δ〈Qxy〉 = 2〈Qxx〉δθ,
Eq. (8.2.78) can be rewritten as

lim
q→0

χ′′
θ,l(q, ω) = iπδ(ω), (8.2.79)

in agreement with the hydrodynamical predictions of Eq. (8.2.70)
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8.2.6 Kubo formulae

The fluctuation-dissipation theorem provides a correspondence between
equilibrium correlation functions and response functions that lead, for ex-
ample, to relations between the static thermodynamic susceptibility of con-
served variables and equal time correlation functions [Eqs. (??) and (??)].
There are analogous relations, called Kubo formulae, between dissipative
transport coefficients and current correlation functions. To see how such
relations can be derived, consider the imaginary part of the angular mo-
mentum density response function [Eq. (8.2.37)]. It is straightforward to
show that

Γ = DlĨ = lim
ω→0

lim
q→0

ω

q2
χ′′
ll(q, ω) = lim

ω→0
lim
q→0

β

2
ω2

q2
Sll(q, ω), (8.2.80)

where the fluctuation-dissipation theorem [Eq. (7.6.41)] was used to obtain
the final formula. The conservation law for angular momentum [Eq. (8.2.4)]
implies

ω2Sll(q, ω) = qiqjSτiτj
(q, ω) (8.2.81)

=
1
dV

q2

∫
ddxddx′

∫ ∞

−∞
dteiωte−iq·x〈τ (x, t) · τ (x′, 0)〉,

where we used the fact that the disordered state is rotationally isotropic.
Combining Eqs. (8.2.80) and (8.2.81), we obtain

Γ =
β

2
1
dV

∫
ddx

∫
ddx′

∫ ∞

−∞
dt〈τ(x, t) · τ(x′, 0)〉

=
β

2
1
dV

∫
ddx

∫
ddx′

∫ ∞

0

dt 〈{τi(x, t), τi(x′, 0)}+〉 , (8.2.82)

where {A,B}+ = AB +BA is the anticommutator of A and B. Thus, the
dissipative coefficient Γ is related to the integral over time of the current-
current correlation function. Similar expressions apply for the thermal con-
ductivity and, indeed, for any dissipative coefficient associated with a con-
served variable (see Problem 8.3). There are also related generalized Kubo
formulae for the ordered phase. Often, Kubo formulae provide the best way
to calculate dissipative coefficients from microscopic models.

8.2.7 Summary

In this section, we have studied the hydrodynamics of a simple model sys-
tem. Many of the concepts and results introduced here apply quite generally
to the hydrodynamics of all systems. The most important of these are listed
below.
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• Long-wavelength, low-frequency excitations are associated with con-
servation laws and broken symmetry.

• There is exactly one mode associated with each conservation law and
each broken symmetry.

• Currents of hydrodynamical variables contain reactive and dissipative
parts. The reactive parts of currents couple variables of opposite sign
under time reversal and lead to propagating modes.

• In the absence of reactive couplings, the hydrodynamical modes are
diffusive.

• Diffusion constants are the ratio of a transport coefficient to a sus-
ceptibility.

• The velocities of propagating modes are square roots of the ratio of a
reactive transport coefficient to a susceptibility.

• Dissipative coefficients are related to current correlation functions via
Kubo formulae.

• Elementary excitations from the ground state can be described by a
harmonic Hamiltonian. These excitations are sound-like propagating
modes with a velocity that agrees with the predictions of the hydro-
dynamic theory in the low-temperature limit.

• The Goldstone theorem states that there must be a zero-frequency,
zero wave number mode in systems with a continuous broken sym-
metry. The new hydrodynamic mode in the ordered phase is the
continuation of the zero-frequency Goldstone mode to nonzero wave
number.


